ЗАВИСИМОСТЬ ПАРАМАГНЕТИЗМА ВАН ФЛЕКА ОТ РАЗМЕРА НАНОКРИСТАЛЛОВ СВЕРХСТЕХИОМЕТРИЧЕСКОГО TiO_y

А. А. Валеева*, С. З. Назарова, А. А. Ремпель

Институт химии твердого тела Уральского отделения Российской академии наук 620990, Екатеринбург, Россия

Поступила в редакцию 31 августа 2015 г.

In situ измерения магнитной восприимчивости в интервале температур от 300 до 1200 K показали, что магнитная восприимчивость нанокристаллов монооксида титана сверхстехиометрического состава TiO_y (y>1) зависит не только от структурного состояния образца, но и от размера нанокристаллов. Анализ данных как для упорядоченного, так и для неупорядоченного TiO_y показал, что зависимость парамагнетизма Ван Флека от размера нанокристалла является обратно-пропорциональной вследствие нарушения симметрии локального окружения приповерхностных атомов титана и кислорода. Вклад Ван Флека от атомно-вакансионного беспорядка в нанокристаллах монооксида сверхстехиометрического состава, также как и в стехиометрическом монооксиде, пропорционален отклонению степени дальнего порядка от максимальной величины.

DOI: 10.7868/S0044451016040118

1. ВВЕДЕНИЕ

Возросший в последние годы интерес к нестехиометрии в металлических и полупроводниковых соединениях [1-3] и связанного с ней атомно-вакансионного упорядочения [4-7] возник благодаря тому, что нестехиометрия играет большую роль в стабилизации конкретной атомной структуры не только крупнокристаллических, но и наноразмерных веществ, а также благодаря возможности направленно регулировать их практически важные свойства [8]. Например, в одной из самых исследуемых систем титан-кислород (Ti-O) имеется широкий спектр соединений с нестехиометрией, которая приводит к появлению вакансий как в кислородной, так и в титановой подрешетке [9]. В частности, в ярком представителе этой системы монооксиде титана TiO_u с широкой областью гомогенности от TiO_{0.70} до TiO_{1.25} может содержаться одновременно до 30 ат. % структурных вакансий в подрешетках титана и кислорода [10–12]. Наличие огромного количества структурных вакансий в двух подрешетках одновременно обусловливает фазовые пере-

8 ЖЭТФ, вып. 4

ходы порядок-беспорядок при высоких температурах [13–15]. Эти фазовые переходы затруднены кинетически, поскольку для их реализации необходима диффузия атомов титана и кислорода, а значит, и время. В связи с этим высокотемпературные фазы можно легко заморозить при относительно низкой скорости охлаждения [16] и использовать на практике их новые физические свойства.

Также в последнее время актуальными становятся исследования по влиянию размера нанокристаллов оксидов титана на их стехиометрию, поскольку именно нанокристаллы предполагается использовать в фотокатализаторах, которые активны под солнечным светом или под обычным искусственным освещением [17–19]. Кроме того, нанокристаллы монооксида титана предполагается использовать в наноэлектронике [20] в качестве одноэлектронных транзисторов. Одноэлектронные транзисторы, работающие на квантовых туннельных эффектах, способны существенно миниатюризировать компьютерные процессоры.

Одним из информативных методов исследования как микрокристаллов, так и нанокристаллов являются температурные *in situ* измерения магнитной восприимчивости [16,21–23]. Поскольку на нанокристаллах монооксида титана исследования фазовых переходов порядок–беспорядок не проводились, це-

^{*} E-mail: valeeva@ihim.uran.ru

лью настоящей работы являлись обнаружение влияния размера частиц на магнитную восприимчивость монооксида титана и анализ вклада Ван Флека, связанного с искажением симметрии локального окружения атомов как при уменьшении размера нанокристаллов, так и при атомно-вакансионном упорядочении.

2. ЭКСПЕРИМЕНТ

Образцы с разным размером нанокристаллов получены с помощью длительной высокоэнергетической фрагментации микрокристаллов, а также благодаря варьированию степени порядка в исходных микрокристаллах и их дополнительному отжигу непосредственно в процессе измерения магнитной восприимчивости. Микрокристаллы монооксида титана со средним размером около 25 мкм были синтезированы методом твердофазного спекания из смеси порошков титана Ті и диоксида титана ТіО₂ в вакууме 10^{-3} Па при температуре 1770 К. Для достижения неупорядоченного состояния образцы монооксида титана были отожжены в течение 3 ч при температуре 1330 К, после чего ампулы с образцами были сброшены в воду; скорость закалки составила около 200 К/с. Для достижения упорядоченного состояния монооксида титана образцы неупорядоченного монооксида титана отжигали в вакуумированных кварцевых ампулах в течение 3 ч при температуре 1330 К и затем медленно охлаждали до 300 К со скоростью 10 К/ч. Многопараметрическую аттестацию образцов проводили методами химического, спектрального, пикнометрического, рентгенофазового и рентгеноструктурного анализов. Подробности о методе термообработки для получения неупорядоченного и упорядоченного состояний и о результатах аттестации полученных образцов можно найти в работе [24].

Нанокристаллы монооксида титана были получены с помощью высокоэнергетической фрагментации в шаровой планетарной мельнице Retsch PM 200. Для предотвращения загрязнения образцов при фрагментации в качестве материала размольных шаров и стаканов был выбран твердый и износостойкий диоксид циркония ZrO₂ стабилизированный оксидом иттрия Y₂O₃. Чтобы эффективно достичь наименьшего размера нанокристаллов, соотношение масс размольных шаров и монооксида титана было выбрано равным 10:1. В качестве размольной жидкости был использован изопропиловый спирт, скорость вращения опорного диска размольных стаканов составила 500 об/мин при длительности фрагментации 480 мин.

Рентгенодифракционные исследования исходных образцов и образцов после измерений магнитной восприимчивости χ были выполнены в Cu K_{α_1} -излучении на автодифрактометре STADI-P (STOE, Германия) в геометрии Брегг–Брентано в режиме пошагового сканирования с $\Delta(2\theta) = 0.02^{\circ}$ в интервале углов 2θ от 10° до 120° . Параметры дальнего порядка η в монооксиде титана были рассчитаны по соотношению интенсивностей структурных и сверхструктурных рентгеновских дифракционных отражений до и после измерения χ по методике и формулам из работы [16].

Диаметр *D* нанокристаллов был определен из уширения рентгеновских дифракционных отражений с помощью метода Вильямсона – Холла [25, 26]. Средний диаметр нанокристаллов, определенный экстраполяцией зависимости приведенного уширения β^* от вектора рассеяния *s* на значение *s*, равное нулю, уменьшается от 550 до 30 ± 10 нм для неупорядоченного и до 80 ± 10 нм для упорядоченного монооксида титана в зависимости от времени размола. Подробно методики получения нанокристаллов фрагментированием, анализа рентгенограмм, вычисления размеров областей когерентного рассеяния изложены в работе [27].

Удельная магнитная восприимчивость χ , отнесенная к единице массы, была изучена на неупорядоченных и упорядоченных микрокристаллах и нанокристаллах монооксида титана сверхстехиометрического состава с разной степенью дальнего порядка. Восприимчивость у монооксида титана измеряли в интервале температур от 300 до 1200 К в магнитных полях напряженностью от 7.2 до 8.8 кЭ методом Фарадея на маятниковых магнитных весах типа Доменикалли в вакууме около 10⁻³ Па. Скорость нагрева и охлаждения образцов при измерении восприимчивости составила около 1 К/мин. Массу порошка и кристаллическую структуру монооксида титана контролировали до и после измерений χ . Точность измерений χ составляла около $\pm 0.05 \cdot 10^{-6}$ ед. СГСМ.

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

In situ измерения магнитной восприимчивости монооксида титана сверхстехиометрического состава TiO_y в интервале температур от 300 до 1200 К показали, что микрокристаллы и нанокристаллы TiO_y являются слабыми парамагнетиками, а вели-

Рис. 1. Температурные зависимости магнитной восприимчивости для нанокристаллов закаленного (темные символы, исходный размер кристаллов около 30 нм) и отожженного (светлые символы, исходный размер кристаллов около 80 нм) сверхстехиометрического монооксида титана TiO_y. Область I — реверсивный ход магнитной восприимчивости при повышении и понижении температуры; область II — нереверсивный ход магнитной восприимчивости при повышении температуры; область III - реверсивный ход магнитной восприимчивости при повышении и понижении температуры. Стрелками к квадратам (темный символ (закаленный порошок) — конечный размер нанокристаллов около 60 нм и светлый символ (отоженный порошок) — конечный размер около 205 нм) указаны значения восприимчивости образцов после их in situ закалки от 1200 К

чина магнитной восприимчивости во всем исследованном интервале температур варьируется в пределах от $0.90\cdot10^{-6}$ до $3.05\cdot10^{-6}$ ед. $\rm C\Gamma CM/r$ в зависимости от структурного состояния и размера нанокристаллов.

Для примера на рис. 1 показаны *in situ* измерения температурных зависимостей магнитной восприимчивости для нанокристаллов закаленного и отожженного монооксида титана. В области температур 300–673 К (область I) наблюдается реверсивный ход магнитной восприимчивости, что говорит о том, что состояние нанокристаллов в этой области температур является стабильным.

При температурах выше 673 К (область II на рис. 1) наблюдается неравновесное уменьшение магнитной восприимчивости, связанное с изменением фазового состава системы и ростом нанокристаллов. Так, рентгенофазовый анализ показал, что в этой области кубическая фаза TiO_y (закаленный образец) или смесь кубической TiO_y и моноклинной

 ${\rm Ti}_5{\rm O}_5$ фаз (отожженный образец) переходят в упорядоченную фазу ${\rm Ti}_{4.5}{\rm O}_5$ (пространственная группа Immm) и стехиометрическую фазу ${\rm Ti}_2{\rm O}_3$ (пространственная группа $R\bar{3}2/c$). Таким образом, можно утверждать, что в области II состояние системы изменяется существенно. Поскольку состояние системы не возвращается к исходному при повышении температуры, можно считать, что система переходит в более стабильное состояние.

При температуре около 1100 К и выше (область III на рис. 1) уменьшение магнитной восприимчивости прекращается. В области III между температурами 1100 и 1200 К наблюдается реверсивный ход магнитной восприимчивости при нагреве и охлаждении, что говорит о достижении системой равновесного и стабильного состояния. *In situ* быстрое охлаждение образцов от 1200 К до комнатной температуры (квадраты на рис. 1) приводит к закалке высокотемпературного состояния, соответствующего области III.

В отличие от нанокристаллов, на микрокристаллах отожженного (упорядоченного) и закаленного (неупорядоченного) монооксидов титана были обнаружены следующие эффекты. Увеличение температуры от 300 до 1073 К и охлаждение от 1073 до 300 К приводит к реверсивному ходу магнитной восприимчивости как для закаленного, так и для отожженного микрокристаллического монооксида титана TiO_u. Увеличение температуры свыше 1073 К вплоть до 1200 К приводит к диффузии атомов и вакансий титана и кислорода в закаленном монооксиде титана. Процесс диффузии переводит образец в равновесное упорядоченное состояние с повышенными значениями параметра дальнего порядка, что сопровождается уменьшением парамагнитного вклада Ван Флека, как это показано в работе [16].

Анализ рентгенограмм исходных микрокристаллов закаленного образца показал, что образец в исходном состоянии содержит только кубическую фазу TiO_u (пространственная группа $Fm\bar{3}m$), параметр дальнего порядка $\eta = 0$. После измерений магнитной восприимчивости, сопровождающихся отжигом образца, на рентгенограмме наблюдалось формирование отражений только одной упорядоченной моноклинной фазы Ti₅O₅ (пространственная группа C2/m), анализ изменения интенсивности структурных и сверхструктурных отражений показал, что параметр дальнего порядка увеличился до $\eta = 0.55$. Таким образом, медленный отжиг до высоких температур и медленное охлаждение до комнатной температуры позволили частично упорядочить образец.

Рис. 2. Зависимость магнитной восприимчивости (при комнатной температуре) микрокристаллов и нанокристаллов отожженного и закаленного монооксида титана различного состава TiO_y от степени дальнего порядка. Сплошные линии — результат линейной аппроксимации, выполненный методом наименьших квадратов, для стехиометрического состава (темные кружки, работа [16]) и для сверхстехиометрического состава (светлые кружки, данная работа). Также показана магнитная восприимчивость нанокристаллов сверхстехиометрического состава (светлые кружки, данная работа). Экспериментальные точки 1, 2, 3 и 4 соответствуют размерам частиц 30, 60, 80 и 205 нм

Отожженный монооксид титана в исходном состоянии, согласно анализу рентгенограмм, содержал две фазы: кубическую (пространственная группа $Fm\bar{3}m$) и моноклинную фазу Ti_5O_5 (пространственная группа C2/m). После измерений магнитной восприимчивости, сопровождающихся отжигом образца, структура микрокристалла, согласно рентгенограмме, осталась моноклинной, а параметр дальнего порядка уменьшился от максимального значения до 0.79.

Анализ экспериментальных данных, полученных в данной работе (рис. 2), показывает, что магнитная восприимчивость тем больше, чем больше степень разупорядоченности, что согласуется с выводами работ [16,22]. Кроме того, результаты, полученные в данной работе (см. ниже рис. 3), позволяют сделать важный вывод о том, что восприимчивость тем больше, чем меньше размер нанокристаллов.

Такое поведение объясняется существенным дополнительным вкладом парамагнетизма Ван Флека в восприимчивость:

$$\chi_{VV} = \frac{2N|\langle s|\mu_z|0\rangle|^2}{\Delta},\tag{1}$$

где χ_{VV} — парамагнитный вклад Ван Флека, N — число атомов в единице объема, недиагональный матричный элемент $\langle s | \mu_z | 0 \rangle$ оператора μ_z , связывающий основное состояние 0 с возбужденным состоянием s, соответствует энергии $\Delta = E_s - E_0$, квадрат модуля $(2N | \langle s | \mu_z | 0 \rangle |^2)$ недиагональных матричных элементов оператора μ_z определяет вероятность квантовых переходов, описываемых оператором H. Природа вклада Ван Флека связана с нарушением локальной симметрии атомов как в неупорядоченном состоянии, так и на поверхности нанокристаллов.

На рис. 2 экспериментальные данные для стехиометрических и сверхстехиометрических микрокристаллов аппроксимированы с помощью метода наименьших квадратов линейной функцией

$$\chi = \chi_{cryst} + k_{disord}(1 - \eta) \tag{2}$$

с коэффициентами $\chi_{cryst} = 1.1 \cdot 10^{-6}$ ед. СГСМ/г для стехиометрического состава и $\chi_{cryst} = 1.3 \times 10^{-6}$ ед. СГСМ/г для сверхстехиометрического состава при комнатной температуре. Наклон обеих прямых линий в пределах опибки одинаков, составляет $k_{disord} = 0.52 \cdot 10^{-6}$ ед. СГСМ/г и совпадает с данными работы [16]. Одинаковый наклон указывает на универсальность этой зависимости для микрокристаллов с разным химическим составом.

Таким образом, согласно экспериментальным данным, в случае атомного упорядочения в микрокристаллах монооксида титана с разной стехиометрией зависимость магнитной восприимчивости от степени дальнего порядка является линейной, что совпадает с выводами работы [16]. Известная для упорядочивающихся систем квадратичная зависимость намагниченности от параметра дальнего порядка, согласно теории Ландау, справедлива только для фазовых переходов второго рода. Кроме того, эта зависимость ожидается лишь в малой окрестности вблизи максимального порядка. В случае монооксида титана атомно-вакансионное упорядочение проходит по механизму фазового перехода первого рода, поэтому теория Ландау для фазовых переходов второго рода здесь не применима. Действительно, симметрийный анализ показывает, что сверхструктура Ti₅O₅ образуется по каналу перехода беспорядок-порядок TiO_y-Ti₅O₅, включающему пять неэквивалентных векторов: один луч $\mathbf{k}_{10}^{(1)}$ = $= (\mathbf{b}_1 + \mathbf{b}_2)/2 = (0\,0\,1)$ лифшицевской звезды $\{\mathbf{k}_{10}\},$ два луча $\mathbf{k}_4^{(5)} = \mu_4(\mathbf{b}_1 + 2\mathbf{b}_2 + \mathbf{b}_3) = (2/302/3)$ и $\mathbf{k}_4^{(6)} = -\mathbf{k}_4^{(5)}$ нелифшицевской звезды $\{\mathbf{k}_4\}$ с текущим параметром $\mu_4 = 1/3$ и два луча $\mathbf{k}_1^{(7)} =$

= $\mu_1^{(1)}(\mathbf{b}_2 + \mathbf{b}_3) - \mu_1^{(2)}(\mathbf{b}_1 + \mathbf{b}_2) = (2/3 \ 0 - 1/3)$ и $\mathbf{k}_1^{(8)} = -\mathbf{k}_1^{(7)}$ нелифшицевской звезды { \mathbf{k}_1 } с текущими параметрами $\mu_1^{(1)} = 1/3$ и $\mu_1^{(2)} = 1/6$ [14, 24]. Наличие в канале перехода беспорядок-порядок $\mathrm{TiO}_y - \mathrm{Ti}_5 \mathrm{O}_5$ векторов двух нелифшицевских звезд { \mathbf{k}_4 } и { \mathbf{k}_1 } означает, что критерий Лифшица для фазовых переходов второго рода не выполняется и образование моноклинной сверхструктуры $\mathrm{Ti}_5\mathrm{O}_5$ в монооксиде титана TiO_y происходит по механизму фазового перехода первого рода.

Кроме данных для микрокристаллов, на рис. 2 представлены значения магнитной восприимчивости для нанокристаллов монооксида титана TiO_y сверхстехиометрического состава в зависимости от степени дальнего порядка. Экспериментальные точки 1, 2, 3 и 4 соответствуют размерам нанокристаллов 30, 60, 80 и 205 нм. Существенно большая величина магнитной восприимчивости для мелких нанокристаллов и монотонная зависимость восприимчивости от степени дальнего порядка позволяют сделать вывод о том, что восприимчивость нанокристаллов в большей степени зависит от размера нанокристаллов, чем от степени дальнего порядка в них.

С учетом этого обстоятельства анализ всех результатов данной работы позволяет полагать, что величина магнитной восприимчивости для нанокристаллов есть сумма трех составляющих: вклада в величину магнитной восприимчивости от максимально упорядоченного кристалла, χ_{cryst} , вклада Ван Флека от степени разупорядоченности, $\chi_{VV}(1 - \eta)$ и вклада Ван Флека от атомов, находящихся на поверхности нанокристаллов, $\chi_{VV}(D)$:

$$\chi = \chi_{cryst} + \chi_{VV}(1-\eta) + \chi_{VV}(D). \tag{3}$$

На рис. 3 показана зависимость вклада Ван Флека в магнитную восприимчивость (при комнатной температуре) для нанокристаллов сверхстехиометрического монооксида титана от их размера. Поскольку вклад Ван Флека $\chi_{VV}(1 - \eta)$ от разупорядоченности в нанокристаллах имеет ту же природу, что и в микрокристаллах, а влиянием поверхности нанокристаллов на этот вклад в пределах ошибки эксперимента можно пренебречь, этот вклад вычтен из значений восприимчивости нанокристаллов. Аппроксимация значений магнитной восприимчивости гиперболической функцией

$$\chi_{VV}(D)[10^{-6}$$
ед. СГСМ/г] = 39.44/D

Рис. 3. Зависимость вклада Ван Флека в магнитную восприимчивость (при комнатной температуре) нанокристаллов сверхстехиометрического отожженного и закаленного монооксида титана ${\rm TiO}_y$ от их размера D. Экспериментальные точки 1, 2, 3 и 4 соответствуют размерам частиц 30, 60, 80 и 205 нм. Сплошной линией показан результат аппроксимации гиперболической функцией, выполненный методом наименьших квадратов

показывает, что вклад Ван Флека $\chi_{VV}(D)$ пропорционален удельной поверхности $S = 6/\rho D$ нанокристаллов:

$$\chi_{VV}(D) = k_{surf} \frac{6}{\rho D},\tag{4}$$

где ρ — плотность, а D — диаметр нанокристаллов. Вклад в магнитную восприимчивость, пропорциональный удельной площади поверхности, связан с нарушением симметрии локального окружения атомов вблизи поверхности нанокристаллов.

4. ВЫВОДЫ

В данной работе установлена обратно пропорциональная зависимость парамагнетизма Ван Флека от размеров нанокристаллов монооксида титана сверхстехиометрического состава. Установлено, что величина магнитной восприимчивости для упорядочивающихся нанокристаллов монооксида титана состоит из трех вкладов: вклада в величину магнитной восприимчивости от максимально упорядоченного кристалла, вклада Ван Флека от степени разупорядоченности и вклада Ван Флека, пропорционального количеству атомов, находящихся на поверхности нанокристаллов. Работа выполнена при финансовой поддержке Российского научного фонда (проект № 14-23-00025).

ЛИТЕРАТУРА

- J. Karel, J. Juraszek, J. Minar et al., Phys. Rev. B 91, 144402 (2015).
- A. J. Hauser, E. Mikheev, and N. E. Moreno, Appl. Phys. Lett. 106, 092104 (2015).
- D. Steil, O. Schmitt, R. Fetzer et al., J. Phys. D 48, 092104 (2015).
- М. Г. Костенко, А. В. Лукоянов, В. П. Жуков, А. А. Ремпель, Письма в ЖЭТФ 96, 557 (2012).
- М. Г. Костенко, А. В. Лукоянов, А. А. Ремпель, ЖЭТФ 143, 1097 (2013).
- **6**. А. А. Ремпель, УФН **166**, 33 (1996).
- 7. А. И. Гусев, УФН 176, 717 (2006).
- 8. А. А. Ремпель, Изв. РАН, сер. хим. 4, 857 (2013).
- H. Okamoto, J. Phase Equilibria and Diffusion 32, 473 (2011).
- S. Anderson, B. Collen, U. Kuylenstierna, and A. Magneli, Acta Chem. Scand. 11, 1641 (1957).
- M. D. Banus and T. B. Reed, *The Chemistry of Extended Defects in Non-Metallic Solids*, ed. by L. Eyring and M. O. Keeffe, North-Holland Publ., Amsterdam–London (1970), pp. 488–521.

- D. Watanabe, J. R. Castles, A. Jostson, and A. S. Malin, Nature 210, 934 (1966).
- 13. E. Hilti, Naturwiss. 55, 130 (1968).
- А. А. Валеева, А. А. Ремпель, А. И. Гусев, Письма в ЖЭТФ 73, 702 (2001).
- А. И. Гусев, А. А. Валеева, Письма в ЖЭТФ 96, 400 (2012).
- 16. А. А. Валеева, С. З. Назарова, А. А. Ремпель, Письма в ЖЭТФ 101, 276 (2015).
- 17. X. Chen and S. S. Mao, Chem. Rev. 107, 2891 (2007).
- 18. B. O'Regan and M. Gratzel, Nature 353, 737 (1991).
- **19**. В. П. Анаников, Л. Л. Хемчян, Ю. В. Иванова и др., Успехи химии **83**, 885 (2014).
- 20. V. Schöllmann, J. Johansson, K. Andersen, and D. V. Haviland, J. Appl. Phys. 88, 6549 (2000).
- 21. А. И. Гусев, С. З. Назарова, УФН 175, 681 (2005).
- 22. A. A. Rempel and A. I. Gusev, Phys. Stat. Sol. (b) 196, 251 (1996).
- 23. А. А. Ремпель, А. И. Гусев, С. З. Назарова,
 Р. Р. Мулюков, ДАН 347, 750 (1996).
- **24**. А. А. Валеева, А. А. Ремпель, А. И. Гусев, Неорганич. материалы **37**, 716 (2001).
- 25. W. H. Hall, Proc. Phys. Soc. London A 62, 741 (1949).
- 26. W. H. Hall and G. K. Williamson, Proc. Phys. Soc. London B 64, 937 (1951).
- **27**. А. А. Валеева, Х. Шретнер, А. А. Ремпель, Изв. РАН, сер. хим. **12**, 2729 (2014).