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The problem of localized states in 1D systems with a relativistic spectrum, namely, graphene stripes and carbon
nanotubes, is studied analytically. The bound state as a superposition of two chiral states is completely de-
scribed by their relative phase, which is the foundation of the variable phase method (VPM) developed herein.
Based on our VPM, we formulate and prove the relativistic Levinson theorem. The problem of bound states
can be reduced to the analysis of closed trajectories of some vector field. Remarkably, the Levinson theorem
appears as the Poincaré index theorem for these closed trajectories. The VPM equation is also reduced to
the nonrelativistic and semiclassical limits. The limit of a small momentum py of transverse quantization is
applicable to an arbitrary integrable potential. In this case, a single confined mode is predicted.
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1. INTRODUCTION

Graphene, carbon nanotubes, and topological insu-
lators have recently attracted keen attention as subjects
of intensive theoretical and experimental research. The
uniqueness of these quantum materials in fundamental
physics consists in the opportunity to observe QED ef-
fects with a large coupling constant g = e2/s�ε ∼ 1,
where s ≈ c/300 is the Fermi velocity and ε is the
average dielectric constant of the environment (for in-
stance, ε = (1 + εs)/2 for a graphene sheet on a sub-
strate with the dielectric constant εs). Effects such as
the atomic collapse and pair production in supercriti-
cal potentials [1–7] and the Adler–Bell–Jackiw anomaly
(the chiral anomaly) [8, 9] have been intensively stud-
ied. The Klein tunnelling of electrons in gated graphene
[10–15] reveals the complete suppression of backscatter-
ing.

In this paper, we are concerned with the gene-
ral theoretical study of confined electronic states in
graphene nanoribbons or single-walled carbon nanotu-
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bes affected by a longitudinal electric field. Omitting
the inter-valley scattering, we consider the electron be-
havior near one of two independent Dirac points where
electrons are well described by Dirac–Weyl Hamilto-
nian (1) in the one-particle approach.

We propose a convenient technique to analyse
bound states analytically for the 2D Dirac–Weyl equa-
tion with a 1D potential U(x). It refers to the variable
phase method (VPM) developed generally by Morse
and Allis [16], Babikov [17], Calogero [18], and oth-
ers [19–21]. The wave function is expressed as a lin-
ear combination of two Weyl fermions and the phase
between them is considered as a desired phase func-
tion for the VPM to be applied. A reduction to the
nonrelativistic and semiclassical limits is then demon-
strated. In what follows, we consider one more limit
case, that of a δ-potential, which is applicable to any
integrable potential at a sufficiently small transverse
momentum py. Physically, this limit contains both the
shallow quantum-well limit and the opposite limit of a
strongly supercritical potential.

Our VPM allows formulating a relativistic analogue
of the Levinson theorem [22]. The relativistic Levin-
son theorem for the Dirac equation was formulated in
three dimensions by Klaus [23] for central potentials,
and by Hayashi [24], and Warnock [25] as a relation be-
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tween zeroes of the vertex function and particle poles
of the total amplitude. This problem has been consid-
ered in two dimensions with a compactly supported
central potential [26]. Clemence [27] thoroughly in-
vestigated the Levinson theorem for the Dirac equa-
tion with a 1D potential that satisfies the condition∫∞
−∞ U(x)(1 + |x|) dx < ∞ via the scattering matrix

approach, taking the half-bound states into account.
The particular case of the relativistic Levinson theo-
rem for the symmetric 1D potentials has been studied
by Lin [28] with the additional restriction for the poten-
tial to be a compactly supported function, Calogeracos
and Dombey [29] for potentials of definite sign, and
Ma et al. [30] with a condition similar to that in [27].
The method developed in this paper permits us to
prove the Levinson theorem with the minimal restric-
tion

∫∞
−∞ U(x) dx < ∞, which significantly broadens

the result obtained by Clemence. For example, our re-
sults are applicable to so-called top-gate potential (30),
whose asymptotic form is expected to be realistic for
gated graphene structures [31]. A geometric interpre-
tation of the Levinson theorem and the corresponding
numerical method for the analysis of integral curves of
some vector field are also considered.

2. THEORETICAL MODEL

Near conic points, electrons in graphene with a
gated potential U(x) are approximately described by
the Dirac–Weyl Hamiltonian

Ĥ = sσp̂+ U(x) = sσxp̂x + sσy p̂y + U(x), (1)

where s is the Fermi velocity, σ = (σx, σy) are Pauli
matrices, and p = −i�∇. Henceforth, it is assumed
that the potential decays at infinity. Further calcula-
tions are executed in the dimensionless variables: � =

= s = 1. It is also assumed that py > 0, where py is
the quantized transverse momentum of quasi-1D sys-
tems such as graphene nanoribbons and single-walled
carbon nanotubes (for nanotubes, y = rφ, where r is
the radius and φ is a cyclic variable). The spectrum
of the free-particle Hamiltonian is linear in the mo-
mentum: E = ±

√
p2x + p2y. The negative-energy states

correspond to the hole’s description according to the
conventional views.

The stationary wave function can be represented in
a symmetric form

Ψ =
exp(ipyy)√

4W

(
g(x) + p−1

y g′(x)
g(x)− p−1

y g′(x)

)
×

× exp

⎧⎨
⎩i

x∫
(E − U(ζ)) dζ

⎫⎬
⎭ (2)

in terms of the axillary function g (x) introduced in [14]:

g′′ (x) + 2i (E − U (x)) g′ (x)− p2yg (x) = 0, (3)

where E is the electron energy and W is the normaliza-
tion coefficient. Equation (3) represents an equivalent
statement of the problem described by Hamiltonian (1).
In what follows, we deal with electronic states of zero
current along the x direction.

We apply this condition to the analysis of confined
states. A zero flow jx = Ψ†(x)σxΨ(x) = 0 along the x
direction yields a restriction on the function g(x):

|g (x) | = |p−1
y g′ (x) |. (4)

The first consequence is that g(x) and hence the
electron density of confined states ρ(x) = Ψ†(x)Ψ(x) =

= |g(x)|2/W vanish nowhere except infinity. Other-
wise, it follows from (4) that g(x0) = g′(x0) = 0, where
|x0| <∞ is some point, which yields g(x) ≡ 0.

Separating the modulus and phase by writing
g(x) = R exp(iΦ), we arrive at the condition

(Φ′)2 + (R′/R)2 = p2y, (5)

which admits the substitution

Φ′(x) = py sinΩ(x),

R′/R = py cosΩ(x),
(6)

where the function Ω(x) is a solution of the first-order
differential equation

Ω′(x) = 2 (U(x)− E)− 2py sinΩ(x). (7)

Thereby, we arrive at the desired VPM equation. We
emphasize here that Eq. (7) is valid for any quantum
state with zero flow, not only for bound states.

Considering bound states, we have to set the boun-
dary conditions for the function Ω(x):

Ω(x→ +∞) = π + arcsin
E

py
+ 2πn,

Ω(x→ −∞) = − arcsin
E

py
.

(8)

For E ∈ (−py, py), these conditions ensure the expo-
nential decay of the density ρ(x) ∼ R2(x) at infinity,
as it follows from (6), with n being an integer.
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To reveal the physical meaning of the function Ω(x),
we use the following representation of the wave func-
tion:

Ψ(x, y) =
eipyy

√
4W

((
1

1

)
+eiΩ

(
1

−1

))
R(x)e−iΩ/2. (9)

Hence, a confined state appears as a linear combination
of two chiral (Weyl) states and is completely described
by the phase between them. Another form of Eq. (9)
refers to the spin with the polar angle Ω and the azi-
muthal angle −π/2:

Ψ(x, y) =
R(x)eipyy

√
W

⎛
⎜⎜⎝

cos
Ω

2

−i sin Ω

2

⎞
⎟⎟⎠ . (10)

3. NONRELATIVISTIC LIMIT

We show that Eq. (7) can be reduced to a nonrela-
tivistic equation. To be more specific, we consider the
nonrelativistic limit for electrons:

E = py + ε,

ε = −k2/2py,

where all energy scales are understood to be small com-
pared with py: k, U(x), 1/d 
 py, and d is the char-
acteristic width of the confinement. Boundary condi-
tions (8) for Ω(x) take the form

Ω(−∞) = −π
2
+

k

py
, Ω(+∞) = −π

2
− k

py
+ 2πn

with n being an integer.
We now suppose that Ω(x) = −π/2 + δΩ, where

δΩ 
 1 almost everywhere. This assumption is vio-
lated only when Ω′ ∼ py, which corresponds to δΩ ∼ 1.
The behavior of the phase function Ω(x) in this region
does not depend on the potential because U(x) 
 py.
We note that the width of this region δx ∼ 1/py 
 d

is small in the nonrelativistic limit. Hence, the expan-
sion of the initial equation (7) results in the Riccati
equation:

δΩ′ = 2(U(x)− ε)− pyδΩ
2, (11)

where ψ(x) = exp
(
py
∫
δΩ(x) dx

)
satisfies the 1D

Schrödinger equation for a non-relativistic particle with
the mass py. The function δΩ(x) tends to infinity at
zeros of the wave function ψ(x).

4. SEMICLASSICAL LIMIT

We rewrite Eq. (7) in terms of dimensional quanti-
ties:

�Ω′ =
2

s
(U(x)− E)− 2py sinΩ, (12)

where s is the Fermi velocity. In the semiclassical limit
� → 0, neglecting the left-hand side of this equation
yields

sinΩ =
U(x)− E

spy
. (13)

We show that Eq. (13) represents the usual semiclassi-
cal approach.

This approximation is solvable in terms of real-
valued functions when |U(x) − E| < spy, which con-
forms to the case of nonclassical motion where the wave
function decays. At the breakpoints xi where U(xi)−
−E = −μspy, we define Ω(xi) = −μπ/2, where μ = ±1

is fixed for each region of motion.
In the regions of classical motion, where the wave

function is oscillatory shaped, Ω(x) is a complex func-
tion, namely, Ω(x) = −μπ/2 + iδΩ:

cosh δΩ(x) = −μU(x)− E

spy
=

∣∣∣∣U(x)− E

spy

∣∣∣∣ . (14)

Equation (14) has two solutions ±δΩ (for definiteness,
we set the first solution δΩ ≥ 0). The corresponding
amplitude of the wave function R±(x) is determined
from Eq. (6):

R±(x) ∼ exp

(
±ipy

�

∫
sinh δΩ(x) dx

)
.

According to the definition, it is required that the func-
tion R(x) be real-valued. This means that we have to
consider a linear combination of corresponding func-
tions g±(x) = R±(x) exp{iΦ±(x)}, where

Φ±(x) = −μ
∫ ∣∣∣∣U(x)−E

s

∣∣∣∣ dx� =

∫
U(x)−E

s

dx

�
,

as follows from Eq. (6), and Φ is the same for two dif-
ferent solutions of Eq. (14). Finally, the semiclassical
amplitude is given by

R(x) ∼ cos

(∫
px
dx

�
+ φ0

)
, (15)

where the semiclassical momentum

px = py sinh δΩ(x) =
√
(E − U(x))

2
/s2 − p2y

is introduced. The phase φ0 is defined by the matching
conditions.
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Hence, the Bohr–Sommerfeld quantization takes
the usual form ∮

pxdx = 2π�(n+ γ), (16)

where n� 1 is an integer, and γ ∼ 1 is defined from the
matching conditions at the turning points, for example,
γ = 1/2 for smooth potentials. The semiclassical ap-
proximation is valid when �pyU

′(x) 
 sp3x.

5. DELTA-POTENTIAL LIMIT

Before we start, we emphasize that we do not re-
quire the confinement potential U(x) to be δ-like. The
reason why we call this limit the delta-potential limit
is that under some conditions, the discrete spectrum
and corresponding wave functions of any integrable po-
tential are of the same analytic form as for the literal
δ-potential, which is considered in Appendix.

In this section, we are interested in all possible cases
where the nonlinear term in Eq. (7) can be neglected.
This allows finding the spectrum and corresponding
wave functions exactly. We formulate the following
theorem.

Theorem. Let the potential U(x) be an integrable
function, d be the characteristic width of U(x), and
py > 0 be transverse momentum. We introduce the
integral

G =

∞∫
−∞

U(x) dx = π(nG + δnG), (17)

where nG is an integer and δnG ∈ [0, 1); we also assume
that δnG = 0.

Let the condition

pyd
 min{δnG, 1− δnG} (18)

hold. Then
a. The discrete spectrum contains only one level

with an energy E ∈ (−py, py):

E = (−1)nG+1py cosG. (19)

b. If additionally
∫ x

x0
U(x′)x′ dx′ converges as x →

→ ±∞ at some |x0| <∞, then the corresponding wave
function takes form (10) with the phase function

Ω(x) = − arcsin
E

py
+ 2

x∫
−∞

U(x′) dx′. (20)

Proof. We here mean U(x) be integrable in the
sense that the primitive integral

fx0(x) =

x∫
x0

U(x′) dx′

with some |x0| < ∞ is defined for any x ∈ (−∞,+∞)

except maybe at a finite set of points and fx0(x)

is bounded function. We set the parameter E ∈
∈ (−py, py).

• Let Ω(x) be a physical solution with boundary
conditions (8). Then the total variance of the phase
function ΔΩ = Ω(+∞)−Ω(−∞) is straightforward to
obtain from (8):

ΔΩ = 2 arcsin
E

py
+ 2π

(
n+

1

2

)
. (21)

On the other hand, the integration of Eq. (7) yields

ΔΩ = 2G+ K, (22)

where n is an integer and we introduce the integral

K =

∞∫
−∞

2(E + py sinΩ(x)) dx. (23)

Convergence of K

We use Lemma 2 about the properties of solutions
of Eq. (7) and rewrite K:

K = 2py

∞∫
−∞

(sinΩ(x)− sinΩ±) dx.

We know from Lemma 2 that the physical solution cor-
responds to a degeneration of two separatrix families
of Eq. (7). We consider the behavior of this physical
solution as x → −∞, where we can represent it in the
form

Ω(x) = Ω− + δΩ(x).

As x→ −∞, δΩ(x) satisfies the approximate equation
that follows directly from Eq. (7):

δΩ′(x) ≈ 2U(x)− 2kδΩ(x),

where we took into account that py cosΩ− = k > 0,
k =

√
p2y − E2. The solution that satisfies the initial

condition δΩ(−∞) = 0 is given by

δΩ(x) = 2

x∫
−∞

U(x′)e−2k(x−x′) dx′. (24)
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We use it to analyze the convergence of K at −∞.
If x → −∞, we can use the expansion py(sinΩ(x) −
− sinΩ−) ≈ kδΩ(x). Then we obtain

2py

x∫
−∞

(sinΩ(x′)− sinΩ−) dx′ ≈

≈ 2k

x∫
−∞

δΩ(x′) dx′ = 2

x∫
−∞

U(x′) dx′ − δΩ(x).

This proves the convergence of K at −∞ if U(x) is an
integrable function. We can prove the convergence at
+∞ similarly. Hence, K converges.

Estimation of K

The convergence allows us to introduce some cha-
racteristic scale D(ε), the diameter of the convergence
domain of K. Mathematically, for any ε > 0, a number
0 < D(ε) <∞ exists such that∣∣∣∣∣∣∣K− 2py

D(ε)/2∫
−D(ε)/2

(sinΩ(x) − sinΩ±) dx

∣∣∣∣∣∣∣ < ε.

We consider only those cases where we can omit K in
Eq. (22). We then estimate it by the order of magni-
tude. As we can see from the convergence proof, the
integrals K and G converge simultaneously. Then

K ∼ O(pyd), (25)

where d is a characteristic convergence length of the
integral G or, as we mentioned in the statement of the
theorem, the characteristic length of confinement.

Now we are ready to prove the theorem.
a. Combining Eqs. (21) and (22), we obtain

arcsin
E

py
= π

(
δnG +

K

2π
− 1

2
+ nG − n

)
. (26)

If condition (18) is satisfied, we can omit K in Eq. (26).
We can then set n = nG because arcsinx ∈ [−π/2, π/2],
which finally gives

arcsin
E

py
= π

(
δnG − 1

2

)
.

This is equivalent to Eq. (19).
b. To obtain the wave function, we can naively ne-

glect the influence of the non-linear term in Eq. (7).
Then the approximate solution is

Ω0(x) = Ω− + 2

x∫
−∞

U(x′) dx′,

which coincides with (20). But this approximation is
valid when there is no divergence in the next correction
of the order of pyd. This correction can be estimated
as

Ω1(x) =

= −2py

x∫
−∞

(sinΩ0(x)− sinΩ−) dx′ +Ω1(−∞),

where we assume that the integral converges. We check
the convergence at x→ −∞:

Ω1(x) ≈ −2k

x∫
−∞

x′∫
−∞

U(x′′) dx′ dx′′ +Ω1(−∞),

where the double integral reduces to
∫ x

−∞ U(x′)x′ dx′,
which means that we can use approximate wave func-
tion (20) only when xU(x) is integrable. This is not
surprising because for the convergence of K with an
integrable U(x), we required the exponential decay of
Ω(x) to Ω− as x→ −∞, as is shown in Eq. (24). This
means that we cannot neglect the dependence of the
wave function on k and hence we are not allowed to use
approximate wave function (20) if U(x) is integrable
but xU(x) is not. However, spectrum (19) is valid even
if xU(x) is nonintegrable but U(x) is integrable and
condition (18) is satisfied.

Physically, this limit can be understood as a su-
percritical regime for the confinement potential U(x).
Indeed, we imagine that U(x) is a quantum well with
the characteristic depth U0 and width d. Then πδnG �
� G ∼ U0d and condition (18) gives U0 � py, which
corresponds to the strong supercritical regime!

Hence, once condition (18) holds, we obtain

arcsin
E

py
≈ G− π

(
n+

1

2

)
(27)

for any integrable potential.
�

We did not consider the cases G = πnG, nG is an
integer, because they require a finer analysis than the
one presented above.

Zero-energy states
We compare our results with some recent analytic

work on graphene states. As an example, we consider
the condition for the existence of confined modes with
zero energy (exactly at the Dirac point). Zero-energy
confined states and their importance in a possible con-
struction of 1D gated structures (waveguides) were dis-
cussed thoroughly in [31].
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In accordance with Eq. (27), we arrive at the desired
restriction if Eq. (18) holds:

G = π

(
n+

1

2

)
(28)

with an integer n. This constraint means that we can-
not have zero-energy confined states at an arbitrarily
small potential strength G. However, at any G = πn,
we have at least one bound state!

In [31], an analytic solution for zero-energy modes
in the gate potential V (x) = −U0/ cosh(x/d), U0 > 0,
is given. Taking into account that G = −πU0d in this
case, we arrive at the condition for the existence of a
zero-energy mode in the limit of small py:

U0d = n+
1

2
,

where n is a nonnegative integer. Hence, we cannot
have confined zero-energy modes if |U0d| < 1/2, which
exactly coincides with the condition obtained analyti-
cally in [31].

A thorough analytic study of bound states in the
potential

V (x) = −U0/ cosh(x/d) (29)

for nonzero energies has been done in recent paper [32].
The authors claim that there is a threshold value of the
potential strength G = πU0d > π/2 for the first con-
fined state to appear. We suppose that something es-
sential is missed in [32] because this strong statement
immediately contradicts the nonrelativistic limit and
the limit of a δ-potential that are developed in this pa-
per.

We now compare our VPM method with the one
developed by Stone et al. [33]. They considered an-
other phase function, which satisfies a more complex
equation. One of the substantial points in their pa-
per is that the zero-energy mode exists for arbitrarily
small power-law decaying potentials (decaying faster
than 1/x). Again, this statement strongly contradicts
Eq. (28). Moreover, their asymptotic analysis resulted
in no bound states for potential (29) if py < 1/d. It
apparently contradicts our δ-limit.

Finally, we consider the potential V (x) = U0 ×
× exp(−|x|/d). The zero-energy mode condition was
found analytically in [33], where the minimal potential
strength is stated as (U0d)min = π/4. Our model pre-
dicts zero-energy modes when 2U0d = π(n + 1/2), in
excellent agreement with the analytic solution.

Due to the simplicity of our method, we can calcu-
late the existence condition for the zero-energy mode
for the so-called top-gate potential (see [31])

Vt(x) =
U0

2
ln

(
x2 + (h2 − h1)

2

x2 + (h2 + h1)2

)
, (30)

where parameters h1 < h2 depend on geometry of the
gate electrodes. Namely, h1 is the width of the in-
sulator between the graphene plane and the so-called
back-gate electrode, and h2 is the distance between the
top and back electrodes. Using Eq. (28), we obtain the
existence condition for the zero mode:

U0h1 =
1

2

(
n+

1

2

)
≥ 1

4
.

We note that this condition does not depend on the
larger parameter h2, which in our case determines the
distance between electrodes.

Hence, the δ-potential limit is a simple and powerful
tool to study one-particle confined states in arbitrary
integrable 1D gate potentials in graphene stripes, and
it should be included in the analysis of bound states for
a concrete configuration of the gate potential to avoid
possible misconceptions.

6. RELATIVISTIC LEVINSON THEOREM

In this section, we formulate the oscillation theorem
in terms of the phase function Ω(x), as has been done
in the case of massive non-relativistic particles through
the analysis of the scattering phase function [16].

But before stating the main theorem, we give some
properties of solutions of Eq. (7).

Lemma 1 (of continuity). Let fx0(x) =

=
∫ x

x0
U(x′) dx′, where |x0| < ∞ is some constant. Let

fx0(x) ∈ Ck, where k is a nonnegative integer, and Ck

is the kth class of differentiability. Then every solution
of Eq. (7) belongs to Ck.

Proof. By induction.

a. If k = 0, fx0(x) is continuous function. This
is equivalent to the condition

∫ x+ε

x U(x′) dx′ → 0 as
ε → 0 at arbitrary x ∈ (−∞,∞). We then integrate
Eq. (7) from x to x+ ε:
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|Ω(x+ ε)− Ω(x)| =
∣∣∣∣∣∣2

x+ε∫
x

U(x′) dx′ −

− 2

x+ε∫
x

(E + py sinΩ(x
′)) dx′

∣∣∣∣∣∣ ≤

≤ 2

∣∣∣∣∣∣
x+ε∫
x

U(x′) dx′

∣∣∣∣∣∣+ 2ε(py + |E|) → 0

which confirms the continuity of any solution of Eq. (7).
b. We assume that the statement of the lemma is

true at all k < n, where n is a positive integer. Let
fx0(x) ∈ Cn. We then prove the Lemma at k = n. We
differentiate Eq. (7) n− 1 times:

Ω(n)(x) = f (n)
x0

(x)− 2(E + py sinΩ(x))
(n−1),

where f
(n)
x0 (x) is continuous by the condition of the

lemma, and 2(E+py sinΩ(x))
(n−1) is continuous by the

induction hypothesis because it contains derivatives of
Ω(x) not higher than n − 1. Then Ω(n)(x) is a conti-
nuous function, or Ω(x) ∈ C(n).

�
We need to make one additional comment. If fx0(x)

is a piecewise-continuous function (which means that
U(x) has δ-like singularities at discontinuity points),
then all solutions of Eq. (7) are piecewise-continuous
with the same discontinuity points as in fx0(x). In
other words, the statement of Lemma 1 is valid even if
fx0(x) is a piecewise-continuous function.

Lemma 2 (of attractors and repellors) Let U(x) →
→ 0 as x→ ∞, and E ∈ (−py, py). Then

a. All solutions of Eq. (7) at infinity tend to sta-
tionary points of the free motion equation (i. e., with a
zero potential).

b. There are two families of stationary points:

Ω− = − arcsin

(
E

py

)
+ 2πn,

Ω+ = arcsin

(
E

py

)
+ 2π

(
n+

1

2

)
.

(31)

c. Ω+ (Ω−) is an attractor (repellor) at x→ −∞;
Ω+ (Ω−) is a repellor (attractor) at x→ +∞.

d. There are two types of separatrix solutions,
which are defined by following Cauchy problems:{

Ωl(x→ −∞) = Ω−,

Ωr(x→ +∞) = Ω+.
(32)

We call Ωl(x) (Ωr(x)) the left (right) separatrix.
e. The bound-state problem is equivalent to the

degeneracy of two separatrix families Ωl and Ωr.

Proof. a. We first consider the free motion equa-
tion

Ω′(x) = −2py

(
sinΩ(x) +

E

py

)
. (33)

This equation has stationary points Ω(x) ≡ const if
sinΩ = −E/py. Every solution of Eq. (33) tends to
Ω+ (Ω−) as x → −∞ (x → +∞), where Ω± are de-
fined in (31). Moreover, Ω± are solutions by them-
selves. However, there are no physical solutions among
the solutions of the free motion equation because it is
impossible to satisfy physical boundary conditions (8).

If U(x) → 0 as x→ ∞, then the asymptotic form of
solutions at infinity resembles those of the free motion
equation. Thus, a is proven.

b. Two families of stationary points of the free mo-
tion equation (which represent the whole set of attrac-
tors and repellors of Eq. (7)) obviously arise from the
equation sinΩ± = −E/py.

c. We demonstrate that Ω+ are repellors as x →
→ +∞ and attractors as x→ −∞. We consider the so-
lution that comes close to Ω+ at some point x∗ and rep-
resent it in the form Ω(x) = Ω+−ε+δΩ(x), δΩ(x∗) = 0,
where ε is a small deviation from Ω+ at x = x∗. Sub-
stituting it in Eq. (7) and expanding in view of the
smallness of δΩ(x) in the vicinity of x∗ yields

δΩ′(x) ≈ 2U(x) + 2k(δΩ(x)− ε), (34)

where we used the relation py cosΩ+ = −k, k =

=
√
p2y − E2 > 0. The solution with an appropriate

boundary condition is

δΩ(x) = 2

x∫
x∗

U(x′)e2k(x−x′) dx′ +

+ ε
(
1− e2k(x−x∗)

)
. (35)

In the region x > x∗, both terms in (35) diverge ex-
ponentially as x → +∞ (x − x′ ≥ 0 in the integrand).
Hence, the solution that comes close to Ω+ (up to some
arbitrarily small value ε) runs away exponentially. This
proves the statement that Ω+ are repellors as x→ +∞.

In the region x < x∗, δΩ(x) → ε exponentially fast
(x − x′ ≤ 0 in the integrand) as x → −∞, and hence
Ω(x) → Ω+. This proves that Ω+ are attractors as
x→ −∞.

We can prove the statement for Ω− in c similarly.
For this, we just note the change of sign in exponents
because py cosΩ− = k.

We have to remark, however, that we can fine-tune
the constant ε to cancel the exponential divergence in
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the integral part of (35) as x→ +∞. As we see below,
such solutions indeed exist!

d. As follows from c, the asymptotes Ω+ (Ω−) are
unstable as x → +∞ (x → −∞). However, we can
require the solutions to satisfy one of the initial condi-
tions (32). We call such solutions left and right sepa-
ratrices because they separate all solutions by regions.
For example, the separatrix Ωr separates solutions that
are above or below its value Ω+ at +∞ just according
the fact that Ω+ is a repellor at +∞.

We demonstrate that once we fixed one of condi-
tions (32), it defines a single solution. To be more spe-
cific, we consider Ωr(x). To demonstrate the existence
of such a solution, we need to set x∗ = +∞ and ε = 0

in the preceding item. Then Ωr(x) = Ω+ + δΩr(x),
where, as x→ +∞, by analogy with (35) we can write

δΩr(x) = 2

x∫
+∞

U(x′)e2k(x−x′) dx′,

where δΩr(x) → 0 as x → +∞, which proves the exis-
tence of a solution. To show its uniqueness, we suppose
that there are two solutions with the same condition
Ω1,2(x) → Ω+ as x → +∞ and consider its difference
δΩ = Ω2 − Ω1, which continuously tends to zero as
x→ +∞. While δΩ is small, it satisfies the equation

δΩ′ = −2py cosΩ1(x)δΩ

with the solution

δΩ(x) = δΩ(x0) exp

⎧⎨
⎩−2py

x∫
x0

cosΩ1(x
′) dx′

⎫⎬
⎭ ,

x ≤ x0 → +∞. While x0 is fixed, we use the limit rela-
tion py cosΩ1(x) → −k as x→ +∞, which exposes the
exponential divergence at any nonzero δΩ(x0), whence
δΩ(x) ≡ 0.

We emphasize that the uniqueness of solutions with
conditions (32) does not hold if E = ±py!

e. We next compare boundary conditions (8) for
solutions that correspond to physical states with initial
conditions (32) for two families of separatrices. The
physical solution must satisfy both conditions, which
is possible only when two separatrix families merge!
Hence, the bound-state problem is equivalent to the
degeneracy of separatrices of Eq. (7).

�
We note that the physical solutions are stated by

degenerated separatrices, and when the degeneracy oc-
curs, the corresponding parameter E is a discrete en-
ergy level in a given potential U(x).

We let Ωl and Ωr denote the whole families of sepa-
ratrices. If we need some particular function from the
family, we indicate the dependence on x: Ωl(x) and
Ωr(x). And again, we use the notation Ω+ and Ω−
to describe the whole families of attractors and repel-
lors if we do not specify some particular point of these
families.

Lemma 3 (of boundedness). Let U(x) → 0

as x → ±∞. Let the primitive integral fx0(x) =

=
∫ x

x0
U(x′) dx′ of the potential U(x) be a continuous

function and the limit lim
x→±∞ fx0(x) exist (which may

be infinite). Then
a. Any solution of Eq. (7) is a bounded function for

any parameter E ∈ (−py, py).
b. If | lim

x→±∞ fx0(x)| < ∞, then all solutions of

Eq. (7) are bounded functions for any parameter E ∈
∈ [−py, py].

Proof. a. We first consider the situation when
k = 0 or E ∈ (−py, py).

The continuity of fx0(x) results in that Ω(x) is con-
tinuous function by Lemma 1. We suppose that Ω(x)

diverges as +∞. From the continuity, we can then
always find an arbitrarily large positive x0 such that
py cosΩ(x0) = k > 0. We expand Ω(x) in the vicinity
of x0: Ω(x) = Ω(x0) + δΩ(x). Through the first order
in δΩ, we then have

δΩ′(x) = 2U(x)− 2kδΩ(x), (36)

which yields the solution

δΩ(x) = 2

x∫
x0

U(x′)e−2k(x−x′) dx′. (37)

We clearly see that δΩ(x) converges as x → +∞ even
at arbitrarily small k > 0. Hence, we arrived at a con-
tradiction with our initial assumption of the unbound-
edness of Ω(x) at +∞.

We can similarly prove the boundedness of any so-
lution of Eq. (7) as x → −∞. We choose arbitrarily
large negative x0 such that py cosΩ(x0) = −k.

We note that δΩ(+∞) = 0. Indeed, we integrate
Eq. (36) and substitute (37) in the right-hand side. On
the one hand, we have

∞∫
x0

δΩ(x) dx =

= 2

∞∫
x0

x∫
x0

U(x′)e−2k(x−x′) dx dx′ =
fx0(+∞)

k
.
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On the other hand, direct integration of Eq. (36) yields

δΩ(+∞) = 2fx0(+∞)− 2k

∞∫
x0

δΩ(x) dx.

Hence, δΩ(+∞) = 0 or Ω(+∞) = Ω(x0). This result is
not surprising because we intentionally chose x0 such
that Ω(x0) = Ω−, which is attractor at x→ +∞.

b. If fx0(x) has finite limits at x → ±∞, it can
be shown that solutions of Eq. (7) are bounded on the
closed interval E ∈ [−py, py]. To show this, we need to
see what happens on the boundaries of the continuum
when E = μpy, μ = ±1, and k = 0.

As in item a, we assume that Ω(x) diverges as
x → +∞, and we can therefore write Ω(x) = Ω(x0) +

+ δΩ(x) and sinΩ(x0) = μ, where x0 can be an arbi-
trarily large positive number. In Eq. (36), we omitted
summands of the order δΩ2 and higher because k = 0

there. In this case, we have to account for the first
nonzero term, which is quadratic in δΩ:

δΩ′(x) = 2U(x)− μpyδΩ
2(x).

This equation resembles that in the nonrelativistic limit
with zero nonrelativistic energy. There are three possi-
ble scenarios of the behavior at +∞. The first, where
δΩ2(x) ∼ U(x), x→ +∞, gives explicit convergence of
δΩ because U(x) → 0 as x → +∞. The second cor-
responds to δΩ2(x) ∼ δΩ′(x), which yields the conver-
gence δΩ ∼ 1/x. And the last situation is δΩ′(x) ∼
∼ U(x), which gives the convergence if and only if
fx0(x) converges at infinity.

Hence, any solution of Eq. (7) is bounded at any pa-
rameter E ∈ [−py, py] as long as fx0(x) is continuous
and converges at infinity.

�
As can be seen from Lemma 2, we are interested

in separatrix solutions because only those solutions are
related to physical ones. For all discussions in what fol-
lows, we choose the family of left separatrices Ωl. We
want to show that the total variance

ΔΩl(E) = Ωl(+∞)− Ωl(−∞)

as a function of energy contains the full information of
the discrete spectrum. This is stated in the following
theorem.

Theorem (Levinson). Let fx0(x) be a continuous
function that converges at infinity, and E ∈ [−py, py].
Then

a. ΔΩl(E) is a bounded function on the interval
E ∈ [−py, py].

b. ΔΩl(E) is an integer multiple of 2π if E /∈
/∈ Spec(U, py), and Spec(U, py) is the discrete spectrum
of U(x) at a given py.

c. Any E /∈ Spec(U, py) is a point of continuity of
ΔΩl(E).

d. ΔΩl(E) has finite jumps of −2π at each point
Ed ∈ Spec(U, py):

ΔΩl(Ed + 0)−ΔΩl(Ed − 0) = −2π. (38)

e. The total number Nd(py) of discrete levels of
U(x) at a given py > 0 is given by

Nd(py) =
ΔΩl(−py)−ΔΩl(py)

2π
. (39)

Proof. a. We know from Lemma 3 that under
conditions of the theorem, Ωl(x) is a bounded function
of x ∈ (−∞,∞) at any parameter E ∈ [−py, py]. In
other words, ΔΩl(E) is finite for any E ∈ [−py, py] or
ΔΩl(E) is a bounded function of E.

b. According to Lemma 2, e, two families Ωl and
Ωr of separatrices merges if and only if the parame-
ter E corresponds to some discrete energy level. Let
E /∈ Spec(U, py). Then Ωl and Ωr are disjoint fam-
ilies; Ωl(x) starts from some Ω− at x = −∞ and
maybe comes to some other Ω− from the family at
x = +∞. Indeed, otherwise Ωl(x) must tend to Ω+

at +∞, whence Ωl(x) = Ωr(x), which violates our as-
sumption that E /∈ Spec(U, py). Hence, ΔΩl(E) is a
multiple of 2π.

c. Let E /∈ Spec(U, py), where it is natural to as-
sume that Spec(U, py) is a discrete set. Then some
δ-vicinity of E is disjoint with Spec(U, py), δ > 0. We
consider how Ωl(x,E) changes with a small variation
in the parameter E:

δΩl(x,E, ε) = Ωl(x,E + ε)− Ωl(x,E),

where 0 < |ε| < δ. In contrast to the foregoing, where
E was fixed, we here indicate E as an argument. Sub-
tracting Eqs. (7) for Ωl(x,E+ε) and Ωl(x,E), we arrive
at an equation for the variation function:

δΩ′
l ≈ −2ε− 2py cosΩl(x,E) δΩl. (40)

We note that the initial condition depends on ε because

δΩl(−∞, E, ε) = Ω−(E + ε)− Ω−(E) ≈ − ε

k
. (41)

The solution is

δΩl(x,E, ε) =

= −2ε

x∫
−∞

exp

⎧⎨
⎩2py

y∫
x

cosΩl(y
′, E) dy′

⎫⎬
⎭ dy. (42)
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We first demonstrate that (42) satisfies initial con-
dition (41). According to (32), we can approximate
py cosΩl(y

′, E) → py cosΩ− = k as x → −∞ because
y ≤ y′ ≤ x. Hence, we see that

δΩl(−∞, E, ε) → −2ε

x∫
−∞

e2k(y−x) dy = − ε

k

as x→ −∞. Now we are ready to show the convergence
of (42) at +∞ and, moreover, that δΩl(+∞, E, ε) =

= −ε/k. We first, divide (42) into two parts: the first
part is the y-integral where −∞ < y < x0, and the
second part is the y-integral where x0 < y < x, with
x0 < x being a large positive number such that we can
use the approximation py cosΩl(y

′, E) ≈ py cosΩ− = k

for y′ > x0. The first part can be estimated as x→ +∞
as follows:

−2ε

x0∫
−∞

exp

⎧⎨
⎩2py

⎛
⎝ x0∫

x

+

y∫
x0

⎞
⎠ cosΩl(y

′, E) dy′

⎫⎬
⎭ dy ≈

≈ −2ε

x0∫
−∞

exp

⎧⎨
⎩2py

y∫
x0

cosΩl(y
′, E) dy′

⎫⎬
⎭ dy×

× e−2k(x−x0) = δΩl(x0, E, ε)e
−2k(x−x0) → 0.

The second part gives the desired limit δΩl(+∞, E, ε):

− 2ε

x∫
x0

exp

⎧⎨
⎩2py

y∫
x

cosΩl(y
′, E) dy′

⎫⎬
⎭ dy ≈

≈ −2ε

x∫
x0

e2k(y−x) dy → − ε

k
.

Hence,

δΩl(+∞, E, ε) = δΩl(−∞, E, ε) = −ε/k +O(ε2).

We note the equality of the values of δΩl at ±∞ not
just up to the order ε2 because we proved here that the
difference tends to zero with ε, but according to item
b of this theorem, the difference must be a multiple of
2π, whence only one opportunity is possible. Finally,
we conclude that

ΔΩl(E + ε)−ΔΩl(E) =

= δΩl(+∞, E, ε)− δΩl(−∞, E, ε) = 0.

Hence, we proved that any E /∈ Spec(U, py) is a point
of continuity of the function ΔΩl(E). We also proved
that ΔΩl(E) is a piecewise-constant function with only
possible discontinuity points from Spec(U, py).

We emphasize that the statement of this item is
true even for the boundaries of the continuum where
E = ±py because E = ±py are not limit points of
Spec(U, py) (see Remark 1). For example, for E = py,
we take

δΩl(x,E = py, ε) = Ωl(x, py − ε)− Ωl(x, py),

where ε ≈ k2/(2py) → +0. Then condition (41) holds
because ε/k ≈ k/(2py) → 0.

d. Now we understand the behavior of ΔΩl(E) with
E /∈ Spec(U, py). In this item, we consider the situa-
tion when E = Ed ∈ Spec(U, py), where we assume
that Spec(U, py) is a discrete set or each element is an
isolated point. As follows from Lemma 2, e, two separa-
trix families merge when E = Ed. We call this merged
separatrices the Ωd family.

Because Ed is isolated point of Spec(U, py), there
exists a δ > 0 such that the δ-vicinity of Ed does not
contain any other points from Spec(U, py) except Ed.
We consider the variation function

δΩl(x,Ed, ε) = Ωl(x,Ed + ε)− Ωd(x,Ed),

where ε can be arbitrarily small, 0 < |ε| < δ. We then
repeat the procedure in item c of the theorem, which
gives exactly the same initial condition (41), and we
need to substitute Ωl(y

′, E) → Ωd(y
′, Ed) in Eq. (40).

Hence, the approximate solution for δΩl(x,Ed, ε) is
given by

δΩl(x,Ed, ε) =

= −2ε

x∫
−∞

exp

⎧⎨
⎩2py

y∫
x

cosΩd(y
′, Ed) dy

′

⎫⎬
⎭ dy. (43)

But the analysis of Eq. (43) at x → +∞ gives dif-
ferent result from those in Eq. (42). The reason is
that Ωd(x,Ed) tends to Ω+ as x → +∞ in accordance
with conditions (8). This gives py cosΩd(+∞, Ed) =

= py cosΩ+ = −k, which yields the exponential diver-
gence of δΩl(x,Ed, ε) as x→ +∞ for any |ε| > 0. For-
mally, this divergence indicates the instability of the so-
lution Ωd(x,Ed) under infinitely small variations from
the parameter Ed. But this conclusion is already obvi-
ous because we know that at E = Ed + ε, we have two
disjoint families of separatrices and our separatrix Ωl

tends to Ω− as x→ +∞.
A nontrivial conclusion that can be drawn from (43)

is that
sign (δΩl) = − sign(ε). (44)

We next show that it leads to (38).
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We can use approximate solution (43) in the region
x < R if the condition δΩl(x < R,Ed, ε) 
 1 holds.
Fix some small value of δΩl,

δΩl(R,Ed, ε) ≡ α.

This means that R is a function of two parameters α
and ε and R(α, ε) → +∞ at a fixed α and ε → 0. We
introduce the variance

δΩd = Ωd(R(α, ε), Ed)− Ω+,

where δΩd → 0 as R→ +∞. Finally, for the left sepa-
ratrix, we have

Ωl(R(α, ε), Ed + ε) = Ω+ + δΩd + α,

where α is fixed and δΩd → 0 as ε→ 0 or, equivalently,

Ωl(R(α, ε), Ed + ε) → Ω+ + α

at ε→ 0 and an arbitrarily small but fixed α. In accor-
dance with the definition of α and Eq. (44), we obtain

sign(α) = − sign(ε).

This means that at ε > 0 (ε < 0), the left separatrix
Ωl(R,Ed + ε) < Ω+ (Ωl(R,Ed + ε) > Ω+) at R →
→ +∞ and hence Ωl(x,Ed + ε) falls onto the asymp-
tote Ω−, which is right under (above) the asymptote
Ω+ = Ωd(+∞, Ed). Hence,

Ωl(+∞, Ed + 0)− Ωl(+∞, Ed − 0) = −2π

or equivalently,

ΔΩl(Ed + 0)−ΔΩl(Ed − 0) = −2π.

We used the fact that Ωl(−∞, Ed+0) = Ωl(−∞, Ed−0)

here.
It can be shown similarly that the right separatrix

experiences jumps with the same sign:

ΔΩr(Ed + 0)−ΔΩr(Ed − 0) = −2π.

In this sense, the right separatrix does not give any
additional information about the discrete spectrum.

e. We proved that ΔΩl(E) is a bounded piecewise-
constant function that experiences final jumps of −2π

at every point Ed of the discrete spectrum of the con-
finement potential U(x) and ΔΩl(E) is continuous at
any other points where E /∈ Spec(U, py). This allows
us to calculate the total number of discrete levels as
the difference of ΔΩl(E) on the ends of the interval
[−py, py], which immediately gives Eq. (39).

We remark, however, that we understand ΔΩl(±py)
only in the sense of the limit relation

ΔΩl(±py) = lim
ε→+0

ΔΩl(±(py − ε))

because separatrices are not well defined at the boun-
daries of the continuum, as we saw in Lemma 2.

�
Remark 1 (for the Levinson theorem). We note

that the assumptions made in the statement of the
Levinson theorem ensure that Spec(U, py) is a discrete
set. Indeed, we suppose that Spec(U, py) has one limit
point E0 ∈ [−py, py]. This means that the infinitesi-
mal vicinity of this point contains an infinite number
of isolated points from Spec(U, py). But for any iso-
lated point, item d of the theorem applies, whence
ΔΩl(E → E0) → ∞, which contradicts item a of
the theorem, the boundedness of this function for any
E ∈ [−py, py]. Hence, Spec(U, py) does not contain
limit points.

Remark 2 (for the Levinson theorem). Even if
| lim
x→±∞ fx0(x)| = ∞, all proofs and statements of the

theorem are valid for the open interval E ∈ (−py, py)
because k =

√
p2y − E2 > 0. However, at least one

of the points E = ±py is a limit point of Spec(U, py),
which makes ΔΩl(E) unbounded on the closed interval
E ∈ [−py, py].

Remark 3 (for the Levinson theorem). We can find
the number of discrete levels between any two given
energies |E1,2| ≤ py, E1,2 /∈ Spec(U, py):

Nd(py, E1, E2) =

∣∣∣∣ΔΩl(E2)−ΔΩl(E1)

2π

∣∣∣∣ . (45)

Hence, the function ΔΩl(E) plays the same role
as the scattering phase does in nonrelativistic theory.
In other words, the theorem represents the relativistic
Levinson theorem for the 2D Dirac equation with a 1D
potential.

Example with a δ-potential
Finally, we give an example in the simple case of

the δ-potential U(x) = Gδ(x). We demonstrate that
the total number of discrete levels Nd(py) = 1 at any
py = 0 and G = πn, where n is an integer and Nd is
defined by Eq. (39). We need to consider Eq. (7) only
at E = ±py.

All solutions of Eq. (7) are constructed from so-
lutions of the free motion equation (33) separately at
x < 0 and x > 0 with the matching condition

Ω(+0) = Ω(−0) + 2G. (46)

We first analyze the solutions of Eq. (33). If E =

= py, then we have Ω′(x) = −2py(1 + sinΩ) ≤ 0 and
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Ω′(x) = 0 only in the case of stationary points Ω0 ≡
≡ Ω± = −π/2 + 2πn. Hence, all nonstationary solu-
tions of Eq. (33) decrease strictly monotonically from
some stationary point Ω0+2π at x = −∞ to Ω0 at x =

= +∞. We note that two families of stationary points
merge at E = ±py.

In the case where E = −py, all nonstationary solu-
tions of Eq. (33) increase strictly monotonically from
some stationary point Ω0 − 2π at x = −∞ to Ω0 at
x = +∞.

We represent the confinement strength in the form

G = π(nG + δnG),

where nG is an integer and δnG ∈ (0, 1). Then

Ωl(x < 0,±py) = Ω−(±py)

and

Ωl(+0,±py) = Ω−(±py) + 2πnG + 2πδnG,

where Ω0 = Ω− + 2πnG is a stationary point and
2πδnG ∈ (0, 2π), which means that Ωl(x,±py) at x >
> 0 comes along some nonstationary solution that de-
creases (increases) at E = py (E = −py), whence
Ωl(+∞, py) = Ω0 (Ωl(+∞,−py) = Ω0 +2π) at E = py
(E = −py). Equivalently, ΔΩl(py) = 2πnG and
ΔΩl(−py) = 2πnG + 2π. Hence, Nd(py) = 1.

7. GEOMETRICAL INTERPRETATION OF
THE RELATIVISTIC LEVINSON THEOREM

The problem of bound states in graphene stripes
can be analyzed similarly to what happens in mechan-
ical autonomous systems. We consider the system of
equations

U ′(x) = G(U),

Ω′(x) = 2 (U(x)− E)− 2py sinΩ(x),
(47)

where the second equation is just Eq. (7). We can as-
sume that Eq. (47) represents integral curves of some
vector field

F(U,Ω) =

(
G(U)

2 (U − E)− 2py sinΩ

)
,

and the coordinate x is just some parameterization of
these curves. Although our system (47) is not Hamil-
tonian as in usual mechanics, it is still an autonomous
system of differential equations, and it can therefore be
analyzed in terms of phase trajectories in the so-called

phase space D. In our case, the phase space D is the
(U,Ω)-stripe:

D = {(U,Ω)|U ∈ [ inf
x∈R

U(x), sup
x∈R

U(x)],Ω ∈ R},

where R = (−∞,+∞).
However, our system (47) is more complicated than

the usual autonomous systems. To see this, we note
that the function G(U) is different for each monotoni-
city interval Ij = [xj−1, xj ] of U(x). This means that
we have different maps for each Ij and we need to match
these maps continuously. In other words, instead of one
autonomous system, we have a chain of systems:

Fj(U,Ω) =

(
U ′(x)

Ω′(x)

)
=

(
Gj(U)

2 (U−E)−2py sinΩ

)
, (48)

which are autonomous on the corresponding intervals
Ij , x ∈ Ij is some parameterization, and Fj(xj) =

= Fj+1(xj). All trajectories of the field Fj fill the
whole stripe:

Dj = {(Ω, U)|U ∈ [ inf
x∈Ij

U(x), sup
x∈Ij

U(x)],Ω ∈ R}.

We formulate the following Lemma.
Lemma 4 (of stationary points). Let U(x) ∈

∈ C1 have a finite number N of monotonicity intervals
Ij = [xj−1, xj ], x0 = −∞ < x1 < . . . < xN−1 < xN =

= +∞. Let U(x) be a strictly monotonic function on
each Ij . Let U(x) → 0 as x→ ±∞. Then

a. U ′(x) → 0 as x→ ±∞.
b. The functions Gj(U) are definite on the cor-

responding intervals Ij , j = 1, . . . , N , and G1(0) =

= GN (0) = 0.
c. The number of stationary points of the jth equa-

tion (48) is exhausted by the series(
Uσ, arcsin

(
Uσ − E

py

)
+ 2πn

)

or (
Uσ, π − arcsin

(
Uσ − E

py

)
+ 2πn

)
,

where n is an integer, |Uσ − E| ≤ py, and Gj(Uσ) = 0.
Proof. a. It is straightforward from the monotonic

behavior of U(x) at infinity and the fact that U(x) → 0

as x→ ∞.
b. Because U(x) is strictly monotonic on each

Ij , the inverse function xj(U) exists. Then Gj(U) =

= U ′(xj(U)).
We know that I1 = (−∞, x1], IN = [xN−1,+∞),

and U ′(x) → 0 as x → ±∞, where U(x) → 0. This
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immediately yields G1(0) = lim
x→−∞U ′(x) = 0 and

GN (0) = lim
x→+∞U ′(x) = 0.

c. To prove this statement, if suffices to solve the
simple equation

Fj(U,Ω) = 0.

�
In what follows, we let F(U,Ω) denote the en-

tire chain of connected maps for Fj(U,Ω), where each
trajectory from D corresponds to some solution of
Eq. (47). The properties of these trajectories are for-
mulated in the following theorem.

Theorem (of Poincaré indices). Let all restrictions
of Lemma 4 be valid. We consider the map D → R

defined by the rule

X(U,Ω) = (U + apy) cosΩ,

Y (U,Ω) = (U + apy) sinΩ,
(49)

where +∞ > apy > − inf
x∈R

U(x) is some parameter, and

E ∈ (−py, py), E /∈ Spec(U, py). Then
a. All stable trajectories of the vector field

P(X,Y ) = F(U(X,Y ),Ω(X,Y )),

(X,Y ) ∈ R are open. All unstable trajectories (sepa-
ratrices) are closed.

b. In the preceding section, we introduced the to-
tal variance ΔΩs(E), where s indicates the left or right
separatrix. The fraction ΔΩs(E)/(2π) equals the in-
teger number p of full rotations of the corresponding
closed trajectory in the phase space R:

ΔΩs(E) = 2πps;

ps is the Poincaré index of a closed trajectory.
Proof. a. Map (49) is a map of the stripe D to the

annulus R where all points (U,Ω+2πn), where n is an
integer, are identified.

The asymptotic behavior of stable trajectories of
the field P(X,Y ) is related to stable solutions of Eq. (7)
that start from the attractor Ω+ at x → −∞ and fin-
ish at the attractor Ω− at x→ +∞ in accordance with
Lemma 2. Because U(x) → 0 as x→ ±∞, we conclude
that stable trajectories in R start from the point

Pi = (−ak,−aE)

because Xi = apy cosΩ+ and Yi = apy sinΩ+, and fi-
nish at another point

Pf = (ak,−aE)

because Xf = apy cosΩ−, Yf = apy sinΩ−. If E ∈
∈ (−py, py), then k > 0 and Pf = Pi. This means that
stable trajectories are open.

According to (32), if E /∈ Spec(U, py), then Ωl (Ωr)
starts and finishes on the asymptotes from the same
family: Ω− for Ωl and Ω+ for Ωr. Then, Pi and Pf are
identical for them or, equivalently, their trajectories in
the space R are closed.

b. As follows from the Levinson theorem,
ΔΩl(E) = 2πpl, where pl is an integer. But from the
continuity of Ωl(x) we conclude that pl is the number
of full rotations of the closed trajectory corresponding
to the separatrix Ωl in R. In other words, pl is the
Poincaré index of this closed trajectory [34].

�
We present a simple example of the spectral analy-

sis for the Lorentzian-shaped confinement potential

U(x) = −U0/(x
2 + 1).

We plot the vector field F(U,Ω) and calculate the num-
ber of bound states at some particular py and U0.

First, we need to find Gj(U) for each interval of
monotonicity I1 = (−∞, 0) and I2 = (0,+∞):

Gn(U) = (−1)n
2U2

U0

√
−U0

U
− 1

for the interval In, n = {1, 2}, U ∈ [−U0, 0].
Then we set the parameters py = 0.1 and U0 = 1.

To find the total number of confined modes, we use
Eq. (39). Hence, we need to plot the phase portrait
only for two energies E = ±py. For the vector field
F(E = py), Figs. 1 and 2 show the approximate trajec-
tory (U,Ωl(x(U))) (red line) for two intervals I1,2. We
chose the point (U = −10−6,Ω = −π/2 + 0.05) as the
initial condition for the trajectory (U,Ωl(x1(U))) on
the interval I1. Matching the trajectories correspond-
ing to the intervals I1 and I2 (black points in Figs. 1 and
2), we finally obtain the variance ΔΩl(py) = −4π. Sim-
ilarly, drawing such pictures for E = −py, we obtain
that ΔΩl(py) = 0. Equation (39) yields Nd(py) = 2

confined energy levels for py = 0.1.
We have to remark that the initial condition for

Ωl must be perturbed from the ideal point (U = 0,
Ω = Ω−) because it is a stationary point of Eq. (47)
according to Lemma 4. But the result is stable under
small variations in the initial conditions because of the
stability of the Poincaré index or the so-called topolog-
ical charge.

8. CONCLUSIONS

The variable-phase method has been developed
herein for electrostatically confined 2D massless Di-
rac–Weyl particles such as electrons in graphene de-
vices. The desired phase function Ω(x) appears as the
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Fig. 1. (Color online.) The vector field F(E = py) with py =

= 0.1 and U0 = 1 on the interval I1 = (−∞, 0). The tra-
jectory (U,Ωl(x1(U))) corresponding to the separatrix Ωl(x)

(red streamline) starts from the initial (red) point (U = 0,
Ω = −π/2) and ends where U = −U0 = −1 (black point).

The distance between red points is 2π

U

0–0.2–0.4–0.6–0.8–1.0
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–10

–12
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�

Fig. 2. (Color online.) The vector field F(E = py) with py =

= 0.1 and U0 = 1 on the interval I2 = (0,+∞). The tra-
jectory (U,Ωl(x2(U))) corresponding to the separatrix Ωl(x)

(red streamline) starts from the black point, which provides
the continuity of Ωl(x) at x = 0, and ends at the red point
(U = 0, Ω = −9π/2). The distance between red points is 2π

phase between two chiral states whose superposition
yields the wave function of the confined state. In ad-
dition to the well-known nonrelativistic and semiclassi-
cal limits, it has been shown that confined states with
small py (see condition (18)) are successfully described
in the so-called δ-potential limit that is valid for each
integrable potential U(x). Then the relativistic Levin-
son theorem has been formulated and proved for the
variance ΔΩl(E) of the separatrix Ωl(x) of Eq. (7). As
a consequence of the theorem, the number of confined
modes with a given py has been derived. Finally, a ge-
ometrical approach to finding the function ΔΩl(E) has
been proposed.

We note that this paper is dedicated exclusively
to the discrete part of the spectrum. The developed
approach can be extended to the analysis of half-bound
and quasi-bound states, the last ones being important
for better understanding the supercriticality.

We are grateful to M. V. Entin for the useful
discussions and the critical leading of the manuscript.
The work was supported by the RFBR (grant
№14-02-00593).

APPENDIX

Unique solution of the δ-potential

One can find in the literature that U(x) = Gδ(x)

does not have definite solutions of the Dirac–Weyl
equation [35, 36]. This problem arises from the fact
that the wave function is discontinuous at x = 0, and
it results in an ambiguous integral of the type

ε∫
−ε

δ(x)θ(x) dx

which takes an arbitrary value from the segment [0, 1],
where θ(x) is the Heaviside step function and ε→ +0.
This problem was circumvented in [5], where the wave
function Ψ(x) was represented as the x-ordered expo-
nential (an analogue of the evolution operator) acting
on the wave function at the initial point x0. We here
quote the exact solution of Eq. (3) in order to explicitly
demonstrate the absence of any ambiguities.

We start from Eq. (3):

g′′ (x) + 2i (E −Gδ(x)) g′ (x)− p2yg (x) = 0. (50)

The function g(x) appears to be continuous, and g′(x)
is discontinuous at x = 0. We assume that g′(±0) =
= 0 and divide this equation by the function g′(x),
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x ∈ Iε = (−ε, ε). Integrating this equation over the
interval Iε and taking the limit ε→ +0, we then arrive
at the correct matching condition

g′(+0)

g′(−0)
= e2iG. (51)

If we are interested in the discrete spectrum of this
problem, we have to apply condition (51) to the func-
tion g(x) = g0 exp(−iEx) exp(−k|x|), which represents
the common form of a bounded solution of Eq. (50)
continuous at x = 0, k =

√
p2y − E2. This manifestly

yields the spectrum in Eq. (19). The initial assump-
tion that g′(±0) = 0 is obviously valid for such func-
tions g(x).

If we consider the scattering problem with a fixed
|E| > py, then the continuous function g(x) has the
form

g(x) =

{
Aeix(k−E) +Be−ix(k+E), x < 0,

(A+B)eix(k−E), x > 0,

k =
√
E2 − p2y. Applying condition (51), we can obtain

the transmission coefficient:

T =

∣∣∣∣1 + B

A

∣∣∣∣
2

=
k2

k2 + p2y sin
2G

.

Finally, we have to verify that the initial assumption
g′(±0) = 0 is not violated. g′(+0) = 0 as long as E = k

for py = 0. We then suppose that g′(−0) = 0, which
leads to A(k − E) = B(k + E) or, equivalently, T =

= 4k2/(k + E)2, which has no physical sense because
the transmission coefficient T does not depend on the
parameter G in this case. Hence, the unique solution
in the case of a δ-potential is provided.

We can suggest an easier way to obtain the dis-
crete spectrum for this potential. For this, integrating
Eq. (7) and applying boundary conditions (8), we fi-
nally obtain

ΔΩ = Ω+ − Ω− = 2G (52)

which explicitly gives spectrum (19).

REFERENCES

1. V. S. Popov, Zh. Eksp. Teor. Fiz. 59, 965 (1970) [Sov.
Phys. JETP 32, 526 (1971)].

2. Ya. B. Zeldovich and V. S. Popov, Sov. Phys. Usp.
14, 673 (1972).

3. S. S. Gershtein and V. S. Popov, Lett. Nuovo Cim.
6, 14 (1973).

4. V. N. Oraevskii, A. I. Rex, and V. B. Semikoz, Zh.
Eksp. Teor. Fiz. 72, 820 (1977) [Sov. Phys. JETP 45,
428 (1977)].

5. A. Calogeracos, N. Dombey, and K. Imagawa, Phys.
Atom. Nucl. 59, 1275 (1996).

6. A. Shytov, M. Rudner, N. Gu, M. Katsnelson, and
L. Levitov, Sol. St. Comm. 149, 1087 (2009).

7. A. I. Milstein and I. S. Terekhov, Phys. Rev. B 81,
125419 (2010).

8. H. B. Nielsen and M. Ninomiya, Phys. Lett. B 130,
6 (1983).

9. K. Landsteiner, Phys. Rev. B 89, 075124 (2014).

10. T. Ando, T. Nakanishi, and R. Saito, J. Phys. Soc.
Jpn. 67, 2857 (1998).

11. D. S. Novikov and L. S. Levitov, Phys. Rev. Lett. 96,
036402 (2006).

12. A. V. Shytov, M. S. Rudner, and L. S. Levitov, Phys.
Rev. Lett. 101, 156804 (2008).

13. T. Tudorovskiy, K. J. A. Reijnders, and M. I. Kats-
nelson, Phys. Scripta T 146, 014010 (2012).

14. D. S. Miserev and M. V. Entin, Zh. Eksp. Teor. Fiz.
142, 784 (2012) [JETP 115, 694 (2012)].

15. K. J. A. Reijnders, T. Tudorovskiy, and M. I. Kats-
nelson, Ann. Phys. 333, 155 (2013).

16. P. M. Morse and W. P. Allis, Phys. Rev. 44, 269
(1933).

17. V. V. Babikov, Sov. Phys. Usp. 10, 271 (1967).

18. F. Calogero, Variable Phase Approach to Potential
Scattering, Acad. Press, New York (1967).

19. M. I. Sobel, Nuovo Cim. A 65, 117 (1970).

20. U. Landman, Phys. Rev. A 5, 1 (1972).

21. H. Ouerdane, M. J. Jamieson, D. Vrinceanu, and
M. J. Cavagnero, J. Phys. B 36, 4055 (2003).

22. N. Levinson and K. Dan, Vidensk. Selsk. Mat. Fys.
Medd. 25, 9 (1949).

23. M. Klaus, J. Math. Phys. 31, 182 (1990).

24. K. Hayashi, Progr. Theor. Phys. 35, 3 (1966).

25. R. L. Warnock, Phys. Rev. 131, 1320 (1963).

26. S. Dong, X. Hou, and Z. Ma, Phys. Rev. A 58, 2160
(1998).

27. D. P. Clemence, Inverse Probl. 5, 269 (1989).

1247



D. S. Miserev ЖЭТФ, том 149, вып. 6, 2016

28. Q. Lin, Eur. Phys. J. D 7, 515 (1999).

29. A. Calogeracos and N. Dombey, Phys. Rev. Lett. 93,
180405 (2004).

30. Z. Ma, S. Dong, and L. Wang, Phys. Rev. A 74,
012712 (2006).

31. R. R. Hartmann, N. J. Robinson, and M. E. Portnoi,
Phys. Rev. B 81, 245431 (2010).

32. R. R. Hartmann and M. E. Portnoi, Phys. Rev. A 89,
012101 (2014).

33. D. A. Stone, C. A. Downing, and M. E. Portnoi, Phys.
Rev. B 86, 075464 (2012).

34. H. Poincare, On Curves Defined by Differential Equa-
tions, Gostekhizdat, Moscow (1947).

35. M. G. Calkin, D. Kiang, and Y. Nogami, Amer. J.
Phys. 55, 737 (1987).

36. B. H. J. McKellar and G. J. Stephenson, Jr., Phys.
Rev. C 35, 2262 (1987).

1248



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /RUS <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


