## ПЛАЗМОННЫЕ РЕЗОНАНСЫ ДВУМЕРНОЙ РЕШЕТКИ ИЗ МЕТАЛЛИЧЕСКИХ ЧАСТИЦ ВНУТРИ ДИЭЛЕКТРИЧЕСКОГО СЛОЯ: СТРУКТУРНЫЕ И ПОЛЯРИЗАЦИОННЫЕ ОСОБЕННОСТИ

А. Н. Шайманов <sup>a,b\*</sup>, К. М. Хабаров <sup>a,c</sup>, А. М. Мерзликин <sup>a,c,e</sup>,

И. В. Быков <sup>a,e,f</sup>, А. В. Барышев <sup>a,c,d\*\*</sup>

<sup>а</sup> Всероссийский научно-исследовательский институт автоматики им. Н. Л. Духова 127055, Москва, Россия

> <sup>b</sup> Московский государственный университет им. М. В. Ломоносова 119991, Москва, Россия

> > <sup>с</sup> Московский физико-технический институт 141700, Долгопрудный, Московская обл., Россия

<sup>d</sup> Физико-технический институт им. А. Ф. Иоффе Российской академии наук 194021, Санкт-Петербург, Россия

<sup>е</sup> Институт теоретической и прикладной электродинамики Российской академии наук 125412, Москва, Россия

<sup>f</sup> Московский государственный технический университет им. Н. Э. Баумана 105005, Москва, Россия

Поступила в редакцию 16 августа 2016 г.

Представлены результаты экспериментального и теоретического исследования образцов планарных двумерных (2D) плазмонных структур. Исследованные образцы представляли собой 2D-решетку из наночастиц золота, помещенную в тонкий слой диэлектрика. Образцы изучались с помощью атомно-силовой микроскопии и оптическими методами. Интерпретируются полосы поглощения, связанные с возбуждением различных поверхностных плазмонных резонансов. Обнаружено, что выбор взаимной ориентации плоскости поляризации и ребра элементарной ячейки 2D-решетки определяет спектральное положение решеточного поверхностного плазмонного резонанса, связанного с периодом решетки. Показано, что взаимодействие *p*- и *s*-поляризованного света с 2D-решеткой из наночастиц описывается диполь-дипольным взаимодействием наночастиц, погруженных в среду с эффективной диэлектрической проницаемостью. Исследование спектров эллипсометрических параметров позволило определить амплитудную и фазовую анизотропии пропускания, являющиеся следствием несовершенства 2D-решетки образцов.

## DOI: 10.7868/S0044451017040071

Наночастицы благородных металлов, привлекают к себе особое внимание вследствие того, что в неупорядоченных и периодических структурах на их основе наблюдаются локализованные поверхностные плазмонные резонансы (ППР) [1,2]. Известно, что локализация электрического поля и значительный рост его амплитуды на поверхности нано-

частиц привлекательны для фотовольтаики [3,4], усиления магнитооптических [5–7] и нелинейнооптических эффектов [8,9], детектирования биологических веществ [10, 11] и создания лазеров на ППР [12].

Оптические свойства плазмонных структур (на основе наночастиц) зависят от формы, материала уединенной наночастицы, диэлектрической проницаемости окружающей наночастицу среды [2, 13], от расстояний между наночастицами и их расположения [14, 15], а также от поляризации падающе-

<sup>\*</sup> E-mail: shaymanov@inbox.ru

<sup>\*\*</sup> E-mail: baryshev@vniia.ru

го излучения. В спектрах пропускания периодических структур на основе наночастиц обнаруживаются особенности, связанные с решеточным ППР (РППР) [2,16–20]. Исследование РППР представляет практический интерес вследствие высокой чувствительности резонанса к изменению локального окружения структуры: малые изменения в диэлектрической проницаемости способны привести к значительному изменению спектрального положения РППР [21], что может быть использовано в оптических биосенсорах [22]. Показано, что выбор периода 2D-решетки плазмонных наночастиц позволяет регулировать спектральное положение РППР в структурах на основе магнитооптических материалов и значительно усиливать их отклик на частотах РППР [23, 24].

Несмотря на довольно широкое исследование плазмонных 2D-структур, изучение РППР в структурах, представляющих собой 2D-решетку из наночастиц металла внутри тонкого слоя диэлектрика, представлено только в нескольких статьях [8,23]. В нашей работе проведено детальное экспериментальное и теоретическое исследование таких структур с различными периодами 2D-решетки. В спектрах пропускания исследованных образцов демонстрируются полосы поглощения, связанные с возбуждением ППР и РППР. При изучении образцов с помощью атомно-силовой микроскопии (АСМ) были обнаружены особенности их структуры, а спектры эллипсометрических параметров позволили определить структурную анизотропию образцов. Результаты экспериментальных и теоретических исследований находились в хорошем соответствии.

Экспериментальные образцы на основе золота и висмут-замещенного железоиттриевого граната (Au-Bi:YIG) были изготовлены с помощью напыления электронным лучом, электронной литографии и ионного травления. На первом этапе из пленки золота толщиной 30 нм на кварцевой подложке изготавливалась квадратная 2D-решетка из золотых нанодисков; параметры решетки D для трех образцов составляли  $D_1 \approx 200$  нм,  $D_2 \approx 300$  нм и  $D_3 \approx 400$  нм. Изготовленная решетка из золотых нанодисков предварительно подвергалась нагреву до температуры кристаллизации соединения Bi: YIG (750 °C). Нагревание было необходимым шагом для стабилизации формы наночастиц при последующем напылении и отжиге пленки Bi: YIG. Напыленная пленка Bi: YIG имела толщину  $d \approx 100$  нм и поликристаллическую структуру Bi<sub>1</sub>Y<sub>2</sub>Fe<sub>5</sub>O<sub>12</sub>. Таким образом, образцы представляли собой квадратную 2D-решетку из золотых наночастиц, размещенных на кварцевой подложке и покрытых пленкой Bi: YIG. Геометрические размеры одного образца были  $4 \times 4 \text{ мм}^2$ .

Вид сверху и профиль поверхности одного из образцов  $(D_2 \approx 300 \text{ нм})$  показан на рис. 1*a*-*e*. На основе результатов исследований с помощью АСМ обнаружено, что поверхность образцов имеет синусоидальный профиль (см. сечения АСМ-изображения на рис. 1в). По-видимому, в результате нагревания золотые нанодиски оплавились и приобрели сфероидальную форму. Для всех образцов был проведен анализ параметров 2D-решетки вдоль осей x и  $y, D_x$  и  $D_y$ , как показано на рис. 1a, e. Особенностью 2D-картирования с помощью ACM является тот факт, что при сканировании поверхности существуют быстрая и медленная оси картирования. Поэтому возможны небольшие сжатия и растяжения изображений из-за дрейфа образца. Так, например, для второго образца ( $D_2 \approx 300$  нм) период решетки вдоль быстрой оси сканирования составил  $D_{2x} = 300$  нм, а вдоль медленной оси  $-D_{2y} =$ = 304 нм. Чтобы определить параметры  $D_x$  и  $D_y$ без влияния дрейфа, проводились более тщательные измерения для второго образца после калибровки микроскопа два раза, когда ось быстрого сканирования совпадала либо с осью x, либо с осью у. При этом сканировались две области размерами  $100 \times 100 \text{ MKm}^2$ .

Согласно результатам обработки АСМ-изображений, периоды в одной из областей сканирования были  $D_{2x} = 307.5 \pm 1.4$  нм и  $D_{2y} = 306.2 \pm 0.5$  нм, а в другой области —  $D_{2x} = 304.3 \pm 1.9$  нм и  $D_{2y} = 305.8 \pm 0.9$  нм. Данные, полученные с помощью АСМ, позволяют убедиться в том, что в исследованных областях решетка была квадратной. Однако структура решетки по всей площади образца была неидеальной, т.е. имелись флуктуации периода как по оси x, так и по оси y.

Измерение спектров пропускания и эллипсометрических параметров  $\psi$  и  $\Delta$  проводилось с помощью эллипсометра (Ellipse 1891 SAG) в диапазоне длин волн 350–1050 нм. Измерения проводились для  $\mathbf{E}_{x^-}$ ,  $\mathbf{E}_{y^-}$  и  $\mathbf{E}_{45^\circ}$ -поляризованного света в плоскости xy (см. рис. 1*a*). Образцы освещались параллельным пучком поляризованного света в геометрии нормального и наклонного падения, площадь засветки не превышала размеров образца (4×4 мм<sup>2</sup>) и составляла около 1 мм<sup>2</sup>. Как будет обсуждаться ниже, оптические спектры позволили определить средний период решетки образцов благодаря зависимости спектрального положения РППР от периода решетки.



**Рис. 1.** a, b) Изображения, полученные с помощью ACM при исследовании образца с периодом  $D_2 \approx 300$  нм. e) Сечения поверхности изображения на рис. 1a и их аппроксимация синусоидальной функцией. e) Модель для численного моделирования

В случае плазмонной квадратной 2D-решетки, изготовленной на подложке, было показано, что спектральное положение РППР определяется периодом решетки и показателем преломления подложки [19]. Также известно, что для структур, состоящих из несимметричных наночастиц или димеров (две плазмонные наночастицы рядом), спектральное положение ППР в оптических спектрах зависит от поляризации падающего излучения [14, 25]. Поэтому проявление плазмонных резонансов в поляризационных спектрах плазмонных 2D-структур позволяет определить симметрию как единичного рассеивателя, так и всей структуры.

На рис. 2*а* изображены экспериментальные спектры пропускания трех образцов в геометрии нормального падения ( $\theta = 0$ ). Видно, что для падающей волны с  $\mathbf{E}_{x}$ - и  $\mathbf{E}_{y}$ -поляризациями в спектрах пропускания наблюдаются две основные особенно-

сти (отмечены стрелками) — коротковолновая (жирные стрелки) и длинноволновая (тонкие стрелки) полосы. С ростом периода решетки D от 200 до 400 нм коротковолновая полоса смещается в диапазоне  $\lambda = 550-600$  нм, а смещение длинноволновой полосы происходит пропорционально росту D в диапазоне  $\lambda = 690-820$  нм. Важно отметить, что спектральное положение коротковолновой полосы не зависело от выбора поляризации, а длинноволновые полосы для  $\mathbf{E}_{x}$ - и  $\mathbf{E}_{y}$ -поляризаций были смещены относительно друг друга для всех образцов.

Причиной возникновения коротковолновой полосы на рис. 2*a* является возбуждение ППР на единичных наночастицах. Условие для возбуждения данного вида резонанса описывается теорией Ми и для сферической наночастицы определяется следующим выражением [26]:



**Рис. 2.** Экспериментальный (*a*) и теоретический (*б*) спектры пропускания для структур с периодами  $D_1$ ,  $D_2$  и  $D_3$  при нормальном падении света на образцы при напряженности электрического поля вдоль оси x (сплошные линии) и вдоль оси y (штриховые)

$$\operatorname{Re}\{\varepsilon_{\operatorname{Au}}(\lambda)\} = -2\varepsilon_{\operatorname{Bi}:\operatorname{YIG}}(\lambda),\qquad(1)$$

где  $\varepsilon_{Au}$  и  $\varepsilon_{Bi;YIG}$  — диэлектрические проницаемости Au и Bi:YIG. Действительно, например, Re{ $\varepsilon_{Au}(\lambda = 597 \text{ нм})$ }  $\approx -10.5$  [27] и  $2\varepsilon_{Bi;YIG}(\lambda = 597 \text{ нм}) \approx 10.5$  для образца с  $D_1 \approx$  $\approx 200 \text{ нм}^{1)}$ . Отметим, что различие в спектральных положениях полосы ППР для исследованных образцов может быть объяснено неодинаковым размером наночастиц для разных периодов решетки, а также конечностью толщины слоя Bi:YIG, в котором золотые частицы чувствуют не только окружение Bi:YIG, но и границу Bi:YIG/воздух.

В соответствии с работами [1, 20] спектральное положение длинноволновой полосы определяется диполь-дипольным взаимодействием наночастиц, когда период решетки является определяющим параметром. Действительно, для образцов, исследованных в геометрии нормального падения, оказалось, что спектральное положение длинноволновой полосы хорошо описывается дифракционным условием [23]

$$m\lambda = n_{eff}D,\tag{2}$$

где m = 1, D — период решетки,  $n_{eff}$  — эффективный показатель преломления, вычисленный по формуле Максвелла – Гарнетта (МГ) для сферических наночастиц золота в слое Bi : YIG (см. сноску <sup>1</sup>))

$$n_{eff}^{2} = n_{\text{Bi:YIG}}^{2} \times \left[1 - \frac{3V(n_{\text{Bi:YIG}}^{2} - \operatorname{Re}\varepsilon_{\text{Au}})}{2n_{\text{Bi:YIG}}^{2} + \operatorname{Re}\varepsilon_{\text{Au}} + V(n_{\text{Bi:YIG}}^{2} - \operatorname{Re}\varepsilon_{\text{Au}})}\right], \quad (3)$$

где V — объемная доля Au,  $n_{\text{Bi:YIG}}$  — показатель преломления Bi:YIG (см. сноску <sup>1)</sup>).

Отметим, что дифракционное условие (2) для m = 2 хорошо описывает спектральное положение полосы поглощения РППР ( $\lambda = 650$  нм) для третьего образца ( $D_3 = 400$  нм) с  $n_{eff} = 3.17$  (см. рис. 2*a*). Заметим, что данная особенность проявляется и в расчетных спектрах (см. рис. 2*б*). А именно, полоса поглощения в окрестности  $\lambda = 630$  нм для третьего

Оптические константы для тонких пленок Bi: YIG были определены с помощью эллипсометра J. A. Woollam Co.

образца имеет сложный контур из-за спектрального пересечения полосы поглощения вследствие резонанса Ми на уединенной частице и полосы РППР, описываемой условием (2) для m = 2.

По-видимому, поперечное сечение единичной наночастицы имеет форму круга, так как спектральное положение коротковолновой полосы не зависит от поляризации падающей волны. Напротив, различие в спектральных положениях длинноволновых полос для  $\mathbf{E}_x$ - и  $\mathbf{E}_y$ -поляризованного света говорит о структурной анизотропии исследованных образцов. С помощью программы COMSOL был проведен расчет спектров пропускания структур с прямоугольной решеткой из сферических наночастиц, находящихся в слое Bi: YIG толщиной 150 нм с такими периодами  $D_x$  вдоль оси x и  $D_y$  вдоль оси y(см. рис. 1г), чтобы расчетные и экспериментальные спектральные положения полос РППР для  $\mathbf{E}_x$ и **Е**<sub>и</sub>-поляризованного света совпадали (рис. 26). Результаты анализа экспериментальных и расчетных спектров для периодов  $D_x$  и  $D_y$  приведены в таблице.

Итак, положения минимумов полос поглощения в поляризационных спектрах пропускания для исследуемых структур различались на  $\Delta\lambda(D_1) = 3$  нм,  $\Delta\lambda(D_2) = 9$  нм и  $\Delta\lambda(D_3) = 9$  нм. Предполагая, что единичный рассеиватель во всех трех образцах имеет симметричную форму относительно осей x и y, величины  $\Delta\lambda$ , по-видимому, связаны с различием периодов решетки вдоль осей x и y. Следует заметить, что величины D, восстановленные из экспериментальных и расчетных оптических спектров с помощью выражения (1) не вполне совпадали с результатами картирования с помощью АСМ. Последнее может быть связано с различием размеров области исследования:  $100 \times 100$  мкм<sup>2</sup> в случае ACM и  $1 \times 1$  мм<sup>2</sup> в случае оптических исследований, когда происходит усреднение по большой площади образца.

Отметим также, что обнаружено существенное различие спектральных ширин полос ППР и РППР в экспериментальных спектрах. Анализ экспериментальных и расчетных спектров с помощью гауссовых контуров, проведенный для  $D \approx 300$  нм, показал, что  $\Delta \lambda_{SPR} \approx 25$  нм и  $\Delta \lambda_{LSPR} \approx 75$  нм в эксперименте,  $\Delta \lambda_{SPR} \approx \Delta \lambda_{LSPR} \approx 45$  нм в расчете (см. рис. 2). Наиболее вероятными причинами уширения полосы РППР в случае экспериментальных структур являются флуктуация периода кристаллической решетки и отклонение профиля поверхности границы раздела Bi: YIG/воздух от синусоидального.

Рассмотрим спектры пропускания второго образца ( $D_2 \approx 300$  нм), измеренные при наклонном падении света (рис. 3). Видно, что для *p*-поляризованного света спектральное положение РППР слабо меняется в отличие от случая *s*-поляризованного света, когда происходит смещение РППР в область бо́льших длин волн с увеличением угла падения. С помощью программы COMSOL были рассчитаны спектры пропускания для *s*- и *p*-поляризованного света.

Для объяснения различий в спектрах пропускания s- и p-поляризованного света представим наночастицу как электрический излучающий диполь. Начнем рассмотрение спектров для *s*-поляризации (рис. 4а, в). В этом случае взаимодействие диполей приходится на направление вдоль  $\mathbf{k}_x$  (проекция волнового вектора падающей волны на ось x). Для s-поляризованного света соседние диполи излучают со сдвигом фаз, обусловленным разностью хода, что приводит к смещению спектрального положения полосы РППР с изменением угла падения  $\theta$  (см. рис. 3а). В случае р-поляризованной падающей волны (рис. 46, г) взаимодействие диполей происходит вдоль оси y, а их взаимодействие вдоль оси x мало. Это объясняет слабую зависимость спектрального положения длинноволнового минимума от угла падения  $\theta$ .

Обнаружено, что интенсивность и спектральное положение полосы ППР, связанной с резонансом Ми (отмечено стрелкой на рис. 3), менялись при наклонном падении. Как известно, в случае асимметричных частиц происходит расщепление резонанса Ми [13]. В нашем случае в модели для расчетов спектров пропускания (см. рис. 1*г*) мы использовали сферическую наночастицу, окруженную слоем диэлектрика конечной толщины. По-видимому, даже в такой модели эффективное диэлектрическое окружение наночастиц зависит от ориентации электрического поля падающей волны в силу конечности слоя диэлектрика.

Проведем анализ спектров, представленных на рис. 3a, а именно, проследим, как меняется спектральное положение РППР для *s*-поляризованного света от угла падения. Согласно зависимости (1), излучение в первом дифракционном порядке распространяется вдоль решетки из наночастиц. В геометрии наклонного падения соседние наночастицы излучают с разностью фаз, обусловленной разностью хода *BC* (рис. 5a). Вследствие того, что коллективное взаимодействие наночастиц происходит вдоль оси *x*, проекция разности хода *BC* на данную ось обусловливает спектральный сдвиг РППР:

| Период $D_j$ по ACM      | Расчетный период $D_i$    | $M\Gamma^*$              | Расчет $n_{eff} =$   | Эксперимент                     |
|--------------------------|---------------------------|--------------------------|----------------------|---------------------------------|
|                          |                           | $n_{eff}(\lambda_{exp})$ | $=\lambda_{mod}/D_i$ | $n_{eff} = \lambda_{exp} / D_j$ |
| $D_1 = 192.0 \pm 2.7$ нм | $D_{1x} = 199$ нм         | 3.50                     | 3.31                 | $3.61\pm0.05$                   |
|                          | $D_{1y} = 202 \text{ HM}$ | 3.40                     | 3.27                 |                                 |
| $D_2 = 305.9 \pm 2.7$ нм | $D_{2x} = 293$ нм         | 2.47                     | 2.55                 | $2.54\pm0.03$                   |
|                          | $D_{2y} = 302$ нм         | 2.46                     | 2.50                 |                                 |
| $D_3 = 383.0 \pm 2.7$ нм | $D_{3x} = 393$ нм         | 2.31                     | 2.08                 | $2.12\pm0.02$                   |
|                          | $D_{3y} = 402 \text{ HM}$ | 2.30                     | 2.05                 |                                 |

Таблица. Эффективные показатели преломления экспериментальных образцов по результатам анализа расчетных и экспериментальных спектров пропускания

Примечание.  $\lambda_{mod}$  и  $\lambda_{exp}$  — минимумы полос поглощения РППР расчетных и экспериментальных спектров пропускания; \*расчет по формуле МГ (3) проводился для элементарной ячейки с квадратной решеткой с периодами  $D_x$  или  $D_y$  и показателей преломления материалов на длине волны  $\lambda_{exp}$ . (Заметим, что для структуры с периодом  $D \approx 400$  нм (см. рис. 2) в спектре пропускания есть минимум полосы поглощения РППР, рассчитанный по формуле (2) с m = 2 и  $n_{eff} = 3.17$ .)



**Рис. 3.** Экспериментальные (*a*,*б*) и расчетные (*b*,*c*) спектры пропускания для структуры с периодом *D*<sub>2</sub> для *s*-поляризации (сплошные линии) и *p*-поляризации (штриховые линии) света при разных углах падения *θ* на образец



**Рис. 4.** Иллюстрация к объяснению спектрального смещения РППР в случае наклонного падения *s*-поляризованного (*a*,*s*) и *p*-поляризованного (*б*,*s*) света на исследуемую структуру: *a*,*б* — вид сбоку; *b*,*s* — вид сверху



Рис. 5. а) Иллюстрация к объяснению спектрального смещения РППР в случае наклонного падения *s*-поляризованного света. б) Зависимости спектрального положения РППР от угла падения  $\theta$  для структур с  $D_1$  (квадраты),  $D_2$  (кружки) и  $D_3$  (треугольники): расчет — светлые символы; эксперимент — темные символы; сплошные линии — спектральное положение РППР согласно зависимости (5)

$$AB = BC\sin\varphi = \frac{D\sin^2\theta}{n_{eff}},\qquad(4)$$

где угол  $\varphi$  определяется из закона преломления  $n_{eff} \sin \varphi = n_{air} \sin \theta$ ,  $n_{eff}$  — эффективный показатель преломления, вычисленный с помощью выражения (3). Таким образом, спектральное положение полосы РППР описывается следующим выражением:

$$\lambda = \lambda_{\theta=0} + \frac{D\sin^2\theta}{n_{eff}}, \qquad (5)$$

где  $\lambda_{\theta=0}$  — положение РППР для  $\theta = 0$ . На рис. 56 представлены расчетная и экспериментальная зави-



Рис. 6. Экспериментальные (a) и расчетные (b) спектры  $\psi$  и  $\Delta$  при нормальном падении для образцов с  $D_1$  (кружки),  $D_2$  (квадраты) и  $D_3$  (треугольники)

симости длины волны РППР от угла падения  $\theta$ . На рис. 5 видно, что расчетные зависимости хорошо аппроксимируются зависимостью (5) для образцов с  $D_1$  и  $D_2$ , а в случае образца с  $D_3$  наблюдается отклонение. Последнее объясняется большей величиной  $n_{eff}$ , вычисленной с помощью выражения (3), по сравнению с величинами  $n_{eff}$ , полученными при анализе экспериментальных и расчетных спектров пропускания (см. таблицу).

Известно, что исследования амплитудной и фазовой анизотропий пропускания периодических структур могут быть проведены с помощью эллипсометрии [28]. Действительно, такие исследования представляют наилучший способ определения особенностей структуры изготовленных образцов, связанных с неидеальностью их кристаллической решетки. Как мы выяснили выше, в спектрах исследуемых структур можно выделить две особенности — полосы поглощения ППР и РППР. На рис. 6*а* представлены экспериментальные спектры эллипсометрических параметров  $\psi$  и  $\Delta$  для линейно поляризованного света с  $\mathbf{E}_{45^{\circ}}$ -поляризацией. Видно, что оба параметра сильно меняются в области РППР по сравнению с остальным спектральным диапазоном, включая и область ППР.

На рис. 6б показаны спектры  $\psi$  и  $\Delta$  для структур с расчетными периодами из таблицы. Проведем сравнительный анализ экспериментальных и расчетных спектров. Видно качественное совпадение спектров, однако экспериментальные величины  $\psi$  и  $\Delta$  имеют меньшие значения. По-видимому, это связано с тем, что в изготовленных образцах существует флуктуация периода решетки на площади всего образца (данные ACM), а в расчете моделировались образцы с идеальной прямоугольной решеткой.

Суммируя сказанное выше, в работе исследованы структурные особенности и интерпретированы оптические свойства плазмонных 2D-структур (2D-решетка из частиц металла внутри диэлектрического слоя). В спектрах пропускания образцов обнаружены полосы поглощения на частоте плазмонного резонанса как уединенной частицы, так и 2D-ансамбля частиц. В результате анализа поляризационных спектров пропускания показано, что 2D-решетка изготовленных образцов была прямоугольной. На частотах плазмонных резонансов в спектрах эллипсометрических параметров наблюдались особенности, связанные с амплитудной и фазовой анизотропиями пропускания вследствие несовершенства структуры образцов. Исследования показали, что с помощью спектров эллипсометрических параметров можно с высокой точностью определить как симметрию единичного рассеивателя, так и несовершенство 2D-решетки. Демонстрируется хорошее совпадение экспериментальных и расчетных спектров.

Результаты исследования поляризационных спектров пропускания в геометрии наклонного падения позволили продемонстрировать, что возникновение решеточного поверхностного плазмонного резонанса обусловлено диполь-дипольным механизмом взаимодействия частиц в 2D-решетке. Обнаружено, что взаимная ориентация решетки рассеивателей и поляризации падающего излучения определяет спектральное положение решеточного поверхностного плазмонного резонанса.

Авторы признательны Т. В. Мурзиной, И. А. Колмычек и И. А. Рыжикову за полезные обсуждения и помощь в проведении экспериментов. Работа выполнена при поддержке Фонда перспективных исследований (договор № 7/004/2013-2018 от 23.12.2013).

## ЛИТЕРАТУРА

- H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Grating, Springer, Berlin (1988).
- S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, Berlin (2007).
- K. D. G. Imalka Jayawardena, L. J. Rozanski, C. A. Mills et al., Nanoscale 5, 8411 (2013).
- D. M. O'Carroll, Ch. E. Petoukhoff, J. Kohl et al., Polym. Chem. 4, 5181 (2013).
- L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin et al., Phys. Rev. X 3, 041019 (2013).
- V. L. Krutyanskiy, I. A. Kolmychek, E. A. Gan'shina et al., Phys. Rev. B 87, 035116 (2013).

- И. А. Колмычек, А. Н. Шайманов, А. В. Барышев, Т. В. Мурзина, Письма в ЖЭТФ 102, 50 (2015).
- E. M. Kim, S. S. Elovikov, T. V. Murzina et al., Phys. Rev. Lett. 95, 227402 (2005).
- I. A. Kolmychek, T. V. Murzina, S. Fourier et al., Sol. St. Phenom. 152–153, 508 (2009).
- S. Chen, M. Svedendahl, M. Kiill et al., Nanotechnology 20, 434015 (2009).
- A. V. Kabashin and P. I. Nikitin, Opt. Comm. 150, 5 (1998).
- P. Berini and I. De Leon, Nature Photonics 6, 16 (2012).
- 13. C. L. Nehl and J. H. Hafner, J. Mater. Chem. 18, 2415 (2008).
- 14. P. K. Jain and M. A. El-Sayed, Chem. Phys. Lett. 487, 153 (2010).
- M. Ranjan, M. Bhatnagar, and S. Mukherjee, J. Appl. Phys. **117**, 103106 (2015).
- A. I. Väkeväinen, R. J. Moerland, and H. T. Rekola, Nano Lett. 14, 1721 (2014).
- 17. V. A. Markel, J. Mod. Opt. 40, 2281 (1993).
- S. Zou, N. Janel, and G. C. Schatz, J. Chem. Phys. 120, 10871 (2004).
- Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, Appl. Phys. Lett. 93, 181108 (2008).
- 20. B. Lamprecht, G. Schider, R. T. Lechner et al., Phys. Rev. Lett. 84, 4721 (2000).
- 21. S. Zou and G. C. Schatz, Chem. Phys. Lett. 403, 62 (2005).
- 22. A. J. Haes and R. P. Van Duyne, J. Amer. Chem. Soc. 124, 10596 (2002).
- 23. A. Baryshev and A. Merzlikin, J. Opt. Soc. Amer. B 33, 1399 (2016).
- 24. G. Armelles, A. Cebollada, A. García-Martín et al., Adv. Opt. Mater. 1, 10 (2013).
- 25. H. Husu, J. Mäkitalo, J. Laukkanen et al., Opt. Express 18, 16601 (2010).
- 26. G. Mie, Ann. Physik (Leipzig) 25, 377 (1908).
- 27. K. M. McPeak, S. V. Jayanti, S. J. P. Kresset et al., ACS Photonics 2, 326 (2015).
- 28. H. Fujiwara, Spectroscopy Ellipsometry: Principles and Applications, John Wiley & Sons, New York (2007).