КОНЦЕНТРАЦИОННАЯ ЗАВИСИМОСТЬ КРЫЛЬЕВ ДИПОЛЬНО-УШИРЕННОЙ ЛИНИИ МАГНИТНОГО РЕЗОНАНСА В МАГНИТОРАЗБАВЛЕННЫХ РЕШЕТКАХ

В. Е. Зобов^{а*}, М. М. Кучеров^b

^а Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

^b Институт космических и информационных технологий Сибирского федерального университета 660074, Красноярск, Россия

Поступила в редакцию 20 июня 2016 г.

Исследуются особенности временных автокорреляционных функций (АКФ) магниторазбавленных спиновых систем с диполь-дипольным взаимодействием (ДДВ), которые определяют высокочастотные асимптотики автокорреляционных функций и крылья линии магнитного резонанса. В приближении самосогласованного флуктуирующего локального поля выведены нелинейные уравнения для автокорреляционных функций, усредненных по независимому случайному расположению спинов (магнитных атомов) в диамагнитной решетке с разной концентрацией спинов. Уравнения учитывают специфику диполь-дипольного взаимодействия. Во-первых, вследствие его аксиальной симметрии в сильном постоянном магнитном поле автокорреляционные функции продольных и поперечных спиновых компонент описываются разными уравнениями. Во-вторых, дальнодействующий характер диполь-дипольного взаимодействия учтен разделением вкладов в локальное поле от далеких и близких спинов. Получены рекуррентные уравнения для коэффициентов разложений автокорреляционных функций по степеням времени. По ним найдено численное значение координаты ближайшей особой точки автокорреляционной функции на оси мнимого времени, равное радиусу сходимости этих разложений. Показано, что в случае сильного разбавления наблюдается логарифмическая концентрационная зависимость координаты особой точки, обусловленная наличием кластеров близких спинов, доля которых мала, но вклад в модуляционную частоту велик. В качестве примера рассмотрен кристалл кремния с разной концентрацией ²⁹Si при направлениях магнитного поля вдоль трех кристаллографических осей.

DOI: 10.7868/S0044451016120000

1. ВВЕДЕНИЕ

Форма линии магнитного резонанса — это пример сложной задачи динамики системы многих тел без явного малого параметра. Образ Фурье формы линии — спад свободной прецессии (ССП) — выражается через временную корреляционную функцию компоненты суммарного спина, перпендикулярной внешнему постоянному сильному магнитному полю [1]. В магниторазбавленных системах возникают дополнительные трудности, связанные с необходимостью учета случайного неоднородного распределения спинов по решетке и усреднения по нему корреляционных функций [1–5]. Тем не менее такие системы часто применяются для изучения проблем неравновесной статистической физики, таких как эргодичность, термализация, спиновый транспорт и многочастичная локализация, интерес к которым возрос в последнее время [5–8].

В качестве примера магниторазбавленных систем обычно фигурируют системы электронных спинов вследствие большей чувствительности ЭПР [9]. В ЯМР объектом исследования часто являются системы редких изотопов ¹³С и ²⁹Si. В качестве интересного примера приведем работу [10], в которой измерены спектры ЯМР ²⁹Si в кристаллах кремния, обогащенных этим изотопом в разных концентрациях. Хотя ядерные спины дают более слабый сигнал, зато спиновая динамика определяется только диполь-дипольным взаимодействием (ДДВ). В системах электронных спинов в дополнение к ДДВ за-

[•] E-mail: rsa@iph.krasn.ru

метную роль, как правило, играют обменное взаимодействие и неоднородное уширение, что усложняет задачу.

Для сильно разбавленных спиновых систем Андерсон [1,2] предложил теорию формы линии, сводящуюся к суммированию спектров пар спинов. Его теория наглядно объяснила превращение широкой линии Гаусса регулярной спиновой системы в узкую линию Лоренца. Такой подход получил широкое распространение в приложениях [5,11, 12]. Однако в приближении Андерсона однородная спиновая система заменяется неоднородной системой пар спинов. В работах [3, 5, 13] было учтено флип-флоп-взаимодействие между спинами разных пар, которое приводит к модуляции локального поля на спинах пар, с одной стороны, и к установлению равновесия в системе, с другой. В работах [13, 14] применен метод функции памяти, для которой предложен физически аргументированный вид с параметрами, определенными по первым членам концентрационного разложения ССП. Выполнен расчет ССП и спектров ЯМР при разных концентрациях спинов и получено хорошее согласие центральной части спектров с экспериментом [10, 15].

В регулярных (магнитно-концентрированных) решетках, например образованных ядрами ¹⁹F в CaF₂ [1], форма спектра ЯМР не описывается функцией Гаусса, а близка к свертке гауссиана с прямоугольником. В этом случае для ССП получаем выражение [1]

$$F(t) = \exp\left(-\frac{p_1^2 t^2}{2}\right) \frac{\sin(p_2 t)}{p_2 t},$$

в котором входящие параметры могут быть выражены через второй и четвертый моменты спектра по следующим формулам:

$$M_2 = p_1^2 + p_2^2/3, \quad M_4 = 3p_1^4 + 2p_1^2p_2^2 + p_2^4/5.$$

Осциллирующий характер ССП обусловлен вкладом от перекрестных корреляционных функций спинов в двух разных узлах решетки, тогда как автокорреляционные функции (АКФ) спина в одном узле затухают без осцилляций. Предложенный в отмеченной выше работе [13] упрощенный учет перекрестных корреляционных функций с помощью изменения коэффициента перед функцией памяти не дает точного описания осцилляций ССП. Лучше описывают осцилляции ССП интегральные уравнения, предложенные в работе [16] и основанные на преимущественном учете взаимодействия между спиновыми компонентами, параллельными сильному магнитному полю (ось z). Дальнейшее развитие теория ССП получила в работах [17, 18], в которых выведены кинетические уравнения для плотностей диполей с определенным значением проекции локального поля на ось z. Анализ этих и других работ по форме линии дан нами в работе [19].

В указанных работах [13–18] рассчитывались ССП и центральная часть спектра ЯМР. Для вычисления крыльев спектров в регулярных решетках был развит метод учета модуляции локальных полей, приводящий к самосогласованным уравнениям для автокорреляционных функций [20-24]. Крылья спектра имеют экспоненциальную частотную зависимость, показатель которой определяется через координату ближайшей особой точки автокорреляционных функций на оси мнимого времени. В свою очередь, эта координата может быть рассчитана через радиус сходимости ряда по степеням времени для автокорреляционных функций. После включения поправок, учитывающих свойства реальных решеток, получено хорошее согласие с экспериментами как в гомоядерных [19,25], так и в гетероядерных [26-28] системах с ДДВ. Крылья спектров корреляционных функций играют важную роль в определении скоростей медленных процессов установления равновесия в спиновых системах. Их роль возрастает в неоднородных системах. В работе [29] мы оценили концентрационную зависимость указанной координаты для магниторазбавленной системы с изотропным спин-спиновым взаимодействием. Однако для сравнения с экспериментами важно решить также и более сложную задачу об изменении координаты особой точки автокорреляционных функций систем с ДДВ при магнитном разбавлении, которая не рассматривалась до настоящего времени.

В предлагаемой работе нами получены уравнения для автокорреляционных функций в приближении самосогласованного флуктуирующего поля, учитывающие аксиальную симметрию ДДВ, и рассчитано изменение координаты особой точки АКФ на оси мнимого времени при магнитном разбавлении. При выводе уравнений выполнено усреднение по независимому заполнению узлов с учетом разделения в исходной регулярной решетке вкладов от ближайших соседей и от остальных спинов. Необходимость такого разделения обусловлена различным проявлением вкладов близких спинов при расчете разных участков спектра. В центре линии при увеличении реального времени их вклад усредняется до нуля вследствие быстрых осцилляций, тогда как для высокочастотных асимптотик АКФ при увеличении мнимого времени их вклад монотонно растет.

2. УРАВНЕНИЯ ДЛЯ ВРЕМЕННЫХ АВТОКОРРЕЛЯЦИОННЫХ ФУНКЦИЙ

Возьмем исходную регулярную решетку и будем заменять магнитные атомы на диамагнитные в случайно выбранных узлах. Будем предполагать, что заполнение разных узлов независимое, а вероятность сохранения в узле магнитного атома равна средней концентрации $c = N_M/N$ магнитных атомов, где N_M — число магнитных атомов или спинов, а N — полное число узлов решетки. Воспользуемся представлением чисел заполнения n_j узла $j: n_j = 1$, если в узле j расположен спин, и $n_j = 0$, если немагнитный атом [3–5,13]. После усреднения получаем $\langle n_i \rangle = c$.

Как известно [1], в неметаллических диамагнитных твердых телах основной причиной уширения спектра поглощения ЯМР является секулярная часть межъядерного ДДВ, полностью определяющая динамику ядерной спиновой системы:

$$H = \sum_{i \neq j} n_i n_j b_{ij} \left[I_i^z I_j^z - \xi \left(I_i^x I_j^x + I_i^y I_j^y \right) \right].$$
(1)

Здесь $b_{ij} = \gamma^2 \hbar (1 - 3 \cos^2 \theta_{ij})/2r_{ij}^3$ — константа ДДВ, \mathbf{r}_{ij} — вектор, соединяющий спины *i* и *j*, θ_{ij} — угол, образуемый вектором \mathbf{r}_{ij} с постоянным внешним магнитным полем, $I_i^{\alpha} - \alpha$ -компонента ($\alpha = x, y, z$) векторного оператора спина в узле *i*, $I = 1/2, \xi$ параметр, введенный для удобства теоретического анализа: $\xi = 1/2$ в рассматриваемом случае ДДВ, $\xi = -1$ в системах с изотропным спин-спиновым взаимодействием [29]. Здесь и ниже энергия выражается в частотных единицах.

Зависящие от времени АК Φ спина, расположенного в узле решетки i, при высокой температуре определим выражением

$$\Gamma_{\alpha i}(t) = \frac{\operatorname{Tr}\left[e^{iHt}I_i^{\alpha}e^{-iHt}I_i^{\alpha}\right]}{\operatorname{Tr}\left[(I_i^{\alpha})^2\right]}.$$
(2)

АКФ можно разложить в ряд по степеням времени:

$$\Gamma_{\alpha i}(t) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} M_{2n\alpha} t^{2n}.$$
 (3)

Как известно [1], коэффициент $M_{2n\alpha}$ является моментом порядка 2n спектральной плотности соответствующей АКФ. В частности,

$$M_{2z} = 2\xi^2 cS_1, \quad M_{2x} = (1+\xi^2)cS_1,$$

$$S_1 = \sum_j b_{ij}^2.$$
 (4)

Точные выражения получены только для нескольких первых моментов. Поэтому для расчета

АКФ применяют различные приближенные подходы. В аксиально-симметричном гамильтониане (1) главную роль играет *zz*-взаимодействие (взаимодействие спиновых компонент, параллельных магнитному полю). Если пренебречь вторым слагаемым в уравнении (1) (взаимодействием поперечных компонент спинов или флип-флоп-взаимодействием), положив $\xi = 0$, то находим

$$\Gamma_{xi}(t) = \prod_{j} \cos(n_j b_{ij} t).$$
(5)

После усреднения по независимому заполнению узлов [3–5,13] получим

$$\Gamma_x(t) = \prod_j \left[(1-c) + c \cos(b_{ij}t) \right]. \tag{6}$$

В регулярных решетках (*c* = 1) при большом числе соседей из выражения (5) получаем функцию Гаусса

$$\Gamma_x(t) \approx \exp(-S_1 t^2/2). \tag{7}$$

При сильном разбавлении ($c \ll 1$) из (6) можно получить [3,13] экспоненциальный спад,

$$\Gamma_x(t) \approx \exp(-Bt),$$
(8)

которому соответствует лоренцева форма линии. Здесь $B = (2/3)D_A$, а $D_A = 2\pi^2 \gamma^2 \hbar c/3\sqrt{3} \Omega$ — ширина линии ЯМР по Андерсону [1,2], Ω — объем на один узел кристалла.

Андерсон использовал приближение изолированных пар спинов. Для корреляционной функции суммарного момента пары $I_1^x + I_2^x$ находим

$$\Gamma_x(t) = \cos\left[(1+\xi)b_{12}t\right],$$
(9)

тогда как для АКФ одного из спинов пары находим

$$\Gamma_{x1}(t) = \cos(b_{12}t)\cos(\xi b_{12}t). \tag{10}$$

Разница двух функций обусловлена перекрестной корреляционной функцией операторов I_1^x и I_2^x :

$$\Gamma_{x12}(t) = -\sin(b_{12}t)\sin(\xi b_{12}t). \tag{11}$$

Ширину D_A линии Андерсона получаем при $\xi = 1/2$.

Теория Андерсона [1,2] хорошо описывает суженный центр спектра. Однако крыло линии Лоренца в (8) должно быть обрезано, поскольку функция (6) имеет моменты конечной величины. Для одной пары спинов частота обрезания $(1 + \xi)b$, где b — константа ДДВ спинов на минимальном расстоянии в решетке. Исследование регулярных систем показало, что крыло простирается значительно дальше резонансной частоты взаимодействующей пары соседних спинов в решетке. Большая частота на крыле набирается при суммировании частот прецессии спинов в локальных полях. Суммирование происходит через модуляцию этих полей вследствие флип-флоп-процессов. Этот механизм сохранится и при магнитном разбавлении. Изменение ориентаций спинов, создающих локальное поле, будем описывать АКФ $\Gamma_{zj}(t)$ (2), и при включении флип-флоп-взаимодействия заменим в произведении (5) косинус на функцию $F_{ij}^{(1)}(t)$, заданную уравнением

$$\frac{d}{dt} F_{ij}^{(1)}(t) = -b_{ij}^2 \int_0^t \Gamma_{zj/i}(t') F_{ij}^{(1)}(t-t') dt', \quad (12)$$

где $\Gamma_{zj/i}(t)$ — АКФ (2) *z*-компоненты спина *j*, у которой исключено взаимодействие со спином *i*, поле на котором рассматривается.

В уравнении (12) мы не стали учитывать то, что взаимодействие между поперечными спиновыми компонентами увеличит второй момент АКФ (4). Такой учет может быть сделан перенормировкой констант ДДВ [19], т.е. заменой b_{ii}^2 на $(1+\xi^2)b_{ii}^2$ в уравнении (12). Вместе с тем в изолированной паре изменится форма АКФ: вместо косинуса появится произведение косинусов (10). Причина — в переходе поляризации на соседний спин и ее возврате. Такой процесс играет важную роль в изолированной паре, но при наличии большого числа соседей возвратом поляризации можно пренебречь. С другой стороны, взаимодействие между поперечными спиновыми компонентами приведет к коррелированности между вкладами от разных спинов в произведении (5). Для решеток с большим координационным числом эффект от такой корреляции незначителен и может быть учтен перенормировкой констант b_{ii} , как было показано в работе [19]. Обоснование в том, что при большом числе соседей время затухания АКФ определяется их совместным действием. На таких временах не успевает проявиться корреляция от взаимодействия двух спинов. Эта причина сохранится и при расчете координаты ближайшей особой точки на оси мнимого времени, поскольку ее величина — также коллективный эффект. Перенормировки параметров и учет поправок будут проведены в дальнейшем при сравнении с экспериментом. В настоящей работе мы ограничимся простейшими уравнениями, поскольку хотим сосредоточиться на качественной стороне задачи.

Константа ДДВ (1) убывает с расстоянием по степенному закону, поэтому каждый спин взаимодействует, формально говоря, со всеми остальными. Однако взаимодействие с Z ближайшими соседями намного сильнее взаимодействия с дальним окружением [30]. Вклад от большого числа дальних соседей будем учитывать в виде вклада от гауссова локального поля:

$$D_{i}(t) = \exp\left[-\sum_{i \notin Z} n_{j} b_{ij}^{2} \int_{0}^{t} \int_{0}^{t'} \Gamma_{zj}(t'') dt' dt''\right]. \quad (13)$$

Действие ближайших соседей будем учитывать в том же приближении, которое использовалось в работе [19], полагая независимость вкладов от каждого из Z ближайших соседей:

$$\Gamma_{xj}(t) = \prod_{f}^{Z} \left[(1 - n_f) + n_f F_{jf}^{(1)}(t) \right] D_j(t), \quad (14)$$

где $F_{jf}^{(1)}(t)$ — определенный уравнением (12) вклад в изменение корреляционной функции спина в узле j со стороны направления на решетке, ведущего к спину f.

Для $\Gamma_{zj}(t)$ и $\Gamma_{zj/i}(t)$ возьмем уравнения, выведенные в работе [19], и преобразуем их с учетом магнитного разбавления к следующему виду:

$$\frac{d}{dt}\Gamma_{zj}(t) = -\frac{1}{2}\sum_{f} b_{jf}^{2} n_{f} \times \\
\times \int_{0}^{t} \Gamma_{xf/j}(t')\Gamma_{xj/f}(t')\Gamma_{zj}(t-t') dt', \\
\frac{d}{dt}\Gamma_{zj/i}(t) = -\frac{1}{2}\sum_{f(\neq i)} b_{jf}^{2} n_{f} \times \\
\times \int_{0}^{t} \Gamma_{xf/ji}(t')\Gamma_{xj/fi}(t')\Gamma_{zj/i}(t-t') dt'.$$
(15)

Система уравнений (12)–(15) развивает идеи работ [3, 13] по учету модуляции локального поля в магниторазбавленных системах. Введенный нами самосогласованный учет АКФ позволяет провести анализ нелинейных свойств системы на оси мнимого времени в добавление к выполненному в работе [13] анализу релаксации АКФ на реальной оси времени. Переходя к усреднению уравнений (12)–(15) по случайному расположению спинов, отметим, что граница разделения на близкие и дальние спины зависит от решаемой задачи. Для расчета центра спектра выполняется исследование затухания корреляционной функции на оси реального времени. Здесь

12 ЖЭТФ, вып. 1

Ориентация Ζ $b^2/M_2(1)$ $\delta^2 / M_2(1)$ 1 0.6350.365[111] [110]4 0.204 0.187[100]4 0.067 0.732

Таблица. Параметры модельной системы, используемые при расчетах АКФ в кристалле кремния

в качестве масштаба выступает ширина спектра D_A , линейная по концентрации и равная по порядку величины взаимодействию спинов на среднем расстоянии [1-5,10,13]. Вклады в корреляционную функцию от слагаемых, содержащих пары на меньшем расстоянии («близкие»), затухнут из-за быстрых осцилляций во времени. Поэтому число таких мест в исходной регулярной решетке (число «близких» спинов) будет расти при магнитном разбавлении и во много раз превзойдет координационное число этой решетки. Наоборот, при расчете крыльев спектра мы исследуем рост корреляционной функции на оси мнимого времени. В этом случае вклад от близких пар монотонно растет, поэтому в качестве близких спинов следует брать ближайших соседей исходной решетки.

На основании сказанного возьмем простую модельную спиновую систему, у которой каждый спин имеет небольшое число Z ближайших соседей с равными константами взаимодействия b и большое количество слабовзаимодействующих дальних соседей с суммарным вкладом δ^2 в решеточную сумму S_1 (4): $\delta^2 = S_1 - Zb^2$. В дальнейшем будем использовать следующие обозначения для зависящего от концентрации второго момента АКФ:

$$M_2(c) = cZb^2 + c\delta^2$$
, $M_2(1) = Zb^2 + \delta^2 = S_1$.

В качестве примера в таблице приведены значения введенных параметров для системы ²⁹Si в кристалле кремния [10,15] в случаях, когда магнитное поле направлено вдоль трех кристаллографических осей: [111], [110] и [100]. При расчетах использованы решеточные суммы из работы [31]. Из сравнения вкладов во второй момент от ДДВ спинов на разных расстояниях мы взяли Z = 1 при ориентации [111] и Z = 4при ориентациях [110] и [100].

Для указанной модельной системы, выполнив усреднение уравнений (12)–(15) по случайному расположению спинов в приближении независимого заполнения узлов, получим уравнения для усредненных функций:

$$\Gamma_x(t) = \langle \Gamma_{xj}(t) \rangle = [Y(t)]^Z D(t),$$

$$\Gamma_z(t) = \langle \Gamma_{zj}(t) \rangle, \quad \Gamma'_z(t) = \langle \Gamma_{zj/i}(t) \rangle,$$
(16)

где

$$D(t) = \exp\left[-c\delta^2 \int_{0}^{t} \int_{0}^{t'} \Gamma_z(t'') dt' dt''\right],$$
 (17)

а функция

$$Y(t) = \left[1 + c\left(\left\langle F_{ij}^{(1)}(t)\right\rangle - 1\right)\right]$$
(18)

удовлетворяет уравнению

$$\frac{d}{dt}Y(t) = -b^2 \int_0^t \Gamma'_z(t_1) \left[Y(t-t_1) - (1-c)\right] dt_1.$$
(19)

Две другие функции удовлетворяют уравнениям

$$\frac{d}{dt} \Gamma_{z}(t) = -\frac{1}{2} cZb^{2} \times \\
\times \int_{0}^{t} Y^{2Z-2}(t_{1})D^{2}(t_{1})\Gamma_{z}(t-t_{1}) dt_{1} - \\
- \frac{1}{2} c\delta^{2} \int_{0}^{t} Y^{2Z}(t_{1})D^{2}(t_{1})\Gamma_{z}(t-t_{1}) dt_{1}, \\
\frac{d}{dt} \Gamma_{z}'(t) = -\frac{1}{2} c(Z-1)b^{2} \times \\
\times \int_{0}^{t} Y^{2Z-3}(t_{1})D^{2}(t_{1})\Gamma_{z}'(t-t_{1}) dt_{1} - \\
- \frac{1}{2} c\delta^{2} \int_{0}^{t} Y^{2Z-1}(t_{1})D^{2}(t_{1})\Gamma_{z}'(t-t_{1}) dt_{1}.$$
(20)

Выполненные ранее [22–28] исследования нелинейных уравнений для $AK\Phi$ в регулярных решетках (c = 1) показали наличие особых точек на оси мнимого времени. В окрестности ближайших к началу координат особых точек $AK\Phi$ имеет вид

$$\Gamma_{\alpha}(t) \approx \frac{A_{\alpha}}{(it \pm \tau_0)^2}.$$
 (21)

В частности, для системы уравнений (17) и (20) при b = 0 в работе [24] найдено значение координаты особой точки: $\tau_0^2 = 6.81/M_2(1)$. Формально, если заменить $M_2(1)$ на $M_2(c) = c\delta^2$, то это решение может описывать изменение координаты особой точки при небольшом разбавлении.

В общем случае при $b \neq 0$ и магнитном разбавлении вид функций (16)–(20) изменится. Однако у

них по-прежнему будет наблюдаться особенность в одной и той же точке мнимой оси, поскольку все эти функции связаны системой уравнений. Координату τ_0 особой точки определим через радиус сходимости рядов по степеням времени вида (3) для этих функций. С этой целью подставим в уравнения (16)–(20) указанные ряды входящих в него функций. Для коэффициентов получим рекуррентные уравнения

$$D_{n+1} = c\delta^{2} \sum_{k=0}^{n} {\binom{2n+1}{2k}} D_{n-k}G_{k},$$

$$Y_{n+1} = b^{2} \sum_{k=0}^{n} K_{n-k}Y_{k} - b^{2}(1-c)K_{n},$$

$$G_{n+1} = cb^{2}Z \frac{1}{2} \sum_{k=0}^{n} P_{n-k}^{(2Z-2)}G_{k} +$$

$$+ c\delta^{2}\frac{1}{2} \sum_{k=0}^{n} P_{n-k}^{(2Z)}G_{k},$$

$$K_{n+1} = cb^{2}(Z-1)\frac{1}{2} \sum_{k=0}^{n} P_{n-k}^{(2Z-3)}K_{k} +$$

$$+ c\delta^{2}\frac{1}{2} \sum_{k=0}^{n} P_{n-k}^{(2Z-1)}K_{k},$$
(22)

где Y_n , D_n — коэффициенты порядка 2n рядов (3) одноименных функций, G_n — соответствующий коэффициент для $\Gamma_z(t)$, K_n — для $\Gamma'_z(t)$, а $P_n^{(m)}$ — коэффициент для произведения $Y^m(t)D^2(t)$.

3. РАСЧЕТ И ОБСУЖДЕНИЕ

Решая уравнения (22) численно, координату ближайшей особой точки будем вычислять по формуле Даламбера как предел отношения соседних членов ряда (3) для $\Gamma_z(t)$. Результаты расчета показаны на рис. 1 и рис. 2.

На рис. 1 приведены зависимости координаты на оси мнимого времени особой точки решения системы уравнений (16)–(20) $\tau_0 \sqrt{M_2(c)} = \tau_0 \sqrt{c(Zb^2 + \delta^2)}$ от $\delta^2/M_2(1)$ при разных концентрациях. При $\delta^2/M_2(1) \rightarrow 1$ кривые сходятся к пределу $\tau_0 = \sqrt{6.81/M_2(c)}$ (21). В этом пределе, проанализированном выше, концентрационная зависимость определяется соответствующей зависимостью второго момента и имеет вид $\tau_0 \propto 1/\sqrt{c}$. При этом исчезает зависимость от Z, поскольку $b \rightarrow 0$. Зависимость $\tau_0 \propto 1/\sqrt{c}$ мы видим на рис. 2 в ориентации [100] при достаточно больших концентрациях.

При $\delta^2/M_2(1) \to 0$ предел величины $\tau_0 \sqrt{M_2(c)} = \tau_0 b \sqrt{cZ}$ зависит от числа соседей. В этом пре-

Рис. 1. Зависимости координаты особой точки АКФ (в единицах $M_2^{-1/2}(c)$) от $\delta^2/M_2(1)$ при Z = 1 (сплошные линии) и Z = 4 (штриховые линии) при трех значениях концентрации (сверху вниз c = 1, 0.1, 0.01)

Рис. 2. Зависимости координаты особой точки АКФ (в единицах $M_2^{-1/2}(1)$) от концентрации ²⁹Si в кристалле кремния с параметрами, приведенными в таблице, при направлениях магнитного поля вдоль кристаллографических осей [111], [110] и [100]

деле при Z = 1 получаем спиновую систему, состоящую из изолированных пар (10). Соответствующие осциллирующие функции не имеют особых точек на оси мнимого времени, поэтому $\tau_0 \to \infty$ при $\delta^2/M_2(1) \to 0$. При Z = 4 в этом пределе величина τ_0 стремится к конечному значению, поскольку для АКФ сохраняются нелинейные самосогласованные уравнения. Подобные уравнения, получающиеся в приближении решеток Бете, были исследованы нами ранее для изотропного спин-спинового взаимодействия [29].

На рис. 1 видно, что зависимость τ_0 от концентрации не сводится к концентрационной зависимости второго момента, если мы отходим от предельного значения $\delta^2/M_2(1) = 1$. Найдем вид этой зависимости при соотношении $Zb^2 \gg \delta^2$, при выполнении которого важную роль играют близкие пары спинов. Их быстроосциллирующий на оси реального времени вклад $\langle F_{jf}^{(1)}(t) \rangle \sim \cos(bt)$ на оси мнимого времени $t=i\tau$ превращается в быстрорастущий вклад $\langle F_{jf}^{(1)}(t)\rangle\propto {\rm ch}(b au)\propto e^{b au}/2$. Однако одна изолированная пара не даст сингулярности. Особая точка у решения нелинейных уравнений (17)-(20) возникает при объединении сигналов многих пар. Пока $\Gamma_z(t) \sim 1$ и $\Gamma'_z(t) \sim 1$, уравнения (17) и (19) остаются линейными. Нелинейный характер уравнений и быстрый рост функций проявится при $\Gamma_z(t) > 1$. Согласно уравнению (20), этот рост начнется при

$$\frac{1}{2} cZb^2 \int_0^{\tau} \int_0^{\tau_1} Y^{2Z-2}(\tau_2) D^2(\tau_2) d\tau_1 d\tau_2 + \frac{1}{2} c\delta^2 \int_0^{\tau} \int_0^{\tau_1} Y^{2Z}(\tau_2) D^2(\tau_2) d\tau_1 d\tau_2 \ge 1. \quad (23)$$

Для оценки возьмем подынтегральные выражения в (23) в виде $(c/2)^m \exp(2mb\tau + c\delta^2\tau^2)$, где m == Z - 1 в первом интеграле и m = Z во втором. Выполнив приближенное вычисление интегралов, получим уравнение

$$W(Z) \exp\left[a(Z)\tau_0 + c\delta^2 \tau_0^2\right] = 1,$$
 (24)

где

$$a(Z) = \begin{cases} 2b, & Z = 1, \\ 2(Z - 1)b, & Z > 1, \end{cases}$$
$$W(Z) = \begin{cases} \frac{\delta^2}{4b^2} \left(\frac{c}{2}\right)^3, & Z = 1, \\ \frac{Z}{4(Z - 1)^2} \left(\frac{c}{2}\right)^{2Z - 1}, & Z > 1. \end{cases}$$
(25)

Решив уравнение (24), находим искомую оценку координаты особой точки на оси мнимого времени:

$$\tau_0 = \frac{-2\ln W(Z)}{a(Z) + [a^2(Z) - 4c\delta^2 \ln W(Z)]^{1/2}}.$$
 (26)

Отсюда получаем логарифмическую концентрационную зависимости координаты особой точки АКФ следующего вида:

$$\tau_0 \sim \frac{v}{b} \ln \frac{1}{c} + R. \tag{27}$$

180

В полулогарифмических координатах на рис. 2 такой зависимости соответствуют отрезки прямых, которые мы наблюдаем в области сильного разбавления $c \ll 1$. Коэффициенты v и R, определенные согласно (26), качественно правильно передают зависимости τ_0 от параметров b, δ^2 и Z, наблюдаемые на рис. 1 и 2: во-первых, уменьшение τ_0 при увеличении δ^2 и Z; во-вторых, ослабление зависимости τ_0 от δ^2 с ростом Z.К сожалению, наша грубая оценка не дает количественного согласия с результатами численного решения сложных нелинейных уравнений.

Таким образом, при магнитном разбавлении центральная часть спектра АКФ трансформируется из формы, описываемой кривой Гаусса с экспоненциальными крыльями, в форму, описываемую кривой Лоренца с экспоненциальными крыльями. Как известно, ширина спектра зависит от концентрации по линейному закону [1-5, 10, 13] и определяется спинами, которые располагаются на расстояниях, близких к среднему. Таких спинов — спинов «массы» — большинство, и они играют важную роль при установлении равновесия между частями системы. Выше мы получили, что показатель экспоненты крыла ($\omega > 0$) имеет логарифмическую зависимость от концентрации:

$$g(\omega) \sim \exp(-\tau_0 \omega) \sim \exp\left(-\frac{v\omega}{b}\ln\frac{1}{c}\right) = c^{v\omega/b}.$$
 (28)

Физически это означает, что большая частота возникает в системе из-за объединения частот многих пар близких спинов (число пар $k \sim \omega/b$) вследствие модуляции локального поля. Вероятность образования одной пары равна c, а k пар — c^k . Хотя вероятность мала, но вклад в модуляционную частоту велик, поэтому далекое крыло спектра определяется редкими кластерами близких спинов. Для сравнения отметим, что при последовательном наращивании модуляционной частоты в регулярной решетке складываются $k\sim \omega/\omega_{loc}$ средних локальных частот $\omega_{loc} \sim \sqrt{M_2}.$

Основываясь на изложенной теории, проанализируем трансформацию спектров ЯМР кристалла кремния по мере магнитного разбавления, наблюдавшуюся в экспериментах [10, 15]. В магнитноконцентрированном случае форма спектра сильно зависит от ориентации кристалла в магнитном поле. Отметим, что поскольку решетка кремния изоморфна решетке алмаза, такую же зависимость имеют спектры ЯМР ¹³С в обогащенном этим изотопом алмазе [32, 33]. В ориентации [111] спектр ЯМР ²⁹Si имеет вид пейковского дублета с расщеплением 1250 Гц. В ориентациях [100] и [110] наблюдаются спектры с ширинами соответственно 800 и 2000 Гц, которые близки по форме к хорошо известным спектрам ЯМР ¹⁹F во флюорите [1] соответственно в ориентациях [111] и [110] [34]. Выполненный нами ранее [25] анализ экспериментальных спектров во флюорите, показал, что экспоненциальная асимптотика (28) начинается примерно с частот $2.2\sqrt{M_2}$, отсчитываемых от центра линии.

При магнитном разбавлении линия ЯМР сужается. В образцах с естественным содержанием ²⁹Si (с = 0.047) ширина линии во всех ориентациях уменьшается до величины 100 Гц, значительная часть которой (70 Гц), по мнению авторов работ [10, 15], обусловлена неоднородностью магнитного поля. В соответствии с теорией Андерсона [2], форма этой линии должна быть лоренцевой. Крыло функции Лоренца оканчивается на частотах, равных взаимодействию двух спинов на минимальном расстоянии для данной решетки. Этому соответствуют частоты 550 Гц для ориентации [111] и 225 Гц для ориентации [110]. В этих точках спектров наблюдаются слабые пики [10, 15], площадь которых относится к площади центральной линии как 0.06 в ориентации [111] и как 0.22 в ориентации [110]. Соответствующие теоретические значения 0.047 и 0.047×4 равны вероятностям образования близких пар спинов при случайном распределении ²⁹Si в решетке [15]. Частоты в спектре, превосходящие эти предельные значения, будут образовываться вследствие взаимодействия многих спинов и могут быть описаны на основании изложенной выше теории. К сожалению, в этой области спектра при малых концентрациях ²⁹Si сигнал слаб и маскируется шумами в упомянутых выше экспериментах [10,15]. Для количественного расчета уверенно наблюдаемой части спектра необходимо к системе уравнений для АКФ добавить уравнения для перекрестных корреляционных функций, уделить большее внимание величинам коэффициентов в уравнениях и выполнить численные расчеты, аналогичные расчетам, проведенным в работах [13, 14, 19, 27].

О форме далекого крыла можно судить по скоростям медленных процессов насыщения резонансным полем и релаксации, подобных тем, которые наблюдались в работе [9]. Наличие модуляционного крыла у спинов массы, вытекающее из развитой выше теории, может служить объяснением наблюдавшейся экспоненциальной формы спиновых пакетов [9]. Эта теория позволяет несколько иначе взглянуть на механизм насыщения на крыле спектра. Ранее в работах [5,11] полагалось, что резонансное поле, приложенное на крыле спектра, действует на резонансную

ему пару близких спинов. После изменения резонансной частоты поля на противоположную, выполняемого в эксперименте [9], это поле действует на ту же или аналогичную пару. Скорость такого процесса лимитируется обменом энергией между парами и массой. При новом механизме резонансное поле, приложенное на крыле спектра, действует на крыло линии спина массы. Его модуляционная частота соответствует некоторой близкой паре (или парам), связанной с данным спином массы. Вероятность поворота мала, поскольку пар мало. После изменения резонансной частоты поля на противоположную это поле действует на другой спин массы, связанный с той же парой (или близкой), и поворачивает ее в исходное состояние. Процесс сопровождается обменом энергией между спинами массы и не нуждается в обмене энергией между парами и массой. Для количественного сравнения нашей теории с экспериментом предстоит провести учет неоднородного уширения, играющего важную роль в спектроскопии ЭПР.

ЛИТЕРАТУРА

- А. Абрагам, Ядерный магнетизм, Изд-во инстр. лит., Москва (1963).
- 2. P. W. Anderson, Phys. Rev. 82, 342 (1951).
- Ф. С. Джепаров, А. А. Лундин, Т. Н. Хазанович, ЖЭТФ 92, 554 (1987).
- E. B. Fel'dman and S. Lacelle, J. Chem. Phys. 104, 2000 (1996).
- F. S. Dzheparov, J. Phys.: Conf. Ser. 324, 012004 (2011).
- J. Eisert, M. Friesdorf, and C. Gogolin, Nature Phys. 11, 124 (2015).
- R. Nandkishore and D. A. Huse, Ann. Rev. Condens. Matter. Phys. 6, 15 (2015).
- D. A. Abanin, W. De Roeck, and F. Huveneers, Phys. Rev. Lett. 115, 256803 (2015).
- 9. В. А. Ацаркин, Г. А. Васнева, В. В. Демидов, ЖЭТФ 91, 1523 (1986).
- H. Hayashi, K. M. Itoh, and L. S. Vlasenko, Phys. Rev. B 78, 153201 (2008).
- Ф. С. Джепаров, Э. Б. Фельдман, Изв. АН СССР, сер. физ. 52, 455 (1988).
- 12. A. A. Nevzorov and J. H. Freed, J. Chem. Phys. 112, 1425 (2000).

- Ф. С. Джепаров, Д. В. Львов, М. А. Веретенников, Письма в ЖЭТФ 98, 543 (2013).
- 14. Ф. С. Джепаров, Д. В. Львов, М. А. Веретенников, ФНТ 41, 14 (2015).
- A. S. Verhulst, D. Maryenko, Y. Yamamoto, and K. M. Itoh, Phys. Rev. B 68, 054105 (2003).
- 16. G. Sauermann and M. Wiegand, Physica B 103, 309 (1981).
- **17**. Г. Е. Карнаух, А. А. Лундин, Б. Н. Провоторов, К. Т. Сумманен, ЖЭТФ **91**, 2229 (1986).
- 18. Б. Н. Провоторов, Т. П. Кулагина, Г. Е. Карнаух, ЖЭТФ 113, 967 (1998).
- **19**. В. Е. Зобов, М. А. Попов, Ю. Н. Иванов, А. И. Лифшиц, ЖЭТФ **115**, 285 (1999).
- 20. P. Borckmans and D. Walgraef, Physica 35, 80 (1967); Phys. Rev. 167, 282 (1968).
- 21. M. Blume and J. Hubbard, Phys. Rev. B 1, 3815 (1970).
- 22. V. E. Zobov, Phys. Lett. A 119, 315 (1986).
- **23**. В. Е. Зобов, ТМФ **77**, 426 (1988); **84**, 111 (1990).

- 24. A. A. Lundin, A. V. Makarenko, and V. E. Zobov, J. Phys.: Condens. Matter 2, 10131 (1990).
- **25**. В. Е. Зобов, М. А. Попов, ЖЭТФ **124**, 89 (2003).
- 26. В. Е. Зобов, А. А. Лундин, ЖЭТФ 106, 1097 (1994).
- 27. В. Е. Зобов, А. А. Лундин, О. Е. Родионова, ЖЭТФ 120, 619 (2001).
- **28**. В. Е. Зобов, М. А. Попов, ЖЭТФ **127**, 877 (2005).
- В. Е. Зобов, М. М. Кучеров, Письма в ЖЭТФ 103, 780 (2016).
- **30**. А. А. Лундин, Б. Н. Провоторов, ЖЭТФ **70**, 2201 (1976).
- 31. H. T. Stokes and D. C. Ailion, Phys. Rev. B 15, 1271 (1977).
- 32. K. Lefmann, B. Buras, E. J. Pedersen et al., Phys. Rev. B 50, 15623 (1994).
- 33. K. Schaumburg, E. S. Shabanova, and J. P. F. Sellschop, J. Magn. Res. A 112, 176 (1995).
- 34. J. Jensen, Phys. Rev. B 52, 9611 (1995).