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The dynamics of Dirac–Weyl spin-polarized wavepackets driven by a periodic electric field is considered for
the electrons in a mesoscopic quantum dot formed at the edge of the two-dimensional HgTe/CdTe topological
insulator with Dirac–Weyl massless energy spectra, where the motion of carriers is less sensitive to disorder and
impurity potentials. It is observed that the interplay of strongly coupled spin and charge degrees of freedom
creates the regimes of irregular dynamics in both coordinate and spin channels. The border between the regular
and irregular regimes determined by the strength and frequency of the driving field is found analytically within
the quasiclassical approach by means of the Ince–Strutt diagram for the Mathieu equation, and is supported
by full quantum mechanical simulations of the driven dynamics. The investigation of quasienergy spectrum by
Floquet approach reveals the presence of non-Poissonian level statistics, which indicates the possibility of chaotic
quantum dynamics and corresponds to the areas of parameters for irregular regimes within the quasiclassical
approach. We find that the influence of weak disorder leads to partial suppression of the dynamical chaos.
Our findings are of interest both for progress in the fundamental field of quantum chaotic dynamics and for
further experimental and technological applications of spin-dependent phenomena in nanostructures based on
topological insulators.
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1. INTRODUCTION

Recently, the growing attention in various fields of
fundamental science has started to focus on the prop-
erties of so-called Dirac–Weyl fermions [1]. We can
mention just a few examples here in elementary par-
ticle physics, massless neutrinos are described as Weyl
fermions [2]; in quantum optics, laser-induced excita-
tions in the system of ultracold atoms in optical su-
perlattices have such properties [3]; and, of course, nu-
merous manifestations are known in condensed matter
physics [4]. In solid-state systems, interestingly, Di-
rac–Weyl fermions can have different dimensionalities,
such as 3D low-energy long-wavelength excitations in
Weyl semimetals [5], well-known 2D electron and hole
excitations near the Brillouin zone K point in graphene
[6] as well as on the surface of 3D topological insulators
(TI) [7], and 1D Weyl fermions at the edge of graphene
[8] or at the edge of 2D TI [7].

* E-mail: khomitsky@phys.unn.ru

In this paper, we are interested in properties of the
simplest 1D Dirac–Weyl fermions, which in the case of
free particles can be described by the Hamiltonian

H0 = �vFkiσj , (1)

where the parameter vF is the electron velocity at the
Fermi level, and ki and σj are (generally different) com-
ponents of the wavevector and the Pauli spin vector,
both depending on the system geometry. The Pauli
vector prescribes that the wave function is two-com-
ponent, but its physical meaning depends on the real-
ization of Weyl fermions, and it could represent spin,
pseudospin or, generally speaking, some other “effec-
tive spin” degrees of freedom. Despite the simplicity
of Hamiltonian (1), it maintains all general properties
of the Dirac–Weyl fermions, namely, their linear dis-
persion and “two-bandedness”. The 1D excitations de-
scribed by Hamiltonian (1) can be most easily produced
at the edge of a 2D topological insulator, and we there-
fore assume this special case for definiteness in what
follows. These materials represent the condensed mat-
ter state with a bulk band gap and a propagating edge
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or surface states that are protected from backscatter-
ing by time-reversal symmetry and have energies within
the bulk gap. Thus, in a 2D TI, an efficient transport
through 1D edge channels can be produced.

While static properties of Dirac–Weyl fermions at
the edge of 2D TIs are well described [7], much less is
known about evolution of the Dirac states under exter-
nal driving fields. The dynamics of a quantum system
can often be classified as one of two limit cases: the
few-level dynamics and the evolution involving very
many levels, usually referred to as quasiclassical dy-
namics. In the latter case, there are commonly used
analogies between the quantum evolution and the cor-
responding dynamics of a classical counterpart. The
problem with applying this approach to Dirac–Weyl
fermions is that no direct classical counterpart is avail-
able. The same questions arise in investigating spe-
cial regimes of dynamics called irregular, stochastic, or
chaotic dynamics. It is still an open question which
type of dynamics can be called quantum chaotic dy-
namics when a system lacks a direct classical coun-
terpart. Several approaches to quantum stochastic-
ity have been successfully developed over many years
[9–11]. In a quantum system with a large number of
energy levels N � 1, the quasiclassical approach can
be applied regardless of whether the system has a clas-
sical counterpart. The general rule states that a classi-
cally chaotic systems also demonstrates certain chaotic
dynamics in the quantum regime. However, it is not
clear whether any quantum system without the clas-
sical counterpart such as Dirac–Weyl fermions would
demonstrate stochastic behavior under particular cir-
cumstances. Several approaches aimed at establish-
ing relations between quantum and classical systems
with chaos have been proposed, including the studies
of irregular dynamics in condensed matter systems [11]
and quantum dots [12]. The relations between classi-
cal and quantum chaotic systems have been established
in properties such as the structure of the quasienergy
spectra and the phenomena of quantum diffusion in the
Hilbert space. Here, the analogies between the diffusion
along the resonance eigenstates and along the separa-
trices in the corresponding classical system have been
found [10, 11], including an analogue of Arnol’d diffu-
sion in quantum systems subject to periodic driving
[13].

Among the simplest and important systems without
a classical counterpart are low-dimensional structures
where the spin is strongly coupled to the orbital de-
grees of freedom, including those with spin–orbit cou-
pling (SOC) and surfaces of TIs. The importance of
semiconductor structures with a strong SOC has been

recognized during the last decade, and a significant
progress can be observed in a corresponding field of
nanophysics called spintronics [14,15]. We may expect
a similar rich variety of the results for condensed mat-
ter systems with Dirac cones in the electron spectra as
the field of topological insulators continues to grow [7].

The presence of SOC leads to correlation between
space and spin degrees of freedom and, thus, creates a
possibility of nontrivial dynamics or evolution in cou-
pled coordinate and spin channels. It is known, for
example, that the combined effects of SOC and the res-
onance in a multi-level system subject to strong driving
can lead to unusual nonlinear behavior in well-known
regimes such as the quasiclassical dynamics of the elec-
tron in a double quantum dot [16], or the Rabi fre-
quency dependence on the driving strength in the elec-
tric dipole spin resonance in a double quantum dot [17].
It was also shown that in a double quantum dot with
SOC, other interesting regimes can develop such as
phase synchronization, or even chaotic spin-dependent
dynamics [18]. Other examples can be found in a 2D
mesoscopic semiconductor quantum dot with SOC [19],
and in the 2D deformed harmonic oscillator potential
with SOC [20]. In these studies, the non-Poissonian
level statistics has been found, which indicates the pres-
ence of quantum chaos. In our recent paper [21], we
have found the development of strongly irregular dy-
namics in this system under the periodic driving by an
electric field, which manifested itself in both charge and
spin channels. Such a nontrivial spin-dependent evolu-
tion of quantum states should also develop in the driven
dynamics of electrons on the surface of 3D TIs and at
the edge of 2D TIs, where the Dirac–Weyl Hamilto-
nian can be described as the limit case of the electron
Hamiltonian with the extremely high linear-in-k SOC.

The major problem of establishing the quantum–
classical correspondence in such spin-dependent sys-
tems is the mentioned absence of a direct classical
counterpart, which creates obstructions to describing
such systems in terms of the classical chaotic dynamics.
Therefore, some techniques have to be found that allow
distinguishing between regular and irregular dynamics
in purely quantum system. The primary tools for over-
coming such difficulties are the Floquet analysis for pe-
riodic driving [10, 11, 13] and the analysis of transport
properties reflecting the regular or chaotic structure of
the energy spectrum and eigenstates [12, 22].

In the Floquet analysis, one may look at the de-
gree of delocalization of the Floquet eigenstates in the
Hilbert space of basis states of a bounded quantum sys-
tem or the quasienergy level statistics, clearly indicat-
ing the possibility of diffusion and chaos development
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[10, 11], and at the direct Fourier analysis of the ob-
servables, or quantum mean values [9, 23]. Other tools
include the analysis of Poincaré sections built in vari-
ous pairs of coordinates for both coordinate and spin
degrees of freedom, not necessarily the canonically con-
jugate ones [21,23], or the tracking of the evolution for
the variance for the number of energy levels involved
in the dynamics. Here, the growth of this variance in-
dicates the development of a chaotic regime, and the
saturation points to the transition to a quasiregular
mode with a finite number of levels participating in
the evolution [13, 21].

In this paper, we address the complex driven dy-
namics of Dirac–Weyl wavepackets representing the
electrons localized in mesoscopic structures formed at
the edge of HgTe/CdTe 2D topological insulator by
magnetic barriers. Such barriers are required due to
the effect of Klein tunneling prohibiting the purely elec-
trostatic confinement of the Dirac–Weyl fermions with
Hamiltonian (1). Our general aim is to find whether
the dynamics of a Dirac–Weyl wavepacket with Hamil-
tonian (1) in a quantum dot (QD) formed at the edge
of the TI is regular or irregular, if the packet is driven
by a monochromatic electric field. To find this, we con-
sider the time evolution of various observables associ-
ated with the wavepacket dynamics, their Fourier spec-
tra, and the “phase space” portraits of different pairs
of variables, for both coordinate and spin degrees of
freedom. We find that certain properties of driven evo-
lution are sustained for wavepackets of different shape
and are not smeared by a moderate disorder potential.

This paper is organized as following. In Sec. 2, we
introduce a model of quantum states in a 1D QD at the
edge of 2D TI based on the HgTe/CdTe quantum well
in the case of magnetic barriers with finite transparency
where the wavefunctions have nonvanishing tails inside
the barriers. We consider the case of a macroscopic QD
with a length L = 3 μm in order to obtain a large num-
ber of levels (Nmax ≈ 100) in the TI bulk gap, which
is desirable in order to capture the quasiclassical traits
of chaos development. Such an assumption of a long
1D mesoscopic QD is feasible because the experiments
report rather high values of mean free paths in such
structures, reaching several microns [7]. In Sec. 3, we
perform a quasiclassical analysis of the driven dynamics
and find the correspondence between the equations for
the spin dynamics and the Mathieu equation, and iden-
tify the associated instability boundaries indicating the
possible onset of chaotic dynamics. In Sec. 4, we de-
scribe the Floquet eigenstates, which may indicate the
diffusion in the Hilbert space showing the possibility
of chaotic dynamics. In Sec. 5, we consider the evolu-

tion in the clean limit (no static disorder or noise) for
the electron inside the QD, where the electron is repre-
sented via a spin-polarized wavepacket. In that Section,
we consider the initial wavepacket described by a wide
envelope function in the coordinate space and by a nar-
row distribution in the Hilbert space of eigenstates of
the unperturbed Hamiltonian. Such a narrow distribu-
tion allows drawing the correspondence between the full
quantum mechanical treatment in that section and the
quasiclasical approach described in Sec. 3. We consider
the evolution under a monochromatic driving electric
field, and describe it in terms of phase-space plots gen-
eralized also to pairs of nonconjugate spin variables.
We also analyze the Fourier spectra, diffusion in Hilbert
and coordinate spaces, and the Lyapunov exponent. In
Sec. 6, we add the random disorder potential represent-
ing the nonideal character of a real nanostructure as
well as possible noise in the system and study the driven
evolution there. In that section, we take a narrow ini-
tial wavepacket that has a wide distribution along the
basis states of the unperturbed Hamiltonian, making
only the full quantum mechanical treatment valid. We
find that the qualitative features of the driven evolution
are the same for both types of wavepackets considered
here and in the preceding section, which provides ad-
ditional justification for the quasiclassical treatment in
Sec. 3. Finally, we present our conclusions in Sec. 7.

2. MODEL FOR QUANTUM STATES

One of the first examples of Dirac–Weyl fermions
in condensed matter were the edge states in the
HgTe/CdTe quantum wells, where the tuning of the
well width may create the phase where topologically
protected edge states exist [7,24]. It is known, however,
that the applications of TI in nanoelectronic devices re-
quire the fabrication of localized small-to-medium size
object like quantum dots. Several models of QD forma-
tion at the edge of a TI have been proposed during the
last years [25, 26]. Most of them relevant to 1D QDs
at the edge of a 2D TI deal with simplified assump-
tions of nontransparent magnetic barriers, which are
required to confine the electrons with a massless Dirac–
Weyl spectrum [7]. It should be mentioned that similar
methods of confinement by creating a gap in the spec-
trum by the magnetic field or other mass terms have
also been proposed for other materials with Dirac–Weyl
spectra such as graphene [27]. Under such assumptions,
the spectrum of discrete energy levels inside a QD forms
a set of equidistant levels located in two ladders above
and below the Dirac point of the TI, where two linear
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dispersion branches cross [25]. For each level, the cor-
responding eigenstate is a two-component spinor with
a certain spin polarization, which makes this system
a promising candidate for studying a driven dynamics
excited by the external electric field tuned to match the
interlevel resonance splitting.

In this paper, we use the envelope function approx-
imation with the effective Hamiltonian for the 1D elec-
tron in a QD confining the propagating spin-polarized
states at the edge of the 2D HgTe/CdTe TI:

HQD =

= �vFkyσz −M0θ(−y) (σx cos θ0 + σy sin θ0) −
−MLθ(y − L) (σx cos θL + σy sin θL) . (2)

Here, the first term is the effective Dirac–Weyl Hamil-
tonian (1) for unperturbed gapless edge states on the
boundaries of the TI. The Fermi velocity vF is deter-
mined by the HgTe layer thickness, and in our model we
take the value vF = 5.3·107 cm/s and consider the band
gap in HgTe/CdTe to be around 40 meV in the inverted
regime, which corresponds to the quantum well width
in the range 8–9 nm [7]. The second and third terms
in (2) describe the local exchange interaction between
the electron near the edge of the quantum well and the
magnetization of magnetic stripes. The magnetization
of both contacts is assumed to be uniform without any
domain structure. This situation is typical for nano-
magnets with a size less than 100 nm in at least one
direction [28]. The barrier magnitudes M0 and ML

can be viewed as exchange energies. Both magnetic
contacts are located along the TI edge at y = 0 and
y = L, forming a 1D QD with the width L, as is shown
schematically in Fig. 1a. The QD length L = 3 μm in
our model is sufficiently large to justify the application
of the envelope function approximation. We consider
the barriers with finite transparency by choosing finite
amplitudesM0 andML, which are taken as to cover the
whole band gap of the HgTe/CdTe quantum well. The
size of the magnets along the TI edge is considered to
be comparable with the QD size, and we can therefore
assume them to be infinite in this direction, because
the wavefunction of the QD states decays exponentially
into barriers on the scale that is much smaller than the
magnet length, as we see below. The angles θ0 and
θL describe the orientation of the magnetization in the
respective left and right barriers. Our Hamiltonian is
the generalization of the previously derived model for a
QD with impenetrable barriers [25] to the more realistic
case of the barriers with finite transparency, reflected in
their finite height M0,L. We note that the few-electron
regimes are usually desirable for operations of QDs as a

qubit or other information processing devices. Hence,
we believe that it is necessary to use dielectric mag-
netic materials in order to prevent the excessive leak of
electrons from the leads into the QD.

The stationary 1D Schrödinger equation HQDΨ =

= EΨ for the two-component envelope function Ψ =

= (ψ1(y), ψ2(y)) is augmented by the boundary condi-
tions at y = 0 and y = L that can be derived from its
integration over an infinitesimal small region near the
boundary, yielding the requirements

Ψ(−0) = Ψ(+0),

Ψ(L− 0) = Ψ(L+ 0),
(3)

which mean that the envelope function must be contin-
uous at the boundaries between the QD and the barri-
ers. The spatial dependence of the solution for a con-
fined state with an energy E < (M0,ML) inside the
barriers at y < 0 and y > L has the form of decaying
underbarrier exponentials,

Ψy<0 = B

⎡
⎢⎣ 1

− i
√
M2

0 − E2 + E

M0
eiθ0

⎤
⎥⎦ ×

× exp

(√
M2

0 − E2

�vF
y

)
, (4)

Ψy>L = D

⎡
⎢⎣ 1

i
√
M2

L − E2 − E

ML
eiθL

⎤
⎥⎦ ×

× exp

(
−
√
M2

L − E2

�vF
y

)
, (5)

and the eigenstate inside the QD is a spinor with a real
wavenumber in its exponents,

ΨQD =

[
C1e

iEy/�vF

C2e
−iEy/�vF

]
, (6)

where the coefficients B, C1, C2, and D are deter-
mined from boundary conditions (3), and the energy E
is found from the corresponding secular equation with
Hamiltonian (2). We note that states (4)–(6) corre-
spond to the spin polarization that is always in the
plane of the 2D TI, that is, Sz = 0.

System of equation (3) for envelope function (4)–(6)
can be solved analytically for nontransparent barriers,
where the wavefunction does not enter the underbarrier
region [25, 26] and a sequence of up and down strictly
equidistant energy levels

E(0)
n0

= ΔE(0)

(
n0 +

1

2
+
θL − θ0

2π

)
(7)
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Fig. 1. (a) Schematic view of a 1D QD (gray strip) with length L formed by two magnetic barriers M0 and ML at the edge of
2D topological insulator in a HgTe/CdTe quantum well. The dot length is L = 3 μm, the barrier height is M0 = ML = Eg/2,
where Eg = 40 meV is the band gap for the host material observed for typical HgTe/CdTe quantum well samples, and the arrows
inside the barriers represent their polarizations actually considered in our model. (b) Schematic representation of the discrete
energy levels inside the QD with the interlevel distance shown as a guide to the eye and not to scale. The linear dispersion
branches are shown for the free Weyl Hamiltonian (1) describing edge states, with the corresponding spin mean values Sz. The
boundaries of the bulk energy gap Eg are plotted above and below as horizontal lines. (c) Probability density distribution for
Gaussian spin-polarized wavepackets with different widths and center locations representing the initial condition for the dynamics
of the electron injected into the QD shown for wide (solid line 1 ) and narrow (dashed line 2 ) wavepackets. (d),(e) Distribution
of the expansion coefficients |Cn|2 of the initial states from panel (c) in the space of basis states for (d) the wide initial packet

(1) and (e) the narrow initial packet (2)
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(n0 = ±1,±2, . . .) is formed with a spacing that is in-
dependent of θL − θ0,

ΔE(0) =
π�vF
L

. (8)

In this paper, we consider the case of parallel orien-
tation θ0 = θL = 0 because it follows from (7) and (8)
that different angles of magnetization inside the barri-
ers mostly define the internal structure of correspond-
ing eigenstates and their spin polarization inside the
QD, and do not affect the level spacing in the ideal-
ized case of nontransparent barriers, which determines
the primary frequency of the driving field in our model.
This result maintains in the case of transparent mag-
netic barriers considered in our model (2). One may
expect that the variable difference between θ0 and θL
would lead to the formation of quantum states with a
different spatial symmetry, but in our dynamical prob-
lem this would produce only quantitative effects on
the structure of matrix elements of the external per-
turbation, and thus only minor effects on the dynam-
ical properties that are in the focus of our study. Be-
sides, we choose equal amplitudes of magnetic barriers
M0 =ML, which creates a QD with a symmetric poten-
tial profile, although various combinations of M0, ML,
θ0, and θL can be equally considered if other materials
and/or experimental setups are chosen.

In our model, the spectrum cannot be found ana-
lytically, and has to be obtained from a transcendental
equation, which leads in general to a nonequidistant
spectrum with a nonuniform level spacing ΔE. How-
ever, for a mesoscopic QD with L = 3 μm, it follows
from (8) that ΔE(0) ≈ 0.38 meV and the condition
ΔE(0) � M0,L is satisfied, meaning that there are
many levels below the barriers (Nmax ≈ 100), the level
spacing ΔE is very close to the equidistant value ΔE(0)

in (8).
The scheme of the discrete energy levels inside the

QD is presented in Fig. 1b with a large interlevel dis-
tance, which is shown as a guide to the eye and not
to scale. Together with the discrete levels, we plot the
linear dispersion branches of Weyl Hamiltonian (1) de-
scribing the edge states [7] before the confining barri-
ers are applied, together with corresponding z-aligned
mean spin values Sz and the boundaries of the bulk
energy gap Eg = 40 meV. This gap allows restricting
the barrier width by M0 = ML = Eg/2, because only
the edge states within the bulk gap are relevant for the
edge QD, where they are not masked by the bulk states.

Our final task considering the model of quantum
states inside the QD is the choice of the localized ini-
tial condition for the dynamical problem representing a

spin-polarized electron that has been injected through
one of the magnetic barriers into the dot. We model
such a condition by a Gaussian wavepacket with two
different widths and center locations, with their proba-
bility density distribution shown in Fig. 1c by the solid
and dashed lines. In terms of the spatial size, the re-
spective packets widths are 1 and 0.1 microns, which
are reasonable values for the semiconductor structures
being considered, where the mean free path for the elec-
tron is about 3 microns [7]. We refer to these pack-
ets as wide and narrow throughout the text, and as-
sume the zero mean value of the initial quasimomentum
ky(0) = 0. The spin polarization for the corresponding
spinor representing the initial packet is chosen to co-
incide with the magnetization of the magnetic barrier
(or electrode) from which the packet has been injected,
that is, the Sx = 1 polarization of the left barrier, be-
cause the majority of the electrons traveling through a
magnetic materials without special tuning usually gain
the polarization from the host material. The initial
condition Ψ0(y) has to be decomposed over the basis
states Ψn(y) inside the QD for further treatment of its
evolution, that is, the coefficients Cn in the decomposi-
tion Ψ0 =

∑
n CnΨn(y) have to be found by standard

methods. The structure of their absolute value distri-
bution |Cn|2 in the space of basis states is shown in
Fig. 1d and e for two initial packets from Fig. 1c. As
expected, the wider packet in real space is described
by a narrow distribution of |Cn|2 in the Hilbert space
compared to the narrow packet. We consider the driven
dynamics for both types of wavepackets in the next
sections, and we see that the difference in their shape
in the coordinate or Hilbert spaces leaves certain dy-
namical features qualitatively the same, which allows
considering our finding as relevant for various types of
initial conditions.

3. QUASICLASSICAL DYNAMICS

We start with the application of the quasiclassical
approach to the driven dynamics for the Hamiltonian

H = HQD + V (y, t), (9)

where HQD is stationary Hamiltonian (2) and V (y, t)

is the driving term describing the electric field inside
the QD at 0 < y < L,

V (y, t) = eE0y cosω0t, (10)

where e is the elementary charge, ω0 is the driving fre-
quency, and E0 is the electric field strength. It corre-
sponds to the spatially uniform and harmonic electric
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field directed along the TI edge. This field can be gen-
erated by additional electrostatic gates arranged close
to the bounding magnetic barriers. We consider the
quasistationary field that is produced by the modula-
tion of the gate potential and assumed to be spatially
uniform on the QD scale L = 3 μm.

The mesoscopic size of our QD (3 μm) and the large
number of energy levels (about 100) allows the appli-
cation of the quasiclassical approach. This approach
can be applied for systems with and without a direct
classical counterpart, including the ones with spin-orbit
coupling in nanostructures if their dimensions generate
a quasiclassically high number of energy levels [16]. In
the framework of this approach, we consider only the
evolution of quantum mechanical mean values. The
evolution of the mean value x(t) corresponding to a
time-independent operator x is governed by the equa-
tion

dx(t)

dt
=
i

�
[H,x], (11)

where (. . .) stands for the quantum mechanical averag-
ing in a given state Ψ(r, t). By applying Eq. (11) to the
dynamics of the average of the operator product AB,
we can treat it as a product of two averages A · B if
the distribution of the coefficients Cn for the wavefunc-
tion decomposition over the basis states φn is a narrow
function centered at certain n � 1. This means that
the width δn satisfies the condition δn � n, although
being quasiclassically large, δn � 1, as is assumed in
the quasiclassical approach used in this section. Our
full quantum mechanical simulations presented in the
next sections support this approximation for the pa-
rameters of the evolution. In particular, in Sec. 5 we
perform the full quantum mechanical simulation for the
wavepacket that is initially described by a narrow dis-
tribution in the Hilbert space and satisfies the criteria
for the quasiclassical treatment mentioned above. By
contrast, in Sec. 6 we take an initially wide packet in
the Hilbert space, for which only the full quantum me-
chanical simulation is applicable. We see in what fol-
lows that the qualitative results for the evolution are
largely the same in both cases, which is a strong ev-
idence of a correspondence between the quasiclassical
and full quantum approaches presented in this paper.

For Hamiltonian (9) with the parallel orientation of
the magnetic barriers θ0 = θL = 0, we use (11) to ob-
tain the following set of equations for the evolution of
the coordinate and spin mean values inside the QD:

dy(t)

dt
= vFσz(t), (12a)

dky(t)

dt
=
ωb

2

∂Fb

∂y
σx(t)− eE0

�
cosω0t, (12b)

dσx(t)

dt
= −2vFky(t)σy(t), (12c)

dσy(t)

dt
= 2vFky(t)σx(t) + ωbFb(y)σz(t), (12d)

dσz(t)

dt
= −ωbFb(y)σy(t). (12e)

The frequency ωb = 2M0/� and the function Fb(y) =

= Θ(−y) + Θ(y − L) are associated with the presence
of magnetic barriers. Although the function Fb(y) is
nonzero only in the barrier regions y < 0 and y > L,
while we study the quasiclassical dynamics within the
QD for 0 < y < L, we need to keep it at least in
Eq. (12e) because it determines the evolution of the σz
spin component. This means that the coupling to the
magnetic barriers is essential for the driven dynamics
to be initiated, which is confirmed by the full quantum
mechanical calculations in the next sections.

System (12a)–(12e) is a system of differential equa-
tions with nonstationary coefficients, and cannot be
solved analytically in the general case. This is a typical
situation: for example, in [16], we mostly performed a
computational analysis for a similar problem. But for
some regimes of driving, certain analytic results can be
obtained. For example, the harmonic time dependence
of driving term (10) allows integrating Eq. (12b) di-
rectly inside the QD region 0 < y < L where Fb ≡ 0,
yielding

ky(t) = ky0 − eE0
�ω0

sinω0t. (13)

Having determined the time dependence ky(t), we can
see that the other equations (12a), (12c)–(12e) are lin-
ear equations with periodic coefficients with respect to
the time variable. It is known that such equations can
demonstrate unstable solutions which, is often referred
to as parametric resonance. Because all of the coordi-
nate and spin variables are coupled through the equa-
tions in the system, it suffices to determine the bound-
ary of that instability for at least one variable. If a vari-
able demonstrates an irregular time dependence, the
other coupled variables would also acquire similar be-
havior with time. The simplest analytic result leading
to a well-known type of equation with instabilities can
be obtained for the spin variable σx(t). By differenti-
ating the left- and right-hand sides of (12c), we obtain
the second-order equation

d2σx
dt2

+ 2vFky
dσy
dt

+ 2vF
dky
dt

σy = 0. (14)
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We substitute the right-hand side of (12d) for the
time derivative of σy in (14). We neglect the term with
Fb(y) for the quasiclassical treatment of the motion in-
side the dot because it is present only in the barrier
regions. We then substitute the time dependence for
ky(t) from (13) in (14), and by using (12d), we replace
σy with (dσx(t)/dt)/(−2vFky(t)). As a result, we ar-
rive at the equation for the σx alone:

d2σx
dt2

+ f(t)
dσx
dt

+ g(t)σx = 0, (15)

where

f(t) = − 1

ky(t)

dky(t)

dt
, g(t) = 4v2Fky(t)

2
. (16)

The first derivative of σx in (15) can be eliminated by
introducing the new variable σ1(t) as

σx =

√
ky(t)σ1(t). (17)

It is essential to note that our analysis in this sec-
tion holds in the region ky(t) > 0, which means by
checking (13) that a moderate electric field is allowed
that does not lead to negative values of ky(t) starting
from a quasiclassically high initial value of ky0. We
then introduce the dimensionless initial momentum as

k0 =
ky0π�vF
eE0L , (18)

and also define the electric-field-dependent frequency

Ω =
2vF eE0
�ω0

. (19)

We note that due to the condition ky(t) > 0 and
expression (13), our analysis is restricted to the area
where k0 > 1, which, according to (18), means that we
must stay within the quasiclassical region of a moderate
electric field. Taking Eqs. (17), (18), and (19) into ac-
count and introducing the dimensionless time variable
τ as

ω0t = τ, (20)

we transform Eq. (15) to a second-order differential
equation for σ1(τ),

d2σ1
dτ2

+Θ(τ)σ1 = 0, (21)

where

Θ(τ) =
Ω2

ω2
0

(k0 − sin τ)
2
+

+
1

2

[
sin τ

k0 − sin τ
− 3

2

cos2 τ

(k0 − sin τ)2

]
. (22)

Equation (21) is known as the Hill equation for a
parametrically driven system, and the function Θ(τ) is
called the excitation function. It is known [29] that the
Hill equation can demonstrate nonstationary behavior
known as the parametric resonance. The specific form
of the instability regions in the parameters space can
be found either from the numerical analysis of the Hill
equation, which implies solving it on a single period of
the excitation function, or by the analytic approxima-
tion when the Hill equation is transformed into some
other form with known areas of instability. The possi-
bility of such a transformation crucially depends on the
Fourier spectrum of the excitation function Θ(τ). Our
analysis of the Fourier components of function (22) has
shown that it is the zeroth cosine harmonic and the
first sine harmonic that dominate over the major part
of our parameters, which include weak and moderate
fields. We can expect that the effects of higher har-
monics appearing in the cases where their amplitude
increases tend to enlarge the instability regions found
for the dominating lower harmonics. As regards the
case where k0 → 0 in (22), it can be shown that we ar-
rive at the excitation function where a single harmonic
with the double frequency 2ω0 dominates, and the sub-
sequent analysis is similar to the case presented below
with the substitution ω0 → 2ω0. Hence, for the predic-
tion of the instability effects, the Hill equation can be
approximated by the equation where Θ(τ) is replaced
with a combination of its zeroth cosine and first sine
harmonics. By making the phase shift τ → τ − π/2,
which changes sin τ to − cos τ , we arrive at the follow-
ing equation for σ1(τ):

d2σ1
dτ2

+ (δ + ε cos τ)σ1 = 0. (23)

Equation (23) is the Mathieu equation. This equa-
tion describes parametric resonance and has well-de-
fined areas of stability and instability known as the
Ince–Strutt diagram [29] in the plane of the parame-
ters (δ, ε). The expressions for these parameters follow
directly from the Fourier decomposition of the excita-
tion function Θ(τ):

δ =

(
k20 +

1

2

)
Ω2

ω2
0

+
1

4

(
1− k0√

k20 − 1

)
, (24)

ε = 2k0
Ω2

ω2
0

+ 2k0

(
k0√
k20 − 1

− 1

)
− 3

2
√
k20 − 1

. (25)

The parameters (δ, ε) defined in (24) and (25) in
terms of the values of E0 and ky0 determine the regimes
of parametric oscillations. The parameter δ approaches
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a constant nonzero value when the electric field am-
plitude E0 → 0, and this value is determined by the
initial value of ky0. For moderate fields, the driving
amplitude ε behaves almost linearly with E0, as follows
from definitions (18) and (19). According to the Ince–
Strutt diagram, the onset of instability with increasing
ε is possible as the parametric resonance, which cor-
responds to the development of irregular dynamics for
the mean of the spin variable σx, and hence for the
other coupled degrees of freedom in our system.

For our set of parameters (18) and (19), we can
easily verify that for the driving frequency ω0 = 0.58×
×1012 s−1 considered below, the amplitude of the driv-
ing field as low as E0 ≈ 1 V/cm can put our system into
an instability area in the Ince–Strutt diagram. When
this or higher electric field is driving the dynamics, we
may expect the development of irregular regimes of spin
and coordinate dynamics, which are coupled via system
(12a)–(12e). In the next sections, we justify this find-
ing by the fully quantum mechanical approach and a
computational analysis for several values of the driving
field.

4. QUANTUM DYNAMICS AND FLOQUET
STATES

In this and in the next sections, we perform the
quantum mechanical treatment of the electron state
evolution under a spatially uniform and time-periodic
electric field described by the term (10) in Hamilto-
nian (9). We intend to see the resonance dynamics,
and hence the driving field frequency ω0 matches the
level splitting (En0+1 − En0)/� in the region of most
populated levels by the initial wavepacket, which is the
middle part of the spectrum n0 ≈ 54 (see Fig. 1d,e). As
we discussed in Sec. 2, in the case of a multi-level meso-
scopic QD with the length L = 3 μm, the level splitting
in the middle part of the spectrum is almost equidistant
with the level spacing given by (8). This level splitting
corresponds to the frequency ω0 = 0.58 · 1012 s−1 be-
ing in the subterahertz range (the so-called W-band),
for which we can consider the field as quasistationary,
because �ω0 is lower than the band gap by at least
one order of magnitude. In this case, the scalar poten-
tial V (y, t) is described by a small overall amplitude
on the scale of the mesoscopic QD, and we can there-
fore introduce this potential into the envelope function
Hamiltonian H(y, t) = HQD + V (y, t).

The periodic driving allows us to apply some of the
tools from the Floquet analysis [10,11,13,17,21] in order
to understand the system evolution. The most relevant

for our system is the structure of the Floquet states
where the sth eigenstate is written as a vector A(s)

n in
the Hilbert space of the basis states Ψn(y). These vec-
tors are the eigenvectors of the one-period propagator
matrix U(T0), where T0 = 2π/ω0, which can be con-
structed from the evolution of the state Ψ(y, t) in the
basis of states Ψn(y),

Ψ(y, t) =
∑
n

Cn(t)Ψn(y), (26)

obeying the nonstationary Schrödinger equation for the
envelope function

i�
∂Ψ

∂t
= (HQD + V (y, t))Ψ (27)

with the initial condition Cn(0) = δnn0 considered for
all levels n0 [10,13]. Equation (27) can be transformed
into a system of ordinary linear differential equations
for the coefficients Cn(t) by projecting it on the basis of
the states Ψn(y), and this system is solved by standard
numerical packages. The eigenvalues of U(T0) labeled
by the index (s) have the form exp(−iE(s)

Q T0/�), where

E
(s)
Q are the corresponding quasienergies. It is known

that the information contained in the quasienergy level
spacing distribution can describe both regular and
chaotic regimes of the driven evolution, depending on
whether such a distribution demonstrates the Poisso-
nian or non-Poissonian behavior [10,11]. In Fig. 2a, we
show the level spacing distribution ρ(ΔEQ) for three
different driving strengths in (10): E0 = 0.2 V/cm
(dash-dotted curve), E0 = 1 V/cm (solid curve), and
E0 = 2 V/cm (dotted curve). Although the number of
energy levels in our system is too small to see a fully
developed smooth distribution, it can be seen that for
the weak driving, the level statistics looks like Poisso-
nian one with most of the quasienergy levels grouped
with a small spacing ΔEQ of the order of 0.005 meV.
As the driving increases, the level statistics progres-
sively transforms into a non-Poissonian type with the
maximum located near 0.03 meV for E0 = 1 V/cm and
near 0.1 meV for E0 = 2 V/cm. According to the basic
concepts of quantum chaos [10, 11], this result can be
viewed as an indication of the transition to chaos in our
system as the periodic driving amplitude increases.

It is useful to compare the properties of the
quasienergy level statistics with the results for the qua-
siclassical dynamics obtained in the preceding section.
For the weak driving amplitude E0 = 0.2 V/cm, we
have the following set of parameters (24) and (25) for
the Mathieu equation by considering the conservative
estimate of ky0 = π/L: δ = 3.92 and ε = 0.2. Accord-
ing to the Ince–Strutt diagram [29], this corresponds to
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Fig. 2. (a) Level spacing distribution ρ(ΔEQ) for the
quasienergy levels for three different driving strengths
E0 = 0.2 V/cm (dash-dotted curve), E0 = 1 V/cm (solid
curve), and E0 = 2 V/cm (dotted curve). For the weak driv-
ing E0 = 0.2 V/cm, the level statistics is of the Poissonian
type, which corresponds to the parameter area of the stable
dynamics for Mathieu equation (23) obtained within the qua-
siclassical approach. For the stronger driving E0 = 1 V/cm
and E0 = 2 V/cm, the level statistics transforms to a non-
Poissonian type indicating the irregular regime of quantum dy-
namics, which corresponds to the unstable region of the quasi-
classical approach. (b) Distribution of the Floquet quasienergy
eigenstates in the (n̄, σn) coordinates, where n̄ is the mean
level number measuring the center of the Floquet state in the
basis and σn is the variance (width) in the Hilbert space, for
driving strengths E0 = 0.2 V/cm (stars), E0 = 1 V/cm (filled
circles), and E0 = 2 V/cm (open circles). The level vari-
ance σn in general increases with the driving strength, and the
extended states with σn ≈ 32 exist at moderate and strong
driving, meaning the presence of the diffusion in the Hilbert
space into a substantial part of the spectrum and reflecting

the possibility of irregular, or chaotic dynamics

the stability region, which is reflected in the Poissonian
type of statistics in Fig. 2a, being a signature of regu-
lar dynamics. Then, as the electric field amplitude in-
creases, we have δ = 4.08 and ε = 0.9 for E0 = 1 V/cm,
and δ = 4.4 and ε = 2.15 for E0 = 2 V/cm. Both these

points in the (δ, ε) plane fall within the instability areas
on the Ince–Strutt diagram, which means that the ir-
regular dynamics is possible in the quasiclassical limit.
These findings are justified by the full quantum me-
chanical treatment within the Floquet approach, being
manifested in the transformation of the level statistics
in Fig. 2a from the Poissonian to non-Poissonian type
during the increase of the electric field amplitude.

Besides the quasienergy spectra, the structure of
the Floquet eigenvectors A(s)

n can give much informa-
tion regarding the possibilities of chaotic regimes for
the evolution under periodic driving [10, 11, 13]. In
particular, the presence of states which are extended
in the Hilbert space formed by basis functions, that is,
described by high values of the variance σn,

σ2
n =

∑
n

(n− n̄)
2 |An|2, (28)

where n̄ =
∑

n n|An|2, corresponds to the regimes of
diffusion in the Hilbert space of the initial state along
such extended Floquet states, which can be viewed as
a quantum counterpart of the classical chaos develop-
ment. Hence, it is of interest to look at the distribu-
tion for all of the quasienergy eigenstates in the (n̄, σn)

coordinates, where n̄ is the mean level number mea-
suring the center of the Floquet state in the basis and
σn is the variance, or width in the Hilbert space. In
Fig. 2b, we plot the (n̄, σn) distributions for the Flo-
quet eigenstates for three different driving strengths:
E0 = 0.2 V/cm (stars), E0 = 1 V/cm (filled circles),
and E0 = 2 V/cm (open circles). It is clear that the
level variance σn in general increases with the driving
strength, which is the expected effect (although a cer-
tain saturation with increasing E0 is present), and the
extended states with σn ≈ 32 exist at moderate and
strong driving, meaning the presence of diffusion in the
Hilbert space into a substantial part of the spectrum to-
taling 108 levels for the chosen set of model parameters.
We can see from Fig. 2b that the difference between
the quasienergy state statistics for E0 = 1 V/cm and
E0 = 2 V/cm is only quantitative, because both fields
correspond to the quasiclassically unstable regions, and
therefore only moderate driving fields not exceeding the
scale of 1 V/cm are required for the excitation of irreg-
ular or chaotic regimes in our system.

We thus conclude that the analysis of Floquet eigen-
states demonstrates the possibility of excitation of dif-
fusion regimes in the Hilbert space if the initial states
are located in the region of the maximum variance σn
near the center of the spectrum. In the next section,
we confirm this assumption by integrating the non-
stationary Schrödinger equation with the Hamiltonian
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Hqd+V (y, t) over a continuous time interval. The rea-
son for such an approach is that a substantial part of
the evolution occurs between the stroboscopic moments
of time Tn = nT0, which are in the focus of the Flo-
quet stroboscopic approach. To obtain a more detailed
picture, we proceed with direct numerical integration
for continuous time with a suitable time grid catch-
ing all the essential details of the dynamics, and also
providing a perfect match between the continuous and
Floquet approaches.

5. EVOLUTION IN THE CLEAN LIMIT

We begin with the analysis of the driven evolution
of the wide wavepacket (see Fig. 1c,d), which is de-
scribed by Schrödinger equation (27) with the mod-
erate amplitude E0 = 1 V/cm of driving electric field
(10). The initial state Cn(0) occupies a narrow part
of the Hilbert space near the center of the spectrum,
as can be seen in Fig. 1d. We solve the equations of
motion for Cn(t) from several hundred to several thou-
sand periods T0 = 2π/ω0, which is the unit of time in
our model, where �ω0 is the spacing between a selected
pair of levels near the center of the spectrum.

The initial state of the wavepacket injected from the
left barrier into the QD is characterized by the spin po-
larization in units of �/2 as Sx = 1, Sy = Sz = 0. As
we have mentioned in Sec. 2, for all basis states (4)–(6)
the mean spin is always in the plane of the 2D TI,
that is, Sz = 0. However, if a time-dependent mixture
(26) of such states is formed by the initial packet or by
the nonstationary driving V (y, t), the resulting spinor
wavefunction may correspond to the state where the
out-of-plane Sz spin component is present. We discuss
this in detail below.

We look at the evolution of the quantum mechani-
cal mean values, or observables, for several variables of
interest, for both coordinate and spin degrees of free-
dom. As is known from classical mechanics, the evo-
lution of a driven system can be represented in terms
of canonically conjugate variables such as (xi, dxi/dt)

shown in phase plots. For a quantum mechanical sys-
tem, the concept of trajectories is not directly avail-
able, and the dynamics of mean values of such variables
can be considered. The velocity operator introduced as
dxi/dt = (i/�) [H,xi] gives the following form for vy =

= dy/dt and Hamiltonian (2):

vy = vFσz . (29)

We note that the time dependence of the mean value
in Eq. (12a) is obtained for the quasiclassical dynamics.

This result means that the velocity is effectively repre-
sented on the “phase-space plot” by the z component
of spin, and hence the first pair of the mean values to
be plotted is (y, Sz). For brevity in what follows, we
omit the (. . .) mark for mean values plotted on Figu-
res. For our model of coordinate and spin dynamics,
this means that these two channels are tightly coupled
from the very beginning, and we can expect certain
common characteristics of their evolution, as was al-
ready shown for a semiconductor mesoscopic QD with
spin–orbit coupling [21].

The general expressions that allow us to calculate
the mean values of coordinate and velocity for state
(26) via the matrix elements yij of the position opera-
tor y are

y(t) =
∑
ij

C∗
i (t)Cj(t)yij , (30)

vy(t) =
i

�

∑
ij

C∗
i (t)Cj(t) (Ei − Ej) yij . (31)

We can see that the velocity mean value (31) is directly
related not only to the spin via (29) but equivalently
to the position operator y because its matrix elements
define both expressions (30) and (31) together with the
energy level structure. By comparing two approaches
(29) and (31) for the velocity operator, we can see that
in the present model, the spin projection indeed plays
the role of momentum for a classical spinless oscillator
with finite mass. Hence, we can expect the phase plots
for the coupled coordinate and spin dynamics to bear
some resembiance to the conventional phase plots for
the driven oscillator plotted for the (y, vy) variables. It
can be mentioned that for a strictly equidistant spec-
trum Ei −Ej = �ω0 it follows from (30) and (31) that
vy = iω0y just as for the linear oscillator. In our model,
however, the level spacing is not purely constant, and
such a simple relation is only approximate but not ex-
act.

The second pair of variables to be plotted together
is the in-plane spin projection represented by the mean
values of (Sx, Sy) spin components. This choice is mo-
tivated by the inherent structure of Hamiltonian (2).
Namely, the internal part of the QD region is described
by the Weyl Hamiltonian coupling the (y, Sz) degrees
of freedom, and the surrounding barriers are polarized
in the (Sx, Sy) plane, which also couples these two spin
components to other degrees of freedom. As a result,
the spin vector is subject to evolution for all its projec-
tions that are coupled to the one-dimensional spatial
motion along the y-direction in the QD. Such pairs of
spin variables have been considered in several studies
on spin-resolved systems [16,21,23], and are convenient,
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for example, in representing the in-plane spin preces-
sion.

For numerical calculations, we consider the time in-
terval of 400 periods of the driving field with 200 points
per period for the graphical representation. These pa-
rameters cover both the time span needed for the sta-
tionary regime of the dynamics to be established and
the time grid that catches the significant nonvanishing
Fourier components of the evolution of observables.

In Fig. 3, we show the results for the driven evo-
lution for the initial state represented by the wide
wavepacket from Fig. 1c with the zero mean value of
the quasimomentum, ky(0) = 0. The initial point at
t = 0 is marked as the black circle A. Panel a shows
the “phase space” plot of the evolution in the (y, Sz)

coordinates and panel b shows the in-plane spin pre-
cession in the (Sx, Sy) plane. In Fig. 3c, the evolu-
tion of the variance of the level number σn(t) is shown,
which describes the spreading of the initial state Cn(0)

in the Hilbert space of the basis states. Also, we are
interested in the dynamics of the variance σy(t) for the
packet width in the coordinate space,

σ2
y(t) = (y − y(t))

2
. (32)

The time dependence for this quantity is shown in
Fig. 3d. It is also of interest to look at the spatial dis-
tributions along the QD for the charge density ρ(y, t0)
and some of the spin density components Si(y, t0),
i = x, y, z, at certain moments of time. The spatial
profiles of charge and spin density are helpful in un-
derstanding on which spatial scale the charge and spin
spots can be measured in actual experimental setups.
We present an example of charge and spin densities
plotted at a specific moment of time in Fig. 3e.

Besides tracking the evolution of the mean values,
we are interested in their Fourier power spectra

Iξ(ω) =

∣∣∣∣∣∣
∞∫

−∞
ξ(t)e−iωtdt

∣∣∣∣∣∣
2

, (33)

where ξ is the variable of interest. Because we obvi-
ously consider large, but finite intervals of time, Fourier
power spectra (33) are calculated by the fast Fourier
transform with limits of time actually used in our sim-
ulations of the dynamics. In panels f, g, and h in Fig. 3,
we show the Fourier power spectra for the variables y,
Sx and Sz.

We now discuss the meaning of the results presented
in Fig. 3. First, we consider the trajectories in the
space of (y, Sz) and (Sx, Sy) pairs of variables shown in
Fig. 3a,b. We can see that the regular trajectories for

these phase plots are accompanied by the surrounding
areas of a “chaotic sea”, although the general oscillat-
ing character of the wavepacket evolution is still vis-
ible. We can say that the phase portrait in Fig. 3a
in general resembles the phase trajectories of a driven
classical oscillator in the irregular regime of dynamics.
The onset of irregular motion is further pronounced in
the in-plane spin dynamics in Fig. 3b. In general terms,
we can state that the spin evolution becomes largely ir-
regular. As was found in Sec. 3, the quasiclassical spin
dynamics for the driving field amplitude E0 = 1 V/cm
corresponds to the unstable region of Mathieu equation
(23). We see that the full quantum mechanical treat-
ment leads to the same conclusion about the onset of
chaotic dynamics for the electric field amplitude and
frequency corresponding to a quasiclassically unstable
area. Another justification for the correspondence be-
tween the full quantum mechanical and quasiclassical
treatment is the initial wavepacket width considered
here. In this section, it corresponds to a narrow distri-
bution in the Hilbert space of the basis states, which
makes the quasiclassical approach applicable, and the
main conclusions from the quasiclassical and full quan-
tum approaches support each other.

As regards the spin dynamics in general, we can
describe it as a combination of precessions with gen-
erally incommensurable frequencies around the direc-
tions of effective magnetic fields following from Hamil-
tonian (2): the z-oriented ky-dependent field inside
the QD and the x-oriented barrier field. As a result,
the spin dynamics becomes rather complex. A large
clustering area near the origin for the in-plane compo-
nents (Sx, Sy) reflects the larger frequency of precession
around the z-aligned effective magnetic field inside the
QD, where the wavefunction is mostly located, result-
ing in the averaged in-plane spin components (Sx, Sy)

being close to zero, as we can see in Fig. 3b. The ob-
served spin precession can be regarded as being typical
for systems with strong spin–orbit coupling, which was
found, for example, for the models of spin dynamics in
semiconductor QDs [16, 17].

The concept of irregular dynamics or chaos devel-
opment can be supported by the analysis of the driven
evolution in the Hilbert space of basis states. Here,
the onset of chaos usually corresponds to the growth in
time of the number of energy levels involved in the evo-
lution, which is sometimes called the quantum Arnol’d
diffusion [13]. Our Floquet analysis of the quasienergy
eigenfunctions in Sec. 4 indicates that the periodic driv-
ing with amplitudes in the range 1–2 V/cm can in-
duce the formation of Floquet states that are deeply
extended into a substantial part of the energy spec-
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Fig. 3. (a) Evolution in the “phase space” of the mean values (y, Sz) for the amplitude E0 = 1 V/cm of the driving electric
field. (b) Evolution of the in-plane spin components (Sx, Sy). The initial point at t = 0 is shown as the black circle A. The
in-plane spin components demonstrate the tendency to clustering near the zero values with growing time. (c) The evolution in
the Hilbert space plotted as the number of levels effectively participating in the dynamics shows a linear growth at the beginning
of the evolution, which corresponds to the chaotic regime. (d) The packet half-width variance describing the spreading of the
wavepacket in the real space inside the QD. The initial half-width (see Fig. 1c, packet (1)) does not grow with time, and, as for
the free evolution, the packet is narrowed at certain moments of time. (e) Charge density ρ(y) (dashed curve) and the Sz(y)

component of spin density (solid curve) inside the QD taken at t = 395T0. (f),(g),(h) Fourier power spectra (31) for the y, Sx,
and Sz
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trum (see Fig. 2). Thus, we can expect the variance σn
measuring the number of levels involved in the evolu-
tion to be as high as the maximum number reached by
the Floquet states. This assumption is confirmed by
the plot of σn(t) in Fig. 3c, where an almost linear in-
crease in the level number is present at the initial stage
of evolution, where the quantum–classical correspon-
dence is most pronounced [9–11]. Such an increase is
usually attributed to the onset of chaotic dynamics, or
diffusion in the Hilbert space, which provides another
correspondence between the findings on the instability
regions within the quasiclassical approach in Sec. 3 and
the full quantum mechanical treatment. After some
time, however, the discrete character of the quantum
mechanical spectrum of a finite motion inside the QD
leads to a saturation of the level number involved in the
evolution, and the diffusion in the Hilbert space effec-
tively stops [13]. This can be seen in Fig. 3c, where the
linear growth of σn yields to oscillations with a stable
mean value. We can say that the chaotic behavior has
a transient nature in our quantum system.

As regards the dynamics in real space inside the
QD, the evolution of the packet half-width is presented
in Fig. 3d. The packet width essentially does not grow
with time, and the packet at each moment of time ef-
fectively occupies only a limited area inside the QD.
This finding is illustrated by the example of the spin
and charge density distributions inside the QD shown
for t = 395T0 in Fig. 3e. We can see that the packet
occupies a substantial part of the QD, but its effec-
tive width has a value close to the width of the initial
packet (Fig. 1c, wavepacket (1)). As we have men-
tioned, such stable behavior of the packet width dur-
ing the driven evolution can be attributed to the nearly
equidistant character of the energy levels of the system,
which can trigger certain properties of coherent states
in the driven evolution.

The manifestation of chaotic or at least strongly ir-
regular regimes for the driven evolution is supported
by the Fourier power spectra for the coordinate and
spin observables plotted in Fig. 3f–h. We can see that
the driving induces a large number of harmonics of the
driving frequency ω0 for both the coordinate and spin,
especially the in-plane component Sx (and similarly for
Sy, which is not shown here). The presence of a large
number of harmonics is a strong indication of irregular
dynamics [9, 16, 21], which supports the quasiclassical
results in Sec. 3 on the onset of unstable dynamics for
the considered amplitude of the driving field.

Another possible manifestation of chaos is the pres-
ence of positive Lyapunov exponents [9, 10] that mea-
sure the rate of divergence of two initially close trajec-

tories in the phase space,

λ = lim
t→∞

1

t
log

d(t)

d(0)
, (34)

where d(t) and d(0) are the current and initial dis-
tances. The infinite limit in (34) can also be tracked by
continuously monitoring with the growing time, where
λ = λ(t) tracks a local transition between the regu-
lar and chaotic regimes. In Fig. 5 below, we plot the
dependence of λ(t) for two initially close wavepackets
whose mean values of the coordinate are shifted slightly
along y at t = 0. We can see that at the beginning of
the evolution, the region with positive λ(t) indeed ex-
ists, which corresponds to the linear growth of the level
number σn involved in the dynamics (see Fig. 3c). Both
these plots support the presence of the chaotic dynam-
ics at the initial stage of the evolution when the dis-
crete character of the quantum spectrum has not yet
manifested itself so much. After the initial transient
period, the evolution tends to transform to a quasireg-
ular regime with a stable number of levels involved in
the dynamics, and the Lyapunov exponent reduces to
zero, as can be seen in Fig. 5 below. We note that
such a behavior is known in quantum systems with ir-
regular dynamics [9–11, 13]. However, the results ob-
tained there mainly pertain to spinless systems with a
quadratic spectrum having a certain classical analogue.

To conclude this section, we can state that even in a
quantum system that lacks a classical analogue such as
the system with Hamiltonian (2), we can observe cer-
tain traits of the development of irregular phenomena
that are present in classically chaotic systems and are
in good agreement with the quasiclassical treatment.
We stress that such effects may arise in the consid-
ered structures at driving fields as low as several V/cm.
This means that apart from the fundamental questions
on the degree of irregularity of the electron and spin
dynamics in systems with strong spin–orbit coupling,
our findings can also be important for nanodevice de-
signers and experimenters for future applications of the
TI-based structures.

6. EVOLUTION IN THE PRESENCE OF
DISORDER

The presence of some kind of disorder in the form
of a spatially nonuniform potential at the TI edge or
the potential caused by defects is inevitable in any real
structure and should be addressed in the problem of
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Fig. 4. The same as in Fig. 3 but for a narrow wavepacket (see Fig. 1c,e) taken as the initial condition, and in the presence of
disorder potential (35) with the amplitude U0 = 0.5 meV. (a),(b) Phase plots for the coordinate and spin mean values shown
for pairs (y, Sz) and (Sx, Sy), respectively. The in-plane spin components show an enhanced tendency to clustering near the
zero values with growing time. (c) Evolution in the Hilbert space of σn demonstrates the decreasing number of basis states
participating in the evolution, which can be viewed as an example of localization in the Hilbert space. (d) The packet half-width
dynamics shows the amplitude stability on long times. (e) An example of the charge and spin density for t = 395T0 demonstrates
a well-localized packet even in the presence of a strong disorder potential. (f),(g),(h) Fourier power spectra for the coordinate y

and two spin components Sx and Sz showing the behavior where disorder can enhance the in-plane spin relaxation
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the electron evolution. In this section, we insert an
additional stationary disorder potential of the form

Ud(y) = U0f(y) (35)

into the right-hand side of non-stationary Schrödinger
equation (27), where the potential amplitude U0 is mul-
tiplied by a random function f(y) described by a uni-
form random distribution from 0 to 1 along the QD,
with 0 ≤ y ≤ L. It is known that the presence of
disorder alone with the potential that maintains the
time-reversal invariance such as the scalar potential in
(35) does not break the topological protection of the
edge states. For the QD considered in our model, time
reversal symmetry has already been broken by the pres-
ence of magnetic barriers, and hence the disorder po-
tential, for example, may induce transitions between
states with different spin polarizations.

The interest in the influence of an external disor-
der potential on the wavepacket evolution in materials
such as Dirac-fermion materials started to arise during
the last years, sometimes leading to unexpected results.
For example, it was shown recently that the inclusion
of a static 1D disorder potential into the model of
wavepacket propagation in graphene and related Dirac-
fermion materials may cause the so-called electron su-
percollimation, i. e., the effect when the wavepacket
moves undistorted along a certain direction [30]. It
is therefore a challenging and intriguing task to con-
sider the effects of the disorder potential on the driven
dynamics in our model of the QD in a TI.

The matrix elements of Ud(y) in (35) contribute to
the dynamics of the coefficients Cn(t) for wavefunc-
tion (26) together with the ones from the driving term
V (y, t). We consider the example of the amplitude
U0 = 0.5 meV, which is comparable with typical in-
terlevel distance (8) equal to 0.38 meV (i. e., we insert
a moderate disorder). This can be justified by a typ-
ical high quality and high mobility of samples usually
fabricated and studied in the experiments with TIs [7],
which have the mean free path of the order of the QD
length L, and low temperatures around or below 1 K,
which produces the level broadening of the order of
0.05 meV. For the initial condition, we choose a nar-
row wavepacket (see the packet profile shown by curve
2 in Fig. 1c). We take the same driving amplitude
E0 = 1 V/cm, and the same other parameters as in the
preceding section.

We can expect certain modifications of the evolution
for both coordinate and spin degrees of freedom when
the disorder amplitude U0 exceeds the energy of the
driving field. In Fig. 4, we show the evolution of a nar-
row wavepacket under the driving with E0 = 1 V/cm,

0

0.02

–0.02

0.04

100
t T/ 0

�

Fig. 5. Evolution of Lyapunov exponent (34) for two initially
close wavepackets. At the beginning of the evolution, this ex-
ponent also takes positive values, indicating the presence of a
chaotic regime, and later it decreases to zero when the quasi-

regular quantum dynamics is established

with the disorder amplitude U0 = 0.5 meV that exceeds
the typical energy of the driving field eE0L = 0.3 meV.
The numbering of the figure panels is similar to that in
Fig. 3. We can see that the inclusion of disorder leads
to more uniformly distributed trajectories in the phase
space of the (y, Sz) variables shown in Fig. 4a. We can
say that disorder reduces the degree of correspondence
with phase plots for the classical driven oscillator. The
in-plane spin components (Sx, Sy) demonstrate a more
pronounced tendency to cluster near the coordinate ori-
gin (0, 0) with growing time, meaning that the spin pre-
cession here is accompanied by collisions of an electron
with the inhomogeneities of potential (35) and leading
to the effective spin relaxation. As regards the off-plane
spin component Sz, it still demonstrates a full-scale os-
cillating behavior representing the electron velocity in
our model, but within a well-established chaotic sea
visible in the (y, Sz) plot. The disorder leads to an in-
teresting effect on the number of levels σn effectively
involved in the evolution, which is shown in Fig. 4c.
Starting from the initially large number of basis states
present in the decomposition of a narrow wavepacket,
this number begins to decrease progressively, with the
average level number (not shown) moving down from
the Dirac point. Such a form of localization in the
Hilbert space can be viewed as a decrease in the irregu-
larity when the dynamics of the system in fact becomes
more regular in terms of the number of states involved
in the evolution. We can say that the presence of static
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disorder inhibits the development of dynamical chaos,
although it does not suppress it completely.

The variance of the packet half-width given in
Fig. 4d shows the oscillating behavior with a saturating
amplitude, which again demonstrates the effect of the
wavepacket maximum width stability induced by the
periodic driving, which is maintained even in the pres-
ence of strong disorder. An example of the charge ρ(y)
and spin density Sz(y) distributions at the end of the
observation frame t = 395T0 shown in Fig. 4e supports
this finding, demonstrating a well-localized packet near
one of the edges of the QD. These findings regarding the
dynamics are supported by the Fourier power spectra
shown in Fig. 4f–h, where the spin components demon-
strate a more rapidly vanishing spectra compared to the
coordinate one. This can be attributed to the effects of
spin precession in the presence of collisions caused by
disorder. We can say that the observed effects of disor-
der to some extent lead to a reduction in the dynamical
chaos. This observation is important for further ex-
perimental and technological applications because the
presence of some degree of disorder is inevitable in real
structures, and in certain cases it can play a positive
role as a damper of chaotic regimes of the dynamics.

To conclude this section, we can say that by com-
paring Fig. 3 and Fig. 4, we see that the principal
features of almost all respective panels on these fig-
ures look similar. In contrast, the initial wavepacket
in Fig. 3 is described by the quasiclassically tractable
narrow distribution in the Hilbert space of basis states,
while the initial wavepacket in Fig. 4 is described by
a wide distribution for which the full quantum simu-
lation is required. This similarity can be viewed as an
additional argument supporting the applicability of the
quasiclassical approach derived in Sec. 3, because the
full quantum treatment leads to the principally close
results for both regions with or without the possibility
to apply the quasiclassical method.

7. CONCLUSIONS

We have studied the dynamics of Dirac–Weyl
wavepackets driven by a periodic electric field in a
mesoscopic QD formed at the edge of the two-dimen-
sional HgTe/CdTe topological insulator, where the
motion of carriers is less sensitive to disorder and
impurity potentials. It was found that the presence of
strongly coupled spin and charge degrees of freedom in
such a driven system leads to the regimes of transiently
irregular dynamics both in the clean limit and in the
presence of the disorder. The quasiclassical analysis of

spin dynamics allowed analytically finding the border
between the regular and irregular regimes defined by
the amplitude and frequency of the driving field in
the framework of the Mathieu equation, and was sup-
ported by the full quantum mechanical treatment. The
predicted onset of irregular regimes in both coordinate
and spin channels, which occurs for a mesoscopic QD
at the amplitudes of driving fields being as low as
1 . . . 2 V/cm is, in our opinion, an important feature of
the considered structures from both fundamental and
device-oriented standpoints. The observed effects of
disorder can be described in general as damping of the
chaotic regimes of dynamics, which is also important
for possible experiments in real structures. We believe
that our findings are not limited to 1D edges of 2D
topological insulators based on HgTe/CdTe quantum
wells but also apply to other systems with a Dirac–
Weyl spectrum, which allows considering them as
being rather general. Apart from the basic questions
on the degree of irregularity of the electron and spin
dynamics in systems with strong spin–orbit coupling,
our findings can also be taken into consideration by
nanodevice designers and experimenters who plan
to use the topological-insulator-based structures for
transport and information processing purposes, where
the manifestations of irregularity even at low driving
fields may seriously affect their operational capabili-
ties.
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