РЕНТГЕНОВСКАЯ ФОТОЭЛЕКТРОННАЯ СПЕКТРОСКОПИЯ ФОСФИДА FeP

Ю. А. Тетерин^{а,b}, А. В. Соболев^{а*}, И. А. Пресняков^а, К. И. Маслаков^а, А. Ю. Тетерин^b, И. В. Морозов^а, И. О. Чернявский^а, К. Е. Иванов^b, А. В. Шевельков^а

> ^а Московский государственный университет им. М. В. Ломоносова 119992, Москва, Россия

^b Национальный исследовательский центр «Курчатовский институт» 123182, Москва, Россия

Поступила в редакцию 27 июня 2016 г.

Методом рентгеновской фотоэлектронной спектроскопии (РФЭС) детально изучена структура спектров внешних и внутренних электронов атомов железа (2p, 3p, 3s, 3d) и фосфора (3s, 3p) в монофосфиде FeP. На основании анализа энергий связи электронов, а также параметров, характеризующих структуру экспериментальных спектров, сделан вывод, что в FeP катионы Fe³⁺ (d^5) стабилизируются в состоянии с промежуточным значением суммарного спина (IS, S = 3/2). Установлен диапазон значений внутриатомных параметров (10Dq, J_H), в котором учет высокой степени ковалентности связей Fe–P может приводить к стабилизации кластеров (FeP₆)¹⁵⁻ в IS-состоянии.

DOI: 10.7868/S0044451017020079

1. ВВЕДЕНИЕ

Интерес к исследованию, на первый взгляд, простого фосфида FeP во многом связан с его необычной геликоидальной магнитной структурой, в которой магнитные моменты железа образуют двойную несоразмерную магнитную спираль вдоль направления с орторомбической кристаллической решетки [1]. Детали строения такой структуры и механизмы ее образования до сих пор являются предметом дискуссий [1–3]. Кроме того, фосфид FeP является прекурсором в синтезе многих классов железосодержащих сверхпроводников [4,5], в которых часть атомов фосфора заменена на мышьяк. Полноценный анализ электронной структуры этих широко исследуемых в настоящее время сложных соединений невозможен без привлечения детальной информации о микроструктуре и магнитных свойствах исходных пниктидов железа. Недавно проведенное нами мессбауэровское исследование ядер ⁵⁷ Fe в фосфиде FeP показало [6, 7], что аномально низкая для катионов Fe³⁺ величина сверхтонкого магнитного поля $H_{hf(11 \text{ K})} \approx 36 \text{ к} \exists$ на ядрах ⁵⁷Fe,

а также его высокая пространственная анизотропия $\Delta H_{aniz(11 \text{ K})} \approx 30 \text{ к} \ni [6,7]$ могут быть связаны со стабилизацией катионов железа в низкоспиновом $(LS, S \approx 1/2)$ состоянии $(t_{2g}^5 e_g^0)$ с ненулевым анизотропным орбитальным моментом $(\langle L \rangle \neq 0)$. Несмотря на то что в рамках предложенной в работах [6,7] модели, предполагающей образование низкоспиновых катионов Fe³⁺, удается хорошо описать мессбауэровские спектры в широком диапазоне температур [7], данное предположение требует дополнительного экспериментального подтверждения и теоретического обоснования.

Отличительной особенностью пниктидов переходных металлов в сравнении, например, с их оксидами является очень высокая степень ковалентности химической связи между катионной и анионной подрешетками. В качестве основной причины этого можно назвать близость энергий валентных уровней переходного металла (*d*-орбитали) и пниктогена (*s*-, *p*-орбитали). Высокая степень ковалентности подразумевает локализацию связывающих электронов в области между ядрами взаимодействующих атомов, объясняя их небольшие эффективные заряды в образующихся соединениях. Анализ электронной структуры подобных ковалентных кристаллов затруднен из-за ограниченности в использовании та-

^{*} E-mail: salex12@rambler.ru; alex@radio.chem.msu.ru

ких технически простых и очень наглядных моделей, как теория кристаллического поля (ТКП), в основе которой лежит предположение о полном разделении зарядов между катионом металла и его анионным окружением. Рассматриваемый в настоящей работе фосфид FeP является примером ковалентного бинарного пниктида. Как будет показано в настоящей работе, ТКП предсказывает расходящееся с экспериментом высокое значение магнитного момента катионов Fe³⁺ в октаэдрическом окружении анионов фосфора. Понимание свойств этого фосфида и родственных ему бинарных пниктидов переходных металлов требует усовершенствования теоретических подходов анализа их электронной структуры и привлечения новых эффективных для исследования этой структуры методов диагностики.

Рентгеновская фотоэлектронная спектроскопия (РФЭС) является одним из наиболее чувствительных методов для изучения не только зарядового состояния, но также и спиновых конфигураций и локального кристаллического окружения катионов железа. При исследовании этим методом валентного состояния атомов переходных металлов в их соединениях, как правило, используются два основных подхода [8]. В первом из них учитывается число электронов, участвующих в образовании химических связей [9,10]. Изменения в заселенностях валентных орбиталей атомов сказывается на энергиях связей внутренних электронов, проявляясь в спектрах в виде химических сдвигов соответствующих линий. Помимо величин энергий связи внутренних электронов, в качестве экспериментально определяемых параметров используются интенсивности (I) линий в спектрах, пропорциональные относительному содержанию атомов в данном валентном состоянии. Во втором подходе экспериментально определяется число локализованных *d*-электронов, непосредственно не участвующих в химических связях [8,11,12]. В этом случае анализируются параметры, характеризующие структуру спектров валентных и внутренних электронов, которая в основном связана с мультиплетным расщеплением, многоэлектронным возбуждением и индуцированием заряда на диамагнитные центры.

В настоящее время в литературе имеется очень ограниченная информация об использовании метода РФЭС для исследования FeP [9, 13], что, повидимому, связано с неустойчивостью данного фосфида на воздухе. Наши предварительные исследования показали, что даже при соблюдении всех мер предосторожности при приготовлении образцов и проведении измерений на их поверхности наблюдаются примесные кислородсодержащие соединения, что может усложнить интерпретацию получаемых спектров. Тем не менее, в ряде случаев, основываясь на известных литературных данных, удается идентифицировать подобные «поверхностные» примесные фазы. Это позволяет провести расшифровку структуры экспериментальных спектров РФЭС основного соединения в широком диапазоне энергий связи. В представленной работе данная методика анализа спектров РФЭС применена для исследования валентного состояния катионов железа в структуре фосфида FeP. На основании полученных данных удалось не только подтвердить предположение [6,7] о низкоспиновом состоянии катионов железа, но также и предложить качественную модель, объясняющую возможные причины стабилизации катионов Fe³⁺ в нехарактерных для них электронных состояниях с низким спином.

2. ЭКСПЕРИМЕНТ

Синтез образцов FeP проводился путем отжига прекурсоров Fe и P(белый) при T = 600 K в ампуле без доступа воздуха в течение 12 ч. На конечной стадии осуществлялась закалка образцов на воздухе. Рентгенографическое исследование полученного вещества проводили на рентгеновском дифрактометре ДРОН-3М (Си K_{α} -излучение, Ni-фильтр). Рентгенофазовый анализ конечных продуктов синтеза показал наличие единственной фазы FeP с параметрами орторомбической элементарной ячейки (пространственная группа Pnma) a = 5.203(1) Å, b == 3.108(1) Å, c = 5.802(1) Å, практически полностью совпадающими с литературными данными [3]. Ранее [6,7], однофазность полученных нами образцов фосфида FeP была независимо подтверждена мессбауэровскими спектрами на ядрах ⁵⁷Fe, представляющими собой (выше температуры магнитного упорядочения) единственный квадрупольный дублет с параметрами, соответствующими катионам Fe³⁺ в искаженном октаэдрическом окружении из анионов фосфора.

Измерение спектров РФЭС образца FeP проводилось в вакууме (5 · 10⁻⁷ Па) при комнатной температуре на спектрометре Kratos Axis Ultra DLD (Kratos Analytical Ltd., Great Britain) с монохроматизированным рентгеновским K_{α} излучением Al (1486.6 эВ) и низкоэнергетической пушкой для компенсации зарядки образца. Измельченный порошок исследуемого образца наносился на поверхность двухсторонней адгезионной ленты и придавливался. В результате образовывался плотный, относительно толстый слой, что исключало появление линий материала подложки в спектре изучаемого образца. Нахождение образца в камере спектрометра в течение суток не приводило к заметному изменению вида спектров.

Как показали наши исследования, экспериментальные спектры РФЭС FeP содержали интенсивные компоненты примесной фазы FePO₄ [14], образующейся на поверхности частиц исследуемого фосфида. Поскольку линии железа и фосфора в спектрах FePO₄ сильно сдвинуты (примерно на 4 эВ) по энергии относительно соответствующих линий в фосфиде FeP, то наличие примесной фазы фосфата не мешало анализу спектра внутренних уровней основной фазы FeP. Тем не менее для получения более детальной информации необходимо было удалить примеси с поверхности образца FeP. Для этого поверхность исследуемого образца была подвергнута травлению ионами аргона. Перед тем, как провести травление, измельченный в агатовой ступке FeP был впрессован (2 МПа) в индий, помещенный в круглое углубление (диаметром 7 мм и глубиной 0.15 мм) на прямоугольной алюминиевой подложке $(12 \times 10 \times 1.5 \text{ мм}^3)$ так, что образовался толстый слой FeP с зеркальной поверхностью. Травление поверхности образца размером 2×2 мм² проводилось пучком ионов Ar⁺ под углом 45° к нормали подложки при напряжении U = 2 кВ и токе I = 1 мкА. Контроль над уменьшением на поверхности примесной фазы FePO₄ осуществлялся по падению интенсивности высокоэнергетической линии в спектре 2*p*-электронов фосфора. В результате травления в течение 80 с на поверхности осталось около 15% исходного количества FePO₄, что уже не могло внести существенных изменений в основные характеристики спектров внутренних электронов исследуемой фазы FeP (рис. 1).

Область анализа поверхности составляла около 300 × 700 мкм². Разрешение спектрометра, измеренное как ширина на полувысоте линии Au $4f_{7/2}$ -электронов, равно 0.7 эВ. Величины энергий связи электронов E_b [эВ] приведены относительно энергии 1*s*-электронов насыщенных углеводородов на поверхности образа, принятой равной 285.0 эВ. Спектр РФЭС таких 1*s*-электронов углерода на поверхности изученного образца наблюдается в виде малоинтенсивной линии при E_b (1*s*) = 285.0 эВ. Ошибка при измерении величин энергий связи и ширины линий электронов равна ±0.1 эВ, а при измерении относительных интенсивностей — ±10%. Для сравнения с литературными данными величины ши-

Рис. 1. Спектр РФЭС 2p-электронов фосфора в FeP (также представлена линия, отвечающая примесной фазе FePO₄)

рин Γ [эВ] линий на их полувысоте приведены по отношению к величине Γ (1s) = 1.3 эВ для углерода [8]. Спектральный фон, обусловленный упруго рассеянными электронами для спектров РФЭС, вычитался по методу Ширли [15].

Элементный количественный анализ поверхности образцов, глубина которой составляет несколько нанометров (примерно 5 нм [16]), основан на том, что интенсивность спектральных линий РЭФС пропорциональна концентрации ионов (n_i) в исследуемом образце. Подобный анализ проводился с использованием соотношения: $n_i/n_j = (S_i/S_j)(k_j/k_i),$ где n_i/n_j — относительная концентрация изучаемых атомов, S_i/S_j — относительная интенсивность (площадь) линий электронов внутренних оболочек этих атомов, k_i/k_i — экспериментальный относительный коэффициент чувствительности. Для таких коэффициентов по отношению к углероду использовались следующие значения: 1.00 (С 1*s*); 2.81 (О 1*s*); 0.12 (O 2s); 1.75 (P 2p); 1.24 (P 2s); 10.64 (Fe 2p); 0.80 (Fe 3s); 1.33 (Fe 3p).

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Данные спектров РФЭС

Спектр РФЭС валентных электронов фосфида FeP, охватывающий диапазон от 0 до 16.5 эВ, содержит максимумы при энергиях 0.8, 2.1, 3.6, 6.6 и 12.2 эВ (рис. 2). Величина ширины валентной зоны хорошо согласуется со значением 16.5 эВ, ранее найденным на основании данных рентгеновской эмиссионной спектроскопии (РЭС) железа и фосфора для FeP [13]. Также наблюдается удовлетво-

Рис. 2. Спектры РФЭС низкоэнергетических 3*d*-электронов железа, 3*p*-, 3*s*-электронов фосфора в FeP

рительное согласие положений максимумов валентных электронов, определенных нами с помощью РФЭС и другими авторами с помощью метода РЭС [13]. Из сравнения с эмиссионным $L_{2,3}$ -спектром Р $(2p \leftarrow 3s)$, который, по сути, является «отражением» плотности состояний 3s-электронов железа в фосфиде FeP, следует, что наблюдаемый в спектре РФЭС максимум при энергии 12.2 эВ в основном связан с 3s-электронами фосфора. Эти же электроны вносят небольшой вклад и в интенсивность максимумов при 0.8, 2.1 и 3.6 эВ. Из сравнения с K_{β} -спектром Р (1 $s \leftarrow 3p$) следует, что максимумы при 3.6 и 6.6 эВ в значительной степени относятся к 3p-электронам фосфора. Наконец, из L_{α} -спектра РЭС для перехода $2p_{3/2} \leftarrow 3d$ для железа можно сделать вывод, что наблюдаемые нами максимумы при 0.8 и 2.1 эВ соответствуют 3*d*-электронам катионов железа. Экспериментальное значение полуширины линии железа L_{α} -спектра ($\Gamma \sim 4.0 \text{ эB}$) качественно согласуется с соответствующим значением для спектров РФЭС, равным сумме полуширин линий $\Gamma(2p_{3/2}) = 1.2$ эВ и $\Gamma(3d) \approx 2.0$ эВ (рис. 3).

Максимальная плотность состояний 3*d*-электронов железа в фосфиде FeP находится вблизи уровня Ферми при значениях E_b (3*d*) \approx 1.4 эВ с Г (3*d*) \approx 2.0 эВ, которые оказываются очень близкими к соответствующим параметрам для 3*d*-электронов металлического железа (таблица). Данный результат может быть связан с достаточно высокой степенью делокализации 3*d*-электронов в фосфиде FeP, который проявляет металлический тип проводимости [17]. Важно, однако, подчеркнуть, что в FeP нет прямых взаимодействий Fe–Fe, обеспечивающих образование широкой зоны проводимости в слож-

Рис. 3. Спектр РФЭС 2*p*-электронов железа в FeP

ных халькогенидах и пниктидах, богатых железом [18]. В FeP взаимодействия между атомами железа осуществляются за счет «косвенных» связей Fe-P-Fe. При этом ширина образующейся валентной 3*d*-зоны, помимо геометрических параметров цепочек Fe-P-Fe, будет зависеть от степени ковалентности связей Fe-P [18]. Ранее в литературе было показано, что сильное ковалентное перекрывание *d*-орбиталей железа и *p*-орбиталей непереходных элементов третьего или четвертого периодов приводит к сильной дисперсии 3d-уровней, в результате чего возможно как образование широкой валентной зоны, так и открытие щели вблизи уровня Ферми [19, 20]. В случае FeP высокая ковалентность связей Fe-P обеспечивает значительную степень делокализации 3*d*-электронов железа, однако, образующаяся в результате этого 3*d*-зона будет иметь очень малую ширину и характеризуется высокой плотностью состояний, следовательно, низкой подвижностью электронов, что отличает FeP от «классических» металлов, к которым относится, например, металлическое железо.

Используя экспериментальное значение отношения интенсивностей линий для 3d- и 3p-электронов железа (рис. 2), с учетом сечений фотоэффекта σ $(3p^6) = 22.6$ и σ $(3d^1)n = 0.39n$ кбарн (таблица) (где n — число d-электронов), была выполнена оценка числа 3d-электронов железа в FeP. Установлено, что линия 3d-электронов при 0.8 эВ соответствует $n_1 = 4.0$ электронам, а линии при 2.1 эВ можно приписать $n_2 = 2.1$. Таким образом, на каждый катион железа в FeP приходится около четырех слабосвязанных 3d-электрона, что меньше пяти электронов для Fe³⁺ ($3d^5$) для случая, если бы связи Fe-P имели преимущественно ионный характер (Fe³⁺P³⁻), но

Fe, nlj	E_b^*, sB			a voorv
	FeP	Fe_{met}	Fe_{theor}^{**}	σ , koaph/atom
$\operatorname{Fe}4s$			-3.13	0.34^{***}
$\operatorname{Fe} 3d_{5/2}$	$\sim 1.4 (\sim 2.0)^{***}$	1.3(3.3)	1.30	0.39***
$\operatorname{Fe} 3d_{3/2}$			2.05	0.38^{***}
$\operatorname{Fe} 3p_{3/2}$	53.6(2.0)	53.1(9.1)	57.44	14.9
$\operatorname{Fe} 3p_{1/2}$	55.0(2.9)	55.1(2.1)	63.57	7.7
Fe 3s	91.9(3.0)	91.6(3.1)	99.81	10.1
1005	95.1(3.6)	95.0(5.8)	55.01	10.1
$\operatorname{Fe} 2p_{3/2}$	707.2(1.2)	707.2(1.6)	711.37	146
$\operatorname{Fe} 2p_{1/2}$	720.1(1.2)	720.4(2.1)	725.24	75.8
$\operatorname{Fe} 2s$		$\sim 839 (\sim 18)$	851.72	62.4
P 2s	187.3(1.9)			16.1
$P 2 p_{3/2}$	129.5(0.9)			10.7
P 3 <i>s</i>	12.2(3.8)			1.52

Таблица. Энергии связи электронов E_b и сечения фотоионизации σ при энергии возбуждения 1486.6 эВ [21]

Примечание. *Величины приведены относительно E_b (1s) = 285.0 эВ для углерода; **результаты расчета [26] уменьшены на 9.88 эВ так, чтобы энергия уровня $3d_{5/2}$ для железа равнялась 1.30 эВ; ***величины σ приведены для одного 3*d*-электрона железа [21]. В скобках приведены величины полуширины линий по отношению к Γ (1s) = 1.3 эВ для углерода.

близко к этому случаю. Отметим, что этот результат согласуется с ранее опубликованными данными мессбауэровских измерений на ядрах ⁵⁷Fe [6,7].

Спектр 2*p*-электронов железа представляет собой асимметричный дублет с энергией связи E_b (2p) = 707.2 эВ и спин-орбитальным расщеплением ΔE_{sl} (2*p*) = 12.9 эВ (рис. 3). Отношение площадей линий дублета $I(2p_{3/2})/I(2p_{1/2}) \approx 2.0$ для железа сравнимо с соответствующим теоретическим значением 1.93 [18]. Наблюдаемые для обеих линий дублета небольшие «плечи» в области высоких энергий при $\Delta E_b \approx 4.0$ эВ относятся к примесной фазе FePO₄. Кроме того, при 730.5 эВ наблюдается слабоинтенсивный максимум (рис. 3), который может быть связан с сателлитом встряски (shake up) как основной (FeP), так и примесной (FePO₄) фазы. Поскольку в спектре 2*p*-электронов железа фосфида FeP линии имеют малую ширину $\Gamma(2p_{3/2}) = 1.2$ эB, а также в явном виде отсутствуют интенсивные сателлиты встряски, можно сделать вывод о том, что катионы Fe³⁺ находятся в состояниях с низким $(t_{2q}^5 e_q^0, S = 1/2)$ или промежуточным $(t_{2q}^4 e_q^1, S =$ =3/2) значениями суммарного спина. Отметим, что в Fe₂O₃ ионы Fe³⁺ находятся в состоянии $(t_{2q}^3 e_q^2)$ с высоким спином $(t_{2g}^3 e_g^2, S = 5/2)$, в результате чего в спектре 2*p*-электронов железа наблюдается уширение до $\Gamma(2p_{3/2}) \approx 4.0$ эВ основных линий, связанное в большой степени с мультиплетным расщеплением, и интенсивные сателлиты встряски со стороны больших энергий связи при $\Delta E_{sat} \sim 8$ эВ [10]. Важно также отметить, что наблюдаемую нами структуру спектра 2*p*-электронов железа нельзя объяснить проявлением так называемого «динамического эффекта» [8], поскольку, как видно на рис. 3, между энергией 2*p*-уровня железа и уровнем Ферми отсутствуют подходящие уровни, необходимые для образования «двухдырочного» состояния с энергией, сравнимой с величиной E_b (2*p*) для железа.

Наблюдаемая в спектре линия при $E_b = 53.6$ эВ (рис. 4) относится к 3*p*-электронам железа в фосфиде FeP. Со стороны же большей энергии связи примерно на 4 эВ от этой линии при энергии около 57.6 эВ находится слабоинтенсивная линия от примесной фазы FePO₄, с которой также связан небольшой по интенсивности сателлит встряски в области энергии 64.2 эВ (рис. 4). По той же самой причине, что и для 2*p*-электронов железа наблюдаемый сложный (асимметрич-

Рис. 4. Спектр РФЭС 3p-электронов железа в FeP

Рис. 5. Спектр РФЭС *Зs*-электронов железа в FeP

ный) профиль спектра 3p-электронов не связан с динамическим эффектом. Другим возможным объяснением подобной асимметрии спектра могло бы быть спин-орбитальное расщепление. Однако в этом случае следовало бы ожидать дублета $3p_{3/2}$ - и $3p_{1/2}$ -электронов железа с отношением интенсивностей $I(3p_{3/2})/I(3p_{1/2}) = 2/1$ [21] и спин-орбитальным расщеплением $\Delta E_{sl} = 6.13$ эВ [24], что явно не согласуется со структурой экспериментального спектра (рис. 4). Таким образом, наиболее вероятной причиной наблюдаемого нами профиля спектров 3p-электронов железа является мультиплетное расщепление, вызванное обменным взаимодействием 3p-электронов с неспаренными 3d-электронами железа.

Спектр 3*s*-электронов железа также имеет довольно сложную структуру (рис. 5), которую, в принципе, можно было бы связать с динамическим эффектом, многоэлектронным возбуждением или же проявлением мультиплетного расщепления [8]. В результате динамического эффекта, вызванного гигантскими переходами Костера – Кронига [8], возникает конечное состояние железа, которое может быть описано в виде суперпозиции двух близких друг к другу по энергии электронных конфигураций: ионизированного состояния железа $3s^{1}3p^{6}3d^{n}$ и более высокого по энергии «двухдырочного» состояния $3s^23p^43d^{n+1}$ [8]. Вклад второй конфигурации может быть заметным, поскольку соотношение между энергиями связи E_b (3s) \approx 94.4 эВ и E_b (3p) \approx ≈ 57.8 эВ не слишком близко к условию $E_b~(3s)\approx$ $\approx 2E_b(3p)$, а динамический эффект имеет резонансную природу. Как уже было отмечено, нельзя также исключить возможность многоэлектронного возбуждения, проявляющегося в виде небольших сателлитов встряски, которые, однако, в случае FeP имеют небольшие интенсивности.

Несмотря на определенную вероятность проявления динамического эффекта или многоэлектронного возбуждения, анализ формы спектра 3s-электронов железа основной фазы FeP позволяет предположить, что основная причина уширения Γ (3s) = = 3.8 эВ и асимметрии профиля спектра (рис. 5) связана, главным образом, с мультиплетным расщеплением [22-24]. При фотоэмиссии электрона с 3s-оболочки железа катиона Fe^{3+} ($3s^23p^63d^5$) из-за обменного взаимодействия между неспаренными электронами железа 3s- и 3d-оболочек возникают два конечных состояния с полными спинами $S_1 =$ = (S + 1/2) и $S_2 = (S - 1/2)$, где S — начальный суммарный спин $3d^5$ -электронов железа. Разность энергий этих состояний $\Delta E_{ms} = E_1 - E_2$ характеризует величину мультиплетного расщепления линии 3s-электронов железа в спектре РФЭС и согласно рассмотрению Ван Флека [23] равно:

$$\Delta E_{ms} = \left[(2S+1)/(2l+1) \right] G^l_{(3s3d)} = \\ = \left[(n+1)/5 \right] G^l_{(3s3d)}, \quad (1)$$

где $G_{(3s3d)}^{l}$ — внутриатомный обменный интеграл Слейтера, l — орбитальное квантовое число (для d-электронов l = 2), n = 2S — число неспаренных электронов. При этом отношение интенсивностей компонент дублета равно отношению мультиплетностей конечных состояний:

$$I_1/I_2 = (2S_1 + 1)/(2S_2 + 1) =$$

= $(S_{\rm Fe} + 1)/S_{\rm Fe} = (n+2)/n.$ (2)

Несмотря на то что эти выражения являются приближенными и не могут служить для строгого расчета величины мультиплетного расщепления [12], они все же позволяют оценить число неспаренных 3*d*-электронов в исследуемом соединении. Так, согласно выражению (2), экспериментальному значению отношения $I_1/I_2 = 2.2$ соответствует $n \approx 2$, т. е. состояние катионов ${\rm Fe}^{3+}$ (d^5) с явно низким значением спина. Согласно ранее проведенным исследованиям, для начала ряда соединений 3*d*-металлов, не содержащих неспаренных *d*-электронов, спектры 3s-электронов состоят из одиночных симметричных и относительно узких ($\Gamma \sim 2.5 \ \text{эB}$) линий [25]. При увеличении же числа неспаренных 3д-электронов наблюдалось увеличение асимметрии линии 3*s*-электронов, а ее общая ширина ($\Gamma + \Delta \Gamma$) увеличивалась ($\Delta\Gamma \approx \Delta E_{ms}$), в среднем, на один электронвольт при добавлении одного неспаренного 3д-электрона [25]. Аналогичное увеличение ширины линии наблюдалось в спектрах 4s-электронов Ln в ряду соединений лантанидов LnF₃, в которых происходит увеличение числа 4f-электронов Ln от La до Gd [8]. Основываясь на этой полуэмпирической зависимости, можно заключить, что наблюдаемое в случае FeP уширение линии 3s-электронов железа на величину $\Delta\Gamma \approx 0.7$ эВ и ее асимметрия связаны с мультиплетным расщеплением $\Delta E_{ms} \approx 3.5$ эВ (рис. 6), обусловленным локализацией на катионе железа приблизительно двух (или более) неспаренных 3*d*-электронов. Дополнительная линия S в спектре 3s-электронов железа, видимо, в основном связана с динамическим эффектом (рис. 5). Воспользовавшись выражением (1), можно оценить, что величина обменного интеграла Слейтера равна $G^l_{(3s3d)} \approx 5.83$ эВ, которая, однако, значительно меньше соответствующей теоретически рассчитанной величины данного параметра [23]. Для выяснения причин такого различия в величинах рассчитанного и экспериментального значений обменного интеграла требуется проведение дальнейших исследований.

3.2. Химическая связь и спиновое состояние катионов Fe³⁺ в FeP

Основываясь на представленных в настоящей работе результатах РФЭС, а также ранее полученных данных мессбауэровских исследований фосфида FeP [6,7], можно утверждать, что катионы Fe³⁺ в этом соединении находятся в состоянии со спиновой мультиплетностью, существенно меньшей, чем для высокоспинового состояния (HS) с суммарным спином S = 5/2. Важно отметить, что согласно теории кристаллического поля в предположении ионных связей между металлом и окружающими его лигандами, состояние октаэдрически координированных катионов ${
m Fe}^{3+}$ $(t_{2q}^4 e_q^1)$ с промежуточным значением спина (IS, S = 3/2) всегда является энергетически менее выгодным, чем высокоспиновое $(t_{2a}^3 e_a^2)$ S=5/2) или низкоспиновое состояние с электронной конфигурацие
й $t_{2g}^5 e_g^0$ (LS, S=1/2) [27]. При этом следует отметить, что приближение преимущественно ионной связи не является строго верным для соединения FeP из-за существенного перекрывания орбиталей. Однако и низкоспиновое состояние является крайне редким для катионов Fe³⁺ из-за их высокой внутриатомной обменной энергии $\Delta_{ex} = -10 J_H$ (где J_H – обменный интеграл) или энергии спаривания при переходе HS \rightarrow LS: $P_{HS/LS} = 6J_H$. Компенсировать эту энергию можно, только поместив катионы железа в окружение лигандов, создающих сильное кристаллическое поле (10Dq), например, с октаэдрической симметрией. Однако, анионы Р³⁻ не являются лигандами «сильного поля» [28], поэтому для кластера (FeP₆) следует ожидать соотношения $10Dq \ll P_{HS/LS}$, при котором стабилизируется лишь HS-состояние. Другая возможность стабилизации LS-состояния может реализоваться для сильно искаженных анионных полиэдров, окружающих катионы железа, например, при тетрагональном искажении октаэдрических полиэдров $O_h \to D_{4h}$ [29]. Однако в структуре фосфида FeP полиэдры (FeP₆) хотя и являются искаженными, но в существенно меньшей степени, чем это необходимо для стабилизации LS-состояния. Таким образом, ни один из рассмотренных факторов не может в случае FeP приводить к стабилизации катионов железа в состоянии с низкоспиновой мультиплетностью.

В ряде теоретических работ [30, 31] было показано, что стабилизация переходных металлов в необычных для них спиновых состояниях становится возможной при учете электронного переноса между катионом металла и окружающими его анионами (ковалентность химических связей). Подробно этот вопрос обсуждался для катионов Co³⁺ в оксидах со структурой типа перовскита [30, 31]. В рамках pd-модели, использующей точную диагонализацию многоэлектронного гамильтониана для кластера CoO_6^{9-} , было показано, что для некоторой комбинации значений параметров $\{10Dq, J_H \text{ и } \Delta_{eff}\}$ (где Δ_{eff} — энергия зарядового переноса \mathcal{O}^{2-} \rightarrow \rightarrow Co³⁺) перенос электронов от анионов O²⁻ к катиону Co³⁺ приводит к стабилизации состояния IS [30, 31]. Для катионов Fe³⁺ подобные эффекты обсуждались в работе [32], посвященной исследованию методом рентгеновской адсорбционной спектроско-

Рис. 6. Диаграммы одноэлектронных уровней энергии для состояний HS, IS и LS в октаэдрических кластерах $(\text{FeP}_6)^{15-}$ для двух крайних случаев ионной связи: $\{\text{Fe}^{3+}(d^5) - (6\text{P})^{18-}\}$ и $\{\text{Fe}^{2+}(d^6\underline{L}) - (6\text{P})^{17-}\}$ (где \underline{L} — электронные дырки на анионах фосфора, 10Dq — энергия расщепления кристаллическим полем, Δ_{eff} — эффективная энергия зарядового переноса между подрешетками фосфора и железа)

пии сульфидов Na₄FeS₄ и KFeS₂, в которых катионы Fe³⁺ занимают позиции в искаженном тетраэдрическом окружении анионов серы. Модельные расчеты показали, что даже частичный зарядовый перенос S²⁻ \rightarrow Fe³⁺ в существенной степени влияет на стабилизацию того или иного спинового состояния кластеров (FeS₄)⁵⁻ [32].

В рамках настоящей работы были проведены аналогичные полуэмпирические расчеты, учитывающие зарядовый перенос $P^{3-} \rightarrow Fe^{3+}$ для кластеров FeP_6^{15-} в структуре FeP. На рис. 6 представлены диаграммы заполнения одноэлектронных уровней энергии для состояний HS, IS и LS неискаженных октаэдрических кластеров FeP_6^{15-} для двух «крайних» случаев ионной связи { Fe^{3+} (d^5) – (6P)¹⁸⁻} и { Fe^{2+} ($d^6\underline{L}$) – (6P)¹⁷⁻}. В первом случае катион Fe^{3+} находится в окружении шести анионов P^{3-} , а второй случай соответствует полному переносу на катион железа одного электрона из подрешетки фосфора, с образованием в ней так называемых «дырочных» состояний (\underline{L}) [31]. На диаграммах (рис. 6) также приведены энергии соответству-

ющих спиновых состояний (E_{HS/IS/LS}) как функции параметров 10Dq, J_H и Δ_{eff} (где Δ_{eff} — разница энергий e_q-орбиталей катионов Fe³⁺ и групповых $3p_{\sigma}$ -орбиталей анионов P^{3-}). Какая из двух «ионных» конфигураций — без переноса или с переносом заряда — является наилучшей для описания основного состояния кластера $\operatorname{FeP}_6^{15-}$ в рамках ионной модели, зависит от их относительных энергий. Как уже было отмечено, если не учитывать перенос заряда $P^{3-} \to Fe^{3+}$, то устойчивыми могут быть только состояния HS $(10Dq < 3J_H)$ или LS $(10Dq > 3J_H)$. Для фосфид-анионов Р³⁻, входящих в состав кристаллической решетки FeP, следует ожидать усиления создаваемого ими в области расположения катионов Fe³⁺ «кристаллического поля» за счет более эффективного участия в π-связях Fe–P пустых $3d_{\pi}$ -орбиталей анионов P^{3–} (дативные взаимодействия $\pi(t_{2q(Fe)}^3) \rightarrow \pi^*(t_{2q(P)}^0)$ [27]). Энергия вакантных $t_{2g(\mathbf{P})}$ -орбиталей будет понижаться, а значит, дативные взаимодействия будут усиливаться за счет действия на анионы фосфора положительного потенциала, создаваемого окружающими их катионами железа. Однако маловероятно, что подобные взаимодействия сделают анионы Р³⁻ лигандами сильного поля. Поэтому для кластера $\operatorname{FeP}_{6}^{15-}$ следует ожидать только HS-состояния, что находится в явном противоречии с результатами настоящей работы. В случае же учета конфигураций с переносом заряда (рис. 6), даже для небольшого расщепления кристаллическим полем 10Dq возможна стабилизация кластера ${\rm FeP}_6^{15-}$ в состоянии IS, в котором катион железа имеет электронную конфигурацию Fe^{2+} (d^6L) с локальным суммарным спином S = 2, а окружающие его анионы фосфора электронную «дырку» со спином S = 1/2, направленным противоположно локальному спину железа (в случае идеального октаэдрического окружения железа электронная дырка с равной вероятностью делокализована по шести анионам фосфора). На рис. 7а представлены области устойчивости различных спиновых состояний кластера ${\rm FeP}_6^{15-}$ в зависимости от приведенных значений $10Dq/J_H$ и Δ_{eff}/J_H . Из сравнения этих значений следует, что в широком диапазоне значений $\Delta_{eff}/J_H < 3$ и $\Delta_{eff}/J_H < 10 Dq/J_H < 10$ наиболее устойчивым является состояние IS с локальной конфигурацией железа $d^6 \underline{L}$.

Следует подчеркнуть, что представленные аргументы не могут претендовать на точную количественную интерпретацию экспериментальных данных, хотя бы потому что в нашем распоряжении нет точных значений фундаментальных параметров

Рис. 7. Диаграммы, демонстрирующие области устойчивости спиновых состояний HS, IS и LS в октаэдрических кластерах $(\text{FeP}_6)^{15-}$ при отсутствии (a) и при учете (b) гибридизации конфигураций (d^5) и $(d^6 \underline{L})$

 $(10Dq, J_H, \Delta_{eff})$, определяющих устойчивость того или иного спинового состояния. Кроме того, рассмотренные конфигурации относятся к двум предельным случаям ионной связи между катионами железа и анионами фосфора. Реальное же состояние комплекса FeP₆¹⁵⁻, в котором связи Fe–P имеют ковалентный характер, должно описываться многоэлектронной волновой функцией (ψ_g), являющейся линейной комбинацией рассмотренных состояний [30–32]:

$$\psi_g = \alpha |d^5\rangle + \beta |d^6\underline{L}\rangle + \dots, \qquad (3)$$

в которой квадраты коэффициентов α и β (α^2 + $+ \beta^2 + \ldots = 1$) определяют вероятность реализации того или иного состояния (в расширенных вариантах расчетов могут учитываться и другие состояния, например, $d^7 L^2$). Для того чтобы на качественном уровне продемонстрировать, как учет взаимодействия конфигураций будет сказываться на устойчивости различных спиновых состояний кластера FeP_6^{15-} , мы провели упрощенные модельные расчеты, учитывающие электронный перенос лишь с участием наиболее прочных σ-связей, т.е. перекрывание $e_q \{= d_{x_2-y_2}, d_{z_2}\}$ -орбиталей железа с подходящими по симметрии групповыми орбиталями фосфора. Кроме того, учитывалось взаимодействие только между состояниями с одинаковой спиновой мультиплетностью (2S + 1). В этом случае энергия основного состояния комплекса получается в результате приведения к диагональному виду матричной формы гамильтониана [32]

$$\begin{pmatrix} \langle d^5 | \hat{H} | d^5 \rangle_{2S+1} & -T_{\sigma} \\ -T_{\sigma} & \langle d^6 \underline{L} | \hat{H} | d^6 \underline{L} \rangle_{2S+1} \end{pmatrix}, \quad (4)$$

в котором недиагональные матричные элементы $T_{\sigma} \equiv \langle d^5 | \hat{H} | d^6 \underline{L} \rangle$ выражаются через двухцентровые парные интегралы Слейтера – Костера $T_{\sigma} = \sqrt{3} V_{pd\sigma}$ [33]. С учетом средней длины связей Fe–P в кластеpax FeP₆¹⁵⁻, $d_{\text{Fe-P}} \approx 2.308 \text{ Å}$ [3] $(V_{pd\sigma} \propto 1/(d_{\text{Fe-P}})^{3.5})$, в расчетах использовалось значение резонансного интеграла $V_{pd\sigma} = -1.35$ эВ [32], а также характерное для катионов Fe³⁺ значение обменного интеграла $J_H = 0.83$ эВ [34]. В результате проведенных расчетов были построены диаграммы устойчивости спиновых состояний LS, IS и HS кластера $\operatorname{FeP}_6^{15-}$ в зависимости от приведенных параметров $10Dq/J_H$, Δ_{eff}/J_H (при $V_{pd\sigma}/J_H = 1.22$) (рис. 76). Сравнение двух диаграмм на рис. 7 показывает, что учет ковалентности связей Fe-P приводит к некоторому изменению профилей полей устойчивостей соответствующих спиновых состояний и смещению границ между ними. Тем не менее главный результат остается неизменным — учет межконфигурационного взаимодействия приводит к стабилизации (при некоторых комбинациях значений параметров внутриатомных и межатомных взаимодействий) спиновых состояний катионов железа с существенно более низким спином (каким $S \approx 3/2$), чем предсказывает теория кристаллического поля для кластеров ${\rm Fe^{3+}(P^{3-})_6}^{18-}$. Воспользовавшись соотношением (5), связывающим коэффициенты (α, β) в функции (3) с параметрами $(J_H, V_{pd\sigma} \sqcup \Delta_{eff})$, характеризующими степень ковалентности связей Fe-P [35]:

$$\frac{\beta}{\alpha} = \frac{(4J_H - \Delta_{eff}) + \sqrt{(4J_H - \Delta_{eff})^2 + 12V_{pd\sigma}^2}}{2\sqrt{3}V_{pd\sigma}}, \quad (5)$$

мы оценили относительные вклады (α^2 и β^2) конфигураций d^5 и $d^6 \underline{L}$, обеспечивающие основное состояние кластера FeP₆¹⁵⁻ со спином S = 3/2 (IS) (рис. 76). Полученные для интервала { $-1 \le \Delta_{eff} \le$ ≤ 0 } средние значения $\alpha^2 \approx 0.16$ и $\beta^2 \approx 0.84$, даже с учетом сделанных приближений, демонстрируют очень высокую степень зарядового переноса между анионной и катионной подрешетками ($P^{3-} \to Fe^{3+}$).

Следует отметить, что согласно представленному выше полуколичественному анализу, наиболее вероятным, с учетом характерных для катионов Fe³⁺ и окружающих их лигандов P³⁻ значений параметров $J_H = 0.8$ –1.2 эВ, 10Dq = 0.7–0.9 эВ и $\Delta_{eff} < 0$, является состояние кластера FeP_6^{15-} с промежуточным значением суммарного спина (S = 3/2). В соответствие же с полученными в настоящей работе данными РФЭС, катионы железа имеют лишь два неспаренных 3d-электрона (S = 1). Наконец, в ранее проведенных нами мессбауэровских исследованиях FeP было постулировано, что катионы железа стабилизируются в низкоспиновом состоянии (S = 1/2) [6,7]. Эти, казалось бы, противоречащие друг другу результаты объединяет то, что все они указывают на пониженное значение спинов катионов Fe³⁺ в матрице FeP, расхождения же касаются величины этого понижения по сравнению с состоянием HS (S = 5/2). При анализе мессбауэровских данных отмечалось, что помимо низкой величины сверхтонкого магнитного поля H_{hf} на ядрах ⁵⁷Fe наблюдается его заметная пространственная анизотропия [6,7]. Этот результат указывает на значительный вклад в величину H_{hf} «незамороженного» кристаллическим полем орбитального момента $\langle L \rangle \neq 0$ низкоспиновых катионов Fe³⁺ $(t_{2a}^5 e_a^0)$ с S = 1/2 (рис. 6). Однако и для обсуждаемого в настоящей работе состояния IS кластера ${\rm FeP}_6^{15-}$ с локальной конфигурацией $(t_{2q}^4 e_q^2 \underline{L})$ для катионов Fe²⁺ (рис. 6) следует также ожидать большого орбитального момента, поскольку обе эти конфигурации являются эквивалентными в «дырочном» представлении [24]. Поскольку орбитальный и спиновый вклады имеют противоположные знаки, их совместный учет может приводить к уменьшению суммарного магнитного момента катионов железа, что, в свою очередь, может объяснять малую величину сверхтонкого поля $H_{hf}(11 \text{ K}) \approx 36 \text{ к} \ni \text{ в фосфиде FeP}$ [6]. Иными словами, с точки зрения мессбауэровских спектров, локальные электронные состояния $t_{2a}^5 e_a^0$ и $t_{2q}^4 e_q^2 \underline{L}$ катионов железа в кластерах ${\rm FeP}_6^{15-}$ могут оказаться неразличимыми. Кроме того, высокая степень ковалентности химических связей Fe–P может влиять не только на спиновое состояние железа, но и на степень делокализации 3*d*-электронов, образующих узкие *d*-зоны со спиновой поляризацией, отличной от той, которая предсказывается в рамках простой ионной модели.

Активное участие анионной подрешетки в формировании электронной структуры катионов переходных металлов (в частности образование в ней «дырочных» (<u>L</u>) электронных состояний) может быть одним из объяснений обсуждаемой в литературе малой «чувствительности» сверхтонких параметров ядер ⁵⁷Fe к составу пниктидов железа [36]. Речь идет о некоторых семействах сверхпроводящих пниктидов железа, например, $LnFeAsO_{1-x}F_x$ [37], Ва_{1-*x*}К_{*x*}Fe₂(As,P)₂ [38] и др., для которых изменение состава (x) не вызывает каких-либо видимых изменений в изомерном сдвиге мессбауэровских спектров ядер ⁵⁷Fe. Данный сверхтонкий параметр, который, в принципе, отвечает за валентное состояние железа, также остается практически неизменным даже при переходе пниктидов в сверхпроводящее состояние. Следуя логике настоящей работы, изменения составов анионной $({\rm O}^{2-}
ightarrow {\rm F}^-)$ или катионной ($Ba^{2+} \to K^+$) подрешеток, требующих компенсации изменения заряда, в первую очередь, может затрагивать анионную подрешетку $(O^{-}(\underline{L}) \leftrightarrow$ \leftrightarrow O²⁻) и в минимальной степени сказываться на электронном состоянии железа. Поскольку изомерный сдвиг мессбауэровских спектров отвечает за степень экранирования 3*d*-электронами катиона железа ns-электронной плотности на его ядре 57 Fe, можно ожидать, что незначительные изменения в окружающей железо анионной подрешетке практически никак не скажутся на величине изомерного сдвига.

В приведенных расчетах мы пренебрегали вкладом в волновую функцию (3) более высоких по энергии конфигураций (в частности, $d^7 \underline{L}^2$), а также гибридизацией между состояниями с различной мультиплетностью. Тем не менее, как отмечалось в литературе [35], даже небольшой вклад подобных состояний может в существенной степени повлиять на результирующее спиновое состояние катионов переходных металлов.

4. ЗАКЛЮЧЕНИЕ

Проведен детальный анализ спектров РФЭС валентных и внутренних электронов ионов Fe³⁺

в фосфиде FeP. Спектр 2*p*-электронов железа $(E_b (2p_{3/2}) = 707.2 \text{ эВ})$ представляет собой дублет с очень узкими линиями (Γ (2 $p_{3/2}$) = 1.2 эВ) и расщеплением (ΔE_{sl} (2p) = 12.9 эВ), обусловленным спин-орбитальным взаимодействием 2*p*-электронов. Спектр 3s-электронов железа состоит из асимметричной неразрешенной линии с шириной Γ (3s) = = 3.8 эВ, что связано с небольшим мультиплетным расщеплением. Относительно небольшая ширина линий 2р-электронов железа и анализ величин расщепления $\Delta E_{ms} \approx 3.5$ эВ и отношения интенсивностей компонент $I_1/I_2 = 2.2$ спектра 3*s*-электронов железа указывает на стабилизацию катионов Fe³⁺ в состоянии с пониженным значением суммарного спина. Полуэмпирические расчеты, учитывающие межконфигурационное взаимодействие $d^5/d^6 L$, показывают, что в некотором диапазоне значений внутриатомных параметров $(10Dq, J_H)$ учет высокой степени ковалентности связей Fe-P приводит к стабилизации кластеров $\operatorname{FeP}_6^{15-}$ в состоянии с промежуточным значением спина (IS, S = 3/2).

Работа выполнена при частичной финансовой поддержке РНФ (грант № 14-13-00089) (измерения спектров РФЭС и обработка данных) и РФФИ (грант № 15-03-99628) (приготовление образцов). Работа выполнена с использованием оборудования, приобретенного за счет средств программы развития Московского университета.

ЛИТЕРАТУРА

- H. T. Cho, I. J. Park, I. B. Shim, C. S. Kim, and S. J. Kim, J. Korean Phys. Soc. 60, 1049 (2012).
- Häggström and A. Narayanasamy, J. Magn. Magn. Mater. 30, 249 (1982).
- R. E. Bailey and J. F. Duncan, Inorg. Chem. 6, 1444 (1967).
- J. Munevar, H. Micklitz, M. Alzamoka et al., Sol. St. Commun. 187, 18 (2014).
- S. Kasahara, T. Shibauchi, K. Hashimoto et al., Phys. Rev. B 81, 184519 (2010).
- I. A. Presniakov, A. V. Sobolev, I. O. Chernyavskii, D. A. Pankratov, and I. V. Morozov, Bulletin of the Russian Academy of Sciences. Physics 79, 984 (2015).
- A. V. Sobolev, I. A. Presniakov, A. A. Gippius, I. V. Chernyavskii, M. Schaedler, N. Buettgen, S. A. Ibragimov, I. V. Morozov, and A. V. Shevelkov, J. Alloys Comp. 675, 277 (2016).

- Ю. А. Тетерин, А. Ю. Тетерин, Успехи химии 71, 403 (2002).
- В. И. Нефедов, Рентгеноэлектронная спектроскопия химических соединений, Химия, Москва (1984).
- А. Ю. Тетерин, К. И. Маслаков, Ю. А. Тетерин, С. Н. Калмыков, К. Е. Иванов, Л. Дж. Вукчевич, А. Б. Хасанова, Н. С. Щербина, Журнал неорг. химии 51, 2056 (2006).
- **11.** Ю. А. Тетерин, А. С. Баев, Ю. П. Диков, А. И. Горшков, ДАН СССР **263**, 610 (1982).
- 12. A. G. Kochur, T. M. Ivanova, A. V. Shchukarev, R. V. Linko, A. A. Sidorov, M. A. Kiskin, V. M. Novotortsev, and I. L. Eremenko, J. Electron Spectrosc. Relat. Phenom. 180, 21 (2010).
- E. P. Domashevskaya, V. A. Terekhov, Ya. A. Ugai, V. I. Nefedov, N. P. Sergushin, and M. N. Firsov, J. Electron Spectrosc. Relat. Phenom. 16, 441 (1979).
- 14. Y. Wang and P. M. A. Sherwood, Surf. Sci. Spectra 9, 99 (2002).
- 15. D. A. Shirley, Phys. Rev. B 5, 4709 (1972).
- 16. В. В. Немошкаленко, В. Г. Алешин, Электронная спектроскопия кристаллов, Наукова думка, Киев (1976).
- K. Motizuki, H. Ido, T. Itoh, and M. Morifuji, *Electronic Structure and Magnetism of 3d-Transition Metal Pnictides*, Springer (2007).
- V. Yu. Verchenko, A. A. Tsirlin, A. V. Sobolev, I. S. Presniakov, and A. V. Shevelkov, Inorg. Chem. 54, 8598 (2015).
- 19. S. Takagi, H. Yasuoka, S. Ogawa, H. J. Wernick, J. Phys. Soc. Jpn. 50(8), 2539 (1981).
- A. A. Gippius, V. Yu. Verchenko, A. V. Tkachev, N. E. Gervits, C. S. Lue, A. A. Tsirlin, N. Büttgen, W. Krätschmer, M. Baenitz, M. Shatruk, and A. V. Shevelkov, Phys. Rev. B 89, 104426 (2014).
- I. M. Band, Yu. I. Kharitonov, and M. B. Trzhaskovskaya, Atom Data Nucl. Data Tables 23, 443 (1979).
- 22. C. S. Fadley and D. A. Shirley, Phys. Rev. A 2, 1109 (1970).
- 23. J. H. Van Vleck, Phys. Rev. 45, 405 (1934).
- 24. C. S. Fadley, D. A. Shirley, A. J. Freeman, P. S. Bagus, and J. V. Mallow, Phys. Rev. Lett. 23, 1397 (1969).
- R. Zimmermann, P. Steiner, R. Claessen, F. Reinert, S. Hufner, P. Blaha, and P. Dufek, J. Phys.: Condens. Matter 11, 1657 (1999).

- 26. K. N. Huang, M. Aojogi, M. N. Chen, B. Graseman, and H. Mark, Atom. Data Nucl. Data Tables 18, 243 (1976).
- **27**. B. N. Figgis and M. A. Hitchman, *Ligand Field Theory and its Applications*, Wiley-VCH (2000)
- 28. I. de Maat-Gersdorf, Spectroscopic Analysis of Erbium-Doped Silicon and Ytterbium-Doped Indium Phosphide, PhD thesis, University of Amsterdam-UvA (2001).
- 29. G. Demazeau, M. Pouchard, B. Buffat, and P. Hagenmuller, J. Phys. Colloques 45, C8-345 (1984).
- 30. С. Г. Овчинников, Ю. С. Орлов, 131, 485 (2007).
- 31. M. A. Korotin, S. Yu. Ezhov, I. V. Solovyev et al., Phys. Rev. B 54, 5309 (1996).

- 32. M. Atanasov, R. H. Potze, and G. A. Sawatzky, J. Sol. St. Chem. 119, 380 (1995).
- 33. J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
- D. I. Khomskii, Transition Metal Compounds, Universität zu Köln (2014).
- 35. Z. Hu, M. S. Golden, J. Fink et al., Phys. Rev. B 61, 3739 (2000).
- 36. M. G. Kozin and I. L. Romashkina, Bulletin of the Russian Academy of Sciences 74, 330 (2010).
- 37. H. H. Klauss, H. Luetkens, R. Klingeler et al., Phys. Rev. Lett. 101, 077005 (2008).
- 38. M. Rotter, M. Tegel, I. Schellenberg et al., New J. Phys. 11, 025014 (2009).