ЭЛЕКТРОННЫЙ ПАРАМАГНИТНЫЙ РЕЗОНАНС ИОНОВ Cr^{3+} В ДИАМАГНИТНЫХ КРИСТАЛЛАХ ABO_3 (A = Sc, Lu, In)

А. М. Воротынов^{а*}, С. Г. Овчинников^а, В. В. Руденко^а, О. В. Воротынова^b

^а Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

> ^b Сибирский федеральный университет 660041, Красноярск, Россия

Поступила в редакцию 20 октября 2015 г.

Методом магнитного резонанса исследован ряд изоструктурных диамагнитных соединений ABO₃ (A = Sc, Lu, In) с малыми добавками иона Cr^{3+} (S = 3/2), достаточными для наблюдения одноионных спектров. Показано, что резонансные спектры для изолированных ионов Cr^{3+} могут быть с хорошей точностью описаны обычным аксиальным спиновым гамильтонианом для 3d-ионов в октаэдрическом кислородном окружении. Определены параметры спинового гамильтониана. Установлено, что ионы Cr^{3+} в данных кристаллах характеризуются анизотропией типа «легкая ось».

DOI: 10.7868/S0044451016040131

1. ВВЕДЕНИЕ

Бораты переходных металлов с химической формулой ABO₃ (A = Fe, V, Cr, Ti) привлекают внимание в связи с разнообразием физических свойств, проявляющихся в этом изоструктурном ряду соединений [1]. Однако ряд боратов 3*d*-металлов ABO₃, за исключением FeBO₃, остается малоизученным. Так, например, экспериментальные исследования магнитной анизотропии из всего ряда 3*d*-боратов к настоящему времени проведены только для FeBO₃ [2].

В настоящей работе методом электронного парамагнитного резонанса проведено экспериментальное исследование анизотропных свойств ионов Cr³⁺ в диамагнитных матрицах изоструктурных соединений боратов ABO₃ (A = Sc, Lu, In). Выбор иона Cr³⁺ в данном случае обусловлен необычными магнитными свойствами изоструктурного кристалла CrBO₃ [3]. В работе [4] было показано, что магнитные свойства кристалла CrBO₃ могут быть описаны на основе простой модели коллинеарного двухподрешеточного антиферромагнетика с магнитными моментами, лежащими вдоль оси третьего порядка. Авторы работы [3] на основе статических магнитных измерений высказали предположение, что, напротив, бо**Таблица 1.** Параметры элементарной ячейки кристаллов ABO₃ (данные работы [6])

ABO ₃	Эффек- тивный ионный радиус r, Å	Параметры элементарной ячейки, Å		c/a
		a	С	
Sc	0.745	4.759	15.321	3.22
In	0.800	4.823	15.456	3.21
Lu	0.861	4.915	16.211	3.30

Примечание. Эффективный ионный радиус Cr^{3+} r = 0.615 Å.

лее вероятно то, что вектор антиферромагнетизма CrBO₃ лежит в плоскости, близкой к базисной.

Мы предполагаем, что исследования электронного парамагнитного резонанса в диамагнитных кристаллах ABO_3 (A = Sc, Lu, In) позволят определить тип анизотропии ионов Cr^{3+} в данных соединениях.

2. ОБРАЗЦЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

Кристаллы ABO_3 (A = Sc, Lu, In) с малыми (около 5 ат. % от A) добавками Cr^{3+} выращены по техно-

⁶ E-mail: sasa@iph.krasn.ru

Рис. 1. Кристаллическая структура АВО₃

логии аналогичной [5]. Ион Cr³⁺ при этом замещает ионы А. Были получены монокристаллы в виде тонких пластин размером до 2×2 мм² и толщиной около 0.1 мм с гладкой блестящей поверхностью светло-зеленого оттенка.

Изоструктурные кристаллы ABO₃ (A = Sc, Lu, In) имеют тригональную элементарную ячейку с симметрией $R\bar{3}c$, точечная группа симметрии иона A — (-3m). Параметры элементарной ячейки представлены в табл. 1 [6] для Sc, In, Lu. Ось C_3 кристалла расположена нормально к плоскости пластины образца (ось c на рис. 1).

Ионы А располагаются в октаэдрах из ионов кислорода, связанных сильной ковалентной связью с ионами бора. Измерения электронного парамагнитного резонанса проводились на установке фирмы Bruker Elexsys E-580, работающей в X-диапазоне при температурах 300 K и 77 K.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Пример резонансного спектра иона Cr^{3+} в $ScBO_3$ при различных температурах для ориентации внешнего магнитного поля в базисной плоскости кристалла приведен на рис. 2. Набор слабых линий, находящихся между интенсивными одноионными линиями поглощения иона Cr^{3+} (в магнитных полях от

Таблица 2. Параметры спинового гамильтониана для одиночных ионов ${\rm Cr}^{3+}$ в матрице ${\rm ABO}_3$ при комнатной температуре

А	g_{\parallel}	g_\perp	D, cm^{-1}
In	1.980(1)	1.982(1)	-0.314(1)
Sc	1.980(1)	1.982(1)	-0.402(2)
Lu	1.980(1)	1.982(1)	-0.407(3)

Примечание. Числа в скобках обозначают оценку ошибки в последнем знаке.

2000 Э до 6000 Э), принадлежит спектру пар и
онов $\rm Cr^{3+}{-}\rm Cr^{3+}$ и в данной статье не обсуждается.

Угловые зависимости резонансных спектров, снятые при вращении внешнего магнитного поля в плоскости *aa* кристаллов ABO₃ (A = Sc, Lu, In), выявили аксиальную симметрию вокруг кристаллографической оси C_3 . Угловые зависимости резонансных полей наблюдаемых переходов в плоскости *ac* показаны на рис. 3. Необходимо отметить, что наблюдаемые спектры для соединения ScBO₃ имели на два порядка большую интенсивность, по сравнению со спектрами InBO₃ и LuBO, несмотря на то, что при синтезе кристаллов использовалась примерно одинаковая закладка Cr₂O₃ в шихту.

Резонансные спектры для изолированных ионов Cr³⁺ могут быть с хорошей точностью описаны аксиальным спиновым гамильтонианом для 3*d*-ионов

$$\mathcal{H} = g_{\parallel}\beta H_z S_z + g_{\perp}\beta (H_x S_x + H_y S_y) + DS_z^2, \quad (1)$$

где D — аксиальная константа спинового гамильтониана, g_{\parallel} и g_{\perp} — значения g-фактора при ориентации внешнего магнитного поля параллельно и перпендикулярно оси C_3 кристалла, β — магнетон Бора; S_i , H_i — проекции спина иона Cr^{3+} и внешнего магнитного поля на ось C_3 кристалла, S = 3/2 — спин иона Cr^{3+} .

Подгонка экспериментальных и теоретических спектров осуществлялась с использованием программы XSophe [7]. Результаты представлены в табл. 2.

Полученные значения g-факторов практически изотропны и соответствуют значениям для d^3 -ионов в октаэдрическом окружении [8]. Величина константы спинового гамильтониана D коррелирует с исследованными ранее соединениями Al₂O₃ [9], ZnGa₂O₄ [10, 11], в которых ион Cr³⁺ также находится в октаэдрической координации. Знак константы D иона Cr³⁺ в ABO₃ (A = Sc, Lu, In) определен из соот-

Рис. 2. Резонансные спектры иона Cr^{3+} в $ScBO_3$ при различных температурах. Внешнее магнитное поле приложено в базисной плоскости кристалла: a - T = 300 K, $\delta - T = 77$ K

Рис. 3. Угловые зависимости резонансных полей, наблюдаемых в кристаллах ABO_3 : a - A = In, $\delta - A = Sc$, e - A = Lu. Точки — эксперимент, сплошные кривые — расчет (см. табл. 1)

ношения интенсивностей переходов $-3/2 \leftrightarrow -1/2$ и $1/2 \leftrightarrow 3/2$ (см. рис. 2 и 4) при температурах 300 К и 77 К.

На рис. 4 в качестве примера представлены рассчитанные схемы энергетических уровней иона Cr^{3+} в ScBO₃.

Величина D в соединении InBO₃ заметно отличается от значений для ScBO₃ и LuBO₃, что плохо коррелирует с изменением параметров решетки (см. табл. 1). Такое поведение может объясняться, на наш взгляд, скорее всего, как различной степенью ковалентных связей иона Cr³⁺ в диамагнитных матрицах ABO₃ (A = Sc, Lu, In), так и различной степенью гибридизации электронных орбиталей ионов матрицы.

Таким образом, в результате исследования одноионных спектров магнитного резонанса ионов Cr³⁺ в диамагнитных матрицах ABO₃ (A=Sc, Lu, In) определены параметры одноосного спинового гамильтониана и показано, что ионы Cr³⁺ в данных кристаллах характеризуются анизотропией типа «легкая ось».

ЛИТЕРАТУРА

- Н. Б. Иванова, В. В. Руденко, А. Д. Балаев, Н. В. Казак, В. В. Марков, С. Г. Овчинников, И. С. Эдельман, А. С. Федоров, П. В. Аврамов, ЖЭТФ 121, 1 (2002).
- G. V. Bondarenko, S. G. Ovchinnikov, V. V. Rudenko, V. M. Sosnin, V. I. Tugarinov, and A. M. Vorotynov, J. Magn. Magn. Mat. 335, 90 (2013).

Рис. 4. Рассчитанные схемы энергетических уровней иона Cr^{3+} в $ScBO_3$: a — внешнее магнитное поле параллельно базисной плоскости кристалла, δ — внешнее магнитное поле параллельно оси C_3

- А. Д. Балаев, Н. Б. Иванова, Н. В. Казак, С. Г. Овчинников, В. В. Руденко, В. М. Соснин, ФТТ 45, 273 (2003).
- T. A. Bither, Carol G. Frederick, T. E. Gier, J. F. Weiher, and H. S. Young, Sol. St. Comm. 8, 109 (1970).
- 5. В. В. Руденко, Неорган. матер. 34, 1483 (1998).
- Tom A. Bither and Howard S. Yang, J. Sol. St. Chem.
 6, 502 (1973).

- M. Griffin, A. Muys, C. Noble, D. Wang, C. Eldershaw, K. E. Gates, K. Burrage, and G. R. Hanson, Mol. Phys. Rep. 26, 60 (1999).
- 8. С. А. Альтшулер, Б. М. Козырев, Электронный парамагнитный резонанс, Наука, Москва (1972).
- M. J. Berggren, G. F. Imbusch, and P. L. Scott, Phys. Rev. 188, 675 (1969).
- 10. J. C. M. Henning, J. H. Den Boeff, and G. G. P. Van Gorkom, Phys. Rev. B 7, 1825 (1973).
- G. L. McPherson and Wai-ming Heung, Sol. St. Comm. 19, 53 (1976).