ЯМР-ИССЛЕДОВАНИЕ ПАРАМАГНИТНОГО СОСТОЯНИЯ НИЗКОРАЗМЕРНЫХ МАГНЕТИКОВ LiCu₂O₂ И NaCu₂O₂

А. Ф. Садыков^{а*}, Ю. В. Пискунов^а, А. П. Геращенко^{а,с},

В. В. Оглобличев^а, А. Г. Смольников^а, С. В. Верховский^а,

И. Ю. Арапова^a, З. Н. Волкова^a, К. Н. Михалев^a, А. А. Буш^b

^а Институт физики металлов им. М. Н. Михеева Уральского отделения Российской академии наук 620990, Екатеринбург, Россия

^b Московский государственный институт радиотехники, электроники и автоматики 119454, Москва, Россия

^с Уральский федеральный университет им. первого Президента России Б. Н. Ельцина 620002, Екатеринбург, Россия

Поступила в редакцию 15 июля 2016 г.

Выполнено комплексное ЯМР-исследование магнитных свойств монокристаллов $LiCu_2O_2$ (LCO) и $NaCu_2O_2$ (NCO) в области парамагнитного состояния этих соединений при различных ориентациях монокристаллов во внешнем магнитном поле. Определены значения компонент тензора градиента электрического поля (ГЭП), а также дипольные и наведенные сверхтонкие магнитные поля для ядер $^{63,65}Cu$, ⁷Li и ²³Na. Результаты сравниваются с данными, полученными в предыдущих ЯМР-исследованиях магнитоупорядоченного состояния купратов LCO/NCO.

DOI: 10.7868/S0044451017020122

1. ВВЕДЕНИЕ

Соединения LiCu₂O₂ и NaCu₂O₂ относятся к семейству низкоразмерных купратов, содержащих цепочки сопряженных по общему ребру (edge-shared) квадратов Cu²⁺O₄ со спином S = 1/2. Ионы Cu²⁺, несущие этот спин, связаны между собой как внутрицепочечными, так и межцепочечными косвенными суперобменными взаимодействиями. В зависимости от знака и иерархии величин этих взаимодействий в вышеназванном семействе могут реализовываться самые разнообразные основные состояния, в частности, сегнетомагнетизм. Возникновение последнего в спиральных спин-цепочечных системах очень интенсивно исследуется в последнее время в связи с возможностью практического применения этих объектов.

Купраты LiCu₂O₂ и NaCu₂O₂ являются фрустрированными квазиодномерными антиферромагнетиками с температурами Нееля соответственно $T_N = 23$ К и $T_N = 12$ К [1, 2]. В предыдущих ЯМР-исследованиях данных объектов было убедительно показано, что как LCO, так и NCO имеют геликоидальную магнитную структуру, несоизмеримую с решеткой [3–11]. Однако, несмотря на сравнительно большое количество экспериментальных работ, посвященных исследованию магнитных свойств $LiCu_2O_2$ и $NaCu_2O_2$ [3–18], детальная картина их магнитных структур в основном состоянии все еще остается невыясненной. В частности, нет единого мнения о точной пространственной ориентации спиновых спиралей и направлении их закручивания в магнитно-неэквивалентных спиновых цепочках LCO/NCO. Кроме того, соединение $NaCu_2O_2$, в отличие от LiCu_2O_2, не является мультиферроиком, хотя они изоструктурны. Причина этого до сих пор неизвестна.

Подавляющее большинство ЯМР-исследований LCO и NCO посвящено изучению магнитной структуры данных объектов, а потому измерения проводились в основном при $T < T_N$. Однако не менее важным представляется исследование LCO и NCO в парамагнитном состоянии. Дело в том, что в этих соединениях сигнал ЯМР от ядер «магнитных»

[•] E-mail: sadykov@imp.uran.ru

ионов Cu²⁺ не наблюдается из-за слишком коротких времен спин-спиновой релаксации Т2. Как следствие, о магнитной структуре LCO и NCO можно судить только лишь по тому, какое влияние магнитные моменты ионов Cu²⁺ оказывают на ядра соседних ионов Cu⁺, Li⁺, Na⁺. Влияние же это определяется электрон-ядерными взаимодействиями: прямым дипольным и наведенным сверхтонким. Первое достаточно просто рассчитать, второе же не поддается точному расчету, но с высокой степенью точности может быть определено в экспериментах по измерениям сдвигов линии ЯМР и магнитной восприимчивости в парамагнитном состоянии. В данной работе мы выполнили комплексное ЯМР-исследование температурных зависимостей магнитных сдвигов на различных ядрах монокристаллов LCO, NCO и магнитной восприимчивости в области парамагнитного состояния этих соединений. Измерения были проведены при различных ориентациях монокристаллов во внешнем магнитном поле.

2. ОБРАЗЦЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

ЯМР-исследование парамагнитного состояния монокристаллов LiCu₂O₂ и NaCu₂O₂ было выполнено на тех же самых образцах, что использовались в работах [10, 11]. Образец LiCu₂O₂ был выращен методом зонной плавки и представлял собой кристалл без двойникования с размерами $3 \times 4 \times 2$ мм³, позволяющими использовать его для ЯМР-исследований.

Кристалл NaCu₂O₂ с размерами $4 \times 3 \times 1$ мм³ был приготовлен в условиях медленного охлаждения расплава. Процедура синтеза, структурная аттестация и термогравиметрический анализ данного купрата подробно описаны в работе [19]. Рентгеноструктурный анализ показал, что исследуемые образцы имеют орторомбическую элементарную ячейку с размерами a = 5.7206(3) Å, b = 2.8629(3) Å, c = 12.4012(4) Å (LCO) и a = 6.2060(3) Å, b == 2.9329(3) Å, c = 13.0532(4) Å (NCO), принадлежащую пространственной группе *Pnma* [19]. Для исключения гидратации образцов они покрывались эпоксидной пленкой толщиной примерно 0.1 мм.

ЯМР-измерения были выполнены в диапазоне температур $T_N \leq T \leq 290 \,\mathrm{K}$ во внешнем магнитном поле $H = 92.8 \,\mathrm{k}$ Э при ориентациях кристаллов **H**||**a**, **b**, **c**. Сигнал спинового эха E(2t) формировался последовательностью двух когерентных радиочастотных импульсов $(\tau_p)_x - t_{del} - (\tau_p)_y$ –

- t_{del} - echo, создающих в резонансной катушке с образцом переменное магнитное поле с амплитудой $H_1 \sim 50-200$ Э. Компоненты тензора градиента электрического поля (ГЭП) определялись по резонансным частотам сателлитных линий, соответствующих переходам ($m_{\rm I} = -3/2 \leftrightarrow -1/2$) и ($m_{\rm I} =$ $= +1/2 \leftrightarrow +3/2$), записанным при трех различных ориентациях кристалла во внешнем магнитном поле H||a, b, c. Магнитные сдвиги резонансных линий и компоненты тензоров (ГЭП) определялись с помощью компьютерной программы моделирования спектров ЯМР, численно рассчитывающей энергетические уровни и вероятности переходов между уровнями на основе диагонализации матричных элементов полного гамильтониана (квадрупольного H_Q и зеемановского H_M) ядерной системы.

Измерения объемной магнитной восприимчивости $LiCu_2O_2$ были выполнены на вибрационном магнитометре 7407 VSM (Lake Shore Cryotronics, CША) в статических магнитных полях от 100 Э до 17000 Э и температурном интервале от 10 K до 300 K.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Кристаллическую структуру LCO/NCO можно представить как последовательное чередование вдоль оси с следующих слоев: -Cu⁺-, $-O-Cu^{2+}-O-Li(Na)-и-Li(Na)-O-Cu^{2+}-O-$ [20]. Элементарная ячейка кристаллов L(N)CO содержит четыре кристаллографически эквивалентных позиции Cu²⁺-ионов, расположенные в плоскостях (I, II, III, IV) [10, 11]. Ионы Cu⁺ находятся между двумя соседними плоскостями I и II (III и IV) и имеют по четыре ближайших Cu²⁺-соседа. Кристаллы L(N)CO в равной пропорции содержат ионы меди в магнитном (Cu²⁺) и немагнитном (Cu⁺) состояниях, расположенные в кристаллографически неэквивалентных позициях. Каждый из ионов Li⁺ (Na⁺) находится между двумя цепочками Cu²⁺O₂ в плоскости *ab* и окружен несколькими ионами Cu²⁺, лежащими как в той же самой плоскости ab (ионы Cu²⁺ под номерами 1-6, рис. 1), так и в соседней плоскости, составляющей с первой так называемый бислой (ионы с номерами 9 и 10).

Все ядра, используемые в данной работе в качестве ЯМР-зондов, имеют спин I = 3/2 и некубическое зарядовое окружение. В этом случае ЯМР-спектры этих ядер в парамагнитной фазе оксидов LCO/NCO представляют собой набор из трех узких линий ($\Delta f_{1/2} < 100$ кГц), одна из

Рис. 1. Схематическое представление кристаллической структуры LCO/NCO, демонстрирующее ближайшее окружение ионов Cu^+ и Li^+ (N a^+)

которых соответствует центральному переходу $(m_{\rm I} = -1/2 \leftrightarrow +1/2)$, а две другие – сателлитным переходам (см. работы [10, 11]).

Такая структура спектров обусловлена взаимодействием квадрупольного момента ядер еQ с градиентом электрического поля (ГЭП) V_{ii} (i = x, y, z - yоси системы координат ГЭП), создаваемым в месте расположения ядер их зарядовым окружением. Анализ ориентационной зависимости спектров ЯМР ^{63,65}Cu, ⁷Li и ²³Na позволил определить значения компонент тензора ГЭП $V_{ii},$ выраженные через частоты квадрупольного расщепления $\nu_Q^i = V_{ii} eQ/2h$, а также направления главных осей системы координат ГЭП относительно осей кристалла [21]. ГЭП на ядрах меди как в LCO, так и в NCO обладает аксиальной симметрией: ${}^{63}\nu_Q^z=27.16(1)\,{\rm M}\Gamma$ ц, ${}^{63}\nu_Q^y\approx$ $\approx {}^{63}\nu_Q^x = 13.58(1)\,\mathrm{M}\Gamma\mathrm{m}$ (LČO); ${}^{63}\nu_Q^z = 28.59(1)\,\mathrm{M}\Gamma\mathrm{m}$, ${}^{63}\nu_{O}^{y} \stackrel{\sim}{\approx} {}^{63}\nu_{Q}^{x} = 14.30(1) \,\mathrm{M}\Gamma \mathfrak{l} \text{ (NCO)}, \, \mathbf{z} ||\mathbf{c}, \, \mathbf{y}||\mathbf{b}, \, \mathbf{x}||\mathbf{a}.$ Соответствующие значения для ядер лития и натрия таковы: $^7\nu_Q^z=50(1)\,{\rm k}\Gamma{\rm q},\,^7\nu_Q^y=28(1)\,{\rm k}\Gamma{\rm q},\,^7\nu_Q^x=$ = 22(1) кГц, при этом ось **z** ГЭП лежит в плоскости ac, составляя с осью с угол 10° , а ось х направлена вдоль оси b; $^{23}\nu_Q^z = 1.377(5)\,{\rm M}\Gamma$ ц, $^{23}\nu_Q^y =$ = 1.123(5) M Γ II, ${}^{23}\nu_Q^x = 0.254(5)$ M Γ II, $\mathbf{z}||\mathbf{a}, \mathbf{y}||\mathbf{c}, \mathbf{x}||\mathbf{b}.$ Интересно отметить, что ГЭП на ядрах лития близок к аксиальной симметрии, и направление V_{zz} почти параллельно оси с. В то же время, ГЭП на ядрах натрия менее симметричен, и компонента V_{zz} направлена вдоль оси а. С понижением температуры все ${}^{k}\nu_{Q}^{i}$ (k = 7, 23, 63, 65) монотонно возрастают, насыщаясь вблизи T = 50 К. Рост квадрупольных частот в интервале температур $T = T_N - 300$ K не превышает 1%.

Рис. 2. Зависимость от температуры сдвига ЯМР 63 Cu (*a*) и 7 Li (*б*) при трех различных ориентациях монокристалла LiCu₂O₂ во внешнем магнитном поле H = 92.8 кЭ

Рис. 3. Зависимость от температуры сдвига ЯМР $^{65}\mathrm{Cu}$ (a) и $^{23}\mathrm{Na}$ (б) при трех различных ориентациях монокристалла $\mathrm{Na}\mathrm{Cu}_2\mathrm{O}_2$ во внешнем магнитном поле H=92.8 кЭ

В случае некубического зарядового окружения ядра и при $I \geq 3/2$ суммарный сдвиг $K_{tot,\alpha} =$ $= (\nu_{\alpha} - \nu_0)/\nu_0$ резонансной частоты ν_{α} линии ЯМР относительно резонансной частоты ν_0 в диамагнитной субстанции состоит из двух вкладов: магнитного K_{α} и квадрупольного K_Q , зависящего от I и ν_Q^i [22].

На рис. 2 и 3 представлены температурные зависимости магнитных сдвигов ${}^{k}K_{\alpha}$ в области парамагнитного состояния оксидов LCO и NCO, полу-

Рис. 4. Зависимости магнитной восприимчивости $\chi_{\alpha}(T)$ ($\alpha = a, b, c$) от температуры, измеренные для LiCu₂O₂ во внешнем магнитном поле H = 17 кЭ, направленном вдоль кристаллографических осей **a**, **b**, **c**. Во вставках приведены температурные зависимости обратной восприимчивости $1/\chi(T)$ при **H**||**a**, **b**, **c** и первой производной восприимчивости $\chi'/(T)$ при **H**||**c**

ченные для трех различных ориентаций кристаллов во внешнем магнитном поле $\mathbf{H}||\mathbf{a}, \mathbf{b}, \mathbf{c}$. Погрешность определения экспериментальных значений, представленных на этих и последующих рисунках, определяется размерами символов. В случае NCO измерения сдвигов были выполнены на изотопе меди ⁶⁵Cu, поскольку сигнал ЯМР от изотопа ⁶³Cu, который более чем на порядок слабее сигнала от ²³Na, в некоторых температурных диапазонах перекрывается с последним по частоте. Величина сдвига не зависит от изотопа.

Обращает на себя внимание то, что сдвиги линии ЯМР ядер меди отрицательны, слабо анизотропны и близки по значениям в обоих соединениях. Сдвиги ⁷K и ²³K положительны и заметно различаются по величине. Для области T > 100 К поведение сдвигов удовлетворительно описывается зависимостью в форме закона Кюри – Вейсса. Главной особенностью кривых K(T) является наличие широкого максимума вблизи $T_{max} = 35$ К (LCO) и $T_{max} = 50$ К (NCO). Такое поведение сдвига является характерным для низкоразмерных спиновых систем и указывает на переход вблизи T_{max} к состоянию с ближним антиферромагнитным порядком. На рис. 4 представлены зависимости магнитной восприимчивости $\chi_{\alpha}(T)$

 $(\alpha = a, b, c)$ от температуры во внешнем магнитном поле H = 17 кЭ, направленном вдоль кристаллографических осей а, b, c. Данные получены на том же самом монокристалле LCO, на котором были выполнены ЯМР-измерения. Величина $\chi_{\alpha}(T)$ изменяется с температурой по закону Кюри-Вейсса $\chi_{\alpha}(T) = C_{\alpha}/(T - \Theta_{\alpha})$ и имеет слабую анизотропию. Во вставке рис. 4 приведена зависимость первой производной восприимчивости от температуры $\chi'(T)$ при **H**||**c**. Наличие двух пиков в данной зависимости свидетельствует о двухступенчатом фазовом переходе в магнитоупорядоченное состояние при температурах $T_{N1} = 24$ К и $T_{N2} = 22$ К [12–14]. Из высокотемпературной части (T > 100 K) обратной восприимчивости (вставка на рис. 4) были определены значения парамагнитной температуры Нееля Θ_{α} для трех направлений: $\Theta_a = -69$ K, $\Theta_b =$ = -69 К, $\Theta_c = -75$ К. Эти данные очень близки к значению $\Theta = -75$ K, полученному в работе [23] для поликристаллического LiCu₂O₂. Соответствующие экспериментальные значения эффективного магнитного момента равны $\mu_a = 1.90 \mu_B, \ \mu_b =$ $= 1.83 \mu_B, \ \mu_c = 2.05 \mu_B.$ Учитывая известные значения g-факторов в LCO ($g_a = g_b = 2, g_c = 2.22$) [1], видим, что полученные значения близки к теоретическим величинам $\mu_{eff,\alpha} = g_{\alpha} \sqrt{S(S+1)} \mu_B$ для иона Cu^{2+} .

Отметим, что *T*-зависимости сдвигов в точности повторяют изменение с температурой магнитной восприимчивости в LCO и NCO [5, 15, 16]. Данное утверждение проиллюстрировано на рис. 5, который показывает так называемые $K-\chi$ -диаграммы Джаккарино – Клогстона [24], построенные для всех исследуемых в данной работе ядер при трех различных ориентациях кристаллов во внешнем магнитном поле **H**||**a**, **b**, **c**. Как видно на рис. 5, все параметрические зависимости $K(\chi)$ представляют собой прямые во всей области температур парамагнитной фазы, что является свидетельством пропорциональности сдвига и магнитной восприимчивости.

4. ОБСУЖДЕНИЕ

В общем случае магнитный сдвиг линии ЯМР можно записать в виде двух вкладов: орбитального, K_{orb} , и спинового, K_s , связанных соответственно с орбитальными и спиновыми степенями свободы:

$${}^{k}K_{\alpha}(T) = {}^{k}K_{s,\alpha}(T) + {}^{k}K_{orb,\alpha} = {}^{k}H_{s,\alpha}\chi_{s}(T) +$$
$$+ {}^{k}H_{orb,\alpha}{}^{k}\chi_{orb,\alpha}, \quad (1)$$

Рис. 5. Параметрические зависимости ${}^{k}K_{\alpha}(T)$ от $\chi_{\alpha}(T)$ для 63 Cu (a), 7 Li (б) в LiCu₂O₂ и 65 Cu (a), 23 Na (c) в NaCu₂O₂ при трех различных ориентациях кристаллов во внешнем магнитном поле \mathbf{H} ||a, b, c, аппроксимированные прямыми линиями

где ${}^{k}H_{s,\alpha}$ и ${}^{k}H_{orb,\alpha}$ — константы спинового и орбитального сверхтонких взаимодействий (СТВ). В свою очередь, однородная магнитная восприимчивость χ_{α} также состоит из двух слагаемых: зависящей от температуры спиновой восприимчивости χ_{s} и орбитальной восприимчивости $\chi_{orb,\alpha}$, которая в экспериментах, ведущихся при достаточно низких температурах $T \leq 300$ K, полагается T-независимой:

$$\chi_{\alpha}(T) = \chi_s(T) + \chi_{orb,\alpha}.$$
 (2)

Орбитальный вклад в сдвиг имеет парамагнитную и диамагнитную составляющие. Первая обусловлена ван-флековским парамагнетизмом валентных электронов иона, имеющих ненулевой орбитальный момент (т. е. *p*-, *d*-, *f*-электронов). Этот положительный сдвиг, $K_{orb,\alpha}^{par}$, возникает вследствие частичного размораживания орбитального момента во внешнем магнитном поле и определяется следующим выражением: $K_{orb,\alpha}^{par} = H_{orb,\alpha} \chi_{orb,\alpha}^{par} \propto 1/\Delta$, где Δ — энергия, отделяющая основное состояние орбитального момента от возбужденного. Поскольку $\Delta \sim 10^4$ K,

 $K_{orb,\alpha}^{par}$ обычно не зависит от Tпри $T \leq 300$ К. Диамагнитный вклад $K_{orb,\alpha}^{dia} = H_{orb} \chi_{orb,\alpha}^{dia} \propto r^2$ (r — радиус электронной орбиты) в орбитальный сдвиг $K_{orb,\alpha}$ также не зависит от температуры и определяется ланжевеновским диамагнетизмом ионных остовов, обусловленным медленной прецессией заполненных электронных оболочек иона во внешнем магнитном поле. При этом индуцировать данный сдвиг (хотя и очень слабый) могут даже s-электроны, поскольку во внешнем магнитном поле их орбитальный момент не равен нулю [25].

Спиновый сдвиг $K_{s,\alpha}(T)$, пропорциональный спиновой восприимчивости χ_s , включает в себя несколько вкладов:

$$K_{s,\alpha}(T) = \frac{1}{N_A \mu_B} \left(H_c + H_{cp} + H_{dip,\alpha} + H_{so,\alpha} + H_{dip,\alpha} + H_{dip,\alpha} + H_{dem,\alpha} \right) \chi_s(T) =$$

$$= \frac{1}{N_A \mu_B} \left(H_{hf,\alpha} + H_{dem,\alpha} \right) \chi_s(T) =$$

$$= \frac{1}{N_A \mu_B} H_{tot,\alpha} \chi_s(T). \quad (3)$$

Здесь N_A — число Авагадро, H_c и H_{cp} — изотропные константы соответственно контактного фермиевского взаимодействия и поляризации остова, $H_{dip,\alpha}$ и *H*_{so,α} — анизотропные константы спин-дипольного и спин-орбитального сверхтонких взаимодействий ядер с собственными электронами иона, $H_{dip,\alpha}^{out}$ константа дипольного взаимодействия ядер с магнитными моментами соседних ионов Cu^{2+} , $H_{dem,\alpha}$ размагничивающее поле, создаваемое электронными магнитными моментами. Последняя величина обусловлена тем, что в магнитных материалах конечных размеров на краях образуются магнитные полюсы. Создаваемое при этом дополнительное собственное магнитное поле немного изменяет значение внешнего поля в месте расположения исследуемого образца, приводя к дополнительному сдвигу линий ЯМР. Величина $H_{dem,\alpha} = 4/3\pi\mu_B/v(1-3N_\alpha)$ определяется объемом v, приходящимся на одну формульную единицу Li(Na)Cu₂O₂, и размагничивающим фактором N_{α} , зависящим только от геометрической формы образца. Мы оценили величины N_{α} для L(N)CO в приближении эллипсоида [26], получив следующие значения для N_{α} и $H_{dem,\alpha}$: LCO $(N_a = 0.31, N_b = 0.21, N_c = 0.48, H_{dem,a} =$ $= 0.07 \text{ k}\Im/\mu_B, H_{dem,b} = 0.37 \text{ k}\Im/\mu_B, H_{dem,c} =$ $= -0.44 \text{ k} \Theta/\mu_B$, NCO ($N_a = 0.14, N_b = 0.20, N_c =$ $= 0.66, H_{dem,a} = 0.32 \,\mathrm{k}\Im/\mu_B, H_{dem,b} = 0.22 \,\mathrm{k}\Im/\mu_B,$ $H_{dem,c} = -0.54 \text{ k} \Theta/\mu_B$).

	$\rm LiCu_2O_2$						$NaCu_2O_2$					
	⁶³ Cu			⁷ Li			$^{65}\mathrm{Cu}$			²³ Na		
	$\mathbf{H} \mathbf{a} $	$\mathbf{H} \mathbf{b} $	$\mathbf{H} \mathbf{c}$	$\mathbf{H} \mathbf{a}$	$\mathbf{H} \mathbf{b}$	$\mathbf{H} \mathbf{c}$	$\mathbf{H} \mathbf{a} $	$\mathbf{H} \mathbf{b}$	$\mathbf{H} \mathbf{c}$	$\mathbf{H} \mathbf{a} $	$\mathbf{H} \mathbf{b}$	$\mathbf{H} \mathbf{c}$
$H_{hf},$	-27.1	-29.7	-23.5	4 35	2.08	1.09	-27.5	-29.9	-24.6	8 4 1	8 17	5 11
к \Im/μ_B	21.1	20.1	20.0	1.00	2.00	1.05	21.0	20.0	24.0	0.41	0.11	0.11
$K_{orb},$	1653	1670	-2775	0	0	0	1653	1670	-2775	-263	44	185
ppm	(1684) (17	(1781)	(-2742)	0	0	U	(1684)	(1781)	(-2742)	(-273)	(13)	(179)
$H_{dip}^{out},$	-0.42	-0.43	0.85	1.30	-0.75	-0.55	-0.24	-0.32	0.56	0.91	-0.64	-0.27
к \Im/μ_B	0.12	0.10	0.00	1.00	0.10	0.00	0.21	0.02	0.00	0.01	0.01	0.21
$H_{tr},$	-25.98	-27.07	_23 35	3.05	2 83	1.64	-27 16	-29.58	-25.16	7 50	8 81	5 38
к \Im/μ_B	20.00	21.01	20.00	0.00	2.00	1.04	21.10	23.00	20.10	1.50	0.01	0.00
$\chi_{orb,\alpha} \cdot 10^{-4}, \ \mathrm{cm}^3/\mathrm{моль}$	$\chi_{orb,a} = 1.26; \ \chi_{orb,b} = 0.5; \ \chi_{orb,c} = 4.72$						$\chi_{orb,a} = -1.22; \chi_{orb,b} = 1.19; \chi_{orb,c} = 3.43$					

Таблица. Спиновый и орбитальный вклады в сдвиги ЯМР и магнитную восприимчивость, дипольные и наведенные сверхтонкие поля для ядер $^{63,65}\mathrm{Cu}$, $^{7}\mathrm{Li}$ и $^{23}\mathrm{Na}$. Погрешность определения данных величин не превышала 5 %

Контактный вклад в сдвиг $H_c\chi_s$ обусловлен сверхтонким взаимодействием ядерного спина с валентными *s*-электронами. Он является положительным и существен, как правило, в металлах. Слагаемое $H_{cp}\chi_s$ описывает сдвиг линии ЯМР, обусловленный поляризацией неспаренными валентными *p*или *d*-электронами заполненных *s*-оболочек иона. Этот сдвиг изотропен, положителен в случае *p*- и отрицателен в случае *d*-электронов [27, 28]. Величины $H_{dip,\alpha}$ и $H_{so,\alpha}$ могут быть как положительными, так и отрицательными в зависимости от направления α [28]. В легких атомах, имеющих слабую спин-орбитальную связь, вклад $H_{so,\alpha}$ очень мал и им можно пренебречь [29].

На рис. 5 представлены параметрические зависимости ${}^{k}K_{\alpha}$ от χ_{α} для всех исследуемых в данной работе ядер при трех различных ориентациях кристаллов во внешнем магнитном поле **H**||**a**, **b**, **c**. Аппроксимируя эти зависимости прямыми линиями, мы можем определить константы СТВ ${}^{k}H_{hf,\alpha}$, орбитальные вклады в сдвиг линии ЯМР ${}^{k}K_{orb,\alpha}$ и вклады χ_{s} и χ_{orb} в полную магнитную восприимчивость χ_{α} .

Ионы Li⁺. Поскольку ионы Li⁺ не имеют собственных электронов с неравными нулю орбитальными моментами, парамагнитная составляющая $K_{orb,\alpha}^{par}$ орбитального сдвига равна нулю (либо пренебрежимо мала в случае низкой концентрации электронов (дырок) в *p*-оболочке лития). Диамагнитный вклад $|K_{orb,\alpha}^{dia}|$ не превышает 10 *ppm* (или 10^{-3} %) [24], а потому им можно пренебречь. В этом случае выражение (1) преобразуется для ядер ⁷Li в следующее: ${}^{7}K_{\alpha}(T) = {}^{7}H_{tot,\alpha}\chi_{s}(T)$, а зависимость ${}^{7}K_{\alpha}$ от χ_{α} будет определяться прямой линией:

$${}^{7}K_{\alpha}(T) = {}^{7}H_{tot,\alpha}\chi_{\alpha}(T) - {}^{7}H_{tot,\alpha}\chi_{orb,\alpha}.$$
 (4)

Тогда по тангенсу угла наклона прямых (4) с учетом известных $H_{dem,\alpha}$ находим значения спиновых сверхтонких полей на ядрах лития ${}^{7}H_{hf,\alpha}$ при $\mathbf{H}||\mathbf{a}, \mathbf{b}, \mathbf{c}.$ Пересечение прямых ${}^{7}K_{\alpha}(\chi_{\alpha})$ с осью ${}^{7}K_{\alpha}$ определяет значения ${}^{7}H_{tot,\alpha}\chi_{orb,\alpha}$, из которых, зная ${}^{7}H_{tot,\alpha}$, получаем величины $\chi_{orb,\alpha}$ и, используя (2), зависимость $\chi_{s}(T)$.

Ионы Cu⁺. Ионы Cu⁺ имеют полностью заполненную внешнюю электронную оболочку, а потому парамагнитная часть орбитального сдвига ${}^{63}K_{orb,\alpha}^{par} = 0$. Если же, в случае эффектов ковалентности, 3*d*-зона Cu⁺ становится заполненной не полностью, то на ядрах Cu может возникнуть ванфлековское парамагнитное поле. Кроме того, наличие в ионном остове Cu⁺ электронов с ненулевым орбитальным моментом не позволяет считать вклад $K_{orb,\alpha}^{dia}$ пренебрежимо малым. Таким образом, при анализе данных по сдвигам линии ЯМР ⁶³Cu мы должны использовать полное выражение (1). Комбинируя его с выражением (2), получаем для прямой ${}^{63}K_{\alpha}-\chi_{\alpha}$:

$${}^{63}K_{\alpha}(T) = {}^{63}H_{tot,\alpha}\chi_{\alpha}(T) + {}^{63}K_{orb,\alpha} - - {}^{63}H_{tot,\alpha}\chi_{orb,\alpha}.$$
(5)

Аппроксимируя данные параметрической зависимости ${}^{63}K_{\alpha}(\chi_{\alpha})$ прямой (5) и используя ранее

Рис. 6. Зависимости (a) ${}^{63}K_{\alpha}$ (${}^{7}K_{\alpha}$) для LiCu₂O₂ и (б) ${}^{23}K_{\alpha}$ (${}^{65}K_{\alpha}$) для NaCu₂O₂ с температурой в качестве параметра, аппроксимированные прямыми линиями

полученные значения $\chi_{orb,\alpha}$, находим величины ${}^{63}H_{hf,\alpha}$ и ${}^{63}K_{orb,\alpha}$. Определенные таким образом значения констант СТВ, орбитальных сдвигов и $\chi_{orb,\alpha}$ представлены в таблице.

Ионы Na⁺ и Cu⁺ в NCO. Для этих ионов справедливы те же самые рассуждения, что и для ионов Cu⁺ в оксиде LCO. Аппроксимируя параметрические зависимости ²³ $K_{\alpha}(\chi_{\alpha})$, ⁶⁵ $K_{\alpha}(\chi_{\alpha})$ выражениями типа (5), мы определили константы сверхтонкого взаимодействия ²³ $H_{hf,\alpha}$ и ⁶⁵ $H_{hf,\alpha}$. Далее, предполагая, что в изоструктурных соединениях LCO и NCO орбитальные сдвиги $K_{orb,\alpha}$ линий ЯМР меди равны, находим значения $\chi_{orb,\alpha}$ и ²³ $K_{orb,\alpha}$ в NCO. Орбитальные вклады в сдвиг линии ЯМР могут быть определены и другим способом.

На рис. 6 представлены параметрические зависимости ${}^{63}K_{\alpha}({}^{7}K_{\alpha}), {}^{23}K_{\alpha}({}^{65}K_{\alpha})$, которые хорошо описываются прямыми линиями, демонстрируя пропорциональность сдвигов ${}^{63}K_{\alpha}$ и ${}^{7}K_{\alpha}$ (${}^{65}K_{\alpha}$ и ${}^{23}K_{\alpha}$) одной и той же спиновой восприимчивости $\chi_s(T)$. Данный факт свидетельствует в пользу того, что в LCO и NCO реализуется единая зона, образованная гибридизованными электронными состояниями всех ионов, входящих в состав этих оксидов. Подобная ситуация имеет место во многих содержащих медь оксидах, в частности, в ВТСП-купратах. Мы можем использовать линейные параметрические зависимости ${}^{k_1}K_{\alpha}$ (${}^{k_2}K_{\alpha}$) для определения орбитального вклада в сдвиг для ядра k1, зная $K_{orb,\alpha}$ на ядре k2. Действительно, записывая выражение (1) для ядер k1 и k2 и выражая $\chi_s(T)$ через сдвиги на ядрах k2, получаем для сдвигов ${}^{k_1}K_{\alpha}$:

$${}^{k1}K_{\alpha} = \frac{{}^{k1}H_{tot,\alpha}}{{}^{k2}H_{tot,\alpha}}{}^{k2}K_{\alpha} - \frac{{}^{k1}H_{tot,\alpha}}{{}^{k2}H_{tot,\alpha}}{}^{k2}K_{orb,\alpha} +$$
$$+ {}^{k1}K_{orb,\alpha}. \tag{6}$$

Нетрудно видеть, что значение функции ${}^{k_1}K_{\alpha}({}^{k_2}K_{\alpha})$ в точке ${}^{k_2}K_{\alpha} = {}^{k_2}K_{orb,\alpha}$ равно ${}^{k_1}K_{\alpha} = {}^{k_1}K_{orb,\alpha}$. Учитывая, что ${}^7K_{orb,\alpha} = 0$, из параметрических зависимостей ${}^{63}K_{\alpha}$ (${}^7K_{\alpha}$) находим значения ${}^{63}K_{orb,\alpha}$, а из зависимостей ${}^{23}K_{\alpha}$ (${}^{65}K_{\alpha}$) — ${}^{23}K_{orb,\alpha}$. Полученные таким способом значения $K_{orb,\alpha}$ показаны в таблице в скобках.

Мы также рассчитали константы дипольдипольного взаимодействия ядерных магнитных моментов ионов Cu⁺, Li⁺ и Na⁺ с электронными магнитными моментами Cu²⁺ ионов (см. $H_{dip,\alpha}^{out}$ в таблице). При этом выяснилось, что полные величины ^{7,23} $H_{hf,\alpha}$ содержат кроме $H_{dip,\alpha}^{out}$ наведенные анизотропные сверхтонкие поля (СТП) $H_{tr,\alpha} =$ $= H_{hf,\alpha} - H_{dip,\alpha}^{out}$ (см. таблицу); $H_{tr,\alpha}$ значительно превышают по величине дипольные поля $H_{dip,\alpha}^{out}$ (особенно на ионах натрия), но никак не проявляют себя в магнитоупорядоченном состоянии оксидов [10,11].

Ионы Cu²⁺ в оксидах LCO/NCO имеют пятикратную пирамидальную координацию соседних ионов кислорода CuO₅. Кристаллохимическое строение подобных кластеров было хорошо изучено при исследовании ВТСП-купратов [28, 30]. Было выяснено, что в медно-кислородных оксидах с симметрией кристаллического поля ниже кубической в ионах Cu²⁺ наполовину заполненной (или, в дырочном приближении, имеющей одну неспаренную дырку со спином S = 1/2) является орбиталь $3d_{x^2-u^2}$. При этом имеет место достаточно сильное ковалентное смешивание этой орбитали с $2p_{\sigma}$ -орбиталями плоскостных ионов кислорода. Действительно, в экспериментах по рентгеновской спектроскопии [31] было показано, что в LCO незанятое 3d-состояние в ионах Cu^{2+} имеет *ab*-плоскостную орбитальную поляризацию, а именно $3d_{x^2-y^2}$. Мы предполагаем следующий механизм переноса спиновой плотности от наполовину заполненной $3d_{x^2-y^2}$ -орбитали ионов Cu^{2+} к ионам Li^+ (Na^+) и Cu^+ в присутствии статического магнитного поля Н. На ядра ионов Li⁺ (Na⁺) сверхтонкое поле наводится от восьми ионов Cu²⁺, обозначенных на рис. 1 цифрами 1-8. $3d_{x^2-y^2}$ -орбитали ионов 1, 3, 4 и 6 перекрываются с заполненными кислородными $2p_{\sigma}$ -орбиталями. В этом случае 2р-электрон со спином, направленным противоположно спину электрона в $3d_{x^2-y^2}$ оболочке, проводит некоторое время в незанятом состоянии $3d_{x^2-u^2}$ -орбитали, тем самым создавая «положительную» спиновую плотность на ионе O^{2-} . Эта положительная спиновая плотность передается на ионы Li⁺ (Na⁺) вследствие перекрытия $2p_{\sigma}$ -орбитали с незанятыми 2sp(3sp)-состояниями иона Li⁺ (Na⁺), что, в свою очередь, приводит к возникновению положительного сверхтонкого поля на ядрах этих ионов. От ионов Cu^{2+} 2, 5, 7 и 8 наведенное СТП будет также положительным, но меньшим по величине, так как перенос спиновой плотности от $3d_{x^2-y^2}$ -орбитали Cu²⁺ к ионам Li⁺ (Na⁺) в этом случае осуществляется через две ортогональные друг к другу кислородные 2*p*-орбитали.

Анизотропия $H_{tr,\alpha}$ позволяет оценить заселенности 2sp(3sp)-орбиталей ионов Li⁺ (Na⁺). Действительно, как было показано выше, наведенное СТП $H_{tr,\alpha}$ может быть представлено в виде суммы изотропного вклада $A_s = H_c + H_{cp}$ и анизотропного слагаемого $H_{dip,\alpha}$, обусловленного дипольными взаимодействиями с p_j -электронами незаполненных внешних оболочек ионов Li⁺ (Na⁺) [29, 32]:

$$H_{tr,\alpha} = H_c + H_{cp} + H_{dip,\alpha} = = A_s + \sum_j A_{2p(3p)} n_j (3\cos^2\theta_{\alpha j} - 1), \quad (7)$$

где $A_{2p(3p)} = 2/5\mu_B \langle r^{-3} \rangle_{2p(3p)}, \langle r^{-3} \rangle_{2p(3p)}$ — среднее квантовомеханическое значение $1/r^{-3}$ для 2p(3p)-оболочки, n_j — заселенность p_j -орбитали, $heta_{lpha j}$ — угол между осью lpha и локальными осями j = (x', y', z') трех *p*-орбиталей. Поскольку шпур дипольного тензора равен нулю, $A_s =$ $(1/3) \sum_{\alpha} H_{tr,\alpha}$. Тогда, зная $H_{tr,\alpha}$, получаем = для ⁷Li $A_s = 2.51$ к Θ/μ_B , $H_{dip,\alpha} = (0.54, 0.32,$ -0.86)к
Э/ μ_B и для 23 Na $A_s=7.23$ к
Э/ $\mu_B,\,H_{dip,\alpha}=$ = (0.27, 1.58, -1.85) к \Im/μ_B . К сожалению, система уравнений (7) имеет бесконечное множество решений относительно значений n_i . Мы, однако, можем оценить минимальное значение суммарной заселенности *p*-орбитали *n_{p,min}*. Поскольку электроны в $p_{x'(y')}$ -орбиталях и в $p_{z'}$ -орбитали создают на ядре дипольные поля разного знака, а $H_{dip,c}$ отрицательно, такому минимальному значению соответствует условие $n_{z'} = 0$, т.е. $n_{p,min} = n_{x'} +$ $+ n_{y'}$. Учитывая, что $\theta_{cx'(y')} = 90^{\circ}$, получаем

 $H_{dip,c} = -A_{2p(3p)}(n_{x'} + n_{y'}) = -A_{2p(3p)}n_{p,min}$. Для оценки величин $A_{2p(3p)}$ мы использовали известные значения $\langle r^{-3} \rangle_{2p} = 0.778$ а. u. и $\langle r^{-3} \rangle_{3p} = 1.313$ а. u. [33], полученные соответственно для атомов бора и алюминия — элементов с одним валентным *р*-электроном. Тогда $n_{p,min}(\text{Li}^+) = 0.044$ и $n_{p,min}(\mathrm{Na^+}) = 0.057$. Известно, что один электрон в 2p(3p)-оболочке создает на ядре изотропное СТП поляризации остова $H_{cp} = 30(15) \, \mathrm{k} \Theta / \mu_B$ [27], следовательно, ${}^{7}H_{cp} = 30n_{p,min}(\text{Li}^+) = 1.32 \text{ к}\Theta/\mu_B$, $-{}^{23}H_{cp}$ = 6.38 к \Im/μ_B . Наконец, учитывая, что неспаренный 2s(3s)-электрон порождает на ядре изотропное СТП $H_c = 122(331)$ к Θ/μ_B [27], находим $n_s({\rm Li^+}) = 0.010, n_s({\rm Na^+}) = 0.019.$ Таким образом, получаем, что степени окисления ионов лития и натрия составляют соответственно +0.95 и +0.93.

В данном исследовании были получены теоретические значения ГЭП на ядрах Li и Na. Расчеты ГЭП выполнялись полнопотенциальным методом линеаризованных присоединенных плоских волн с обобщенной градиентной аппроксимацией (GGA) обменнокорреляционного потенциала. Для расчета использовался программный пакет ABINIT (http://www.abinit.org/).

Для соединения LiCuO₂ получены значения $^7\nu_Q^z=40$ кГц, $^7\nu_Q^y=27(1)$ кГц, $^7\nu_Q^x=13$ кГц, ось **z** ГЭП лежит в плоскости *ac*, составляя с осью с угол $18^\circ,$ а ось ${\bf x}$ направлена вдоль ос
и ${\bf b}$ кристалла. Для NaCuO₂ $^{23}\nu_Q^z = 1.62$ МГц, $^{23}\nu_Q^y = 1.33$ МГц, $^{23}\nu_Q^x = 0.29$ МГц, $\mathbf{z}||\mathbf{a}, \mathbf{y}||\mathbf{c}, \mathbf{x}||\mathbf{b}$. Их отличие от экспериментальных значений не превышает 20%, что считается очень хорошим согласием в такого рода расчетах. С другой стороны, значения ГЭП на ядрах Li и Na, рассчитанные в рамках модели точечных зарядов с учетом искажений замкнутых электронных оболочек возмущающими электростатическими полями (фактор Штернахаймера), в несколько раз отличаются от экспериментально полученных величин и расчетов ab inito. Данный результат свидетельствует о значительном валентном вкладе в ГЭП на ядрах Li и Na, возникающем за счет несферичности внешних (валентных) электронных оболочек, и, следовательно, о ненулевой заселенности 2p(3p)-состояний ионов лития и натрия.

Как было отмечено выше, в магнитоупорядоченном состоянии LCO/NCO для описания расщепления линий ЯМР ⁷Li и ²³Na достаточно дипольных полей $H_{dip,\alpha}^{out}$. Это свидетельствует о взаимной компенсации при $T < T_N$ сверхтонких полей,

наведенных от соседних ионов Cu^{2+} , подтверждая тем самым вывод нейтронных исследований [14] об АФ-корреляции магнитных моментов вдоль направления **a**. Нескомпенсированный же вклад в $H_{tr,\alpha}$ от ионов Cu^{2+} , расположенных в $Cu^{2+}O_2$ -цепочках вне рассматриваемого слоя $-Cu^{2+} - O - Li(Na)$ (ионы 9 и 10, рис. 1), по-видимому, пренебрежимо мал.

Наведенные сверхтонкие поля на ядрах меди в LCO и NCO $H_{tr,\alpha}$ являются отрицательными, почти изотропными. Учитывая, что основной вклад в $H_{tr,\alpha}$ дают четыре ближайших к Cu⁺ соседних иона Cu^{2+} , находим $\mathrm{CT\Pi}\ H^1_{tr.\alpha}$, наводимое от одного иона Cu²⁺. Абсолютная величина реального локального магнитного поля (в эрстедах), наводимого в магнитоупорядоченном состоянии на ядро иона Cu^+ от одного иона Cu^{2+} , определяется следующим образом: $|h_{loc,1}| = H^1_{tr,\alpha} \mu_{eff}$. Используя значения $\mu_{eff} \approx 1\mu_B$ (LCO) и $\mu_{eff} \approx 0.6\mu_B$ (NCO), ранее определенные в работах [9-11], получаем средние значения $|h_{loc,1}| = 6.6 \pm 1$ кЭ в (LCO) и $|h_{loc,1}| = 4.8 \pm 1$ кЭ (в NCO), которые в пределах погрешности согласуются со значениями $|h_{loc,1}| =$ = 5.4(2) кЭ и $|h_{loc,1}| = 5.3(2)$ кЭ, определенными при анализе спектров ЯМР-меди в магнитоупорядоченном состоянии соответственно оксидов LCO и NCO.

Результирующее наведенное СТП на ядрах Cu⁺ $H_{tr,\alpha} = H_c + H_{cp} + H_{dip,\alpha} + H_{so,\alpha}$, как уже отмечалось выше, является изотропным и отрицательным. Единственным СТП, отвечающим этому условию, является вклад H_{cp} от поляризации остова электронами не полностью заполненной 3d-оболочки иона Cu⁺ [27, 28, 34]. Таким образом, наши результаты свидетельствуют о том, что в 3d-орбиталях иона Cu⁺ присутствуют дырки. В работах [31,35–37] было показано, что 2*p*-орбитали кислорода в Cu²⁺O-цепочках LCO и NCO перекрываются как с Cu^{2+} $3d_{x^2-y^2}$ -орбиталями, так и с Cu⁺ 3d_{3z²-r²}-орбиталями. Поэтому наиболее вероятно, что дырки в 3*d*-оболочке иона Cu⁺ заполняют $3d_{3z^2-r^2}$ -состояния. Поскольку же $(H_{dip,\alpha}+H_{so,\alpha}) \sim$ ~ 0 (поле $H_{tr,\alpha}$ почти изотропно), можно предположить, что кроме $3d_{3z^2-r^2}$ -орбиталей дырками заполняются и другие 3*d*-орбитали, лежащие в плоскости *ху*. В этом случае дырки в орбиталях $3d_{3z^2-r^2}$ и, например, в $3d_{x^2-y^2}$ дают вклады в $H_{dip,\alpha}$ и $H_{so,\alpha}$ разного знака, что приводит к частичной или полной компенсации этих полей [38]. Исходя из сказанного выше, мы полагаем, что в оксидах LCO и NCO медь в бескислородных цепочках является слабомагнитной и имеет степень окисления $+(1 + \delta)$. Данный вывод согласуется с результатами исследо-

ваний купратов LCO методами рентгеновской спектроскопии [31], которые указывают на присутствие 3*d*-дырок в Cu⁺-ионах. Целая дырка в 3*d*-орбитали создает на ядре поле поляризации остова, равное $H_{cp} = -125 \text{ к} \Theta / \mu_B [27, 28].$ В случае оксидов LCO и NCO это поле примерно в пять раз меньше, следовательно, получаем $\delta \approx 0.2$. Обнаруженное отличие заряда ионов «немагнитной» меди от 1+ не является, по нашему мнению, следствием возможного нарушения стехиометрии исследованных монокристаллов. В работах [39, 40] было показано, что отклонение от стехиометрии в кристаллах LCO проявляется, главным образом, либо избыточностью, либо дефицитом Li в образце. В обоих случаях это приводит к превращению части ионов Cu^+ в Cu^{2+} . Наличие данных «примесных» ионов в цепочках «немагнитной» меди может дать вклад в сдвиг линии ЯМР-ядер меди Cu⁺ только при металлической проводимости дырок, допированных в цепочку Cu⁺ посредством превращения Cu^+ \rightarrow $\mathrm{Cu}^{2+},$ чего, однако, не наблюдается, поскольку в монокристаллах LiCu₂O₂, синтезированных методом зонной плавки, температура перехода металл-полупроводник составляет $T_{ms} = 400$ К [40], что гораздо выше диапазона температур, в котором проводились ЯМРисследования.

Наличие слабого магнетизма в цепочках $Cu^{1.2+}$ заставляет по-новому взглянуть на модель возникновения электрической поляризации **P** в LCO, предложенной в работах Москвина и др. [41]. Возможно, для возникновения **P** вовсе не обязательно наличие примесных Cu^{2+} -ионов в цепочке немагнитной меди. Роль таких примесных центров могут играть 3*d*-дырки на позициях Cu^+ -ионов, которые усиливают межслойное магнитное взаимодействие между спинами вдоль оси **c** и, тем самым, способствуют индуцированию спонтанной электрической поляризации в кристалле.

5. ЗАКЛЮЧЕНИЕ

Выполнено комплексное ЯМР-исследование магнитных свойств монокристаллов LCO, NCO в области парамагнитного состояния этих соединений. Получены температурные зависимости магнитных сдвигов линий ЯМР на различных ядрах LCO, NCO, а также магнитной восприимчивости при различных ориентациях монокристаллов во внешнем магнитном поле. Анализ ориентационной зависимости спектров ЯМР ^{63,65}Cu, ⁷Li и ²³Na позволил определить значения компонент тензора ГЭП в месте расположения этих ядер. Определены спиновый и орбитальный вклады в сдвиги ЯМР и магнитную восприимчивость. Сделаны оценки дипольных и наведенных сверхтонких полей для всех исследуемых в работе ядер. Анализ природы этих полей позволил выявить достаточно высокую степень ковалентности между ионами LCO/NCO. Кроме того, установлено, что «немагнитные» ионы $Cu^{(1+\delta)+}$ имеют ненулевую дырочную заселенность ($\delta \approx 0.2$) и, следовательно, могут иметь собственные магнитные моменты.

Исследование выполнено при финансовой поддержке РНФ (проект № 16-12-10514).

ЛИТЕРАТУРА

- А. М. Воротынов, А. И. Панкрац, Г. А. Петраковский и др., ЖЭТФ 113, 1866 (1998).
- A. Maljuka, A. B. Kulakov, M. Sofin et al., J. Cryst. Growth 263, 338 (2004).
- A. A. Gippius, E. N. Morozova, A. S. Moskvin et al., Phys. Rev. B 70, 020406 (2004).
- M. Horvatirc, C. Berthier, F. Tedoldi et al., Progr. Theor. Phys. Suppl. 159, 106 (2005).
- S.-L. Drechsler, J. Richter, A. A. Gippius et al., Europhys. Lett. 73, 83 (2006).
- A. A. Gippius, A. S. Moskvin, and S.-L. Drechsler, Phys. Rev. B 77, 180403(R) (2008).
- Л. Е. Свистов, Л. А. Прозорова, А. М. Фарутин и др., ЖЭТФ 135, 1151 (2009).
- Y. Kobayashi, K. Sato, Y. Yasui et al., J. Phys. Soc. Jpn. 78, 084721 (2009).
- **9**. А. Ф. Садыков, А. П. Геращенко, Ю. В. Пискунов и др., Письма в ЖЭТФ **92**, 580 (2010).
- 10. А. Ф. Садыков, А. П. Геращенко, Ю. В. Пискунов и др., ЖЭТФ 142, 753 (2012).
- А. Ф. Садыков, А. П. Геращенко, Ю. В. Пискунов и др., ЖЭТФ 146, 990 (2014).
- 12. S. Zvyagin, G. Cao, Y. Xin et al., Phys. Rev. B 66, 064424 (2002).
- B. Roessli, U. Staub, A. Amato et al., Physica B 296, 306 (2001).
- 14. T. Masuda, A. Zheludev, A. Bush et al., Phys. Rev. Lett. 92, 177201 (2004).

- L. Capogna, M. Mayr, P. Horsch et al., Phys. Rev. B 71, 140402(R) (2005).
- 16. Ph. Leininger, M. Rahlenbeck, M. Raichle et al., Phys. Rev. B 81, 085111 (2010).
- L. Capogna, M. Reehuis, A. Maljuk et al., Phys. Rev. B 82, 014407 (2010).
- A. A. Bush, V. N. Glazkov, M. Hagiwara et al., Phys. Rev. B 85, 054421 (2012).
- А. А. Буш, К. Е. Каменцев, Э. А. Тищенко, В. М. Черепанов, Неорг. матер. 44, 720 (2008).
- 20. R. Berger, P. Önnerud, and R. Tellgren, J. Alloys Comp. 184, 315 (1992).
- R. B. Creel and D. A. Drabold, J. Mol. Struct. 111, 85 (1983).
- 22. R. B. Creel, S. L. Segel, R. J. Schoenberger et al., J. Chem. Phys. 60, 2310 (1974).
- 23. S. J. Hibble, J. Kobler, and A. Simon, J. Sol. St. Chem. 88, 534 (1990).
- 24. A. M. Clogston, V. Jaccarino, and Y. Yafet, Phys. Rev. 134, A650 (1964).
- C. P. Slichter, *Principles of Magnetic Resonance*, Springer-Verlag, Berlin (1989).
- 26. J. A. Osborn, Phys. Rev. 67, 351 (1945).
- 27. G. C. Carter, L. N. Bennett, and D. J. Kahan, Metallic shifts in NMR, Progress in Materials Science 20, Part I (1977).
- 28. F. Mila and T. M. Rice, Physica C 157, 561 (1989).
- 29. Сверхтонкие взаимодействия в твердых телах: избранные лекции и обзоры, Мир, Москва (1970).
- 30. Н. М. Плакида, Высокотемпературные сверхпроводники, Международная программа образования, Москва (1996).
- 31. C. L. Chen, K. W. Yeh, D. J. Huang et al., Phys. Rev. B 78, 214105 (2008).
- 32. Е. А. Туров, М. П. Петров, Ядерный магнитный резонанс в ферро- и антиферромагнетиках, Наука, Москва (1969).
- 33. J. S. M. Harvey, L. Evans, and H. Lew, Canad. J. Phys. 50, 1719 (1972).

- R. E. Walstedt, Springer Tracts in Modern Physics 228 (2008).
- 35. D. A. Zatsepin, V. R. Galakhov, M. A. Korotin et al., Phys. Rev. B 57, 4377 (1998).
- 36. V. V. Mazurenko, S. L. Skornyakov, A. V. Kozhevnikov et al., Phys. Rev. B 75, 224408 (2007).
- 37. Y. Matiks, A. N. Yaresko, K. Myung-Whun et al., Phys. Rev. B 84, 245116 (2011).
- 38. H. Alloul, A. Mahajan, H. Casalta, and O. Klein, Phys. Rev. Lett. 70, 1171 (1993).
- 39. H. C. Hsu, H. L. Liu, and F. C. Chou, Phys. Rev. B 78, 212401 (2008).
- 40. K. W. Yeh, T. W. Huang, C. T. Ke et al., J. Appl. Phys. 108, 083919 (2010).
- 41. A. S. Moskvin, Y. D. Panov, and S.-L. Drechsler, Phys. Rev. B 79, 104112 (2009).