ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА МОДЕЛИ МАГНИТОТВЕРДОГО/МАГНИТОМЯГКОГО БИСЛОЯ

T. A. Taaes^{a*}, K. III. Xuspues^{a,b}, A. K. Mypmasaes^{a,b}

^а Институт физики им. Х. И. Амирханова Дагестанского научного центра Российской академии наук 367003, Махачкала, Россия

> ^b Дагестанский государственный университет 367000, Махачкала, Россия

> > Поступила в редакцию 4 июня 2015 г.

Предложена модель для описания термодинамических свойств магнитотвердого/магнитомягкого бислоя и методом Монте-Карло проведены тщательные исследования этой модели. При этом рассчитаны температурные зависимости теплоемкости, общей намагниченности, намагниченности магнитотвердого и магнитомягкого слоев, общей восприимчивости, восприимчивостей магнитотвердого и магнитомягкого слоев. В температурных зависимостях теплоемкости и восприимчивости обнаружены двойные максимумы, которые являются результатом двух фазовых переходов, происходящих в системе. Рассмотрено влияние размеров системы на термодинамические свойства модели.

DOI: 10.7868/S0044451016050114

1. ВВЕДЕНИЕ

Создание слоистых нанокомпозитных материалов открыло новую главу в физике магнетизма [1–5]. Обменное взаимодействие на границе раздела между слоями с различным магнитным порядком формирует принципиально новое основное состояние гетерофазного магнетика, коренным образом изменяет поведение спинов и приводит к возникновению ряда необычных явлений, таких как формирование во внешнем магнитном поле одномерной гетерофазной спиновой пружины (обменно-связанное поведение). Также в работах [3,5] на основе двухслойных магнитных гетероструктур было теоретически предсказано, что можно достичь гигантского энергетического произведения $(BH)_{max}$ порядка 120 МГс·Э. Все эти эффекты, а также возможность получать структуры с требуемыми величиной и знаком межслойного обмена, приводят к тому, что технологическая значимость этих материалов очень велика: от применения в качестве постоянных магнитов до использования в качестве продвинутых носителей информации.

2. МАГНИТОТВЕРДЫЙ/МАГНИТОМЯГКИЙ БИСЛОЙ

Изготовление обменно-связанных тонкопленочных структур — очень трудоемкий процесс, который требует контролируемого роста нанометровых жестких и мягких магнитных слоев, получения идеальных структур, интерфейсов и т.д. Выращивание таких пленок, получение подходящих магнитотвердых/магнитомягких гетероструктур и понимание их магнитного поведения — это целая область, которой посвящены многочисленные исследования [1–19]. Схематически изображение магнитотвердого/магнитомягкого бислоя показано на рис. 1.

Впервые обменно-связанное поведение материала было обнаружено в образце $Nd_{4.5}Fe_{77}B_{18.5}$, полученном из расплава, который после отжига состоял из смешанных слоев $Nd_2Fe_{14}B$, Fe_3B или Fe. Эти образцы проявляют магнитотвердые свойства, несмотря на то, что они на 85 % состоят из магнитомягкого слоя (Fe_3B, Fe) и только на 15 % из магнитотвердого ($Nd_2Fe_{14}B$) [6].

В настоящее время образцы, в основном, изготавливаются методом магнетронного напыления на подложку из MgO, на который наносится буферный слой Cr. Магнитотвердый слой характеризуется большим значением константы анизотропии, а магнитомягкий — большим значением намагниченности насыщения.

^{*} E-mail: taaev89@mail.ru

Рис. 1. Схематическое изображение и иллюстрация обменно-связанного поведения (спиновая пружина) магнитотвердого (hard) / магнитомягкого (soft) бислоя

На сегодняшний день усилия экспериментаторов направлены на получение таких обменно-связанных материалов и исследование процессов перемагничивания. Для экспериментального исследования процессов перемагничивания используются такие методы, как магнитометрия, магнитооптический эффект Керра и бриллюэновское рассеивание света [7], а также численные методы [8–10]. Не обходят вниманием экспериментаторы и изучение влияния на процесс перемагничивания способа получения образца [11,12], температуры отжига и температуры осаждения [13], величины и знака межфазного обмена между магнитотвердым и магнитомягким магнитными слоями [14, 15]. Исследования процессов перемагничивания проводятся как в зависимости от интенсивности и направления внешнего магнитного поля [16], так и при наличии постоянно вращающегося магнитного поля [17, 18]. Процесс вращения магнитомягкого слоя, ферромагнитно связанного с магнитотвердым слоем, был изучен в работе [9].

Основная идея и большая привлекательность магнитотвердых/магнитомягких бислоев заключается в следующем. Предполагается, что магнитотвердый слой абсолютно жесткий, с большим значением анизотропии, а в магнитомягком слое вовсе нет анизотропии. Во внешнем магнитном поле, направленном против вектора намагниченности магнитотвердого слоя (рис. 1), намагниченность магнитомягкого слоя остается сонаправленной и параллельной намагниченности магнитотвердого слоя вплоть до значений внешнего поля [19]

$$H_{ex} = \pi^2 J_s / 2M_s t^2$$

где J_s — обменная константа взаимодействия между спинами внутри магнитомягкого слоя, t — толщина магнитомягкого слоя, M_s — намагниченность насыщения магнитомягкого слоя.

Когда значение приложенного поля H становится больше H_{ex} , спины в магнитомягком слое начинают вращаться как в стенке Блоха и угол поворота тем больше, чем дальше спины в магнитомягком слое находятся от магнитотвердого слоя (рис. 1). Намагниченность магнитотвердого слоя обратима и приближается к насыщению как $(H/H_{ex})^{-0.5}$. Эти предсказания хорошо согласуются с экспериментальными исследованиями бислоев NiFe/NiCo [19], а также с последующими исследованиями обменно-связанных бислоев Sm-Co/NiFe [20], Sm-Co/Co-Zn [21,22] и CoFe₂O₄/(MnZn)Fe₂O₄ [23].

Таким образом, обменно-связанные магнитотвердые/магнитомягкие структуры представляют собой уникальные системы и вызывают большой интерес исследователей. Однако на получение идеальных и подходящих магнитных гетероструктур влияет много факторов (шероховатость интерфейсов, перемешивание атомов в процессе роста и др.). Структурные дефекты могут качественно изменить магнитное поведение и должны быть адекватно учтены при интерпретации экспериментальных данных. В настоящее время, к сожалению, практически не уделяется внимание термодинамическим свойствам магнитотвердых/магнитомягких бислоев. В литературе отсутствуют работы, посвященные исследованиям температурных зависимостей термодинамических параметров. Видимо, это связано с трудностями постановки такого рода экспериментальных исследований.

Все эти трудности получения и исследования магнитотвердых/магнитомягких бислоев можно преодолеть, если проводить численный эксперимент с использованием высокоэффективных методов Монте-Карло. Эффективность методов Монте-Карло для подобного рода исследований неоднократно продемонстрирована в работах [24–29], посвященных исследованиям фазовых переходов и критических явлений в моделях магнитных наноструктур. Настоящая работа посвящена первому шагу при проведении исследований магнитных структур методом Монте-Карло, а именно, тщательному и всестороннему исследованию термодинамических свойств модели магнитного бислоя.

3. МОДЕЛЬ И МЕТОДИКА ИССЛЕДОВАНИЯ МАГНИТОТВЕРДОГО/МАГНИТОМЯГКОГО БИСЛОЯ

Для исследования термодинамических свойств магнитотвердого/магнитомягкого бислоя была использована простейшая модель, обобщающая стандартную ХҮ-модель. Магнитные атомы магнитотвердого и магнитомягкого слоев расположены в узлах простой кубической решетки. Магнитотвердый слой характеризуется высоким значением анизотропии (легкая ось), а магнитомягкий — отсутствием анизотропии. Обменные взаимодействия между ближайшими соседями внутри магнитотвердого и магнитомягкого слоев носят ферромагнитный характер и определяются соответственно параметрами J_h и J_s. Межслойное взаимодействие на границе слоев J_i для нашей модели имеет также положительный знак и принимает промежуточное значение между J_h и J_s . Гамильтониан системы был представлен в виде

$$H = -\frac{1}{2} \sum_{i,j} J\left(S_i^x S_j^x + S_i^y S_j^y\right) - \sum_i K(S_i^x)^2, \quad (1)$$

где первая сумма учитывает обменное взаимодействие каждого магнитного атома с ближайшими соседями внутри слоев с обменами $J = J_h$ и $J = J_s$ соответственно в магнитотвердом и магнитомягком слоях и межслойное взаимодействие с параметром $J = J_i$, вторая сумма — вклад анизотропии в энергию системы, $K = K_h$ и $K = K_s$ — соответственно константы анизотропии магнитотвердого и магнитомягкого слоев, $S_i^{x,y}$ — проекции спина, локализованного на узле i.

В ходе численного эксперимента нами были использованы следующие значения параметров: $J_s =$ = $2.8 \cdot 10^{-6}$ эрг/см, $J_h = 1.2 \cdot 10^{-6}$ эрг/см, $J_i =$ = $1.8 \cdot 10^{-6}$ эрг/см, $K_h d^2/J_s = 7.14 \cdot 10^{-3}$, $K_s = 0$, d == 2 Å — расстояние между атомными слоями, $|S_i| =$ = 1 [7]. Они относятся к структурам SmCo/Fe с толщиной слоев около 20 нм. В гамильтониане (1) значения обменных констант и констант анизотропии были нормированы к J_s . Выбор этих значений обменных параметров обусловлен проведением дальнейших экспериментов с получением полевых зависимостей термодинамических параметров и необходимостью сравнения наших результатов с литературными данными работы [7].

Расчеты проводились стандартным алгоритмом Метрополиса метода Монте-Карло [30] для систем с линейными размерами $L \times L \times L$, где L = 8-40. При этом толщины магнитотвердого и магнитомяг
кого слоев были равны $L/2. \label{eq:L2}$

Обычно при исследовании магнитных систем реальных веществ методами Монте-Карло стараются уменьшить степень влияния поверхности и на систему накладываются различные периодические граничные условия [31]. Одной из особенностей тонких пленок и малых частиц является наличие относительно большой доли поверхностных атомов. В нашем исследовании на систему накладывались периодические граничные условия в двух направлениях (вдоль x- и y-направлений), т.е. рассматривались тонкие магнитотвердые и магнитомягкие слои, обменно-связанные на границе раздела слоев, с открытыми поверхностями с противоположной стороны. Многие свойства таких систем в значительной мере могут быть обусловлены именно наличием поверхности. В рассматриваемой нами модели доля поверхностных спинов менялась от 25 % для самой маленькой системы (L = 8) до 5% для системы с L = 40. Поскольку общее количество поверхностных спинов в системе достаточно велико, их влияние на различные термодинамические параметры может быть существенным.

В процессе численного эксперимента для каждой системы отсекался неравновесный участок марковской цепи длиной до $8 \cdot 10^5$ МК-шагов/спин, а затем совершалось до $15 \cdot 10^5$ МК-шагов/спин и проводилось усреднение термодинамических параметров. В ходе численного эксперимента определялись намагниченности M, M_{hard} , M_{soft} , теплоемкость C, восприимчивости χ , χ_{hard} , χ_{soft} . Для этого использовались следующие соотношения [24]:

$$M = \left\langle \frac{1}{N} \sum_{i=1}^{N} S_i \right\rangle, \tag{2}$$

$$M_{hard} = \left\langle \frac{1}{N} \sum_{i \in L1}^{N} S_i \right\rangle, \tag{3}$$

$$M_{soft} = \left\langle \frac{1}{N} \sum_{i \in L2}^{N} S_i \right\rangle, \tag{4}$$

$$C = \left(N \left(\frac{J_s}{k_B T} \right)^2 \right) \left(\langle U^2 \rangle - \langle U \rangle^2 \right), \tag{5}$$

$$\chi = \left(N\frac{J_s}{k_BT}\right)\left(\langle M^2 \rangle - \langle M \rangle^2\right),\tag{6}$$

$$\chi_{hard} = \left(N\frac{J_s}{k_BT}\right)\left(\langle M_{hard}^2 \rangle - \langle M_{hard} \rangle^2\right), \quad (7)$$

$$\chi_{soft} = \left(N\frac{J_s}{k_BT}\right)\left(\langle M_{soft}^2 \rangle - \langle M_{soft} \rangle^2\right), \quad (8)$$

где $\langle U \rangle = \langle H/N \rangle$ — внутренняя энергия, N — число атомов, T — температура, L1 и L2 — спины соответственно из магнитотвердого и магнитомягкого слоя. Индексы «hard» и «soft» относятся соответственно к параметрам для магнитотвердого и магнитомягкого слоя. Угловые скобки означают усреднение по ансамблю.

4. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ОБСУЖДЕНИЕ

На рис. 2, 3 и 4 показаны температурные зависимости соответственно намагниченности M, теплоемкости C и восприимчивости χ , вычисленные с помощью выражений (2), (5) и (6) для систем различных размеров L.

Такие зависимости являются характерными для Монте-Карло-исследований магнитных систем. На всех рисунках отчетливо видны по две особенности: первая особенность при температуре T_1 , а вторая — при температуре T_2 . Эти особенности на графиках температурной зависимости намагниченности (рис. 2) проявляются в виде резкого спада намагниченности, а на температурных зависимостях теплоемкости (рис. 3) и восприимчивости (рис. 4) — в виде двойных максимумов. Здесь можно отметить, что подобные двойные максимумы в температурных зависимостях теплоемкости и восприимчивости наблюдались и в моделях магнитных сверхрешеток [27]. С ростом числа спинов в системе для магнитотвердого/магнитомягкого бислоя спады на темпе-

Рис. 2. Температурная зависимость намагниченности для модели магнитотвердого/магнитомягкого бислоя

Рис. 3. Температурная зависимость теплоемкости для модели магнитотвердого/магнитомягкого бислоя

Рис. 4. Температурная зависимость восприимчивости для модели магнитотвердого/магнитомягкого бислоя

ратурной зависимости намагниченности становятся более крутыми, а максимумы восприимчивости и теплоемкости становятся более острыми.

Поскольку магнитотвердый и магнитомягкий слои между собой слабо связаны, в каждом из этих слоев может происходить переход из упорядоченного состояния в разупорядоченное при своей температуре в силу различия обменных параметров в этих слоях. Мы полагаем, что два резких спада намагниченности и, соответственно, по два максимума теплоемкости и восприимчивости связаны с тем, что в модели бислое происходят два фазовых перехода.

Рис. 5. Температурные зависимости общей намагниченности (M) для модели магнитотвердого/магнитомягкого бислоя и намагниченностей магнитотвердого (M_{hard}) и магнитомягкого (M_{soft}) слоев при L = 20

Рис. 6. Температурные зависимости общей восприимчивости (χ) для модели магнитотвердого/магнитомягкого бислоя и восприимчивостей магнитотвердого (χ_{hard}) и магнитомягкого (χ_{soft}) слоев при L = 20

Для выяснения природы происхождения двух особенностей рассмотрим поведение термодинамических параметров, характеризующих магнитотвердый и магнитомягкий слои по отдельности. На рис. 5 и 6 приведены температурные зависимости намагниченностей и восприимчивостей как системы в целом, так и магнитотвердого и магнитомягкого слоев по отдельности (параметры с индексами соответственно «hard» и «soft»).

На рис. 5 видно, что первый резкий спад намагниченности полностью обусловлен разрушением магнитного порядка в магнитотвердом слое при температуре Т₁. При этой температуре в магнитомягком слое магнитные моменты все еще упорядочены. А при температурах T_2 уже разрушается магнитный порядок в магнитомягком слое. Точно так же, максимумы восприимчивости для магнитотвердого и магнитомягкого слоев (рис. 6) приходятся на разные температуры T₁ и T₂. При этом максимум для χ_{hard} полностью повторяет первый максимум для восприимчивости χ при температуре T_1 , а максимум восприимчивости χ_{soft} — второй максимум при температуре Т₂. Здесь можно отметить, что достаточно хорошо выполняются равенства $M = M_{hard} + M_{soft}$ и $\chi = \chi_{hard} + \chi_{soft}$. Анализ рис. 5 и 6 показывает, что вначале происходит фазовый переход в магнитотвердом слое (при температурах порядка $k_B T_1/J_s \approx$ $\approx 0.88-0.95$), а затем в магнитомягком слое (при температурах порядка $k_B T_2/J_s \approx 1.9-2.2$).

В таблице приведены характерные температуры для всех значений L. Здесь стоит отметить, что отношение T_1/T_2 лежит в пределах 0.43–0.47 для всех значений L и практически соответствует отношению констант обменных параметров J_h/J_s , причем при $L \to \infty$ отношение температур приближается к отношению констант J_h/J_s . Такое равенство отношений температур и обменных констант говорит о том, что температура фазового перехода слоя в большей степени определяется обменным взаимодействием внутри слоя. Небольшая разница в этих отношениях связана, по-видимому, во-первых, с наличием в магнитотвердом слое ненулевой анизотропии К_h и, во-вторых, с существованием межслойного обмена J_i , величина которого имеет промежуточное значение между J_h и J_s . Чем меньше линейные размеры системы и, соответственно, чем больше доля поверхностных спинов, тем больше влияние параметров K_h и J_i на термодинамические свойства в целом.

Рисунок 7 демонстрирует зависимость значений температур первых и вторых максимумов теплоемкости и восприимчивости с изменением линейного размера системы L. Таблица и рис. 7 подтверждают хорошо известный факт, что наличие большой доли поверхностных спинов влияет на температуры максимумов теплоемкости и восприимчивости, и появляется зависимость местоположения этих максимумов от линейных размеров системы L [32, 33]. В наших экспериментах наблюдается аналогичное четко выраженное смещение максимумов C и χ с изменением L.

Линейный размер	Теплоемкость, С			Восприимчивость, χ				
	Первый	Второй		Первый	Второй			$k_{-}T / I$
системы. L	максимум,	максимум,	T_{1}/T_{2}	максимум,	максимум,	T_{1}/T_{2}	J_h/J_s	κ_{BIc}/J_s
,,	$k_B T_1/J_s$	$k_B T_2/J_s$		$k_B T_1/J_s$	$k_B T_2/J_s$			
8	0.885	1.924	0.460	0.951	2.011	0.473	0.429	2.195
12	0.888	2.031	0.437	0.951	2.074	0.459		
16	0.895	2.065	0.433	0.945	2.119	0.446		
20	0.902	2.103	0.429	0.949	2.131	0.445		
24	0.918	2.121	0.433	0.953	2.142	0.445		
28	0.921	2.138	0.431	0.949	2.158	0.440		
32	0.926	2.151	0.430	0.951	2.169	0.438		
36	0.929	2.155	0.431	0.950	2.175	0.437		
40	0.932	2.160	0.431	0.951	2.185	0.435		

Таблица. Значения температур максимумов теплоемкости и восприимчивости и температура фазового перехода, определенная с помощью метода кумулянтов Биндера

Рис. 7. Зависимость значений температур первых T_1 и вторых T_2 максимумов теплоемкости и восприимчивости от размера решетки L

Как можно заметить на рис. 7, температура вторых максимумов T_2 сильнее зависит от линейных размеров системы L, чем температура T_1 . Это можно объяснить неодинаковым воздействием магнитотвердого и магнитомягкого слоев друг на друга. Так, при температурах T_1 на магнитотвердый слой действует магнитное поле, создаваемое магнитомягким слоем, который все еще находится в ферромагнитно упорядоченном состоянии. А уже при температурах T_2 такого воздействия на магнитомягкий

слой со стороны магнитотвердого слоя не имеется, так как магнитотвердый слой при этой температуре не находится в упорядоченном состоянии. Таким образом, в магнитомягком слое при температурах близких к T_2 образуется как бы еще одна свободная поверхность на границе раздела слоев. Таким образом, доля поверхностных спинов становится больше и, соответственно, проявляется их влияние на термодинамические свойства модели.

На рис. 7 видно, что имеются некоторые предельные температуры, к которым стремятся максимумы в пределах больших *L*. Какую же из этих температур можно считать температурой фазового перехода всей системы?

Для точного определения критической температуры, при которой происходит фазовый переход в модели магнитного бислоя, был использован метод кумулянтов Биндера [34], который позволяет определить температуры фазового перехода с достаточно большой точностью. Согласно этому методу все кумулянты, определенные по формулам [34]

$$U_L = 1 - \langle M^4 \rangle_L / 3 \langle M^2 \rangle_L^2, \tag{9}$$

для различных размеров L должны пересекаться в одной точке при $T = T_c$. На рис. 8 представлена зависимость кумулянтов U_L от линейных размеров исследуемой системы. Стрелкой показана температура фазового перехода.

Примерно к этой же температуре стремятся вторые максимумы теплоемкости и восприимчивости

Рис. 8. Определение температуры фазового перехода для модели магнитотвердого/магнитомягкого бислоя

при больших значениях L (рис. 7). Горизонтальной линией на рис. 7 обозначена критическая температура, определенная методом кумулянтов Биндера. Здесь надо отметить, что около температур первых максимумов T_1 не наблюдается пересечения кумулянтов. Таким образом, температурой фазового перехода всей системы в целом является температура вблизи вторых максимумов в поведении теплоемкости и восприимчивости. В таблице также указано значение этой критической температуры.

5. ЗАКЛЮЧЕНИЕ

В результате проведенных численных экспериментов показано, что в модели магнитотвердого/магнитомягкого бислоя происходят два фазовых перехода при различных температурах. Первый переход связан с поведением магнитотвердого слоя, а второй — с поведением магнитомягкого слоя. Результатом этих переходов являются две особенности, обнаруженные на температурных зависимостях теплоемкости и восприимчивости модели бислоя в виде двойных максимумов. Выявлено, что положение этих максимумов зависит от соотношения констант обменных взаимодействий в магнитотвердом и магнитомягком слоях. С ростом размеров системы (с уменьшением доли поверхностных спинов) температуры, на которые приходятся максимумы теплоемкости и восприимчивости, стремятся к некоторым предельным значениям. Критическая температура $k_B T_c/J_s = 2.195$, рассчитанная методом кумулянтов Биндера, является температурой, к которой стремятся вторые максимумы теплоемкости и восприимчивости при $L \to \infty.$

Конечно, для более реалистического описания поведения бислоя следует учитывать перемешивание в граничных атомных слоях, шероховатость интерфейсов, приводящую к неоднородному распределению намагниченности и размыванию фазового перехода, и т. д. Однако даже в такой идеализированной простой модели проявляются эффекты, характерные для малых систем.

ЛИТЕРАТУРА

- 1. J. F. Herbst, Rev. Mod. Phys. 63, 819 (1991).
- 2. K. H. J. Buschow, Rep. Prog. Phys. 54, 1123 (1991).
- J. M. D. Coey and R. Skomski, Phys. Scripta T49, 315 (1993).
- E. F. Kneller and R. Hawig, IEEE Trans. Magn. 27, 3588 (1991).
- R. Skomski and J. M. D. Coey, Phys. Rev. B 48, 15812 (1993).
- R. Coehoorn, D. B. de Mooij, and C. De Waard, J. Magn. Magn. Mater. 80, 101 (1989).
- E. E. Fullerton, J. S. Jiang, M. Grimsditch et al., Phys. Rev. B 58, 12193 (1998).
- M. Amato, M. G. Pini, and A. Rettori, Phys. Rev. B 60, 3414 (1999).
- S. Djedai and P. E. Berche, J. Phys.: Conf. Ser. 286, 012036 (2011).
- S. Djedai, E. Talbot, and P. E. Berche, J. Magn. Magn. Mater. 368, 29 (2014).
- R. Andreescu and M. J. O'Shea, J. Appl. Phys. 91, 8183 (2002).
- P. Chowdhury, M. Krishnan, H. C. Barshilia et al., J. Magn. Magn. Mater. **342**, 74 (2013).
- 13. R. Andreescu and M. J. O'Shea, Int. J. Mod. Phys. B 15, 3243 (2001).
- 14. Shi-Shen Yan, M. Elkawni, D. S. Li et al., J. Appl. Phys. 94, 4535 (2003).
- Guang-hua Guo, Guang-fu Zhang, San-yuan Song et al., Appl. Phys. Lett. 93, 102505 (2008).
- 16. V. M. Uzdin and A. Vega, Nanotechnology 19, 315401 (2008).

1028

- 17. F. Montaigne, S. Mangin, and Y. Henry, Phys. Rev. B 67, 144412 (2003).
- 18. J. McCord, Y. Henry, T. Hauet et al., Phys. Rev. B 78, 094417 (2008).
- E. Goto, N. Hayashi, T. Miyashita et al., J. Appl. Phys. 36, 2951 (1965).
- 20. K. Mibu, T. Nagahama, and T. Shinjo, J. Magn. Magn. Mater. 163, 75 (1996).
- D. Givord, J. Betz, K. Mackay et al., J. Magn. Magn. Mater. 159, 71 (1996).
- 22. S. Wüchner, J. C. Toussaint, and J. Voiron, Phys. Rev. B 55, 11576 (1997).
- 23. Y. Suzuki, R. B. van Dover, E. M. Gyorgy et al., Phys. Rev. B 53, 14016 (1996).
- 24. И. К. Камилов, А. К. Муртазаев, Х. К. Алиев, УФН 169, 773 (1999).
- 25. K. Sh. Khizriev, A. K. Murtazaev, and V. M. Uzdin, J. Magn. Magn. Mater. 300, e546 (2006).

- 26. K. Sh. Khizriev, Sol. St. Comm. 149, 464 (2009).
- 27. К. Ш. Хизриев, А. К. Муртазаев, В. М. Уздин, Изв. РАН, сер. физ. 72, 169 (2008).
- 28. К. Ш. Хизриев, А. К. Муртазаев, В. М. Уздин и др., Изв. РАН, сер. физ. 74, 1507 (2010).
- **29**. К. Ш. Хизриев, И. С. Джамалутдинова, Т. А. Тааев, ЖЭТФ **143**, 1111 (2013).
- N. Metropolis, W. Rosenbluth, N. Rosenbluth et al., J. Chem. Phys. 21, 1087 (1953).
- К. Биндер, Методы Монте-Карло в статистической физике, Мир, Москва (1982).
- 32. А. К. Муртазаев, Х. К. Алиев, И. К. Камилов и др., ФНТ 24, 462 (1998).
- 33. А. К. Муртазаев, И. К. Камилов, Х. К. Алиев и др., ФТТ 40, 1661 (1998).
- 34. K. Binder, Z. Phys. 43, 191 (1981).