ВЛИЯНИЕ ИНДУКТИВНОЙ И ЕМКОСТНОЙ СВЯЗЕЙ НА ВОЛЬТ-АМПЕРНУЮ ХАРАКТЕРИСТИКУ И ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ СИСТЕМЫ ДЖОЗЕФСОНОВСКИХ ПЕРЕХОДОВ

И. Р. Рахмонов ^{а,b*}, Ю. М. Шукринов ^{а,c}, П. Х. Атанасова ^d,

Е. В. Земляная ^{а,с}, М. В. Башашин ^{а,с}

^а Объединенный институт ядерных исследований 141980, Дубна, Московская обл., Россия

^b Физико-технический институт им. С. У. Умарова АН РТ 734063, Душанбе, Таджикистан

> ^с Государственный университет «Дубна» 141980, Дубна, Московская обл., Россия

^d Пловдивский университет «Паисий Хилендарски» 4003, Пловдив, Болгария

Поступила в редакцию 23 мая 2016 г.

Исследована вольт-амперная характеристика системы длинных джозефсоновских переходов с учетом индуктивной и емкостной связей. Представлены зависимость средней производной разности фаз по времени от величины базового тока и пространственно-временные зависимости разности фаз и магнитного поля в каждом переходе. Показана возможность ветвления вольт-амперной характеристики в области ступеньки нулевого поля, связанная с различным числом флюксонов в отдельных джозефсоновских переходах. Проведено сравнение вольт-амперной характеристики системы джозефсоновских переходов со случаем одного перехода и показано, что обнаруженное ветвление обусловлено наличием связи между переходами. Рассчитана интенсивность электромагнитного излучения, обусловленная движением флюксонов, и исследовано влияние связи между переходами на мощность излучения.

DOI: 10.7868/S0044451017010138

1. ВВЕДЕНИЕ

Анизотропные высокотемпературные сверхпроводники, такие как Bi₂Sr₂CaCu₂O₈, образуют систему связанных джозефсоновских переходов (ДП), в которой наблюдается внутренний эффект Джозефсона [1]. Такая система является одним из перспективных объектов сверхпроводящей электроники [2,3]. Широкие возможности для различных применений представляет когерентное электромагнитное излучение из данной системы в терагерцевой области частот [4]. В настоящее время ведется интенсивный поиск новых возможностей для увеличения его мощности, которая по последним данным [5] составляет около 600 мкВт на частоте 0.5 ТГц при использовании нескольких последовательно соединенных стеков.

Большинство физических процессов, происходящих внутри ДП, проявляется на ее вольт-амперной характеристике (ВАХ). В качестве примеров можно привести появление ступеньки Шапиро на ВАХ, свидетельствующее о захвате джозефсоновской частоты внешним излучением, а также ступенек нулевого поля [6–13], которые обусловлены наличием флюксонов в длинном ДП. В случае системы связанных переходов джозефсоновские осцилляции возбуждают продольную плазменную волну (ППВ) [14] в результате параметрического резонанса. Резонанс приводит к увеличению амплитуды осцилляций электрического заряда в сверхпроводящих слоях [14,15]. Эти процессы также проявляются

^{*} E-mail: rahmonov@theor.jinr.ru, ilhom-tj@inbox.ru

на ВАХ системы в виде точки излома, где происходит переключение ВАХ с верхней ветви на внутренние. Наиболее интенсивное когерентное излучение соответствует именно этой области ВАХ [3]. Таким образом, многие физические свойства системы ДП могут быть изучены посредством исследования и анализа структуры ее ВАХ.

Основной причиной ветвления ВАХ является переключение отдельных ДП системы между состояниями с вращающейся (R-состояние) и осциллирующей (О-состояние) фазами [16, 17]. Рассмотрение таких переключений было проведено лишь в случае системы коротких Д Π , длина L которых меньше джозефсоновской глубины проникновения λ_J . Большинство же экспериментальных результатов связано с длинными ДП, в которых $L > \lambda_J$. Известно, что в случае одиночного длинного ДП в отсутствие внешнего магнитного поля на ВАХ наблюдаются ступеньки нулевого поля [6–13]. При этом возникает вопрос: связано ли ветвление ВАХ системы длинных ДП только с переключениями или есть и другие причины этому? Поскольку речь будет идти, в основном, о длинных ДП, в дальнейшем изложении слово «длинный» опускается.

Для описания системы ДП Сакаем, Бодиным и Педерсеном [18] была предложена модель, учитывающая индуктивную связь между ДП. Емкостная связь в предложенной модели не учитывалась. Обобщение модели на случай обоих типов связи между ДП было проведено Мачидой и Сакаем [19]. В работе [20] учитывался также диффузионный ток [17], важность которого подчеркивалась в ряде работ [21–23]. Подробное исследование ВАХ в рамках такой обобщенной модели до настоящего времени не проводилось. Не исследовалось также влияние индуктивной связи на интенсивность электромагнитного излучения, соответствующего различным областям ВАХ.

В настоящей работе в рамках обобщенной модели, учитывающей как индуктивную, так и емкостную связь, а также диффузионный ток, проведено подробное исследование ВАХ и пространственновременных зависимостей магнитного поля во всех ДП. Исследованы причины, приводящие к ветвлению ВАХ в системе длинных ДП. Показано, что ветвление также может наблюдаться из-за разного числа флюксонов в отдельных ДП. Рассчитана мощность электромагнитного излучения и анализируются причины наблюдаемого роста интенсивности излучения в определенных интервалах базового тока.

2. ТЕОРЕТИЧЕСКАЯ МОДЕЛЬ

Теоретическая модель связанных ДП подробно рассмотрена в работе [19,20]. В этом разделе кратко приводится модельная система уравнений, которая описывает динамику связанных ДП. Рассмотрим систему с N+1 сверхпроводящими слоями и с промежуточными диэлектрическими. Схематический вид такой слоистой структуры представлен на рис. 1а. Ось x выбрана вдоль длины L ДП, ось y — вдоль ширины W и ось z перпендикулярна слоям. К этой системе приложен внешний ток, однородный вдоль оси x и направленный перпендикулярно слоям (z-направление). Сверхпроводящие слои с номерами *l* и l-1 образуют *l*-й ДП (l = 1, ..., N), схема которого показана на рис. 16. Сверхпроводящий слой с номером l описывается параметром порядка $\Delta_l =$ $= |\Delta| \exp(i\theta_l)$, где $\theta_l - \phi$ аза параметра порядка и $|\Delta|$ — его амплитуда. Состояние *l*-го ДП определяется калибровочно инвариантной разностью фаз

$$\varphi_l = \theta_l - \theta_{l-1} - \frac{2e}{\hbar c} \int_{z_{l-1}}^{z_l} A_z \, dz,$$

где e — электрический заряд электрона, \hbar — постоянная Планка, c — скорость света в вакууме и A_z — векторный потенциал барьера.

В рассматриваемом случае предполагается, что ширина ДП намного меньше джозефсоновской глубины проникновения магнитного поля ($W \ll \lambda_J$).

В рамках этой модели соотношение Джозефсона обобщается и записывается в виде

$$\frac{\hbar}{2e}\frac{\partial\varphi_l}{\partial t} = D_c V_l + s_c V_{l+1} + s_c V_{l-1}, \qquad (1)$$

где $D_c = 1 + (2\lambda_e/d_I) \operatorname{cth}(d_s/\lambda_e)$ — эффективная электрическая толщина ДП, нормированная на толщину диэлектрического слоя d_I , $s_c = -\lambda_e/[d_I \operatorname{sh}(d_s/\lambda_e)]$ — параметр емкостной связи, V_l — напряжение в *l*-м ДП, d_s — толщина сверх-проводящего слоя. Поскольку d_s/λ_e мало, при разложении $\operatorname{cth}(d_s/\lambda_e)$ и $\operatorname{sh}(d_s/\lambda_e)$ в ряд Тейлора можно написать выражение для эффективной электрической толщины ДП и параметра емкостной связи соответственно в виде $D_c = 1 + 2\lambda_e^2/(d_I d_s)$ и $s_c = -\lambda_e^2/(d_I d_s)$. При этом мы учитываем прямую связь между D_c и s_c : $D_c = 1 - 2s_c$.

Производная по координате от разности фаз в l-M ДП пропорциональна магнитным полям в l-M и соседних (l + 1) = M и (l - 1) = M ДП:

$$\frac{\hbar c}{2eD_{\pounds}}\frac{\partial\varphi_l}{\partial x} = B_l + SB_{l+1} + SB_{l-1}, \qquad (2)$$

Рис. 1. *а*) Схематический вид системы длинных джозефсоновских переходов. Ось *x* выбрана вдоль длины *L* ДП, ось *y* вдоль ширины *W* и ось *z* перпендикулярна слоям. *б*) Схема *l*-го джозефсоновского перехода, *d_s* — толщина сверхпроводящего слоя, *d_L* — толщина диэлектрика

где $S = s_{\pounds}/D_{\pounds}$ — параметр индуктивной связи, $s_{\pounds} = -\lambda_L/\operatorname{sh}(d_s/\lambda_L), D_{\pounds} = d_I + 2\lambda_L \operatorname{cth}(d_s/\lambda_L)$ эффективная магнитная толщина, λ_L — лондоновская глубина проникновения. Параметр индуктивной связи S принимает значения в интервале (-0.5, 0].

Таким образом, система уравнений для разностей фаз $\varphi_l = \varphi_l(x,t)$ и напряжений $V_l = V_l(x,t)$ во всех ДП стека, которая определяет фазовую динамику системы, записывается в виде

$$\begin{cases} \frac{\partial \varphi_l}{\partial t} = D_c V_l + s_c V_{l+1} + s_c V_{l-1}, \\ \frac{\partial V_l}{\partial t} = \sum_{n=1}^N \left(\pounds_{l,n}^{-1} \frac{\partial^2 \varphi_n}{\partial x^2} \right) - \sin \varphi_l - \beta \frac{\partial \varphi_l}{\partial t} + I, \end{cases}$$
(3)

где $l=1,\ldots,N,\,x\in(0,L),\,t\geq0,\,\pounds$ — матрица индуктивной связи:

	$\begin{pmatrix} 1 \end{pmatrix}$	S	0				S	
	:	÷	÷	÷	÷	÷	÷	
$\pounds =$		0	S	1	S	0		.
	:	÷	÷	÷	÷	÷	÷	
	$\ S$				0	S	1)

В системе уравнений (3) время нормировано на плазменную частоту ДП $\omega_p = \sqrt{8\pi d_I e j_c/(\hbar \varepsilon)}$, напряжение — на $V_0 = \hbar \omega_p/(2e)$, координата x на джозефсоновскую глубину проникновения $\lambda_J = \sqrt{\hbar c^2/(8\pi e j_c D_{\pounds})}$, ток — на критический ток j_c и $\beta = \sigma V_0/(d_I j_c)$ — параметр диссипации. Граничные условия в направлении x задаются внешним магнитным полем, т.е. $(\hbar c)/(2eD_{\pounds})\partial \varphi_l/\partial x|_{x=0,L} = B_{ext}$, а в направлении z используется периодическое условие: при l = N имеем $\varphi_{l+1} = \varphi_1$, $V_{l+1} = V_1$; при l = 1имеем $\varphi_{l-1} = \varphi_N$, $V_{l-1} = V_N$.

Электромагнитное излучение из системы вычисляется по методу, предложенному в работе [25]. В этом подходе для отдельного ДП вводится импеданс излучения Z, связывающего локальную переменную часть электрического поля E_{ac} и магнитного поля H_{ac} на краях ДП:

$$Z = E_{ac}/H_{ac}$$

Мощность излучения определяется выражением

$$P = V_{ac}^2 / R_Z$$

где $V_{ac} = d_I E_{ac}$ и $R_Z = (d_I/W)Z, W$ — ширина ДП.

При расчете интенсивности когерентного излучения, обусловленного движением флюксонов, граничные условия формулируются с учетом когерентного излучения и имеют следующий вид:

$$\frac{d\varphi}{dx}(t, x = 0, L) = B_{ext} \pm \frac{E_{ac}(t, x = 0, L)}{Z}.$$

Переменная часть обезразмеренного электрического поля на краях ДП определяется выражением

$$E_{ac}(t, x = 0, L) = V(t, x = 0, L) - \langle V \rangle_x(t),$$

где $\langle V \rangle_x(t)$ — усредненное напряжение по координате при фиксированном значении времени. При вычислении мощности излучения из системы необходимо учитывать потери тока, которые вычисляются как

$$\Delta I_{rad}(t, x = 0, L) = E_{ac}(t, x = 0, L)/Z$$

3. МЕТОД ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ

В системе уравнений (3) производная второго порядка по координате x аппроксимируется с помощью трехточечных конечно-разностных формул на дискретной сетке с равномерным шагом Δx . Полученная система дифференциальных уравнений относительно значений φ_l и V_l в узлах дискретной сетки по x решается методом Рунге – Кутта четвертого порядка. Для ускорения расчетов используется параллельная версия соответствующей компьютерной программы [24].

Для вычисления ВАХ проводится усреднение $V_l(x,t)$ по координате и по времени. Для этого на каждом шаге по времени проводятся интегрирование напряжения по координате методом Симпсона и усреднение

$$\bar{V}_l(t) = \frac{1}{L} \int_0^L V_l(x,t) \, dx$$

Далее напряжение усредняется по времени с использованием формулы

$$V_l = 1/(T_{max} - T_{min}) \int_{T_{min}}^{T_{max}} \bar{V}_l(t) dt$$

и затем суммируется по всем ДП. Для интегрирования по времени используется метод прямоугольников. Величина внутреннего магнитного поля B_l в ДП определяется через производную разности фаз по координате

$$\frac{\partial \varphi_l}{\partial x} = B_l + SB_{l+1} + SB_{l-1} \tag{4}$$

и нормируется на $B_0 = \hbar c / (2e D_{\pounds} \lambda_J).$

В настоящей работе расчеты проведены для стека с 10 ДП при $\beta = 0.2$. При расчетах ток увеличивается от минимального значения I = 0.01 до максимального $I_{max} = 1.1$ и затем уменьшается до нуля. К базовому току добавляется шум [26] с амплитудой $\delta I = \pm 10^{-8}$. Шаг по координате равен $\Delta x = 0.1$. Временной домен для усреднения составляет 200 единиц с параметром дискретизации $\Delta t = \Delta x/5$. Шаг по току равен 0.005, а в интервале [0.2 ÷ 0.9] он составляет 0.0001.

Рис. 2. a) ВАХ одиночного ДП; δ) ВАХ системы сN=10 ДП с параметром индуктивной связи S=-0.05 и емкостной связи $s_c=-0.05.$ Обе ВАХ рассчитаны при $\beta=0.2,$ L=10

4. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

4.1. Ветвление вольт-амперной характеристики

Для выделения эффектов, обусловленных связью между ДП, рассмотрим вначале систему невзаимодействующих ДП, а затем систему со связью. Случай системы невзаимодействующих ДП равносилен рассмотрению одиночного ДП.

На рис. 2 приведены однопетлевые ВАХ для одиночного ДП (*a*) и для стека ДП (*б*). Сначала обсудим ВАХ одиночного ДП. При уменьшении базового тока в гистерезисной области наблюдаются

Рис. 3. *a*) Пространственно-временная зависимость магнитного поля в одиночном ДП при I = 0.30, L = 10; δ) распределение разности фаз и магнитного поля в одиночном ДП вдоль оси x при I = 0.3 при фиксированном времени t = 32; *b*) то же, что и в случае a, но при I = 0.25; *b*) то же, что и в случае δ , но при I = 0.25 и t = 15.92

шесть ступенек нулевого поля, происхождение которых связано с образованием в ДП флюксонных состояний. Каждая ступенька соответствует состоянию с определенным числом флюксонов. На этом рисунке цифры указывают количество образовавшихся флюксонов, соответствующих данной ступеньке. Ступеньки нулевого поля и причины их появления обсуждались в работах [7–11].

Рассмотрим теперь ВАХ системы связанных ДП, которая приведена на рис. 26. Данная характеристика рассчитана для 10 ДП длиной L = 10. Расчеты проведены для параметров индуктивной связи S = -0.05 и емкостной связи $D_c = 1.1, s_c =$ = -0.05, что соответствует слабой связи между ДП и дает возможность проследить детально влияние связи. Как и в случае одиночного ДП, ВАХ системы связанных ДП также демонстрирует гистерезис и шесть ступенек нулевого поля. В отличие от случая одиночного ДП, в интервале базового тока, соответствующем однофлюксонному и двухфлюксонному состояниям (данная область выделена штриховым эллипсом на обоих рисунках), наблюдается дополнительная ветвь. На вставке к рис. 26 в крупном масштабе показана область ВАХ, соответствующая однофлюксонному и двухфлюксонному состояниям. При $I_A = 0.2915$ система переходит из состояния с двумя флюксонами в состояние, соответствующее дополнительной ветви, из которого она переключается в состояние с одним флюксоном при $I_B =$ = 0.2717. В случае одиночного ДП в указанной области не наблюдается ветвление ВАХ, о чем свидетельствует вставка к рис. 2a.

Для того чтобы понять причину ветвления, мы провели детальный анализ пространственно-временных зависимостей магнитного поля и разности фаз в различных точках ВАХ. Вначале обсудим динамику флюксонов в одиночном ДП. Нами рассчитаны пространственно-временные зависимости магнитного поля при значениях базового тока I = 0.3и I = 0.25 (см. вставку к рис. 2a), соответствующих двухфлюксонному и однофлюксонному состояниям. Зависимость при I = 0.3, приведенная на рис. За, демонстрирует двухфлюксонное состояние вдоль оси x. Рисунок 36 показывает распределение разности фаз (точки) и магнитного поля (кружки) вдоль координаты х при фиксированном значении времени t = 32. Пространственно-временная зависимость магнитного поля в ДП при I = 0.25, пред-

Рис. 4. Пространственно-временная зависимость магнитного поля в первом (слева) и втором (справа) ДП системы из 10 ДП при *I* = 0.295 (*a*), *I* = 0.285 (*б*), *I* = 0.26 (*b*)

ставленная на рис. 3e, соответствует периодическому движению одного флюксона. Распределения разности фаз и магнитного поля для этого значения тока при фиксированном значении времени t = 15.92, подтверждающие сделанный вывод, представлены на рис. 3e.

Теперь обсудим динамику флюксонов в системе связанных ДП. Поскольку интересующее нас ветвление ВАХ наблюдается в интервале $[I_B, I_A]$, целесообразно проследить динамику флюксонов справа от точки I_A интервала $[I_B, I_A]$ и слева от точки I_B . Пространственно-временная зависимость магнитного поля при $I = 0.295 > I_A$ для первого и второго ДП системы представлена на рис. 4*a*. Она демонстрирует двухфлюксонное состояние. При этом значении тока остальные ДП системы также находятся в двухфлюксонном состоянии. Иная картина наблюдается на рис. 46, где показаны пространственно-временные зависимости магнитного поля в первом и втором ДП при I = 0.285, т. е. внутри интервала $[I_B, I_A]$. Здесь мы видим, что первый ДП перешел в однофлюксонное состояние, в то время как второй ДП все еще остается в двухфлюксонном. Однои двухфлюксонные состояния чередуются в системе, т. е. нечетные ДП находятся в однофлюксонном состоянии, а четные — в двухфлюксонном. Именно это обстоятельство приводит к возникновению дополнительной ветви. При значении базового тока I_B все ДП переключаются в однофлюксонное состояние. Это видно на рис. 46, который демонстрирует,

Рис. 5. *a*) Зависимость интенсивности излучения от величины базового тока вместе с ВАХ для системы 10 связанных ДП длиной L = 10 при $s_c = -0.05$, $D_c = 1.1$, S = -0.05 и $Z = 10^6$; б) то же, что и в случае *a*, но для одиночного ДП

что при $I = 0.26 < I_B$ и первый, и второй ДП находятся в однофлюксонном состоянии.

4.2. Электромагнитное излучение системы ДП

Для того чтобы оценить влияние связи на когерентное излучение, обусловленное движением флюксонов, мы рассчитали зависимость интенсивности излучения от базового тока для одиночного ДП и системы связанных ДП и провели сравнительный анализ этих двух случаев. При расчете интенсивности излучения импеданс излучения полагался $Z = 10^6$.

На рис. 5а представлена зависимость интенсивности излучения системы связанных ДП от величины базового тока вместе с ВАХ. На рисунке видны пики излучения, соответствующие областям ступенек нулевого поля. Интенсивность излучения имеет большее значение в областях ВАХ, соответствующих состояниям с большим числом флюксонов (n = 5, 6), по сравнению с остальными состояниями. При переходе из состояния с пятью флюксонами в состояние с четырьмя флюксонами интенсивность излучения падает примерно в 15 раз. Однако такое резкое изменение интенсивности излучения не наблюдается в случае одиночного ДП, для которого вышеприведенная зависимость показана на рис. 56. Видно, что для одиночного перехода пики интенсивности излучения в этих областях (n = 5, 6) приблизительно одинаковы, что свидетельствует о влиянии связи на интенсивность излучения.

Для объяснения изменения интенсивности излучения при переходах между флюксонными состояниями n = 5 и n = 4 мы провели сравнительный анализ пространственно-временной зависимости разности фаз и магнитного поля в различных ДП системы. На рис. 6а показано распределение разности фаз и магнитного поля в первом и втором ДП системы при I = 0.65 и t = 11.44, т.е. в области ВАХ, соответствующей пятифлюксонному состоянию. При этом значении тока в остальных ДП системы также наблюдается пятифлюксонное состояние, поэтому мы ограничимся демонстрацией зависимостей только для двух соседних ДП. Как видно, в соседних ДП флюксоны находятся в фазе. Это обстоятельство приводит к усилению излучения из системы. Иная картина наблюдается при I = 0.55, т. е. в состоянии с четырьмя (n = 4) флюксонами. Для этого случая распределение разности фаз и магнитного поля для первого и второго ДП системы в фиксированный момент времени t = 5.04показано на рис. 66. Здесь также число флюксонов одинаково в соседних ДП. Отличие лишь в том, что в соседних ДП флюксоны находятся в противофазе. Это приводит к противоположному знаку электрического поля, что служит причиной ослабления амплитуды суммарного электрического поля. В результате интенсивность излучения уменьшается, поскольку она пропорциональна квадрату амплитуды электрического поля.

Рис. 6. *а*) Распределение разности фаз и магнитного поля в первом (сверху) и втором (снизу) ДП системы при фиксированном значении времени при I = 0.65 и t = 11.44; *б*) то же, что и в случае *a*, но при I = 0.55 и t = 5.04

Рис. 7. *а*) Зависимость интенсивности излучения от величины базового тока вместе с ВАХ в области ветвления для системы 10 связанных ДП длиной L = 10 при $s_c = -0.05$, $D_c = 1.1$, S = -0.05; δ) распределение разности фаз и магнитного поля в первом (сверху) и втором (снизу) ДП системы в фиксированный момент времени при I = 0.295 и t = 12.44; ϵ) то же, что и в случае δ , при I = 0.285 t = 10.24

Рисунок 7*a* демонстрирует зависимость мощности излучения от базового тока вместе с ВАХ в области дополнительной ветви (выделенный фрагмент на рис. 2*б*). Мы видим, что при переходе к дополнительной ветви ($I = I_A$) наблюдается скачок интенсивности излучения. Этот скачок также можно объяснить на основе анализа динамики флюксонов справа и слева от точки I_A , т.е. до и после точки перехода к дополнительной ветви.

На рис. 76 показано распределение разности фаз справа от точки I_A при I = 0.295 и t = 12.4 в первом и втором ДП. Количество флюксонов в обоих переходах одинаково, и они находятся в противофазе. Как указывалось выше, такое состояние приводит к уменьшению суммарного электрического поля и, следовательно, к уменьшению интенсивности излучения. Распределение разности фаз по координате в первом и втором ДП при I = 0.285 и t = 10.24 (см. рис. 7e), т. е. внутри интервала $[I_B, I_A]$, соответствующего дополнительной ветви ВАХ, указывает на то, что в первом ДП образуется один флюксон, а во втором два флюксона. Фазы флюксонов смещены друг относительно друга, но в отличие от случая (δ) не находятся в противофазе. В результате получается большее суммарное электрическое поле по сравнению со случаем (δ), что и объясняет наблюдаемый скачок интенсивности излучения в данной области.

5. ЗАКЛЮЧЕНИЕ

В заключение отметим, что различие в динамике флюксонов в отдельных переходах системы приводит к ветвлению ВАХ в области ступеньки нулевого поля и к скачкам интенсивности электромагнитного излучения в зависимости от флюксонных состояний в отдельных ДП стека. Мы полагаем, что полученные результаты могут быть использованы при анализе экспериментальных ВАХ. Отметим, что в данной работе исследовалось совокупное влияние индуктивной и емкостной связей на структуру ВАХ и интенсивностей излучения из системы ДП. Детальный анализ отдельных вкладов как индуктивной, так и емкостной связи является предметом отдельного рассмотрения.

Авторы признательны В. М. Краснову и А. Л. Панкратову за плодотворное обсуждение и ценные советы. Исследование выполнено при финансовой поддержке РФФИ в рамках научных проектов №№ 15-29-01217, 15-51-61011, 16-52-45011, проекта НИ15-ФМИ-004 и Программы сотрудничества «ОИЯИ-Болгария».

ЛИТЕРАТУРА

- R. Kleiner, F. Steinmeyer, G. Kunkel, and P. Muller, Phys. Rev. Lett. 68, 2394 (1992).
- A. A. Yurgens, Supercond. Sci. Technol. 13, R85 (2000).
- T. M. Benseman, A. E. Koshelev et al., Phys. Rev. B 84, 064523 (2011).
- 4. L. Ozyuzer et al., Science 318, 1291 (2007).
- U. Welp, K. Kadowaki, and R. Kleiner, Nature Photonics 7, 702 (2013).

- T. A. Fulton and R. C. Dynes, Sol. St. Comm. 12, 57 (1972).
- 7. H. Kawamoto, Progr. Theor. Phys. 70, 1171 (1983).
- N. F. Pedersen and D. Welner, Phys. Rev. B 29, 2551 (1984).
- D. W. McLaughlin and A. C. Scott, Phys. Rev. A 18, 1652 (1978).
- 10. S. Lin and X. Hu, Phys. Rev. Lett. 100, 247006 (2008).
- R. Kleiner, T. Gaber, and G. Hechtfischer, Phys. Rev. B 62, 4086 (2000).
- P. Barbara, R. Monaco, and A. V. Ustinov, J. Appl. Phys. 79, 327 (1996).
- I. R. Rahmonov, Yu. M. Shukrinov, E. V. Zemlyanaya, I. Sarhadov, and O. Andreeva, J. Phys.: Conf. Ser. 393, 012020 (2012).
- Yu. M. Shukrinov and F. Mahfouzi, Phys. Rev. Lett. 98, 157001 (2007).
- Yu. M. Shukrinov, F. Mahfouzi, and M. Suzuki, Phys. Rev. B 78, 134521 (2008).
- 16. H. Matsumoto, S. Sakamoto, F. Wajima et al., Phys. Rev. B 60, 3666 (1999).
- 17. Yu. M. Shukrinov, F. Mahfouzi, and P. Seidel, Physica C 449, 62 (2006); Conf. Ser. 393, 012022 (2012).
- S. Sakai, P. Bodin, and N. F. Pedersen, J. Appl. Phys. 73, 2411 (1993).
- 19. M. Machida and S. Sakai, Phys. Rev. B 70, 144520 (2004).
- 20. И. Р. Рахмонов, Ю. М. Шукринов, А. Ирие, Письма в ЖЭТФ 99, 735 (2014).
- A. Irie, Yu. M. Shukrinov, and G. Oya, J. Phys.: Conf. Ser. 129, 012029 (2008).
- 22. Ю. М. Шукринов, И. Р. Рахмонов, ЖЭТФ 142, 323 (2012).
- 23. Ю. М. Шукринов, И. Р. Рахмонов, Письма в ЖЭТФ 92, 364 (2010).
- 24. I. R. Rahmonov et al., EPJ Web Conf. 108, 02038 (2016).
- 25. V. M. Krasnov, Phys. Rev. B 82, 134524 (2010).
- 26. A. Irie and G. Oya, Supercond. Sci. Technol. 20, S18 (2007).