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The statistical theory of diffusion in concentrated BCC and FCC alloys with arbitrary pairwise interatomic in-
teractions based on the master equation approach is developed. Vacancy-atom correlations are described using
both the second-shell-jump and the nearest-neighbor-jump approximations which are shown to be usually suf-
ficiently accurate. General expressions for Onsager coefficients in terms of microscopic interatomic interactions
and some statistical averages are given. Both the analytical kinetic mean-field and the Monte Carlo methods for
finding these averages are described. The theory developed is used to describe sharp concentration dependences
of diffusion coefficients in several iron-based alloy systems. For the BCC alloys FeCu, FeMn, and FeNi, we
predict the notable increase of the iron self-diffusion coefficient with solute concentration c, up to several times,
even though values of c possible for these alloys do not exceed some percent. For the BCC alloys FeCr at high
temperatures T � 1400 K, we show that the very strong and peculiar concentration dependences of both tracer
and chemical diffusion coefficients observed in these alloys can be naturally explained by the theory, without
invoking exotic models discussed earlier.
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1. INTRODUCTION

Presently, the statistical theory of diffusion has been
developed mainly for the dilute alloys [1–5]. Diffu-
sion in concentrated alloys is usually described us-
ing various phenomenological models [6, 7], most often
the “concentration-dependent Arrhenius” model [8–14]
which will be shown below to have no microscopic justi-
fication. At the same time, concentration dependences
of both intrinsic and tracer diffusion coefficients in al-
loys are typically very sharp: their variations with con-
centration reach two–four orders of magnitude [6, 10],
and physical understanding of reasons for so strong de-
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pendences seems to have both the fundamental and ap-
plied interest.

Early theoretical studies of diffusion in concentrated
alloys discussed mainly simplified models, such as the
“random” alloys with no interatomic interactions. Mo-
dels providing a good description of diffusion in such
alloys have been developed by Manning, Moleko et al.,
and Belova and Murch [15–17]. Some successful gener-
alizations of these models taking into account “thermo-
dynamic” interatomic interactions (but not kinetic and
saddle-point interactions discussed below) have also
been suggested [18,19]. Kikuchi and coworkers used the
Path Probability Method to describe diffusion in many
different concentrated alloy systems [20–22]. However,
only some simple models have been considered, and dif-
ficulties of generalizations to more consistent and gen-
eral studies have been noted [22].
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The recently-suggested master equation approach
[23–30] opens opportunities for microscopic treatments
of diffusion in alloys at any composition. This approach
enables us to express all Onsager and diffusion coeffi-
cients via some statistical averages and microscopic in-
teratomic interactions. These interactions can be cal-
culated employing ab initio methods, while statistical
averages can be evaluated using various methods of
statistical physics. As the level of reliability of both
ab initio calculations [3–5,31,32] and statistical meth-
ods [33–35] is steadily increasing, this approach seems
to provide a basis for developments of microscopic the-
ories of diffusion in alloys of any composition.

First applications of the master equation approach
to studies of diffusion in concentrated alloys have
been made by Nastar with coworkers [24–26] (who call
this approach “the self-consistent mean-field method”).
However, as discussed in Refs. [29] and [30], these stud-
ies considered mainly some qualitative or methodical
problems, and no discussions of applications to real al-
loys have been given.

The detailed statistical theory of the steady-state
diffusion in concentrated alloys based on the master
equation approach has been developed in Refs. [29] and
[30]. To be definite, we considered intrinsic and tracer
diffusion in FCC substitution alloys with the pairwise
nearest-neighbor interactions; for dilute binary alloys
it corresponds to the well-known five-frequency model
[1, 2]. We derived general expressions for Onsager co-
efficients in terms of some statistical averages and dis-
cussed methods of approximate calculations of these av-
erages. Our simplest statistical approximation, called
the “kinetic mean-field approximation” (KMFA), corre-
sponds to using the mean-field approximation for cal-
culations of statistical averages and the pair-cluster
approximation — PCA (equivalent to the pair clus-
ter variation method [34]) for calculations of chemi-
cal potentials; for dilute alloys, both KMFA and PCA
are exact. We also used Monte Carlo methods to
find statistical averages. To describe vacancy correla-
tions, we used the nearest-neighbor-jump approxima-
tion (NNJA) and the second-shell-jump approximation
(SSJA) which generalize analogous methods suggested
for dilute binary alloys to the concentrated and multi-
component alloys.

In Ref. [30], we also applied the theory developed
to description concentration dependences of diffusion
coefficients in alloys CuNi, CuZn, and AgCd for which
detailed experimental data about both tracer and in-
trinsic diffusion are available [6], while the pairwise
nearest-neighbor interaction model used in [29, 30] ap-
pears to be basically applicable. We found that all main

features of strong and peculiar concentration depen-
dences of diffusion coefficients observed in these three
alloy systems can be naturally described by the theory,
while signs and scales of kinetic and saddle-point inter-
actions found in these estimates agree well with simple
physical considerations. The physical reasons for sharp
concentration dependences of diffusion coefficients typ-
ical of real alloys have also been explained.

The present work aims at two tasks. First, we aim
to present the more general and realistic version of the
theory which describes not only the simple model of
FCC alloys with the nearest-neighbor interatomic in-
teractions used in [29, 30], but both BCC and FCC
alloys with arbitrary pairwise interactions. We also de-
scribe many refinements of previous methods, including
the generalizations of SSJA and KMFA needed to treat
these realistic alloy models, as well as the Monte Carlo
methods (used earlier [30] with no detailed description).

Second, we use the theory developed to discuss con-
centration dependences of diffusion coefficients in sev-
eral alloy systems for which these dependences are very
sharp. Here, we first consider the BCC alloys FeCu,
FeMn, and FeNi for which diffusion is intensely dis-
cussed in connection with applications in nuclear en-
gineering [3–5]. Using available ab initio estimates of
kinetic and saddle-point interactions for these alloys [5],
we predict the notable increase of the iron self-diffusion
coefficient with the solute concentration c, up to 2–4
times, even though the solubility limits cs in these al-
loys are very low: cs � (0.01–0.04). These results im-
ply, in particular, that usual treatments of diffusion in
these alloys employing dilute alloy methods [3–5] can
lead to notable inaccuracies.

Then, we discuss very sharp concentration depen-
dences of both chemical and tracer diffusion coefficients
observed in the BCC alloys FeCr at high temperatures
T � 1400 K. With increasing the chromium concentra-
tion c, these coefficients decrease by about four orders
of magnitude, which is one of the most strong varia-
tions of diffusion coefficients with composition known
for alloys [10]. These sharp dependences were dis-
cussed by many authors [8–14],mainly in terms of the
above-mentioned “concentration-dependent Arrhenius”
model. It yields unusual concentration anomalies in
parameters of this model at c ∼ 0.6, and some exotic
models to explain these anomalies have been suggested
[10, 11]. We use the available data [8–14,37] and theo-
retical calculations [5] to estimate interatomic interac-
tions important for diffusion in these alloys. We show
that all strong concentration dependences of diffusion
coefficients mentioned above can be naturally described
by the statistical theory, while the anomalies discussed
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in Refs. [10, 11] are related just to the inadequacy of
the concentration-dependent Arrhenius model for de-
scription of concentration dependences of diffusion co-
efficients.

The paper is organized as follows. In Sec. 2, we
present main relations from papers [29, 30] needed for
what follows. In Sec. 3, we derive expressions for cor-
relation operators b̂p which describe influence of neigh-
boring solute atoms on the probability of a vacancy-
atom exchange for both BCC and FCC alloys with
arbitrary pairwise interactions. In Sec. 4, we discuss
approximations for description of vacancy correlations,
NNJA and SSJA, and expressions for coefficients in ba-
sic equations (17) and (19) for atomic fluxes and for the
fields describing vacancy correlations via certain statis-
tical averages. In Sec. 5, we describe methods of calcu-
lations of these averages in the kinetic mean-field ap-
proximation (KMFA) which generalize those used ear-
lier [29, 30] to the case of arbitrary pairwise interac-
tions in BCC and FCC alloys. In Sec. 6, we discuss
Monte Carlo methods of evaluation of statistical av-
erages which enable us to find these averages (for the
given interaction model) practically exactly. In Sec. 7,
we present SSJA and NNJA expressions for correlation
factors in dilute BCC and FCC alloys (which gener-
alize the earlier results [1, 2] to the case of arbitrary
interactions), and also for the tracer correlation factors
in BCC random alloys for which comparison with the
Monte Carlo results [17] enables us to estimate accu-
racy of SSJA and NNJA. In Secs. 8 and 9, we discuss
applications of the statistical theory developed to the
description of strong concentration dependences of dif-
fusion coefficients in BCC alloys FeCu, FeMn, FeNi,
and FeCu mentioned above. Our main conclusions are
summarized in Sec. 10.

2. STATISTICAL EXPRESSION FOR ONSAGER
AND DIFFUSION COEFFICIENTS IN A

SUBSTITUTION ALLOY

In this section, we present main relations of theory
developed in Refs. [29,30] needed for what follows. We
consider a substitution alloy with (m+ 1) components
p′ including host atoms denoted as h, solute atoms de-
noted by letters α, β, λ, and vacancies denoted as v.
Latin letters p and q denote all kinds of atoms, h and
α, while Greek letters ρ, σ, τ denote solute atoms α

and vacancies v. Various distributions of atoms over
lattice sites i are described by the different occupation
number sets {np′

i } where np′
i is 1 when site i is occu-

pied by a p′-species component, and 0 otherwise. For

each site i, operators np′
i obey the identity

∑
p′ n

p′
i = 1,

and we eliminate operators nh
i for host atoms putting

nh
i = 1−∑ρ n

ρ
i .

We use the pairwise interaction model for which the
total configurational Hamiltonian Ht can be expressed
via np

i and nv
i and couplings V pq

ij and V pv
ij as follows:

Ht =
∑
i>j

∑
pq

V pq
ij np

in
q
j +

∑
ij

∑
p

V pv
ij np

in
v
j , (1)

where we neglect terms with interaction of vacancies as
their fractional concentration (to be called simply “con-
centration”) cv = 〈nv

i 〉 is very low: cv � cp = 〈np
i 〉. Af-

ter elimination of operators nh
i , the interaction Hamil-

tonian Hint takes the form

Hint =
∑

αβ,i>j

vαβij nα
i n

β
j +

∑
α,ij

vαvij nα
i n

v
j , (2)

where interactions vαβij and vαvij are linearly expressed
via V pq

ij and V pv
ij in Eq. (1).

The fundamental master equation for the probabil-
ity P of finding an occupation number set {nρ

i } = ξ

can be written as [23]:

dP (ξ)

dt
=
∑
η

[W (ξ, η)P (η) −W (η, ξ)P (ξ)] ≡ ŜP, (3)

where W (ξ, η) is the η → ξ transition probability per
unit time, and the transfer matrix Ŝ is the sum of prob-
abilities W pv

ij of inter-site atomic exchanges (“jumps”)
pi � vj between neighboring sites i and j per unit
time:

W pv
ij = np

i n
v
jω

eff
pv exp[−β(ÊSP

pi,vj − Êin
pi,vj)],

ÊSP
pi,vj = Ep

h +
∑
λl

Δλl
p,ijn

λ
l .

(4)

Here, ωeff
pv is the effective attempt frequency for a jump-

ing atom p, β = 1/T is the reciprocal temperature,
Êin

pi,vj is the initial (before the jump) configurational
energy of a jumping atom p and a vacancy, ÊSP

pi,vj is the
saddle-point energy, and terms Δλl

p,ij describing depen-
dences of the saddle-point energy ÊSP

pi,vj on atomic con-
figurations near bond (i, j) are called the “saddle-point
interactions”. The probability P in (3) can be written
as [23, 24]

P{nρ
i } = exp

[
β
(
Ω +

∑
ρi

λρ
i n

ρ
i −Hint − ĥeff

)]
, (5)

ĥeff =
1

2

∑
ρσ,ij

hρσ
ij n

ρ
in

σ
j +

+
1

6

∑
ρστ,ijk

hρστ
ijk nρ

i n
σ
j n

τ
k + . . . (6)
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Fig. 1. Bond (0,1) in the BCC lattice and its nearest neighbors,
sites k and k̄ discussed in the text

Here, λρ
i = μρ

i − μh
i are “site chemical potentials” for

solute atoms or vacancies with respect to host atoms
and constant Ω is determined by normalization. The
operator ĥeff (6) and “effective interactions” hρσ...

ij... (to
be also called “fields” for brevity) describe changes in
the stationary distribution of vacancies with respect to
different species atoms due to the steady-sate diffusion,
or vacancy correlations. The first term in (6) describes
pairwise vacancy correlations, while the second and the
rest terms, the non-pairwise ones. Below, we consider
only the first term in (6) as the non-pairwise vacancy
correlations seem to be usually insignificant [30].

Multiplying Eq. (3) by operators np
i and nα

i n
p
j

and summing over all configurations {nλ
j }, we obtain

equations which determine evolution of “local concen-
trations” cpi = 〈np

i 〉 and evolution of two-site aver-
ages 〈nα

i n
p
j 〉:

dcpi
dt

= 〈np
i Ŝ〉,

d

dt
〈nα

i n
p
j 〉 = 〈nα

i n
p
j Ŝ〉 (7)

where 〈. . .〉 means averaging over distribution (5).
The steady-state diffusion under consideration cor-

responds to the stationary distribution for which the
right-hand sides of Eqs. (7) vanish. Such diffusion is
commonly described in terms of Onsager coefficients
Lpq which relate the atomic flux density Jp to the chem-
ical potential gradients ∇μq supposed to be small and
constant. For a cubic crystal, Onsager relations have
the form [2]

Jp = −
∑
q

Lpq∇μq. (8)

Microscopic expressions for Onsager coefficients Lpq in
(8) are obtained using the microscopic expression for
flux density Jp which can be derived from Eqs. (3)–(7).
For the steady-state diffusion, differences of local che-
mical potentials, μq

j−μq
i = δμq which enter into Eqs. (7)

are proportional to gradients ∇μq in (8) being small
and constant, while fields hαρ

ij in (6) are proportional to
these differences. Linearizing Eqs. (7) in δμq and hαρ

ij ,
we obtain the linear equations which relate the atomic
flux Jp

ij through each bond (ij), e. g. bond (0,1) shown
in Fig. 1, to the chemical potential difference δμp and
fields hαρ

ij :

Jp
0→1 = −β

[
〈wp〉(δμp + 2hpv

1 ) −

−
∑
λi

νλpi(h
vλ
0i − hvλ

1i − hpλ
0i + hpλ

1i )

]
, (9)

where δμp is μp
1 − μp

0 and hpv
1 is the nearest-neighbor

effective interaction. Symbol 〈. . .〉 in Eq. (9) and be-
low means statistical averaging over equilibrium Gibbs
distribution given by Eq. (5) with constant values of
chemical potentials λρ

i = λρ and ĥeff = 0. The opera-
tor ŵp

01 describes the probability of a jump p0 � v1. It
has the form of a product of the constant Γp and the
“correlation” operator b̂p01:

ŵp
01 = Γp b̂

p
01, (10)

Γα =
ωα0cαaα

c2h
, Γh =

ωh0

ch
. (11)

Here, ωp0 is the mean frequency of pi � vj jumps for
a p-species atom in a pure host metal. It is expressed
via the vacancy concentration cv0 in this metal, the
effective attempt frequency ωeff

pv in Eq. (4), and the
activation energy Epv

ac for a p � v jump as follows:

ωp0 = cv0ω
eff
pv exp(−βEpv

ac ). (12)

Factor aα (11) is the reduced thermodynamic activity
coefficient for α-species atoms; for a binary alloy, its
form is illustrated by Eq. (53) below.

Factor b̂p01 in Eq. (10) is the “correlation operator”
which describes influence of presence of solute atoms
near the bond (0, 1) on the p0 � v1 jump probability:

b̂pij = nh
i n

h
j ×

× exp

[∑
αl

β(uα
il + uα

jl)n
α
l −

∑
αl

βΔαl
p,ijn

α
l

]
. (13)
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Here, Δαl
p,ij is the same as in Eq. (4), while the pa-

rameters uα
il called “kinetic interactions” are expressed

via couplings V pq
ij in Eq. (1) as follows:

uα
il = V hα

il − V hh
il . (14)

The average 〈ŵp
01〉 in (10) can be expressed via the

mean frequency ωp of p � v jumps for a p-species atom:

〈ŵp
01〉 = cp ωp, (15)

where cp = 〈np
i 〉 is the mean concentration. Below,

we usually employ frequencies ωp rather than averages
〈wp〉 as these frequencies have a more clear physical
meaning.

Fields hαρ
ij in Eqs. (9) are found from the condi-

tion of vanishing of the right-hand side of the second
equation (7) [24, 29]. It yields the following equations
for hαρ

ij :

∑
k �=0�=j

[
mpj

α,0k (δμ
α
k0 + 2hαv

0k ) −

−
∑
λl

tpj,λlα,0k

(
hvλ
0l − hvλ

kl − hαλ
0l + hαλ

kl

)
+

+mα0
p,jk(δμ

p
kj + 2hpv

jk)−

−
∑
λl

tα0,λlh,jk

(
hvλ
jl − hvλ

kl − hpλ
jl + hpλ

kl

)]
= 0, (16)

where mqj
p,ik is 〈ŵp

ikn
q
j〉 and tqj,λlp,ik is 〈ŵp

ikn
q
jn

λ
l 〉.

For both BCC and FCC alloys, we consider diffusion
along the crystal axis z when reduced chemical poten-
tials μp

i = μp(Ri) depend only on zi. For the BCC
alloy, we denote positions of sites 0 and 1 in Eqs. (9)
as R0 = (0, 0, 0) and R1 = (a0/2, a0/2, a0/2), where a0
is the BCC lattice constant, while sites near the bond
(0, 1) are numbered as shown in Fig. 1. In this Figure,
sites with positions Rk for k between 1 and 8 corre-
spond to the nearest neighbors of site “0” positioned at
R0 = 0, while sites positioned at Rk̄ ≡ Rk,1 = Rk+R1

correspond to the nearest neighbors of site “1” with
R1 = (a0/2, a0/2, a0/2). For the FCC alloy, we denote
positions of sites 0 and 1 in Eqs. (9) as R0 = (0, 0, 0)

and R1 = (0, a0/2, a0/2), where a0 is the FCC lat-
tice constant, while sites near the bond (0, 1) are num-
bered as shown in Fig. 2. Quantity δμp in Eqs. (9) is
the chemical potential difference between neighboring
atomic planes along z axis: δμp = μp(a0/2) − μp(0).
The field hρλ

0l = hρλ(R0l) does not change under rota-
tions of vector R0l = (x0l, y0l, z0l) around z-axis, and it
changes sign under reflection with respect to xy plane:
hρλ(x0l, y0l,−z0l) = −hρλ(x0l, y0l, z0l). For brevity, we
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Fig. 2. Bond (0,1) in the FCC lattice and its nearest neighbors,
sites k and k̄ discussed in the text

denote the set of crystallographically equivalent sites
with the same positive value z0ln = z+ln > 0 as l+n , the
similar set with the negative value z0ln = −z+ln , as l−n ,
and fields hρλ(Rl+n

) or hρλ(Rl−n ) corresponding to the
set of sites l+n or l−n , as hρλ

n or (−hρλ
n ). Index n which

numbers different sets of equivalent sites, l+n and l−n , is
supposed to increase with the distance |R0l|, and for
a given |R0l|, it increases with the z0l value. Thus,
n = 1 corresponds to the nearest-neighbor field hρλ

1 =

= hρλ(R01), and Eqs. (9) can be concisely written as

Jp
0→1 = −β

[
cpωp(δμp + 2hpv

1 ) +

+
∑
λ

nmax∑
n=1

lλp,n(h
λv
n − hλp

n )

]
. (17)

Here, nmax is the total number of non-equivalent fields
hρλ
n considered, and the higher nmax correspond to tak-

ing into account the more distant vacancy correlation
effects [24]. Coefficients lλp,n in Eq. (17) are defined as
follows:
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lλp,n =
∑
l+n , l−n

〈ŵp
01(nl+n

− nl−n − n1,l+n
+ n1,l−n )

λ〉. (18)

Here, nl±n = n(Rl±n ), n1,l±n = n(Rl±n +R1), and index
λ at brackets means that it should be put at each term
within brackets, e. g. (nl+n

+ . . .)λ = (nλ
l+n

+ . . .).

Using the same notation as in Eq. (17), we can con-
cisely write Eqs. (16) as

mp
α,n(δμα + 2hαv

1 )−mα
p,n(δμp + 2hpv

1 )−

+
∑
λ

nmax∑
m=1

[
(tpλα,nm − tαλp,nm)hλv

m −

− tpλα,nmhλα
m + tαλp,nmhλp

m

]
= 0, (19)

where coefficients tqλp,nm and mq
p,n are defined as follows:

tqλp,nm =

kmax∑
k=1

∑
l+m, l−m

〈ŵp
0kn

q
n,1(nl+m

− nl−m−

− nk,l+m
+ nk,l−m)λ〉,

mq
p,n =

4∑
k=1

〈(ŵp
0k − ŵp

0,k+4)n
q
n,1〉 .

(20)

Here, nl+m
and nl−m are the same as in (18); operator

nq
n,1 = nq(Rn,1) corresponds to the vector Rn,1 chosen

as “the first one” in the set of vectors Rl+n
; kmax is the

number of nearest neighbors equal to 12 for an FCC
alloy and 8 for a BCC alloy; nk,l±n defined similarly to
n1,l±n in Eq. (18) is n(Rl±n + Rk); and we took into
account symmetry or antisymmetry of each average in
Eq. (19) with respect to reflections Rn,1 → (−Rn,1).
Note that fields hpλ

n = −hλp
n in Eqs. (17) and (20) for

p = h should be put zero as they are absent in the
operator ĥeff (6).

To solve Eqs. (17) and (19) for the chosen number
nmax of effective fields describing vacancy correlations,
we should calculate coefficients lλp,n, mq

p,n, and tqλp,nm
in these equations. Eqs. (20) for mq

p,n and tqλp,nm (un-
like Eqs. (18) for lλp,n) include operators ŵp

0k describing
the p � v exchange along bond (0, k) rather than that
along bond (0,1). To reduce these coefficients to the
standard form which includes only operator ŵp

01, we
can use operators of turn, T̂k, which transform bonds
(0, k) into bond (0,1). Then, Eqs. (20) can be written
as follows:

mq
p,n =

〈
ŵp

01

4∑
k=1

(T̂k − T̂k+4)n
q
n,1

〉
,

tqλp,nm =

〈
ŵp

01

kmax∑
k=1

T̂k(n
q
n,1σ

λ
k,m)

〉
,

(21)

σλ
k,m =

∑
l+m, l−m

(nl+m
− nl−m − nk,l+m

+ nk,l−m)λ . (22)

Here, action of the operator of turn T̂k on each occupa-
tion operator nq

i ≡ nq(Ri) corresponds to the turn of
the vector Ri: T̂kn

q
i = nq(T̂kRi). The “turned” vectors

T̂kRi for each k and Ri are determined by Tables A1
or A2 in Appendix 1.

Equations (18), (21), (22) show that coefficients
lλp,n, mq

p,n, and tqλp,nm in Eqs. (17) and (19) are expressed
via one-site or two-site statistical averages of the follo-
wing form:

νqpi = 〈ŵp
01n

q
i 〉, νqλp,ij = 〈ŵp

01n
q
in

λ
j 〉 . (23)

Note that due to the first identity (41), terms tqλp,nm in
Eq. (22) include not only two-site averages νqλp,ij in (23),
but also one-site averages νqpi which arise when the site
Rn,1 coincides with Rl±m or Rk,l±m . Hence term tqλp,nm
(22) can be written as

tqλp,nm = δqλt
q
1p,nm + tqλ2p,nm, (24)

where the first term includes one-site averages νqp,i,
while the second one includes “true” two-site averages
νqλp,ij with i 
= j. Explicit expressions for averages
(21)–(24) are discussed below.

Equations (19) enable us to express all fields hαρ
n

as linear combinations of δμq. Then, substitution of
these expressions into Eqs. (17) yields linear relations
between fluxes Jp

0→1 and differences δμp:

Jp
0→1 =

∑
q

Apqδμq, (25)

where Apq are some functions of coefficients lλp,n, mq
p,n,

and tqλp,n in Eqs. (19). Equations (25) are evidently
equivalent to Onsager relations (8). Simple geometri-
cal considerations described in [29] show that for both
FCC and BCC alloys, Onsager coefficients Lpq are ex-
pressed via coefficients Apq in Eq. (25) and the lattice
constant a0 as follows:

Lpq = −4Apq

a0
= −na20Apq, (26)

where n is the atomic density equal to 4/a30 for an FCC
alloy, or to 2/a30 for a BCC alloy. Equations (26) enable
us to microscopically calculate Onsager coefficients.
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Let us now discuss expressions for intrinsic and
tracer diffusion coefficients in a BCC or FCC binary
alloy AB. As discussed in [29], each intrinsic diffusion
coefficient Dp with p equal to A or B can be conve-
niently written in terms of “correlative” Onsager coef-
ficients Lc

pq which describe vacancy correlation effects
and are related to the conventional Onsager coefficients
Lpq in Eq. (8) as follows:

T

na20
LAA = ωAcA(1− cLc

AA),

T

na20
LAB = ωBccAL

c
AB,

T

na20
LBB = ωBc(1− cAL

c
BB).

(27)

Here, c = cB, cA = 1 − c, and 1/n = v̄ is the mean
volume per atom supposed to obey the Vegard’s law:

v̄ ≡ 1

n
= cAvA + cvB , (28)

where vp is atomic volume of a p-component in an al-
loy. Then, each intrinsic diffusion coefficient Dp can be
written as follows:

DA =
a20
nvB

ωAfAΦ,

DB =
a20
nvA

ωBfBΦ .

(29)

Here, the mean frequency ωp is the same as in (15);
correlation factors fp are expressed via the correlative
Onsager coefficients Lc

pq in Eqs. (27) as follows:

fA = 1−
(
ωB

ωA
cAL

c
AB + cLc

AA

)
,

fB = 1− (cAL
c
BB + cLc

AB) ,

(30)

and Φ is the “thermodynamic factor” [2]. The PCA
expression for this factor is given by Eq. (42) in [30].

The chemical interdiffusion coefficient Dchem is ex-
pressed via Dp in (29) as follows:

Dchem = (cAnv̄ADB + cnv̄BDA) =

= a20(cAωBfB + c ωAfA)Φ. (31)

The tracer diffusion coefficient Dp∗ with p∗ corre-
sponding to either tracer solvent atoms A∗ or tracer
solute atoms B∗ can be written in the form (29) with
replacing p by p∗ and omitting factors nvp and Φ [30]:

Dp∗ = a20ωpfp∗ , (32)

where ωp is the same as in (29) and f∗
p is the tracer

correlation factor. Explicit equations for tracer corre-
lation factors in the kinetic mean-field approximation
used below will be presented in Sec. 5.

Equations (29) and (32) show that each diffusion
coefficient Dp or Dp∗ has the form of product of the
mean frequency of vacancy-atom exchange, ωp, and
the appropriate correlation factor fp or f∗

p (saying
not about standard geometrical or thermodynamic fac-
tors). Concentration dependence of these two factors
will be shown below to be usually very different: de-
pendences ωp(c) are typically very sharp, while depen-
dences fp(c) and f∗

p (c) are much weaker. It will qualita-
tively explain sharp concentration dependences of dif-
fusion coefficients typical of real alloys.

Equations (10)–(32) provide a basis for the sta-
tistical theory of diffusion in concentrated alloys. In
Secs. 3–6, we describe explicit form of these equations
for BCC and FCC alloys in different approximations.

3. CORRELATION OPERATORS b̂p01 FOR BCC
AND FCC ALLOYS WITH ARBITRARY

PAIRWISE INTERACTION

In the previous works [29, 30], we used the nea-
rest-neighbor-interaction (NNI) model of FCC alloys
for which both kinetic interactions uλ

il and saddle-point
interactions Δλl

p,ij in the correlation operator b̂p01 (13)
act only between nearest-neighbors. In this section, we
discuss the form of this operator for BCC and FCC
alloys with any pairwise kinetic and saddle-point inter-
actions and illustrate resulting expressions by examples
of three-neighbor interaction (3NI) models.

To this end, it is convenient to express the corre-
lation operator b̂p01 (13) in terms of the “correlation
Hamiltonian” Hc

p,01 which describes influence of ki-
netic and saddle-point interactions between neighbor-
ing atoms on the p0 � v1 jump probability. This corre-
lation Hamiltonian has the form of a sum of interactions
with different groups of sites iξ having the same crys-
tal symmetry ξ (with respect to the bond (0,1) of the
p0 � v1 jump) described by the correlation energy εαpξ:

b̂p01 = nh
0n

h
1 exp (βH

c
p,01) ,

Hc
p,01 =

∑
α,ξ

εαpξ
∑
iξ

nα
iξ
. (33)

Positions Ri and symmetries ξ of all sites i = iξ in
Eqs. (33) considered below for BCC and FCC alloys
are presented in Tables A3–A6 in Appendix 1. Each
symmetry ξ can be conveniently characterized by the
numbers m and n of coordination spheres for the lattice
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vectors Rm and Rn which describe the position Ri of
site i = iξ with respect to two “central” sites, 0 and 1,

Rm = Ri −R0, Rn = Ri −R1;

or

Rm = Ri −R1, Rn = Ri −R0. (34)

For sites 0 and 1 corresponding to the p0 � v1 jump
under consideration, the symmetry ξ is denoted in Ta-
bles A3–A6 as ξ = j (implying: “jumping”). For other
sites i 
= 0, 1, symmetries ξ are described by Latin let-
ters l = a, b, c, . . ., in the order of increasing the values
m and n in Eqs. (34). If sites i with different sym-
metries ξ correspond to the same energy εαpξ in the
Hamiltonian (33), such symmetries can be denoted as
ln, with the same letter l and the same energy εαln = εαl
in Eq. (33) but with different numerical indices n. For
the 3NI model, such symmetries in Tables A3–A6 are
e1, e2 and f1, f2, . . . , f6 for BCC alloys, or h1, h2, . . . , h4

and i1, i2, i3 for FCC alloys, while the appropriate en-
ergies in (33) are εαe and εαf or εαh and εαi . The value
N(iξ) in the last line of Table A3 or A4 is the total
number of sites iξ for each symmetry ξ.

For a BCC alloy, sites iξ with ξ = a, b, c are the
nearest neighbors of site 0 or site 1, as shown in Fig. 1:

ia = 2, 4, 5, 3̄, 6̄, 8̄; ib = 3, 6, 8, 2̄, 4̄, 5̄;

ic = 7, 1̄.
(35)

For an FCC alloy, symmetries ξ denoted in Table A2 as
a, b, c, d (and in paper [29] as Δ, v, s, c) correspond to
the nearest neighbors of site 0 or (and) site 1, as shown
in Fig. 2:

ia = 2, 4, 9, 12; ib = 3, 5, 3̄, 5̄;

ic = 6, 8, 10, 11, 2̄, 4̄, 9̄, 1̄2; id = 7, 1̄.
(36)

For the 3NI model of a BCC alloy, correlation energies
εαpξ in (33) are expressed via kinetic interactions uα

n and
saddle-point interactions Δα

np for the n-th neighbors as
follows:

εαpa = uα
1+uα

2−Δα
1p, εαpb = uα

1+uα
3−Δα

2p,

εαpc = uα
1 −Δα

3p, εαpd = uα
2 −Δα

4p,

εαpe = uα
3 , εαpf = 0.

(37)

Here, index p at energies εαpξ which do not depend
on the kind p of a jumping atom (do not include
the saddle-point energy Δα

np) can be omitted, but we
preserve it for uniformity of notation. The saddle-
point energies Δα

np = Δα
p (Rns) correspond to the fol-

lowing vectors Rns = Rin − Rs which describe dis-

placements of site in with respect to the saddle point
Rs = (0.5, 0.5, 0.5) (in a0/2 units, here and below):

R1s = (0.5, 0.5,−1.5), R2s = (1.5, 1.5,−0.5),

R3s = (1.5, 1.5, 1.5), R4s = (0.5, 0.5, 2.5).
(38)

In Eqs. (37) and (38), we take into account that inter-
atomic distances for the saddle-point interactions Δα

3p

and Δα
4p are the same: R3s = R4s = (27/4)1/2, and we

allow for both these interactions. The NNI (or “four-
frequency”) model of BCC alloys in Eqs. (37) corre-
sponds to εb = εc and εd = εe = 0.

For the 3NI model of an FCC alloy, correlation en-
ergies εαpξ in (33) are

εαpa = 2uα
1 −Δα

1p, εαpb = uα
1 + uα

2 −Δα
2p,

εαpc = uα
1 + uα

3 −Δα
3p, εαpd = uα

1 ,

εαpe = uα
2 + uα

3 , εαpf = uα
2 ,

εαpg = 2uα
3 , εαph = uα

3 , εαpi = 0,

(39)

where the saddle-point energy Δα
np = Δα

p (Rns) cor-
responds to the following vector Rns of displacement
of site in with respect to the saddle point Rs =

= (0, 0.5, 0.5):

R1s = (1,−0.5,−0.5), R2s = (0, 1.5,−0.5),

R3s = (1, 0.5, 1.5).
(40)

The NNI (or “five-frequency” [2]) model of FCC alloys
in Eqs. (39) corresponds to εb = εc = εd and εe,f,g,h =

= 0.
Let us also note that due to the operator identities

nα
i n

p
i = nα

i δαp, exp(xnα
i ) = 1 + nα

i f(x), (41)

where δαp is the Kroneker symbol and f(x) is (ex − 1),
each factor exp(βεαξ n

α
iξ
) in the correlation operator (33)

can be written as

exp(βεαξ n
α
iξ
) = 1 + nα

iξ
fα
pξ,

where

fα
pξ = eαpξ − 1, eαpξ = exp (βεαpξ). (42)

It leads to the following two relations used in the cal-
culations below:

nα
iξ
exp

(
β
∑
λ

ελpξn
λ
iξ

)
= nα

iξ
eαpξ,

nh
iξ
exp

(
β
∑
λ

ελpξn
λ
iξ

)
= nh

iξ
.

(43)
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4. DESCRIPTION OF VACANCY
CORRELATIONS AND EXPRESSIONS FOR
COEFFICIENTS IN BASIC EQUATIONS (17)

AND (19) VIA STATISTICAL AVERAGES

As mentioned in Sec. 2, the pairwise vacancy cor-
relation effects in the master equation approach are
described by effective interactions (“fields”) hρλ

n in
Eqs. (17) and (19). Different approximations in de-
scription of these effects correspond to different choices
of the total number nmax of such fields [24, 29], and
using higher nmax enables one to describe these effects
more accurately.

The simplest approximation, to be called the
nearest-neighbor-jump approximation (NNJA), corre-
sponds to nmax = 1 and to presence in Eqs. (17)–(20)
of only one vector Rn,1 = R1,1. This approximation is
usually sufficient for qualitative description of vacancy
correlations with the typical accuracy of the order of
10–20 %. For quantitative descriptions, we will use the
“second-shell-jump approximation” (SSJA) which takes
into account vacancy correlations for all sites which can
be reached by a vacancy for two jumps. The SSJA has
been first suggested by Bocquet [1] for dilute FCC al-
loys. For BCC alloys, SSJA correspond to nmax = 6,
and for FCC alloys, to nmax = 5.

For the SSJA, vectors Rn,1 in Eqs. (17)–(20) can
be chosen as follows:

BCC alloys :

{R1,1;R2,1;R3,1;R4,1;R5,1;R6,1} =

= {111; 002; 022; 131; 113; 222};
FCC alloys :

{R1,1;R2,1;R3,1;R4,1;R5,1} =

= {011; 002; 121; 112; 022}.

(44)

Below in this section, we derive expressions for co-
efficients lλp,n, mq

p,n and tqλp,nm in Eqs. (17) and (19) via
one-site and two-site averages (23). Note that terms
with the occupation operators nq

i for sites i = 0 and
i = 1 are actually absent in these expressions due to
the condition k 
= 0 
= j in basic equations (16).

First, we consider coefficients lλp,n, mq
p,n, and tq1p,nm

in Eqs. (18), (20), and (24) which are expressed via one-
site averages νqpi in (23). Each such average evidently
depends only on the symmetry ξ of site i but not on
the choice of this site among all sites of this symmetry:
νqpiξ = νqpξ. Then, using Tables A1 and A2 for operators
of turn T̂k, we can express coefficients mq

p,n in Eqs. (21)
via averages νqpξ as follows:

BCC:

mq
p,1 = (νa − νb − νc)

q
p, mq

p,2 = 4(νa − νd)
q
p,

mq
p,3 = 2(νb − νe2)

q
p,

mq
p,4 = (νd + νf2 − νf1 − νf4)

q
p,

mq
p,5 = (νd + 2νe1 + νf1 − νf2 − 2νf3 − νf4)

q
p,

mq
p,6 = (νc + νf1 − νf5 − νf6)

q
p;

FCC:

mq
p,1 = (2νa−2νc−νd)

q
p, mq

p,2 = 4(νb−νf )
q
p,

mq
p,3 = (νc + νe + νh2 − νg − νh3 − νh4)

q
p,

mq
p,4 = 2(νc + νg − νh2 − νh4)

q
p,

mq
p,5 = (νd + 2νh1 − 2νi2 − νi3)

q
p.

(45)

Here, symmetries ξ = a, b, . . . are indicated in Tab-
les A3–A6 and indices q and p at brackets mean that
they should be put at each term within brackets, e. g.
(νa + . . .)qp = (νqpa + . . .). In a binary alloy AB, due to
the identity (nA

i +nB
i ) = 1, coefficients mq

p,n (21) obey
following relations being useful for calculations:

mA
p,n +mB

p,n = −cωpδn1, (46)

where δn1 is Kroneker symbol.
Calculations of coefficients lqp,n in Eqs. (18) using

Tables A3–A6 show that each lqp,n differs from the anal-
ogous coefficient mq

p,n in (45) just by a constant Cn:

lqp,n = 2Cnm
q
p,n, (47)

where constants Cn for different n are as follows

BCC alloy :

C1,3,5,6 = 1; C2 = 1/4; C4 = 2;

FCC alloy :

C1,4,5 = 1; C2 = 1/4 ; C3 = 2.

(48)

Expressions for terms tq1p,nm in Eq. (24) via one-site
averages can be found using Eq. (22) and conditions of
coincidence of operator nq

n,1 with some of operators nλ
i

in the sum σλ
k,m in (22). These expressions are pre-

sented in Appendix 2.
To write the two-site terms tqλ2p,nm in Eq. (24), we

note that due to the crystal symmetry, terms T̂kσ
λ
k,m

in Eq. (22) for a number of different values k are equal
to each other or differ only by the sign. It enables us
to write Eq. (22) as follows:

tqλp,nm = 〈ŵp
01(ϕ

λ
AmT̂A+ϕλ

BmT̂B+ϕλ
CmT̂C)n

q
n,1〉. (49)
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Here, operators T̂L and ϕλ
Lm with L equal to A,B, or C

are expressed via operators of turn T̂k and terms σλ
k,m

in Eq. (22) as follows:

BCC:

T̂A = T̂1 + T̂2 + T̂3 + T̂4, T̂B = T̂5,

T̂C = T̂6 + T̂7 + T̂8;

ϕλ
Am = σλ

1,m, ϕλ
Bm = T̂5σ

λ
5,m,

ϕλ
Cm = T̂6σ

λ
6,m;

FCC:

T̂A = T̂1 + T̂2 + T̂3 + T̂4 − T̂7,

T̂B = T̂5 + T̂6 + T̂8,

T̂C = T̂9 + T̂10 − T̂11 − T̂12;

ϕλ
Am = σλ

1,m, ϕλ
Bm = T̂5σ

λ
5,m,

ϕλ
Cm = T̂9σ

λ
9,m.

(50)

The form of expressions for two-site terms tqλ2p,nm in
(24) via averages νqλp,ij in (23) can be illustrated by the
term tqλ2p,11 used in the NNJA. It can be written as the
sum of terms tξξ′ corresponding to different symmetries
ξ and ξ

′
of sites i and j:

tqλ2p,11 =
∑
ξ,ξ′

tξξ′ . (51)

In the notation of Sec. 3, symmetries ξ and ξ
′

in (51)
correspond to a, b, or c for BCC alloys, and a, b, c, or
d for FCC alloys, while tξξ′ can be written as follows:

BCC alloys :

taa = 3ν28̄ − 2ν25 − 2ν23̄,

tab = 2ν23 − 3ν28 − 3ν22̄ + 2ν25̄,

tac = −(ν27 + ν21̄),

tbb = 3ν35̄ − 2ν36 − 2ν34̄,

tbc = ν37 + ν31̄, tcc = ν71̄;

FCC alloys :

taa = 2(ν24 + ν29 + ν49),

tac = −2(ν26 + ν28 + ν2,10 + ν2,11),

tad = −4ν27,

tbb = 2(ν35̄ − ν35 − ν33̄),

tbc = 2(ν3,10 − ν36 − ν32̄ + ν39̄),

tcc = 2(ν6,10 + 2ν64̄ − ν6,11 − ν69̄ − ν6,1̄2),

tcd = 2(ν67 + ν61̄), tdd = ν71̄ .

(52)

Here, νij or νi,j means νqλp,ij and terms tξ′ξ with ξ
′ 
= ξ

not given in (52) are obtained from terms tξξ′ presented

in these equations by interchanging indices q and λ.
Expressions for terms tqλ2p,nm with all n and m used in
SSJA are given in Appendix 3 for the kinetic mean-field
approximation described below.

5. CALCULATIONS OF STATISTICAL
AVERAGES USING KINETIC MEAN-FIELD

APPROXIMATION

Statistical averages in Eqs. (15) and (23) can be
evaluated using either Monte Carlo simulations dis-
cussed in Sec. 6 or approximate analytical calculations.
In this section, we describe the simple and effective
method of such calculations, the kinetic mean-field ap-
proximation (KMFA) suggested in Refs. [29, 30]. For
dilute alloys, KMFA is exact, while comparison with
Monte Carlo simulations made in [30] and in Sec. 6
shows that it is usually sufficiently accurate for all con-
centrations. Below, we present main relations of KMFA
for the case of arbitrary pairwise interactions consid-
ered in this work.

The KMFA neglects fluctuations of occupation
numbers np

i in statistical averages (15) and (23): each
np
i is replaced by its mean value 〈np

i 〉 = cp. At the
same time, thermodynamic quantities, in particular,
thermodynamic activity coefficients aα in Eqs. (11), are
found using the more exact, pair-cluster approximation
(PCA). For example, for a binary alloy AB, the PCA
expression for aB (related to the thermodynamic factor
Φ in Eq. (29) as Φ = 1 + ccAd ln aB/dc) has the form

aB =
cA
c

exp(βλB) =

= exp

{
−
∑
n=1

zn ln

(
1 +

2cfBB
n

Rn + 1

)}
, (53)

where fBB
n is [exp(−βvBB

n )−1], Rn is (1+4ccAf
BB
n )1/2,

zn is the coordination number for the n-th shell in the
crystal, and vBB

n is the “thermodynamic” solute-solute
interaction in this shell.

5.1. KMFA expressions for mean frequencies

Let us first find KMFA expressions for mean fre-
quencies ωp in (15). To this end, we can use
Eqs. (10)–(12), (33), and (41). Using also Eqs. (10)
and (33) for the operator ŵp

01 in the average (15) and
replacing each np

i in this average by its mean value
〈np

i 〉 = cp, we obtain the KMFA expressions for mean
frequencies ωp (to be denoted ω0

p) which generalizes
Eqs. (24) in [30] for NNI model to the case of arbitrary
pairwise interactions:
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ω0
α = ωα0aα

∏
ξ

S
Nξ

αξ , ω0
h = ωh0

∏
ξ

S
Nξ

hξ , (54)

where ωp0 is the same as in (12). Each factor Spξ in
(54) is expressed via Mayer functions fα

pξ for correlation
energies εαpξ in Eq. (33) as follows:

Spξ = 1 +
∑
α

cαf
α
pξ, (55)

where fα
pξ and eαpξ are the same as in (42). Value Nξ in

Eq. (54) is the total number of sites i with the energy
εαpξ in the correlation Hamiltonian (33). For symme-
tries ξ for which energies εαpξ differ from each other, this
Nξ coincides with N(iξ) in Tables 1 and 2. If symme-
tries ξ = ln correspond to the same correlation energy
εαpξ for several ln (as it is for symmetries en and fn or
hn and in for the 3NI model used in Sec. 3), value Nξ

in (54) is the sum of N(iln) over all ln.
For the 3NI model, Eqs. (54) at any p can be ex-

plicitly written as follows:

BCC:

ω0
p = ωp0apS

6
paS

6
pbS

2
pcS

6
pdS

18
pe ,

FCC:

ω0
p = ωp0apS

4
paS

4
pbS

8
pcS

2
pdS

4
peS

4
pfS

8
pgS

20
ph,

(56)

where we put for brevity ah = 1. Expressions (56) gen-
eralize Eqs. (68) of Ref. [29] derived for the NNI model
of FCC alloys (for which we have in the second equation
in (56): Spb = Spc = Spd, Spe,pg,pf,ph = 1).

Expressions (54)–(56) show that at not weak corre-
lation energies εαpξ in (42) typical of real alloys, concen-
tration dependences of mean frequencies ω0

p, generally,
should be very sharp, due to the presence in these ex-
pressions of many factors SNξ

pξ with high exponents Nξ.
These high exponents have mainly a geometrical origin
related to a high number of neighbors of each bond in
the close-packed BCC and FCC structures. When cor-
relation energies εαpξ are mainly positive (in particular,
when kinetic interactions uα

n in Eqs. (37) and (37) are
mainly positive), mean frequencies increase with con-
centrations cα; for negative εαpξ and uα

n, types of these
concentration dependences change sign. It is illustrated
by the results for alloys CuNi, CuZn, and AgCd pre-
sented in Ref. [30].

Expressions for correlation factors fp(c) and fp∗(c)

discussed below do not include such sharp factors as
Eqs. (54) and (56), they depend on one-site and two-
site averages given by (23) and (57), and these factors
usually vary with concentration c rather smoothly, as
illustrated by Fig. 4 below.

As discussed in Ref. [30] and in Sec. 6, KMFA re-
sults (54) and (56) for mean frequencies are usually

sufficiently close to exact values ωp(c). Hence sharp
concentration dependences of diffusion coefficients typ-
ical of real alloys are mainly explained by these KMFA
results for mean frequencies ωp(c) in Eqs. (29), (32)
and analogous relations.

5.2. KMFA expressions for one-site and
two-site averages

To describe effects of vacancy correlations on dif-
fusion, we should find one-site and two-site averages
νqpi and νqλp,ij in (23) which enter quantities mq

p,n, lqp,n,
tq1p,nm, tqλ2p,nm in Eqs. (45)–(49). KMFA expressions
for these averages will be denoted by the upper index
“0”, just as for ω0

p in (54), and these expressions can be
conveniently written in terms of “reduced” quantities
marked by the upper symbol “tilde”:

{νqpi, mq
p,n, l

q
p,n, t

q
1p,nm}0 =

= cpcqω
0
p · {ν̃qpi, m̃q

p,n, l̃
q
p,n, t̃

q
1p,nm},

{νqλp,ij , tqλ2p,nm}0 = cpcqcλω
0
p · {ν̃qλp,ij , t̃qλ2p,nm}.

(57)

To find “reduced” averages ν̃qpi and ν̃qλp,ij in (57), we can
use relations (10), (23), (33), and (43). Employing the
same arguments as in derivation of KMFA expressions
(54) for frequencies, we obtain

ν̃qpi = ηqpξ; ν̃qλp,ij = ηqpξη
λ
pξ′ . (58)

Here, index ξ or ξ
′
indicates symmetry of site i or site

j, while the factor ηqpξ is expressed via quantities eαpξ
and Spξ in Eqs. (42) and (55) as follows:

ηαpξ =
eαpξ
Spξ

, ηhpξ =
1

Spξ
. (59)

KMFA expressions for reduced quantities m̃q
p,n, l̃qp,n,

t̃q1p,nm, and t̃qλ2p,nm in Eqs. (57) can be obtained using
relations (45)–(49), (58), and (97)–(105) in Appendix 2.
In particular, to find one-site quantities m̃q

p,n, l̃qp,n, or
t̃q1p,nm, we should just replace each νqpξ in Eqs. (45),
(47), or (97)–(100) by ηqpξ from Eq. (59). For example,
KMFA expressions for quantities m̃q

p,1 and t̃q1p,11 used
in the NNJA are as follows:

BCC alloys :

m̃q
p,1 = (ηa − ηb − ηc)

q
p,

t̃q1p,11 = (3ηa + 3ηb + ηc)
q
p;

FCC alloys :

m̃q
p,1 = (2ηa − 2ηb − ηd)

q
p,

t̃q1p,11 = (2ηa + 2ηb + 4ηc + ηd)
q
p.

(60)

KMFA expressions for two-site quantities t̃qλ2p,nm are
given by Eqs. (102)–(105) in Appendix 3.

79



V. G. Vaks, K. Yu. Khromov, I. R. Pankratov, V. V. Popov ЖЭТФ, том 150, вып. 1 (7), 2016

5.3. KMFA expressions for mean frequencies
and correlation factors in binary alloys

In Secs. 5.1 and 5.2, we considered alloys with any
number of components. For a binary alloy AB, index
α in Eqs. (55) and (59) takes the only value α = B, to
be omitted for brevity:

fB
pξ = fpξ = epξ − 1, Spξ = 1 + cfpξ,

ηBpξ = ηpξ =
epξ
Spξ

, ηApξ =
1

Spξ
.

(61)

To make more clear relations between factors epξ in
(61) and kinetic or saddle-point interactions uB

n or ΔB
np

in Eqs. (37) and (39), we also present expressions for
epξ via the “interaction factors” en = exp(βuB

n ) and
ζnp = exp(−βΔB

np) for the 3NI model:

BCC alloys :

epa = e1e2ζ1p, epb = e1e3ζ2p,

epc = e1ζ3p, epd = e2ζ4p, ee = e3,

FCC alloys :

epa = e21ζ1p, epb = e1e2ζ2p,

epc = e1e3ζ3p, epd = e1, ee = e2e3,

ef = e2, eg = e23, eh = e3.

(62)

Equations (56), (61), and (62) illustrate sharp concen-
tration dependences of mean frequencies ω0

p(c) men-
tioned above.

Below in this section, we present explicit KMFA ex-
pressions for correlation factors in binary alloys. The
vacancy correlation effects will be described using SSJA
or NNJA which seem usually to be sufficiently ac-
cuirate.

First we consider tracer diffusion and present the
KMFA equations for correlation factors fp∗ derived in
Ref. [30] (which can be shown to be true not only for the
NNI model used in Ref. [30] but for arbitrary pairwise
interactions). The tracer solvent correlation factor fA∗

is expressed via appropriate effective fields hA∗v
n and

hA∗B
n as follows:

fA∗ = 1−2cAm̃
A
A,1h̃

A∗v
1 −2c m̃B

A,1(h̃
A∗v
1 −h̃A∗B

1 )+

+ c

nmax∑
n=2

l̃BA,nh̃
A∗B
n . (63)

Here, quantities m̃q
p,n, t̃

q
1p,nm, and t̃qq

′
2p,nm are the same

as in Eqs. (57), while fields hA∗v
n and hA∗B

n are deter-

mined by the following set of equations:

nmax∑
m=1

[h̃A∗v
m (t̃A1A,nm − 2δm1m̃

A
A,n)−

− ch̃A∗B
m t̃AB

2A,nm] = m̃A
A,n,

nmax∑
m=1

[h̃A∗v
m (zt̃A1B,nm − 2δm1m̃

B
A,n)−

− h̃A∗B
m (t̃B1A,nm + ct̃BB

2A,nm + zt̃A1B,nm)] = m̃B
A,n.

(64)

Similarly, the tracer solute correlation factor fB∗ is ex-
pressed via appropriate effective fields hB∗v

n and hB∗B
n

as follows:

fB∗ = 1−2cAm̃
A
B,1h̃

B∗v
1 +2cm̃B

B,1(h̃
B∗B
1 −h̃B∗v

1 )+

+ c

nmax∑
n=2

l̃BB,nh̃
B∗B
n , (65)

where fields h̃B∗v
n and h̃B∗B

n obey equations analogous
to (64):

nmax∑
m=1

[h̃B∗v
m (t̃B1A,nm − 2δm1zm̃

A
B,n)−

− ch̃B∗B
m zt̃AB

2B,nm] = zm̃A
B,n,

nmax∑
m=1

[h̃B∗v
m (t̃A1B,nm − 2δm1m̃

B
B,n)−

− h̃B∗B
m (2t̃B1B,nm + ct̃BB

2B,nm)] = m̃B
B,n.

(66)

In Eqs. (63)–(66), quantities nmax and m̃q
p,n are the

same as in Eqs. (19) and (57), while quantities l̃q
′

p,n and
t̃qq

′
p,nm with index q′ equal to A or B are obtained from
l̃λp,n and t̃qλp,nm in Eqs. (18) and (20) by replacing index
λ by this q′.

Let us now discuss the intrinsic diffusion. For a bi-
nary alloy AB, Eqs. (17)–(19) with h = A and α = B

include only fields hαv
n = hBv

n (fields hBB
n are zero due

to the antisymmetry of fields hρσ
n in indices ρ and σ

[24]), and Eqs. (19) take the form

nmax∑
m=1

AnmhBv
m = mA

B,nδμB −mB
A,nδμA,

Anm = tBB
A,nm − tAB

B,nm − δm12m
A
B,n,

(67)

where δm1 is Kroneker symbol. Below, we use re-
duced quantities Ãnm defined analogously to those in
Eqs. (57):

Anm = ccAω
0
AÃnm, Ãnm = Ã1,nm + cÃ2,nm,

Ã1,nm = t̃B1A,nm − 2zm̃A
B,nδm1,

Ã2,nm = t̃BB
2A,nm − zt̃AB

2B,nm.

(68)
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Here, z = ω0
B/ω

0
A with ω0

p from Eqs. (54)–(56) is the
frequency ratio in the KMFA:

z =
ω0
B

ω0
A

= z0aB
∏
ξ

(
SBξ

SAξ

)Nξ

, (69)

where z0 is ωB0/ωA0. Equations (61) and (62) show, in
particular, that each ratio SBξ/SAξ in Eq. (69) differs
from unity only due to the difference between sadd-
le-point interactions ΔB

nB and ΔB
nA in relations of types

(37) and (39).
Let us present SSJA expressions for correlative On-

sager coefficients Lc
pq in Eqs. (27) which determine cor-

relation factors fp by relations (30). To this end, it is
convenient to use the shortened notation:

χnA = m̃B
A,n, χnB = m̃A

B,n, (70)

where quantities m̃q
p,n used in the KMFA are deter-

mined by Eqs. (45), (57), and (58). Then, using
Eqs. (17), (26), (45)–(47), (57)–(59), (67), and (68),
we find that the correlative Onsager coefficients Lc

pq in
(27) can be concisely written as follows:

Lc
AA = KAA, Lc

AB = KAB, Lc
BA = KBA,

Lc
BB = zKBB,

(71)

where z is the same as in (69) and Kpq is a bilinear
form in quantities χnp (70):

Kpq =

nmax∑
n,m=1

χnpKnmχmq. (72)

Here, matrix elements Knm are expressed via the deter-
minant D of matrix Ãnm in Eqs. (68), minors Mnm of
this determinant, and constants Cn in (47) as follows:

Knm =
2

D
(−)n+mCnMmn, D = det ||Ãnm||. (73)

For the NNJA with nmax = 1, relations (71)–(73) take
the following form:

Lc
AA =

2

D
(m̃B

A,1)
2,

Lc
AB = Lc

BA =
2

D
m̃B

A,1m̃
A
B,1,

Lc
BB =

2z

D
(m̃A

B,1)
2,

(74)

where denominator D = D(nmax = 1) is Ã11 in (68).
Using Eqs. (68) and (97)–(105) for matrices Ãnm,

t̃q1p,nm, and t̃qλ2p,nm, we have numerically checked that
the SSJA expressions (71)–(73) for correlative Onsager
coefficients in both BCC and FCC alloys obey the nec-
essary symmetry relation Lc

AB = Lc
BA [2]. Presence

of this symmetry relation for any concentration and
interaction model confirms consistency of the master
equation approach used.

6. MONTE CARLO CALCULATIONS OF
STATISTICAL AVERAGES

Employing the well-elaborated Monte Carlo meth-
ods based on Metropolis algorithm [33] enables us to
find statistical averages practically exactly. In this sec-
tion, we use these methods, first, to assess accuracy of
KMFA calculations of mean frequencies ωp in (15) and
correlation factors fp (30) for some realistic models of
alloys and, second, to show that the PCA expressions
of type (53) seem to describe thermodynamics of disor-
dered alloys under consideration with a high accuracy.

For our Metropolis Monte Carlo simulations, we
used supercells with periodic boundary conditions con-
structed by 40×40×40 repetitions in three directions of
cubic cells containing two and four lattice sites for BCC
and FCC lattices respectively. Thus, total amount of
lattice sites was 128000 for BCC lattice and 256000 for
FCC lattice. We also performed control calculations
with 80×80×80 supercells and different seeds for gen-
erating pseudorandom number sequencies for some of
statistical averages.

At a single Monte Carlo step positions of a ran-
domly chosen pair of nearest neighbor atoms in crystal
lattice were exchanged; 107 of such single Monte Carlo
steps were made to achieve thermal equilibrium, after
which 5 · 107 more steps were made to evaluate statis-
tical averages.

With this set of Monte Carlo parameters, we esti-
mate relative statistical fluctuations of our Monte Carlo
results as not exceeding 0.001.

Dependencies of reduced mean frequencies ωpr =

= ωp(c)/ωA0 on concentration for BCC alloy FeCr are
displayed in Fig. 3.

As it was the case for FCC alloys CuNi, AgCd,
and CuZn considered in [30], these concentration de-
pendences are very sharp decreasing almost 4 orders of
magnitude as concentraion increases from 0 to 1. Thus,
it is demonstrated again that the main contribution to
the sharp dependence of diffusion coeficients on concen-
tration is due to the corresponding sharp dependences
of the mean frequencies.

Discussing mean frequencies concentration depen-
dences for FeCr it is most natural to compare them
with the corresponding quantities for FCC alloy CuNi,
since these two alloys exist in a wide range of concen-
trations reaching values c = 1. We note that for BCC
alloy FeCr the quality of analytical statistical approx-
imation KMFA for calculations of mean frequencies is
similar to the KMFA quality for FCC alloy CuNi con-
sidered in [30]. The largest deviations between analyt-
ical and MC results for CuNi was observed at concen-

6 ЖЭТФ, вып. 1 (7)
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Fig. 3. (Color online) Reduced mean frequencies ωpr =

= ωp(c)/ωA0 in Eqs. (91) for the model of FeCr alloys de-
scribed in Sec. 9. The set A in Table 2 at T = 1573 K is used.
Thin curves correspond to KMFA and thick curves to Monte
Carlo methods. Blue curves show ωr

B = ωr
Cr, and red curves,

ωr
A = ωr

Fe

trations around c = 0.7–0.75, where KMFA and MC
results differed by a factor of 1.6. Host atoms mean
frequency for FeCr is modelled by KMFA practically
exactly. For solute atoms in FeCr, alloy MC/KMFA
ratio for mean frequencies is a monotonously increas-
ing function reaching values about 2 at concentrations
close to 1. At concentrations where MC/KMFA ratio
reaches its largest value for CuNi, the analoguous ratio
for FeCr has very close values of 1.7.

Let us now discuss accuracy of KMFA for calcua-
tions of correlations factors. While evaluating jump fre-
quencies requires knowledge of just correlation operator
(13), correlation factors are more compelex quantities
containing also one-site and two-site averages (23) and
(57). NNJA and SSJA approximations used in this pa-
per include linear combinations of these quantities with
different symmetries of lattice sites given by (35) and
Tables A3 and A5. Thus, to estimate KMFA accuracy
for both NNJA and SSJA, we present in this section
KMFA and MC concentration dependences of underly-
ing one-site and two-site averages. Calculations were
made for the model of CuZn alloy described in [30] for
crystal symmetry ξξ = aa.

The maximum difference between KMFA and MC
mean frequencies for CuZn alloy reported in [30] was
about 10 %. The KMFA accuracy of quantities (23)

0
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2.5
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0.1 0.2 0.3
c

(
)

�
q

a
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(
)

�
q

a
a

�p

Fig. 4. (Color online) Reduced statistical averages given by for-
mulae (23), (57), one site (upper frame) and two site (lower
frame) calculated for CuZn alloy with parameters, described
in [30] found using KMFA (thin curves) or NNJA and Monte
Carlo (thick curves). Red lines show

(
ν̃A
A

)
a

and
(
ν̃A
AB

)
aa

,
green lines —

(
ν̃A
B

)
a

and
(
ν̃B
AB

)
aa

, blue lines —
(
ν̃B
A

)
a

and(
ν̃A
BB

)
aa

, and black lines —
(
ν̃B
B

)
a

and
(
ν̃B
BB

)
aa

and (57) shown in Fig. 4 is similar to this value or bet-
ter. The only exception is

(
ν̃BB
B

)
aa

where difference
between KMFA and MC results reaches 20 %. Thus, we
have demonstrated that KMFA provides good accuracy
for both mean frequencies and correlations factors.

Let us now discuss accuracy of the pair-cluster ap-
proximation for description of thermodynamics of dis-
ordered BCC and FCC alloys under consideration. To
this end, we will compare the PCA relation (53) for
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Fig. 5. (Color online) Left frames: chemical potential λPCA
r (c)

in Eq. (75) (curves) and λMC(c) (blue circles), for a BCC
alloy with nearest neighbor interaction found as described in
text. The following values of reduced temperature τ and in-
teraction v1 are used. Frame a: τ = 0.1, v1 < 0; frame b:
τ = −0.1, v1 < 0; frame c: τ = 0.1, v1 > 0; and frame
d: τ = −0.1, v1 > 0. Each right frame shows the difference
δλr = λPCA

r −λMC
r (blue circles) for the same τ and v1 values

as those in the adjacent left frame

chemical potential λ = λPCA with the Monte Carlo
results λ = λMC. To be definite, we consider the sim-
plest models of alloys with the nearest-neighbor ther-
modynamic interaction v1. Negative v1 correspond to
the tendency to decomposition, while positive v1 cor-
respond to the tendency to ordering.

Comparison of functions λPCA(c) with λMC(c) for
BCC alloys at some temperatures T of the order of
critical temperature Tc is presented in Fig. 5. In this
figure, we use reduced values of chemical potentials and
temperature, λr and τ , in units of critical temperature
found in the PCA, TPCA

c , which somewhat exceeds the
exact value Tc for BCC alloys with the nearest-neighbor
interaction:

λr =
λ

TPCA
c

, τ =
T

TPCA
c

− 1,

TPCA
c = 1.59|v1| = 1.09Tc.

(75)

Hence values τ = 0.1 or τ = −0.1 considered in Fig. 5
correspond to temperatures by about 20 % above or by
about 1.5 % below Tc, respectively.

Figure 5 shows that differences δλr = λPCA
r − λMC

r

do not exceed several percents even for τ = −0.1, that
is, at T < Tc when the homogeneous disordered state
(used in the PCA calculations) is actually thermody-
namically unstable for significant intervals of concen-
tration. This figure also shows that within the sta-
bility region, T > Tc, differences δλ rapidly decrease
when the c, T point moves off the phase boundaries,
and these differences typically do not exceed about a
percent. These conclusions are also true for disordered
FCC alloys. Hence, the PCA seems to provide a highly
accurate description of thermodynamics of BCC and
FCC alloys at all concentrations and temperatures ex-
cept for the narrow vicinities of phase boundaries of the
disordered state.

7. SSJA AND NNJA CORRELATION FACTORS
FOR DILUTE AND FOR RANDOM ALLOYS

For dilute alloys, as well as for random alloys (those
with no interatomic interactions), many exact results
are available. Hence, comparison of SSJA results for
such alloys with these exact results can get an idea
about accuracy of SSJA also for real concentrated al-
loys. For dilute FCC alloys, SSJA expressions for corre-
lation factors are known only for five-frequency model
[1], that is, for the nearest-neighbor interactions. For
dilute BCC alloys, rather sophisticated methods to
treat vacancy correlations have been developed [4, 5],
but a more simple SSJA seems to be not discussed
in detail. For random alloys, SSJA correlation factors
have been given only for FCC alloys [30]. In this sec-
tion, we present SSJA correlation factors for both BCC
and FCC dilute and random binary alloys using KMFA
which for such alloys is exact.

For dilute alloys, we will calculate the tracer cor-
relation factors fA∗0 and fB∗0 = fB0 [2] (where the
lower index “0” indicates the c → 0 value for each
quantity). For such calculations, we can use Eqs. (30)
and (70)–(73) for c → 0 which greatly simplifies these
equations. In particular, quantities m̃A

B,n and Ãnm in
Eqs. (70) and (68) take the following form:

m̃A
B,n,0 = −δn,1,

Ãnm,0 = 2z0δn1δm1 + t̃B1A,nm,0,
(76)
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where t̃B1A,nm,0 are given by Eqs. (97)–(100) with re-
placing each νξ by eAξ = eBAξ.

Considering tracer self-diffusion correlation factor
fA∗0, we note that all kinetic and saddle-point inter-
actions in the alloy AB = AA∗ are absent as atoms
A and A∗ are chemically identical. Hence, all fac-
tors ηpξ = epξ in Eqs. (58)–(60) are unity, matrices
Ãnm,0 in (76) become simple numerical matrices, and
“solute” correlation factors fB0 = fA∗0 in Eqs. (30)
and (71)–(73) can be simply evaluated. For complete-
ness, we present SSJA values fSSJA

A∗0 for both BCC and
FCC alloys, together with the NNJA and exact values,
fNNJA
A∗0 and fex

A∗0 (given, e. g., in Refs. [2, 24]):

BCC alloys :

fNNJA
A∗0 =

7

9
= 0.78,

fSSJA
A∗0 =

3085

4179
= 0.7382, fex

A∗0 = 0.7272;

FCC alloys :

fNNJA
A∗0 =

9

11
= 0.82,

fSSJA
A∗0 =

33247

41891
= 0.7937, fex

A∗0 = 0.7815 .

(77)

Equations (77) show, in particular, that the error in
fA∗0 due to neglecting more distant vacancy-atom cor-
relations for the NNJA and SSJA amounts about 7 %
and 1.52 % in BCC alloys, and about 5 % and 1.56 % in
FCC alloys, respectively. Hence, SSJA can describe the
pairwise vacancy-atom correlations rather accurately.

Let us now discuss the solute correlation factor
fB0 = fB∗0 for dilute alloys. According to Eqs. (30)
and (71), it can be written as

fB0 = 1− 2z0KBB,0, (78)

where KBB,0 is the c → 0 limit of term KBB in
Eq. (72).

To get qualitative ideas about the influence of var-
ious kinetic and saddle-point interactions on Onsager
coefficients and on correlation factors, below we present
explicit expressions for the correlative Onsager coeffi-
cients (defined by the general relations (27)) in dilute
alloys, (Lc

pq)c→0 = Lc0
pq, using the more simple NNJA

and the three-neighbor interaction model described by
Eqs. (37) and (39). Using Eqs. (74) and (60)–(62), for
this model in the NNJA we obtain

BCC alloys :

Lc0
AA =

2

D0
e21(e2ζ1A − e3ζ2A − ζ3A)

2,

Lc0
AB =

2

D0
e1(e3ζ2A + ζ3A − e2ζ1A),

Lc0
BB =

2z0
D0

,

D0 = e1(3e2ζ1A + 3e3ζ2A + ζ3A) + 2z0;

FCC alloys :

Lc0
AA =

2

D0
e21(2e1ζ1A − 2e2ζ2A − 1)2,

Lc0
AB =

2

D0
e1(2e2ζ2A + 1− 2e1ζ1A),

Lc0
BB =

2z0
D0

,

D0 = e1(2e1ζ1A+2e2ζ2A+4e3ζ3A+1)+2z0,

(79)

where factors en, ζnA, and z0 are the same as in
Eqs. (62) and (69). The solute correlation factor, ac-
cording to Eq. (30), is fB0 = 1 − 2z0/D0. For the
nearest-neighbor interaction models discussed in detail
earlier (see, e. g., [2]), factors en and ΔnA with n ≥ 2

are unity and Eqs. (79) turn into the well-known NNJA
results for the “four-frequency” model of BCC alloys
or the “five-frequency” model of FCC alloys. Equa-
tions (79) show, in particular, that the presence of
not-nearest kinetic and saddle-point interactions en-
hances the correlation factor fB0 for positive un and
negative ΔB

nA, and reduces it for negative un and pos-
itive ΔB

nA.

Now, we discuss diffusion in random alloys. This
simple model was discussed by a number of authors
[15–17], in particular, to assess accuracy of various the-
oretical models using comparison with Monte Carlo
studies [17]. In Ref. [30], we used Eqs. (63)–(66) to
describe tracer diffusion in FCC random alloys for dif-
ferent values of the frequency ratio z = z0 = ωB0/ωA0

in Eqs. (69). Here, we present analogous results for the
BCC random alloys.

Treatment of BCC and FCC alloys in our ap-
proach is fully similar. Hence, for the BCC alloys, we
should just replace the matrix tFCC

1 in Eqs. (81)–(93)
of Ref. [30] by tBCC

1 and the term (9 + ξ) in Eq. (90)
of [30] by a more general expression, (t11,0 + ξ), which
for BCC alloys is (7 + ξ). The resulting expressions
for tracer correlation factors in BCC and FCC random
alloys have the same form:

fA∗(c) = f0
1 + α

1 + α(2f0 − 1)
, α = c

z − 1

z + 1
, (80)
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Fig. 6. Tracer correlation factors fB∗ (c) for a BCC random alloy found using various methods. Black points show Monte Carlo
results [17]; solid curves (red online), Moleko et al. results [16], and dash dotted curves (blue online), SSJA results. Insert in
frame (a) shows Monte Carlo, Moleko et al. and NNJA results (dashed curves, purple online). Different groups of points and
curves correspond to the following frequency ratios z = ωB0/ωA0, from top to bottom. Frame a): 0.1; 0.2; 0.5; 1; 2; 5; 10.

Insert in frame (a): 0.2; 2; 5. Frame (b ): 0.001; 0.01; 100; 1000

fB∗(c, z) = fA∗

(
cA,

1

z

)
= f0

1 + β

1 + β(2f0 − 1)
,

β = cA
1− z

1 + z
,

(81)

where f0 is the correlation factor fA∗0 value for the ap-
proximation used. For the NNJA, SSJA, and for exact
treatments, these values are given in Eqs. (77).

In Fig. 6, we compare correlation factors fB∗(c) for
BCC random alloys calculated using SSJA or NNJA
with those found in Monte Carlo simulations [17] and
in Moleko et al. [16] model which agrees with Monte
Carlo simulations almost completely. Correlation fac-
tor fA∗(c) can be obtained from these fB∗(c) using the
first relation (81). Figure 6 is fully similar to that for
FCC random alloys presented in Ref. [30]. At not too
different exchange frequencies, 0.2 � z � 5, fB∗(c)

found in SSJA or NNJA agree with those found us-
ing Monte Carlo and Moleko et al. methods within
about 5–10 or 10–20 percents, respectively. At very
high (z or 1/z) � 102, disagreements become large. It
points to the importance for such z of non-pairwise
vacancy correlation effects (which in the present work
are disregarded). This conclusion agrees with that of
Ref. [25]. However, for real alloys, frequency ratios z lie
usually between about 0.2 and 5, which is illustrated,
in particular, by the estimates in Ref. [30] and in Sec. 9
below. For such z, the sufficient accuracy of SSJA and
NNJA in description of random alloys shows that the

non-pairwise vacancy correlations are not too signifi-
cant for diffusion. It can also imply that for real alloys,
SSJA and NNJA should usually be sufficiently accu-
rate.

8. CONCENTRATION DEPENDENCES OF
IRON SELF-DIFFUSION COEFFICIENTS IN

BCC ALLOYS Fe–Cu, Fe–Mn, AND Fe–Ni

For BCC alloys FeCu, FeMn, and FeNi, concentra-
tion intervals of stability are rather narrow [36]: the
solubility limits cs given in Table 1 are low, and ex-
perimental data about concentration dependences of
diffusion coefficients within these intervals seem to be
absent. At the same time, sharpness of these depen-
dences mentioned in Sec. 5.1 enables us to expect that
the variations of diffusion coefficients with concentra-
tion c can be noticeable even for these rather narrow
intervals c � cs.

To estimate these variations, we can use the recent
ab initio calculations of transport coefficients [5] which
include calculations of migration barriers for these al-
loys. For simplicity, we will describe ab initio results [5]
in terms of our three-neighbor interaction (3NI) models
(37) neglecting also the third-neighbor saddle-point in-
teractions: ΔB

3A = ΔB
4A = 0. As discussed by Messina

et al. [5], such models seem to sufficiently accurately
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reproduce their results. Then, the results of Ref. [5] for
migration barriers in the perfectly ordered ferromag-
netic state can be described in terms of kinetic and
saddle-point interactions uB

n , ΔB
1A, and ΔB

2A of the 3NI
model (37) which are presented in Table 1.

Table 1. Thermodynamic parameters and interatomic
interactions (in eV) in Eqs. (37) which correspond to
results of calculations [5] for the four BCC alloys con-

sidered

Alloy T , K cs uB
1 uB

2 uB
3 ΔB

1A ΔB
2A

FeCu 1000 0.01 0.29 0.13 0.03 0.18 −0.04

FeMn 973 0.02 0.21 0.05 0.05 0.05 0.09

FeNi 973 0.04 0.14 0.11 0.03 0.04 0.09

FeCr 973 0.22 0.08 0 0.02 0.02 0.04

Unfortunately, the fully consistent ab initio results
have been obtained in [5] only for the perfectly ordered
ferromagnetic state. At the same time, diffusion ex-
periments are usually made at high T � 1000 K when
the effects of partial or full magnetic disordering are
important. Messina et al. [5] described these effects us-
ing some simple model which can be sufficient to treat
problems discussed by these authors but seems to be
insufficient to describe concentration dependences of
diffusion coefficients at T � 1000 K in which we are
interested.

Let us first estimate concentration dependences of
iron self-diffusion coefficients DA∗ = DFe∗ for four BCC
alloys considered neglecting disordering effects and us-
ing “ideal” values of interactions given in Table 1. As
solute concentrations c < cs are very low, concentra-
tion dependences in Eq. (32) for DA∗ can be taken into
account only for the mean frequency ωA described by
Eq. (56):

DA∗(c) = DA∗0S
6
AaS

6
AbS

2
AcS

6
AdS

18
Ae. (82)

Here, term DA∗0 is the self-diffusion coefficient for a
pure iron, while factors Spξ are given by Eqs. (61)
and (62). The exponent of each term S

Nξ

pξ =

= exp[Nξ ln(1 + cfpξ)] in Eq. (82) can be linearized
in c. Hence, concentration dependences (82) can be
described by a single parameter Ac, to be called the
“concentrational increment”:

DA∗(c) = DA∗0 exp (cAc), (83)

and this Ac is expressed via the Mayer functions fAξ =

= eAξ − 1 in Eqs. (61) as follows:

Ac = 6(fAa + fAb + fAd) + 2fAc + 18fAe. (84)

If we use in Eq. (84) values of interactions uB
n , ΔB

nA,
and temperature T given in Table 1, then for alloys
FeCu, FeMn, FeNi, and FeCr we obtain increment val-
ues (to be referred to as Aid

c ) equal to 560, 150, 110,
and 21, respectively. Such Ac in Eq. (83) would imply
that the iron self-diffusion coefficient in alloys FeCu,
FeMn, and FeNi increases between c = 0 and c = cs
by about 300, 20, and 80 times, respectively. So huge
effects could be easily observed and seem to be unreal-
istic. It seems to indicate that taking into account the
above-mentioned magnetic disordering effects is neces-
sary to adequately describe concentration dependences
of diffusion coefficients at T � 1000 K.

To get an idea about the influence of these effects
on interactions un and ΔB

nA, we can use available ex-
perimental data about the concentration dependence of
iron self-diffusion coefficients in alloys FeCr [12]. Com-
parison of these data with the above-mentioned results
for “ideal” interactions can enable us to estimate scales
and signs of magnetic disordering effects for kinetic and
saddle-point interactions.

The results of measurements of DFe∗(c) in alloys
Fe1−cCrc for concentrations c between 0 and 0.13 and
temperatures T between 933 and 1163 K are described
in Ref. [12] by the following relation:

DFeCr
Fe∗ (c) = DFe∗0 exp [c(4.3Tm/T − 3.2)], (85)

where Tm is the melting temperature being about
1793 K for the concentrations considered [36]. For T =

= 973 K used in Table 1, this relation implies Aexp
c =

= 4.7. Comparing this experimental value with the
“ideal” Aid

c ≈ 21 mentioned above, we see that mag-
netic disordering effects lead to a significant reducing of
kinetic and saddle-point interactions, by about 5 times,
but the sign of Ac in (83) for FeCr alloys at T ≈ 1000 K
still remains positive.

To estimate increments Ac for BCC alloys FeMe
with Me=Cu, Mn, or Ni, we can suppose that the scale
of this “disordering-induced” reduction of Ac for these
alloys is the same as that for alloys FeCr. Then, these
increments can be estimated from the “similarity” hy-
pothesis:

Aest
c (FeMe) ≈

≈ Aid
c (FeMe) · Aexp

c (FeCr)/Aid
c (FeCr). (86)

To qualitatively justify this hypothesis, we can consider
the case of not too strong kinetic and saddle-point in-
teractions: uB

n ,Δ
B
nA � T (which is approximately valid

for alloys considered at T ∼ 1000 K). For this case,
each Mayer function in Eq. (84), according to Eqs. (37),
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(42), and (61), is approximately proportional to inter-
actions uB

n and ΔB
nA. Then, the “similarity” hypothesis

(86) corresponds to the suggestion that the degree of
reducing of these interactions due to the magnetic dis-
ordering is proportional to the degree of this disorder-
ing and is determined only by the ratio of temperature
T to the Curie temperature Tc. Such model (analogous
to other similar models used to describe effects of mag-
netic disordering, e. g., that used in Ref. [5]) seems to be
reasonable and can be sufficient for the order-of-mag-
nitude estimates made in this section.

Using values Aid
c (FeMe), Aid

c (FeCr), and
Aexp

c (FeCr) given above, we estimate values Aest
c

for alloys FeCu, FeMn, and FeNi to be 130, 34, and 25.
It implies that the iron self-diffusion coefficient DFe∗ in
these alloys should increase between c = 0 and c = cs
by about 3.6, 2, and 2.7 times, respectively. So sharp
variations of DFe∗ , by several times within so narrow
intervals of concentration, seem to be interesting phys-
ical effects which deserve experimental verifications.
Measurements of increments Ac in Eq. (83) for alloys
FeCu, FeMn, and FeNi can also yield an important
information about the real scale of magnetic disorder-
ing effects for kinetic and saddle-point interactions for
which quantitative theoretical estimates are presently
difficult.

9. CONCENTRATION DEPENDENCES OF
TRACER AND CHEMICAL DIFFUSION

COEFFICIENTS IN BCC ALLOYS
IRON-CHROMIUM AT HIGH T

9.1. Features of concentration dependences of
diffusion coefficients in alloys FeCr at different

temperatures

For BCC alloys FeCr, concentration dependences
of both tracer and chemical diffusion coefficients have
been studied by many authors [8–14]. Types of these
dependences were found to change with elevating tem-
perature T . In particular, the iron self-diffusion co-
efficient DFe∗ at not high T � 1000 K, according to
Eq. (85), does increase with the chromium concentra-
tion c, anyway for c � 0.2. On the contrary, at high
T � 1400 K, both tracer and chemical diffusion coeffi-
cients sharply decrease with the chromium concentra-
tion, as Fig. 7 shows, up to about 4 orders of magni-
tude, which was noted to be one of the most strong vari-
ations of diffusion coefficients with composition known
for alloys [10].

Presently, the concentration dependence of each
diffusion coefficient D is usually described by the phe-

10–4
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1
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Fig. 7. (Color online) Reduced tracer and chemical diffusion
coefficients dS(c, T ) defined by Eqs. (89) for BCC alloys FeCr.
The upper frame corresponds to T = 1473 K and the lower
frame to T = 1573 K. Symbols show experimental results
taken from sources indicated in the lower frame and curves
correspond to calculations. Blue curves and triangles corre-
spond to dFe∗ (c, T ); green curves and squares or rhombi —
to dCr∗(c, T ); red lines and open circles — to dchem(c, T ).
Dashed or solid curves correspond to the calculations using

the parameter set A or B in Table 2

nomenological “concentration-dependent Arrhenius”
model [8–14]:

D(c, T ) = D0(c) exp[−βQ(c)], (87)

where D0(c) and Q(c) is the “frequency factor” and “ac-
tivation energy”, respectively, estimated from data for
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different temperatures and concentrations. Employing
model (87) to describe experimental data about tracer
diffusion coefficients in alloys FeCr yields anomalous
concentration dependences for both functions D0(c)

and Q(c) which have sharp maxima at c ∼ 0.6, and
some exotic models to explain these concentration
anomalies have been invoked [10, 11].

However, the phenomenological model (87) has no
theoretical justification, and functions D0(c) and Q(c)

used in this model, generally, have no clear physi-
cal meaning. Statistical expressions (29) and (32) for
diffusion coefficients with the microscopic expressions
for mean frequencies and correlation factors discussed
in Secs. 3–6 can hardly be described by this model,
mainly due to neglecting temperature dependences in
the “effective activation energy” Q(c). As discussed in
Sec. 5.1, concentration dependences of diffusion coef-
ficients are mainly determined by those of mean fre-
quencies ωp(c) given by Eqs. (54)–(56). These equa-
tions include Mayer functions fα

pξ = exp(βεαpξ)− 1, and
temperature dependences of these Mayer functions can
be important even when correlation energies εαpξ do not
vary with temperature.

At the same time, the magnetic disordering effects
mentioned in Sec. 8 seem to lead to a notable decrease
of correlation energies εαpξ in alloys FeCr with increasing
temperature T . As discussed in Sec. 8, these energies
at T ∼ 1000 K seem to decrease with respect to those
for the perfect ordering (corresponding to T = 0) by
about 5 times, though remain to be mainly positive. It
seems natural to suggest that under the further heating
to T ∼ 1400 K and increase of magnetic disordering,
these correlation energies go on to decrease, and they
change their signs to the mainly negative values. Ac-
cording to Eqs. (54)–(56), it could qualitatively explain
the above-mentioned change of types of concentration
dependences of iron self-diffusion coefficients in alloys
FeCr, from increase to decrease with c, which occurs
between T ∼ 1000 K and T ∼ 1400 K.

9.2. Physical mechanisms which determine
signs of kinetic and saddle-point interactions in

alloys FeCr at low and high temperatures

Physical reasons for such changes of types of con-
centration dependences of diffusion coefficients can be
qualitatively understood using microscopic definitions
(14) and (4) for kinetic and saddle-point interactions
which determine correlation energies εαpξ (for example,
by Eqs. (37) for the 3NI model). Let us first discuss
kinetic interactions uB

il which, according to Table 1 and
Eqs. (37), make usually the main contribution to cor-

relation energies. These interactions for alloys FeCr,
according to Eq. (14), can be explicitly written as fol-
lows:

uCr
il = V FeCr

il − V FeFe
il , (88)

where couplings V pq
il describe physical interactions in

the initial configurational Hamiltonian (1). If we sup-
pose that these couplings in the fully ordered ferromag-
netic alloy are mainly determined by magnetic interac-
tions (using for simplicity the “Heisenberg-type” local-
ized spin model), then it is natural to expect that this
magnetic coupling between two iron atoms is more neg-
ative than that between one iron and a “less magnetic”,
chromium atom. Hence, kinetic interactions (88) for
ferromagnetic alloys with temperatures T much lower
than the Curie temperature Tc can be expected to be
positive, in agreement with the values presented in Tab-
le 1. The analogous considerations can also be used
to estimate signs of saddle-point interactions ΔCrl

p,ij in
Eqs. (4) which are equal to differences in the sadd-
le-point energy ÊSP of a p-species atom due to replac-
ing one of adjacent host atoms Fe by the solute atom
Cr. It can qualitatively explain why these saddle-point
interactions in Table 1 for alloys FeCr (as well as for
FeCu, FeMn, and FeNi) are as a rule positive.

At the same time, at high T � Tc, magnetic contri-
butions to the total energy sharply decrease, and other,
“exchange” effects related to the filling of electronic d-
bands by d-electrons in an alloy, can become most im-
portant. Qualitatively, these effects are known to be
very successfully described by the Friedel tight-binding
model [39, 40] which naturally explains the peculiar
form of dependences of cohesive energy Ecoh in transi-
tion metals on the number zd of d-electrons per atom.
This tight-binding model considers the filling of “bond-
ing” and “antibonding” d-orbitals between neighboring
atoms in a d-metal to make the main contribution to
the cohesive energy. Other effects, such as those related
to crystal fields, s− d hybridization, etc, are supposed
to be of the secondary importance. Then, the cohesive
energy Ecoh(zd) should reach maximum when all bond-
ing orbitals with both directions of spin are occupied,
while all antibonding orbitals are empty, that is, at
zd = 5. It agrees well with positions of maxima Emax

coh

for all three rows of transition metals, 3d, 4d, and 5d,
observed at zd ≈ 5, while variations of Ecoh(zd) within
each row are quite large being 5–10 eV/atom [39, 40].
Note that these “exchange” arguments neglect magnetic
effects as they consider occupations of d-orbitals with
both directions of spin to be the main factor in binding.

For two components of iron-chromium alloys, zd val-
ues for chromium and iron atoms are zCr

d = 4 and zFed =
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= 6, respectively. Hence, using the simplest version
of Friedel model described above, we can expect that
the formation of d-orbitals between an atom Cr and
an atom Fe can yield the notable gain in the binding
energy with respect to that for two atoms Fe. Then,
using again Eq. (88) and the analogous considerations
for saddle-point energies, we can expect that the val-
ues of both kinetic interactions uCr

il and saddle-point
interactions ΔCrl

p,ij in alloys FeCr at high T (when the
magnetic effects fade out) are mainly negative. This
competition between magnetic effects at low T � Tc

and “exchange” effects at high T � 1400 K can qual-
itatively explain changes of signs of kinetic and sadd-
le-point interactions in alloys FeCr with elevating T

noted in Sec. 9.1.

9.3. Estimates of kinetic and saddle-point
interactions in alloys FeCr for high

temperatures

For high T � 1400 K, experimental data of many
authors about both tracer and chemical diffusion co-
efficients in BCC alloys FeCr are available. Some of
these data are presented in Fig. 7. Even though these
data have a notable scatter (which can be partly re-
lated to the above-mentioned inaccuracies of Eq. (87)
in description of data for different temperatures), main
features of concentration dependences of diffusion co-
efficients seem to be described by these data quite def-
initely. Hence, these data and the theory described
in Secs. 3–6 can be used to estimate the kinetic and
saddle-point interactions in alloys FeCr for these tem-
peratures. Below, we do it for T = T1 = 1473 K and
T = T2 = 1573 K for which detailed data [14] about the
chemical diffusion coefficients Dchem(c) are available.

For convenience of comparison of theoretical and ex-
perimental results for different diffusion coefficients DS

(where symbol S corresponds to Fe∗, Cr∗, or “chem”),
below we consider the “reduced” diffusion coefficients
dS(c, T ) defined as the ratios of each DS(c, T ) to the
iron self-diffusion coefficient DFe∗0(T ) in a pure iron:

d∗Fe = D∗
Fe/DFe∗0, d∗Cr = D∗

Cr/DFe∗0,

dchem = Dchem/DFe∗0.
(89)

Experimental values DFe∗0 will be taken from Ref. [13]
for the paramagnetic α iron:

DFe∗0 = D0 exp (−βQFe∗) ,

D0 = 1.77 cm2/s, QFe∗ = 236.5 kJ/mol.
(90)

Note that the DFe∗0 values given by Eqs. (90) for T =

= T1 and T = T2 (used in Fig. 7) do practically coincide

with those obtained using the earlier interpolation [38];
it can confirm the reliability of these values.

Theoretical expressions for reduced diffusion coeffi-
cients dS(c) (89) can be obtained using general equa-
tions (31) and (32). These equations include the “di-
latation factor” a20(c)/a

2
0(0) = (1 + cν)2/3, where ν =

= v̄B/v̄A − 1 with v̄B and v̄A from Eq. (28) is the
dilatation parameter. For alloys FeCr, this parameter
is very low, ν ≈ 0.02, and can be neglected. Hence,
the reduced diffusion coefficients (89) can be written
as follows:

dA∗ =
ωA

ωA0

fA∗

fA∗0
, dB∗ =

ωB

ωA0

fB∗

fA∗0
,

dchem =

(
cA

ωB

ωA0

fB
fA∗0

+ c
ωA

ωA0

fA
fA∗0

)
Φ,

(91)

where we use for brevity symbol A for Fe and symbol B
for Cr. Putting in these equations c → 0 and denoting
values (dS)c→0 as dS0, we obtain following relations for
the low-c values of reduced diffusion coefficients:

dA∗0 = 1, dB∗0 = z0fB0/fA∗0,

dchem,0 = dB∗0.
(92)

Here, z0, fA∗0, and fB0 = fB∗0 are the same as in
Eqs. (69), (77), and (78). Note that for the tempe-
ratures T considered, the BCC alloys FeCr are stable
only at not too low c � 0.12 [36], and relations (92)
hold actually for extrapolated values. At the same
time, a good accuracy of the third relation (92) for ex-
trapolated experimental values (dchem)c→0 and dB∗0 in
Fig. 7 seems to confirm the reliability of these different
extrapolations.

For the thermodynamic factor Φ and the activity
coefficient aB (defined, e. g., by Eqs. (107)–(112) in
Ref. [29]) which enter Eqs. (91) and (56), we use the
available CALPHAD data for BCC alloys FeCr [37]
omitting magnetic contributions (being negligible at
high T considered). It yields

Φ = 1 + ccAϕT , ϕT = 2.33− 4930/T [K],

aB = exp(cϕT ).
(93)

These data show, in particular, that the thermody-
namic interactions vBB = vCrCr in BCC alloys FeCr are
rather weak. For example, using the PCA expression
(53), we find for the Mayer function corresponding to
the nearest-neighbor interaction fBB

1 ≈ −ϕT /8 ∼ 0.1.
Such weak interactions also imply that the fluctua-
tion effects (discussed in Sec. 6) here are insignificant
for statistical averages; it is also illustrated by Fig. 3.
Hence, the simple KMFA described in Sec. 5 is suffi-
cient to quantitatively evaluate these averages.
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Table 2. Parameters of 2NI and 3NI models for BCC alloys FeCr used in the calculations shown in Fig. 7

Set z0(T1) Interactions, eV

uB
1 uB

2 uB
3 ΔB

1A ΔB
1B ΔB

2A ΔB
2B ΔB

3A ΔB
3B ΔB

4A ΔB
4B

A 1.78 0.0389 −0.2132 0 −0.0948 −0.0821 −0.0584 −0.0681 0 0 0 0

B 1.89 0.0469 −0.1833 0.0152 −0.0931 0.0644 0.0311 −0.0386 −0.0308 0.0950 0.0658 −0.0682

In our estimates of kinetic and saddle-point interac-
tions, we will use two models: the three-neighbor inter-
action (3NI) model described by Eqs. (37) and the two-
neighbor interaction (2NI) model which corresponds to
putting in Eqs. (37) uB

3 = ΔB
3p = ΔB

4p = 0. The 3NI
model includes 11 interaction parameters presented in
Table 2, and the 2NI model, 6 interaction parameters.
In addition to that, we should also estimate the fre-
quency ratio z0 in Eqs. (92). We will suppose that
between T = 1473 K and T = 1573 K there are no sig-
nificant variations in both interaction constants and in
activation energies QFe∗ and QCr∗ for tracer diffusion
in a pure iron. Then, using data [13] for these activa-
tion energies, we find that the frequency ratios z0 at T1

and T2 are related as
z0(T2) = 1.08 z0(T1). (94)

Hence, mathematically, our problem is reduced to the
estimate of 12 (for 3NI models) or 7 (for 2NI models)
unknown parameters from six experimental curves for
dS(c, T1) and dS(c, T2) presented in Fig. 7.

Taking also into account the notable scatter of ex-
perimental data presented in Fig. 7, it is evident that
such estimates can not be very definite, particularly for
3NI models. However, our estimates aim mainly at not
quantitative but qualitative tasks discussed below.

As fluctuation effects for alloys considered seem to
be negligible, the reduced diffusion coefficients dS in
Eqs. (91) were calculated using the SSJA-KMFA ex-
pressions for mean frequencies and correlation factors
given in Sec. 5. For the chosen interaction model, 2NI
or 3NI one, the parameter set {xn} = {uB

n ,Δ
B
pn, z0}

(limited by constraints discussed below) was found
from the condition of the best fit of six calculated curves
dS(c, T1) and dS(c, T2) to experimental points shown in
Fig. 7, that is, the condition of the absolute minimum
of the sum of deviations Σ{xn} (sum of moduli of dif-
ferences between experimental and calculated values of
dS) for the parameter set {xn}:

Σ{xn} = Σmin,

Σ{xn} =
∑
S,ci

T2∑
T=T1

|(dS(ci, T )− dS(ci, T )
exp| , (95)

where ci are concentrations for which diffusion coeffi-
cients dS(ci, T ) have been measured.

In seeking parameter sets {xn} minimizing the sum
of deviations (95), we took into account the following
physical considerations. (i) Values of kinetic interac-
tions |uB

n | for the two nearest neighbors, n = 1 and
n = 2, are expected to notably exceed the more distant
ones: |uB

3 | < |uB
1,2| (which is illustrated, in particular,

by the ab intitio estimates [5] presented in Table 1).
Although ab initio information on the saddle point in-
teractions for the 3rd and 4th neighbors is not available,
it would be reasonable to expect that the saddle point
interactions for these more distant neighbors do not
exceed considirably those for the 1st and 2nd neigh-
bors. (ii) In accordance with physical considerations
discussed in Sec. 9.2, we expect that at least one of sig-
nificant kinetic interactions, uB

1 or uB
2 , is negative. (iii)

Maximum values of saddle-point interactions |ΔB
np|max,

generally, are expected to be lower than the maximum
values of kinetic interactions |uB

n |max (which is again
illustrated by Table 1).

In accordance with considerations (i)–(iii), we put
various constraints on the parameter sets {xn} mini-
mizing the sum of deviations (95). At the same time,
we found that the resulting values {xn} are not very
sensitive to the particular form of these constraints. In
Table 2, we present two typical sets of parameters {xn},
labeled as A and B, which correspond to the following
constraints used (in eV):

A : 2NI model; |uB
1,2| < 0.3, |ΔB

1p,2p| < 0.15;

B : 3NI model; |uB
1,2| < 0.3, |uB

3 | < 0.1,

|ΔB
1p,2p| < 0.15, |ΔB

3p,4p| < 0.1.

(96)

In Fig. 7, we show the fit of experimental data ob-
tained using parameter sets A and B presented in Tab-
le 2. The figure shows that the quality of the fit is
practically the same for both these sets (as well as for
other similar sets). Hence, such fits enable us to esti-
mate the parameter sets {xn} only within their scatter
illustrated by Fig. 7. At the same time, the results pre-
sented in Fig. 7 and Table 2 enable us to make following
qualitative conclusions.

1. First, we see that the very strong and peculiar
concentration dependences of diffusion coefficients ob-
served in these alloys can be naturally explained by

90



ЖЭТФ, том 150, вып. 1 (7), 2016 Statistical theory of diffusion in concentrated BCC. . .

the present statistical theory, without invoking various
exotic models discussed earlier [10, 11].

2. Second, we see that in spite of significant quan-
titative uncertainties, our analysis enables us to make
some qualitative conclusions about the signs and the
scales of kinetic and saddle-point interactions in al-
loys considered. Our experience of using most differ-
ent forms of constraints for parameter sets {xn} in
Eq. (95) (illustrated by Eqs. (96)) have shown that the
reasonable fit of experiments in Fig. 7 can be obtained
only if at least one of kinetic interactions, uB

1 or uB
2 ,

takes a significant negative value. It agrees with the
probable importance of exchange effects in alloys con-
sidered discussed in Sec. 9.2. For the sets presented
in Table 2, the second constant uB

2 takes such signifi-
cant negative value. However, elucidation of relations
between uB

1 or uB
2 , in particular, that of importance

of spin correlations between first and second neighbors
in alloys considered, can need more detailed ab initio

treatments. At the same time, signs of saddle-point
interactions ΔB

np estimated in Table 2 are negative for
the 2NI model, in a qualitative agreement with consid-
erations discussed in Sec. 9.2.

10. CONCLUSION

In this paper, we are presenting the further major
development of statistical theory of diffusion in concen-
trated alloys. With the amendments made to the the-
ory it is now possible to take into account interatomic
interactions of atoms located at lattice sites with ar-
bitrary distance between them. Thus, the developed
theory can be used for precision calculations of both
chemical and tracer diffusion coefficients in real alloys
with arbitrary interatomic interactions.

To validate the theory, we applied it to BCC al-
loys FeCu, FeMn, FeNi, and FeCr. For alloys FeCu,
FeMn, and FeNi the solubility limit is very low: cs �
� (0.01–0.04). We predict sharp increase in iron self
diffusion coefficient up to 2–4 times as solute concen-
tration spans this narrow range. These results imply
that using methods designed specifically to treat dilute
alloys may lead to notable inaccuracies in this case.

For FeCr alloys at high temperatures above 1400 K,
we made calculations of chemical and tracer diffusion
coefficients and compared our results with the avail-
able experimental data. At such temperatures solu-
bility range for FeCr alloys is very broad varying be-
tween 0.12 and 1.0 Cr content and values of diffusion
coefficients fall by the factor of 104 with increase of
Cr concentration. Strong concentration dependences
of diffusion coefficients are naturally explaned by the

theory without using any phenomenological considera-
tions, and results of calculation are in good agreement
with the experiment.

Physical mechanisms which determine signs and
magnitude of kinetic and saddle point interactions for
FeCr alloys at high temperatures are disscussed. Values
of kinetic and saddle point interactions are estimated
and used in calculations of diffusion coefficients.

Quality of analytical statistical approximations:
Pair Cluster Approximation (PCA) used for calcu-
lations of site chemical potentials and Kinetic Mean
Field Approximation (KMFA) used for calculations of
jump frequencies and correlation factors is checked by
analyzing the same properties using Metropolis Monte
Carlo algorithm. It is found that these approximate
statistical methods have rather high quality at arbi-
trary concentrations.

The work was supported in part by the Rus-
sian Fund of Basic Research (grants Nos. 12-02-00093
and 15-02-02084-a), and by the State Task FANO
(theme “Spin”, no. g/r 01201463330). The re-
sults of the work were obtained using computa-
tional resources of MCC NRC “Kurchatov Institute”
(http://computing.kiae.ru/).

APPENDIX 1

Symmetries and positions of lattice sites
considered in this work for BCC and FCC

alloys

Table A1. Changes of positions of lattice sites under
turns of the BCC lattice which transform bonds (0, k)

shown in Fig. 1 into bond (0,1)

k
Components
of vector R

Position of sites

1 (x, y, z) 1 2 3 4 5 6 7 8
2 (−y, x, z) 4 1 2 3 8 5 6 7
3 (−x,−y, z) 3 4 1 2 7 8 5 6
4 (y,−x, z) 2 3 4 1 6 7 8 5
5 (y,−z, x) 2 3 7 6 1 4 8 5
6 (−z,−y, x) 3 4 8 7 2 1 5 6
7 (−z,−x,−y) 7 3 4 8 6 2 1 5
8 (−z, y,−x) 8 7 3 4 5 6 2 1
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Table A2. The same as in Table A1 but for the FCC lattice shown in Fig. 2

k
Components
of vector R

Position of sites

1 (x, y, z) 1 2 3 4 5 6 7 8 9 10 11 12
2 (−y, x, z) 4 1 2 3 8 5 6 7 12 9 10 11
3 (−x,−y, z) 3 4 1 2 7 8 5 6 11 12 9 10
4 (y,−x, z) 2 3 4 1 6 7 8 5 10 11 12 9
5 (x,−z, y) 3 10 7 11 1 9 5 12 2 6 8 4
6 (−y,−z, x) 11 3 10 7 12 1 9 5 4 2 6 8
7 (x,−y,−z) 7 6 5 8 3 2 1 4 10 9 12 11
8 (y,−z,−x) 10 7 11 3 9 5 12 1 6 8 4 2
9 (−z, y, x) 12 4 11 8 9 2 10 6 1 3 7 5

10 (−z, x,−y) 8 12 4 11 6 9 2 10 5 1 3 7
11 (z,−x,−y) 6 10 2 9 8 11 4 12 7 3 1 5
12 (z, y,−x) 9 6 10 2 12 8 11 4 5 7 3 1

Table A3. Geometrical characteristics of sites iξ with different symmetries ξ in Eq. (33) for a BCC alloy

ξ j a b c d e1 e2 f1 f2 f3 f4 f5 f6

m,n 0,1 1,2 1,3 1,5 2,4 3,4 3,7 4,5 4,6 4,8 4,9 5,7 5,10
N(iξ) 2 6 6 2 6 12 6 12 6 12 6 6 2

Table A4. The same as in Table A3 but for an FCC alloy

ξ j a b c d e f g h1 h2 h3 h4 i1 i2 i3

m,n 0,1 1,1 1,2 1,3 1,4 2,3 2,5 3,3 3,4 3,5 3,6 3,7 4,5 4,7 4,9
N(iξ) 2 4 4 8 2 4 4 4 8 8 4 8 4 8 2

Table A5. Positions Ri and symmetries ξ of sites i in BCC alloys

i 0 1 2 3 4 5 6 7 8 1̄ 2̄ 3̄ 4̄ 5̄ 6̄ 7̄ = 0 8̄

Ri 000 111 11̄1 1̄1̄1 1̄11 111̄ 11̄1̄ 1̄1̄1̄ 1̄11̄ 222 202 002 022 220 200 000 020
ξ j j a b a a b c b c b a b b a j a

i a1 = 3̄ a2 = 8̄ a3 = 6̄ a4 a5 a6 ā1 ā2 ā3 ā4 = 5 ā5 = 2 ā6 = 4

Ri 002 020 200 002̄ 02̄0 2̄00 113 131 311 111̄ 11̄1 1̄11
ξ a a a d d d d d d a a a

i b1 = 4̄ b2 b3 = 2̄ b4 b5 b6 b7 b8 b9 = 5̄ b10 b11 b12

Ri 022 02̄2 202 2̄02 022̄ 02̄2̄ 202̄ 2̄02̄ 220 2̄20 2̄2̄0 22̄0

ξ b e1 b e1 e1 e2 e1 e2 b e1 e2 e1
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i b̄1 b̄2 b̄3 b̄4 b̄5 b̄6 = 6 b̄7 b̄8 = 8 b̄9 b̄10 b̄11 = 3 b̄12

Ri 133 11̄3 313 1̄13 131̄ 11̄1̄ 311̄ 1̄11̄ 331 1̄31 1̄1̄1 31̄1

ξ e2 e1 e2 e1 e1 b e1 b e2 e1 b e1

i c1 = ā2 c2 = ā3 c3 = b̄12 c4 c5 c6 c7 c8 = b̄10 c9 = b̄5 c10 = b̄7 c11 c12 c13 c14 c15 c16

Ri 131 311 31̄1 13̄1 1̄3̄1 3̄1̄1 3̄11 1̄31 131̄ 311̄ 31̄1̄ 13̄1̄ 1̄3̄1̄ 3̄1̄1̄ 3̄11̄ 1̄31̄
ξ d d e1 f2 f3 f3 f2 e1 e1 e1 f1 f3 f4 f4 f3 f1

i c̄1 c̄2 c̄3 c̄4 c̄5 = b2 c̄6 = b4 c̄7 c̄8 c̄9 c̄10 c̄11 c̄12 = b12 c̄13 = a5 c̄14 = a6 c̄15 = b10 c̄16

Ri 242 422 402 22̄2 02̄2 2̄02 2̄22 042 240 420 400 22̄0 02̄0 2̄00 2̄20 040
ξ f4 f4 f3 f1 e1 e1 f1 f3 f3 f3 f2 e1 d d e1 f2

i d1 = ā1 d2 = b̄4 d3 d4 = b̄2 d5 d6 d7 d8 d̄1 d̄2 d̄3 d̄4 d̄5 d̄6 = b5 d̄7 = a4 d̄8 = b7

Ri 113 1̄13 1̄1̄3 11̄3 113̄ 1̄13̄ 1̄1̄3̄ 11̄3̄ 224 024 004 204 222̄ 022̄ 002̄ 202̄

ξ d e1 f1 e1 f2 f3 f4 f3 f4 f3 f2 f3 f1 e1 d e1

i g1 = 1̄ g2 g3 g4 g5 g6 g7 g8 ḡ1 ḡ2 ḡ3 = d3 ḡ4 ḡ5 ḡ6 = c11 ḡ7 = 7 ḡ8 = c16

Ri 222 22̄2 2̄2̄2 2̄22 222̄ 22̄2̄ 2̄2̄2̄ 2̄22̄ 333 31̄3 1̄1̄3 1̄33 331̄ 31̄1̄ 1̄1̄1̄ 1̄31̄

ξ c f1 f5 f1 f1 f5 f6 f5 f6 f5 f1 f5 f5 f1 c f1

APPENDIX 2

Expressions for terms tq1p,nm in Eq. (24) via
one-site averages

In this section, we express terms tq1p,nm in Eq. (24)
via one-site averages νqpξ used in Eqs. (45). For brevity,
below in this section we omit the common lower index
p and the common upper index q at νqpξ writing it as
simply νξ.

For BCC alloys, terms tq1p,nm are elements of the
following matrix:

tq1p =

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t11 −νa −2νb 0 0 −νc

−4νa t22 0 0 −4νd 0

−2νb 0 t33 −2νe1 −2νe1 0

0 0 −νe1 t44 0 −νf1

0 −νd −2νe1 0 t55 −νf1

−νc 0 0 −2νf1 −νf1 t66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (97)

where the diagonal elements tnn are

t11 = 3νa + 3νb + νc, t22 = 4(νa + νd),

t33 = 2(νb + 2νe1 + νe2), t44 = t55,

t55 = νd + 2νe1 + νf1 + νf2 + 2νf3 + νf4 ,

t66 = νc + 3νf1 + 3νf5 + νf6 .

(98)

For FCC alloys, matrix tq1p,nm in Eq. (24) has the
following form:

tq1p =

=

⎛
⎜⎜⎜⎜⎜⎜⎝

t11 −νb −2νc −2νc −νd

−4νb t22 0 −4νe 0

−νc 0 t33 −νg −νh1

−2νc −νe −2νg t44 −2νh1

−νd 0 −2νh1 −2νh1 t55

⎞
⎟⎟⎟⎟⎟⎟⎠

, (99)

where the diagonal elements tnn are

t11 = 2νa+2νb+4νc+νd, t22 = 4(νb+νc+νf ),

t33 = 2νc+νe+νg+2νh1+2νh2+νh3+2νh4 ,

t44 = t33 + νg,

t55 = νd + 4νh1 + 2νi1 + 4νi2 + νi3 .

(100)

APPENDIX 3

Expressions for reduced coefficients t̃qλ2p,nm in
Eqs. (57) in the kinetic mean-field

approximation

In this section, we use the following shortened no-
tation for the product of factors ηqpξ and ηλpξ defined by
Eq. (59):

ξξ
′
= ηqpξη

λ
pξ. (101)
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Table A6. The same as in Table A5 but for FCC alloys

i 0 1 2 3 4 5 6 7 8 9 10 11 12
Ri 000 011 101 01̄1 1̄01 011̄ 101̄ 01̄1̄ 1̄01̄ 110 11̄0 1̄1̄0 1̄10

ξ j j a b a b c d c a c c a

i 1̄ 2̄ 3̄ 4̄ 5̄ 6̄ = 9 7̄ = 0 8̄ = 12 9̄ 1̄0 = 2 1̄1 = 4 1̄2

Ri 022 112 002 1̄12 020 110 000 1̄10 121 101 1̄01 1̄21
ξ d c b c b a j a c a a c

i a1 = 3̄ a2 = 5̄ a3 a4 a5 a6 ā1 ā2 ā3 ā4 = 5 ā5 = 3 ā6

Ri 002 020 200 02̄0 002̄ 2̄00 013 031 211 011̄ 01̄1 2̄11
ξ b b e f f e f f e b b e

i b1 = 9̄ b2 = 5̄ b3 b4 b5 b6 b7 b8 = 1̄2 b9 b10 b11 b12 b13 b14 b15 b16

Ri 121 211 21̄1 12̄1 1̄2̄1 2̄1̄1 2̄11 1̄21 121̄ 211̄ 21̄1̄ 12̄1̄ 1̄2̄1̄ 2̄1̄1̄ 2̄11̄ 1̄21̄
ξ c e h1 h2 h2 h1 e c g h1 h3 h4 h4 h3 h1 g

i b̄1 b̄2 b̄3 b̄4 b̄5 b̄6 b̄7 b̄8 = a3 b̄9 = 10 b̄10 = 11 b̄11 b̄12 b̄13 b̄14 b̄15 b̄16

Ri 132 222 202 11̄2 1̄1̄2 2̄02 2̄22 1̄32 130 220 200 11̄0 1̄1̄0 2̄00 2̄20 1̄30
ξ h4 h3 h1 g g h1 h3 h4 h2 h1 e c c e h1 h2

i c1 = 2̄ c2 = 4̄ c3 = b̄5 c4 = b̄4 c5 c6 c7 c8 c̄1 c̄2 c̄3 c̄4 c̄5 = b9 c̄6 = b16 c̄7 = 8 c̄8 = 6

Ri 112 1̄12 1̄1̄2 11̄2 112̄ 1̄12̄ 1̄1̄2̄ 11̄2̄ 123 1̄23 1̄03 103 121̄ 1̄21̄ 101̄ 101̄

ξ c c g g h2 h2 h4 h4 h4 h4 h2 h2 g g c c

i d1 = 1̄ d2 = b̄3 d3 d4 = b̄6 d5 d6 d7 d8 d9 d10 d11 d12 = b̄15

Ri 022 202 02̄2 2̄02 022̄ 202̄ 02̄2̄ 2̄02̄ 220 22̄0 2̄2̄0 2̄20

ξ d h1 i1 h1 i1 i2 i3 i2 h1 i2 i2 h1

i d̄1 d̄2 d̄3 d̄4 d̄5 d̄6 = b10 d̄7 = 7 d̄8 = b15 d̄9 d̄10 = b9 d̄11 = b6 d̄12

Ri 033 213 01̄3 2̄13 031̄ 211̄ 01̄1̄ 2̄11̄ 231 21̄1 2̄1̄1 2̄3̄1

ξ i3 i2 i1 i2 i1 h1 d h1 i2 h1 h1 i2

Then, each t̃qλ2p,nm in (57) for BCC or FCC alloys can
be written as the sum of two terms:

t̃qλ2p,nm = AnBmγnγm + τqλnm. (102)

Here, An and Bm are numerical constants given in Tab-
le A7, while γn are the following linear combinations of
symbols of symmetry ξ in Tables A1 or A2:

Table A7. Values of numerical factors An and Bm in
Eq. (102)

Alloy A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6

BCC 1 4 2 1 1 1 2 2 4 4 2 2

FCC 1 4 1 2 1 2 2 4 4 2

BCC :

γ1 = a− b− c, γ2 = a− d,

γ3 = b− e2, γ4 = d− f1 + f2 − f4,

γ5 = d+ 2e1 + f1 − f2 − 2f3 − f4,

γ6 = c+ f1 − f5 − f6;

FCC:

γ1 = 2a− 2c− d, γ2 = b− f,

γ3 = c+ e− g + h2 − h3 − h4,

γ4 = c+ g − h2 − h4,

γ5 = d+ 2h1 − 2i2 − i3.

(103)

In the notation (101), matrix τ̂qλ in (102) for BCC
alloys can be written as follows:
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τ̂qλ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ11 aa 2bb 0 0 cc

4aa τ22 0 0 4dd 0

2bb 0 τ33 2e1e1 2e1e1 0

0 0 e1e1 τ44 0 f1f1

0 dd 2e1e1 0 τ55 f1f1

cc 0 0 2f1f1 f1f1 τ66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the diagonal elements τnn are

τ11 = −(3aa+ 3bb+ cc), τ22 = −4(aa+ dd),

τ33 = −(2bb+ 4e1e1 + 2e2e1), τ44 = τ55,

τ55 = −(dd+2e2e1+f1f1+f2f2+2f3f3+f4f4),

τ66 = −(cc+ 3f1f1 + 3f5f5 + f6f6).

(104)

For FCC alloys, the analogous relations have the
form

τ̂qλ =

⎛
⎜⎜⎜⎜⎜⎜⎝

τ11 bb 2cc 2cc dd

4bb τ22 0 4ee 0

cc 0 τ33 gg h1h1

2cc ee 2gg τ44 2h1h1

dd 0 2h1h1 2h1h1 τ55

⎞
⎟⎟⎟⎟⎟⎟⎠

with the following diagonal elements τnn:

τ11 = −(2aa+ 2bb+ 4cc+ dd),

τ22 = −4(bb+ cc+ ff), τ33 = τ44 + gg,

τ44 = −(2cc+ ee+ 2gg + 2h1h1 + 2h2h2 +

+ h3h3 + 2h4h4),

τ55 = −(dd+ 4h1h1 + 2i1i1 + 4i2i2 + i3i3).

(105)
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