ЗАВИСИМОСТЬ УДЕЛЬНОЙ ЭНЕРГИИ МЕЖФАЗНОЙ β/α -ГРАНИЦЫ В ТИТАНОВОМ СПЛАВЕ ВТ6 ОТ ТЕМПЕРАТУРЫ НАГРЕВА В ИНТЕРВАЛЕ 600–975°С

М. А. Мурзинова^{а*}, С. В. Жеребцов^b, Г. А. Салищев^b

^а Институт проблем сверхпластичности металлов Российской академии наук 450001, Уфа, Россия

^b Белгородский государственный национальный исследовательский университет 308015, Белгород, Россия

Поступила в редакцию 1 сентября 2015 г.

Удельная энергия межфазных границ является важной характеристикой многофазных сплавов, так как во многом определяет стабильность их микроструктуры и свойств при обработке и эксплуатации. В работе проанализировано изменение удельной энергии межфазной β/α -границы в титановом сплаве BT6 при температурах от 600 до 975 °C. В основу анализа положены модель ступенчатой межфазной границы и методика вычисления ее энергии, разработанные Ван дер Мерве и Шифлетом [33, 34]. При расчетах использованы результаты экспериментальных измерений параметров решеток фаз в указанном интервале температуру и их химического состава, представленные в литературе. Кроме того, учтены данные экспериментов и моделирования по влиянию температуры и химического состава на упругие модули α -и β -фаз в сплавах титана. Показано, что с понижением температуры от 975 до 600 °C удельная энергия межфазной β/α -границы возрастает от 0.15 до 0.24 Дж/м². Основной вклад в энергию границы (около 85 %) вносят краевые дислокации, компенсирующие несоответствие в направлении [0001] α || [110] $_{\beta}$. Энергия, связанная с компенсацией несоответствия в направлениях [2110] $_{\alpha}$ || [111] $_{\beta}$ и [010] $_{\alpha}$ || [112] $_{\beta}$ за счет образования «ступенек» и наклонных дислокаций несоответствия, мала и слабо увеличивается с понижением температуры.

DOI: 10.7868/S004445101604009X

1. ВВЕДЕНИЕ

В структуре многокомпонентных сплавов титана обычно присутствуют две фазы: α с ГПУ-решеткой и β с ОЦК-решеткой. Эксплуатационные свойства титановых сплавов во многом определяются морфологией фаз (формой, размером, расположением частиц, их кристаллографической ориентацией относительно друг друга). Этими структурными параметрами можно управлять, обоснованно выбирая режимы термической и деформационной обработки [1–5].

Хорошо известно [1–5], что в результате развития полиморфных превращений в сплавах титана ($\beta \rightarrow \alpha$ и распада мартенситных фаз), которые возникают при различных видах термической обработки, образуются α - и β -фазы, которые имеют форму

пластин и кристаллографически связаны ориентационным соотношением Бюргерса

$$(0001)_{\alpha} \parallel \{110\}_{\beta}, \quad \langle 11\overline{2}0 \rangle_{\alpha} \parallel \langle 111 \rangle_{\beta}.$$

Пластинчатая структура в сплавах титана весьма устойчива, что объясняют низкой удельной энергией межфазной β/α -границы, которая имеет полукогерентное строение [1, 5]. Для преобразования пластинчатой структуры в глобулярную проводят деформацию сплава при температурах двухфазной $(\alpha + \beta)$ -области и, обычно, последующий отжиг. В ходе деформации движущиеся решеточные дислокации взаимодействуют с межфазными границами, что приводит к повышению удельной энергии межфазных границ и нарушению ориентационного соотношения Бюргерса [6-8]. Одновременно формируются внутрифазные границы деформационного происхождения. Если энергия межфазных границ возрастет до уровня энергии некогерентной границы, а разориентировка внутрифазных границ уве-

ÉE-mail: mma@imsp.ru

личится до средне- или большеугловой, то появляется термодинамический стимул для развития процессов деления и сфероидизации пластин и преобразования пластинчатой структуры в глобулярную [4,9–14]. Кроме того, потеря когерентности ускоряет диффузию вдоль межфазных границ [4,11–14], в результате чего интенсифицируются диффузионноконтролируемые процессы. Таким образом, величина удельной энергии β/α -границы является важной характеристикой двухфазных сплавов титана, поскольку определяет морфологию частиц при их образовании, а изменение удельной энергии во время роста частиц и при внешних воздействиях оказывает влияние на процессы преобразования микроструктуры и свойства сплавов [4–17].

Однако влиянию энергии межфазной границы на структурные изменения уделяется недостаточно внимания, что, видимо, связано со сложностью соответствующих оценок. В частности, для каждого конкретного сплава величина удельной энергии межфазной границы зависит от упругих свойств и параметров решеток α- и β-фаз [13–16], которые, в свою очередь, определяются содержанием легирующих элементов в фазах при температуре обработки. При выполнении оценочных расчетов энергии β/α границы обычно используют данные о параметрах решеток фаз, измеренных при комнатной температуре, и не учитывают их увеличение при нагреве [6, 16]. Кроме того, часто не принимают во внимание влияние легирования на упругие свойства ГПУи ОЦК-решеток титана, поскольку экспериментальные данные о модулях упругости легированных αи β -фаз крайне ограничены [5, 18, 19].

Цель данной работы — оценить изменение удельной энергии межфазной β/α -границы в широко распространенном титановом сплаве ВТ6 в интервале температур 600–975 °C с учетом имеющейся в литературе информации о температурной зависимости параметров решеток и упругих характеристик фаз.

2. ЭНЕРГИЯ β/α -ГРАНИЦЫ В ДВУХФАЗНЫХ СПЛАВАХ ТИТАНА С ПЛАСТИНЧАТОЙ МИКРОСТРУКТУРОЙ

Энергия межфазной границы связана с необходимостью компенсировать несоответствие межатомных расстояний на поверхности сопряжения двух решеток [13–16, 20–23]. Если это несоответствие может быть скомпенсировано за счет упругих деформаций решеток обеих фаз без возникновения дефектов кристаллического строения, то образуется когерентная межфазная граница. Как показали оценки, приведенные в работе [16], размер α -пластины, когерентно сопряженной с β -матрицей в сплаве титана, не превышает нескольких десятков нанометров. Дальнейший рост α -пластины приводит к «срыву» когерентности и формированию полукогерентной межфазной границы. В этом случае несоответствие дополнительно компенсируется за счет дислокаций, вводимых на межфазную границу, и/или за счет образования так называемых структурных ступенек (structural ledges) [5–8, 13, 14, 20–26]. (Между дислокациями в плоскости каждой ступеньки сопряжение решеток остается когерентным.)

Результаты экспериментальных исследований строения межфазных границ, в том числе данные высокоразрешающей электронной микроскопии, дают достаточно оснований полагать, что полукогерентные β/α -границы в двухфазных сплавах титана имеют ступенчатое строение [5, 27–31]. Межфазная граница схожа с террасой, которая состоит из небольших плоских участков/площадок/сегментов (terrace patch), смещенных относительно друг друга в направлении нормали к площадке на расстояния, соизмеримые с межатомными. Площадки расположены параллельно плоскостям $(0\bar{1}10)_{\alpha}$ и $(\bar{1}12)_{\beta}$ и содержат краевые *с*-дислокации с вектором Бюргерса, параллельным оси с в ГПУ-решетке. Такое строение межфазной границы обеспечивает как выполнение ориентационного соотношения Бюргерса, так и удовлетворительное соответствие вытекающих из модели и выявленных экспериментально направлений роста α-пластин в β-матрице и нормали к «плоскости» габитуса (рис. 1a). Модель ступенчатой межфазной границы была предложена Холлом [32] и развита в работах [23-30]. Методика расчета удельной энергии такой границы разработана ван дер Мерве и Шифлетом [33, 34], и показано, что в случае образования структурных ступенек удельная энергия полукогерентной межфазной границы может быть меньше, чем в присутствии сетки дислокаций несоответствия. Поэтому в данной работе для оценки удельной энергии β/α -границы в сплаве ВТ6 использован подход ван дер Мерве и Шифлета для модели межфазной границы, где несоответствие решеток в одном из направлений компенсируется структурными ступеньками, а в другом — межфазными дислокациями несоответствия.

Схематическое и кристаллографическое строение ступенчатой межфазной границы в титановых сплавах представлено в работах [6,7,16,23–30]. Эти схемы различаются деталями в соответствии с за-

Рис. 1. Схема ступенчатой межфазной β/α-границы в сплавах титана (a) и пространственное расположение сопрягающихся решеток (б)

дачами, решаемыми в каждой конкретной работе. На рис. 1а представлена схема ступенчатой границы для случая сопряжения α - и β -фаз в сплавах титана, на которой указаны лабораторная (используемая в данной работе при расчете удельной энергии) система координат и наиболее важные кристаллографические направления. При возникновении такого сопряжения ГПУ- и ОЦК-решетки расположены в пространстве так, как показано на рис. 16 (параллельные плоскости в сопрягающихся решетках заштрихованы одинаково). Эта модель предполагает, что несоответствие межатомных расстояний на поверхности сопряжения ОЦК- и ГПУ-решеток компенсируется за счет образования структурных ступенек в направлении x ($[\overline{2}110]_{\alpha} \parallel [1\overline{1}1]_{\beta}$) и за счет образования обычных краевых дислокаций несоответствия на «плоских» участках межфазной границы в направлении y ([0001]_{α} || [110]_{β}). Сопряжение решеток при образовании краевых дислокаций несоответствия на «плоской» межфазной границе описано достаточно подробно [13–15, 20–23] и здесь не приводится.

Схема компенсации несоответствия при образовании структурных ступенек показана на рис. 2а. Пусть в точке А межфазной границы положение атомов в обеих решетках совпадает «идеально». Тогда из-за различия межатомных расстояний в решетках в направлении x (обозначенных a_x и b_x и показанных на рис. 26) слева и справа от точки А атомы будут смещены из равновесных положений. При некоторой величине смещения или несоответствия, «накопленного» в направлении x (на схеме — в точке B), образуется ступенька, и межфазная граница продолжится по линии *CD*. Заметим, что в точке *D* положение атомов в сопрягающихся решетках совпадает уже не «идеально»: относительного смещения атомов нет только в направлении x, тогда как в направлении z такое смещение (δ_z) возникает из-за

Рис. 2. *a*) Схема компенсации несоответствия при образовании структурных ступенек на межфазной β/α-границе. *б*) Межатомные и межплоскостные расстояния в ОЦК- (индексы «*в*») и ГПУ- (индексы «*a*») решетках в направлениях *x* и *z*

разницы величин a_z и b_z (рис. 26). На каждом следующем участке/сегменте террасы несоответствие в направлении z будет увеличиваться, и при некоторой его величине компенсация осуществляется за счет образования «наклонных» дислокаций несоответствия (название дано по аналогии с малоугловыми границами наклона) [14, 20, 33, 34].

Энергия такой границы будет зависеть от величины смещений атомов в трех взаимно перпендикулярных направлениях, периодичности образования ступенек и дислокаций несоответствия (как обычных *с*-дислокаций, так и наклонных), т.е. геометрических параметров сопряжения, которые, в свою очередь, определяются параметрами решеток сопрягающихся фаз. Формулы для расчета этих геометрических параметров и пояснения к ним даны в табл. 1.

Удельная энергия ступенчатой межфазной β/α -границы будет складываться, согласно работам [33, 34], из удельной энергии E^S ступенчатой поверхности и удельной энергии \overline{E}_y^P «плоского» участка террасы, связанной с *с*-дислокациями несоответствия:

$$E_{\Sigma} = E^S + \overline{E}_y^P. \tag{1}$$

р

Все расчетные формулы позаимствованы из работ [33, 34]. Но чтобы не отправлять читателя к первоисточникам, эти формулы и краткие пояснения к ним приведены ниже. Удельная энергия ступенчатой поверхности E^S складывается из средней удельной энергии E_x^T участка/сегмента террасы, удельной энергии E_x^Z , связанной с присутствием наклонных дислокаций несоответствия, и удельной энергии Γ , обусловленной переходом *с*-дислокации в плоскость смежной террасы:

$$E^S = E_x^T + E_x^Z + \Gamma.$$
 (2)

Величина E_x^T учитывает упругую компенсацию несоответствия в направлении x и вклад упругой релаксации напряжений в направлении z и вычисляется по формуле

$$E_x^T = \frac{\mu U_0^2}{\pi^2 d} \sum_{n=1}^{\infty} \frac{1}{n(n+n_0)},$$
 (3)

где μ — средний модуль сдвига сопрягающихся фаз, $\mu = (\mu_{\alpha} + \mu_{\beta})/2$, μ_{α} и μ_{β} — зависящие от температуры модули сдвига α - и β -фаз, $U_0 = \delta_x/2$ — максимальное относительное смещение атомов сопрягающихся решеток в направлении x, которое достигается к моменту образования ступеньки (точки Bи C на рис. 2a), $d \approx c_z$ — среднее расстояние между атомными плоскостями в решетках, разделенных границей, в направлении z,

$$n_0 = \frac{\mu l_x}{2\pi d\lambda}, \quad \frac{1}{\lambda} = \frac{1-\nu_{\alpha}}{\mu_{\alpha}} + \frac{1-\nu_{\beta}}{\mu_{\beta}},$$

 ν_{α} и ν_{β} — зависящие от температуры коэффициенты Пуассона
 α - и β -фаз.

Величина E_x^Z — удельная энергия границы, обусловленная присутствием наклонных дислокаций несоответствия, расположенных на расстоянии \bar{p}_x

Направление x	Направление у	Направление z					
Межатомные расстояния в ГПУ-решетке α -титана (a) и ОЦК-решетке β -титана (b)							
$a_x = a_\alpha, b_x = a_\beta \frac{\sqrt{3}}{2}$	$a_y = c_{\alpha}, b_y = a_{\beta}\sqrt{2}$	$a_z = a_\alpha \frac{\sqrt{3}}{2}, \ b_z = a_\beta \frac{\sqrt{2}}{\sqrt{3}}$					
Изменение положения атомов в ГПУ (a) и ОЦК (b) решетках в направлении x (рис. 26)							
$\delta_x^a = a_\alpha \frac{1}{2}, \delta_x^b = a_\beta \frac{1}{2\sqrt{3}}$	_	_					
Полное относите.	льное смещение атомов в сопряга	ющихся решетках					
$\delta_x = \delta_x^a - \delta_x^b = \left a_\alpha \frac{1}{2} - a_\beta \frac{1}{2\sqrt{3}} \right $	$\delta_y = a_y - b_y = c_a - a_\beta \sqrt{2} $	$\delta_z = a_z - b_z = \left a_\alpha \frac{\sqrt{3}}{2} - a_\beta \frac{\sqrt{2}}{\sqrt{3}} \right $					
	«Среднее» межатомное расстояни	ие					
$c_x = \frac{2a_x b_x}{a_x + b_x} = \frac{2\sqrt{3} a_\alpha a_\beta}{2a_\alpha + a_\beta \sqrt{3}}$	$c_y = \frac{2a_y b_y}{a_y + b_y} = \frac{2\sqrt{2} c_\alpha a_\beta}{c_\alpha + a_\beta \sqrt{2}}$	$c_z = \frac{2a_z b_z}{a_z + b_z} = \frac{2\sqrt{6} a_\alpha a_\beta}{3a_\alpha + a_\beta 2\sqrt{2}}$					
Период Верньера (соответс	твует периоду сетки межфазных	дислокаций несоответствия)					
$p_x = \frac{a_x b_x}{ a_x - b_x } = \frac{a_\alpha a_\beta \sqrt{3}}{ 2a_\alpha - a_\beta \sqrt{3} }$	$p_y = \frac{a_y b_y}{ a_y - b_y } = \frac{c_\alpha a_\beta \sqrt{2}}{ c_\alpha - a_\beta \sqrt{2} }$	$p_z = \frac{a_z b_z}{ a_z - b_z } = \frac{a_\alpha a_\beta \sqrt{6}}{ 3a_\alpha - a_\beta 2\sqrt{2} }$					
Несоответствие межатомных расстояний							
$f_x \equiv \frac{c_x}{p_x} = \frac{2 2a_\alpha - a_\beta\sqrt{3} }{2a_\alpha + a_\beta\sqrt{3}}$	$f_y \equiv \frac{c_y}{p_y} = \frac{2 c_\alpha - a_\beta\sqrt{2} }{c_\alpha + a_\beta\sqrt{2}}$	$f_z \equiv \frac{c_z}{p_z} = \frac{2 3a_\alpha - a_\beta 2\sqrt{2} }{3a_\alpha + a_\beta 2\sqrt{2}}$					
Протяженность уча	астка/сегмента террасы или пери	одичность ступеней					
$l_x = \frac{c_x}{f_x} \left(\frac{\delta_x^a}{a_x} - \frac{\delta_x^b}{b_x} \right) = \frac{c_x}{6f_x} = \frac{1}{6} p_x$							
Протяженность участка/сегмента террасы, после/перед которым появляется							
наклонная дислокация несоответствия (двойной шаг в направлении z)							
$\overline{l}_x = \frac{c_x}{f_x} \left(\frac{2\delta_x^a}{a_x} - \frac{\delta_x^b}{b_x} \right) = \frac{2}{3} \frac{c_x}{f_x} = \frac{2}{3} p_x$							
Период наклонных дислокаций несоответствия							
$\overline{p}_x = \frac{c_x c_z}{f_x f_z b_z} \left(\frac{\delta_x^a}{a_x} - \frac{\delta_x^b}{b_x} \right) + \frac{c_x}{f_x} \frac{\delta_x^a}{a_x} = l_x \left(\frac{1}{f_z} - \frac{1}{2} \right) + \delta_x^a \left(\frac{1}{f_x} + \frac{1}{2} \right) = \frac{p_x p_z}{6b_z} + \frac{p_x}{2}$							

Таблица 1. Геометрические параметры сопряжения ОЦК- и ГПУ-решеток на ступенчатой межфазной границе

на поверхностях, перпендикулярных направлению x (на площадках yz), определяется из соотношения

$$E_x^Z = \left[\frac{\mu c_z^2}{2\pi^2 (1-2\nu) d}\right] F(\overline{\beta}_x),\tag{4}$$

где $\nu=(\nu_{\alpha}+\nu_{\beta})/2$ — усредненный коэффициент Пуассона, $d\approx c_{z},$

$$F(\overline{\beta}_x) = 1 + \overline{\beta}_x - \sqrt{1 + \overline{\beta}_x^2} - \overline{\beta}_x \ln\left[2\overline{\beta}_x\sqrt{1 + \overline{\beta}_x^2} - 2\overline{\beta}_x^2\right], \quad (5)$$

$$\overline{\beta}_x = \frac{\pi d(1-2\nu)\lambda}{3\overline{p}_x\mu}.$$
(6)

Величина энергии Γ зависит от \overline{E}_y^P — удельной энергии «плоского» участка границы, содержащего межфазные *с*-дислокации, которые компенсируют несоответствие межатомных расстояний в направлении y и расположены на расстоянии p_y друг от друга. Величины \overline{E}_y^P и Γ вычисляются по следующим формулам:

$$\overline{E}_{y}^{P} = \frac{\mu c_{y}^{2}}{4\pi^{2} d} F(\beta_{y}), \quad d \approx c_{z},$$
(7)

$$F(\beta_y) = 1 + \beta_y - \sqrt{1 + \beta_y^2} - \beta_y \ln\left[2\beta_y \sqrt{1 + \beta_y^2} - 2\beta_y^2\right], \quad (8)$$

 7^*

$$\beta_y = \frac{2\pi d\lambda}{\mu p_y} \approx f_y \frac{2\pi \lambda}{\mu}, \quad d \approx c_y, \tag{9}$$

$$\Gamma = \overline{E}_y^P(\beta_y) \frac{c_x}{l_x}.$$
 (10)

Из представленных зависимостей видно, что для оценки величины удельной энергии полукогерентной межфазной границы необходимо знать параметры решеток, значения модулей сдвига и коэффициентов Пуассона α - и β -фаз сплава. Поскольку как параметры решеток сопрягающихся фаз, так и их упругие свойства зависят от температуры, изменение температуры обработки будет сопровождаться изменением удельной энергии межфазной границы.

3. ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ИЗМЕНЕНИЕ ПАРАМЕТРОВ РЕШЕТОК, ХИМИЧЕСКИЙ СОСТАВ И УПРУГИЕ СВОЙСТВА α- И β-ФАЗ СПЛАВА ВТ6

3.1. Изменение параметров решеток и состава фаз сплавов титана при нагреве

На рис. 3 представлены температурные зависимости параметров a_{α} и c_{α} ГПУ-решетки α -фазы и параметра a_{β} ОЦК-решетки β -фазы титана и легированных титановых сплавов, полученные методами высокотемпературных рентгеновских исследований в работах [1,3,35–38].

Видно, что параметры решетки α -фазы растут линейно с повышением температуры от комнатной до температуры полного полиморфного превращения. Коэффициенты линейного термического расширения $K_{a(\alpha)}$ и $K_{c(\alpha)}$ в направлениях *a* и *c* составляют соответственно (9.7–10.5) · 10⁻⁶ 1/°С и (12.6–14.5) · 10⁻⁶ 1/°С. Параметр решетки β -фазы увеличивается линейно при нагреве от комнатной температуры примерно до 600 °С (а также при температуры примерно до 600 °С (а также при температуры соднофазной β -области, где $K_{a(\beta)} =$ = 13.6 · 10⁻⁶ 1/°С [38]). В интервале температур 20–600 °С коэффициент $K_{a(\beta)}$ β -фазы составляет (7.8–9.2) · 10⁻⁶ 1/°С. Нагрев от 600 °С до температуры полного полиморфного превращения приводит к более быстрому увеличению параметра решетки a_{β} .

«Кажущийся коэффициент линейного расширения» возрастает почти в 6 раз, как следует из работ [35–37,39,40]. Авторы этих работ показали, что диффузионное превращение ($\alpha+\beta$) $\rightarrow \beta$ интенсивно протекает в легированных сплавах титана при нагреве (со скоростями от 2 до 100 °C/мин) выше 600 °C и сопровождается сравнительно слабым изменением химического состава α -фазы и значительным

Рис. 3. Влияние температуры нагрева на изменение параметров решеток фаз в сплавах титана: a — параметра a_{α} ГПУ-решетки; b — параметра c_{α} ГПУ-решетки; b — параметра a_{β} ОЦК-решетки

Таблица 2. Параметры решеток [35] и упругие характеристики α - и β -фаз в сплаве ВТ6 при температурах 600–975 °С

	600	700	200	000	075	
I, C	600	700	800	900	975	
V в β -фазе,	15.4	19.4	0.4	6.4	4.9	
% масс.	10.4	12.4	9.4	0.4	4.2	
a_{α} , HM	0.2967	0.2969	0.2972	0.2977	0.2983	
$c_{\alpha}, \text{ HM}$	0.4752	0.4758	0.4765	0.4772	0.4777	
$a_{\beta}, \text{ hm}$	0.3257	0.3274	0.3294	0.3307	0.3316	
$ u_{lpha}$	0.357	0.364	0.372	0.379	0.385	
$ u_{eta}$	0.375	0.377	0.379	0.381	0.382	
$\mu_{\alpha}, \Gamma \Pi a$	33.5	31.1	28.7	26.3	24.5	
$\mu_{\beta}, \Gamma \Pi a$	24.3	23.6	22.8	22.1	21.6	

изменением состава *β*-фазы: концентрация алюминия в β -фазе возрастает, а концентрация β -стабилизаторов уменьшается в 2-4 раза. Последнее обстоятельство объясняет «быстрое» увеличение параметра решетки β -фазы при $T > 600 \,^{\circ}\text{C}$, так как большинство β -стабилизаторов, растворенных в β -фазе, уменьшает ее параметр решетки [3]. В частности, согласно экспериментальным данным [35], при нагреве сплава Ti-6Al-4V (аналог сплава BT6) от 600 до 975 °C содержание ванадия в β -фазе уменьшилось с 15.4 до 4.2%, а содержание алюминия увеличилось с 2.9 до 6 % по массе. При этом α -фаза содержала около 6.7 % Аl и 1.4 % V. При диффузионном превращении в ходе охлаждения от температуры однофазной β -области следует ожидать развития обратных процессов.

Для оценок удельной межфазной поверхностной энергии в сплаве ВТ6 в данной работе использовались результаты высокотемпературных измерений параметров a_{α} и a_{β} , полученные в работе [35]. Параметр c_{α} в этой работе, к сожалению, определен только при комнатной температуре, поэтому при температурах 600–975 °С параметр с_{α} рассчитывали, принимая значение $K_{c(\alpha)} = 14.48$, которое было получено экспериментально для этого же сплава в работе [36]. Значения параметров решетки, использованные для расчетов, приведены в табл. 2. Принимая, что содержание ванадия в β -фазе при нагреве от 600 до 975 °С изменялось линейно, была выполнена оценка концентрации ванадия в β -фазе при различных температурах, результаты которой даны в табл. 2.

Существенные различия в изменении химического состава α - и β -фаз при нагреве и охлаждении приводят не только к разной скорости изменения параметров решетки фаз и, следовательно, объемных эффектов превращения [35–37, 39–41], но и к различиям в изменении упругих свойств решеток при изменении температуры превращения.

3.2. Влияние температуры и химического состава фаз на изменение их упругих свойств

Температурные зависимости упругих модулей поликристаллов и постоянных жесткости C_{ij} монокристаллов экспериментально измерены только для технически чистого α -титана [32–44]. Формальное описание зависимостей $\mu_{\alpha}(T)$ предложено в работах [44,45]. Результаты оценки модуля сдвига в них практически одинаковы. В настоящей работе величины μ_{α} и ν_{α} при различных температурах определяли по уравнениям [44]

$$\mu_{\alpha} = \mu_{0\alpha} - 0.024T, \tag{11}$$

$$\nu_{\alpha} = (10^3 \nu_{0\alpha} + 0.076T) \cdot 10^{-3}, \tag{12}$$

где $\mu_{0\alpha}$ и $\nu_{0\alpha}$ — модуль сдвига и коэффициент Пуассона при 0 °C, T — температура, °C. Постоянные C_{ii} α-фазы сплава Ti-6Al-4V были получены методом моделирования в работах [47,48] (табл. 3). Поскольку данные работы [48] отражают экспериментально наблюдаемый рост упругих модулей а-фазы титана на 8–10% при растворении в ней примерно 6% алюминия [18], они были использованы для оценок величин $\mu_{0\alpha}$ и $\nu_{0\alpha}$ в настоящей работе. Значения μ и *v* были рассчитаны по приближениям Фойгта–Ройса – Хилла [52], которые устанавливают связь между постоянными жесткости С_{ii} кристалла и средними значениями упругих модулей изотропного кристалла. Рассчитанные значения μ и ν для α-фазы при 20 °C приведены в табл. 3,
а μ_{α} и ν_{α} при температурах 600–975 °С — в табл. 2.

Постоянные жесткости C_{ij} монокристаллов β -фазы чистого титана были определены при 1000 °C [49, 50] и 1020 °C [51]; их величины существенно зависели от метода измерения (см. табл. 3). Упругие модули поликристаллического β -титана измеряли в интервале температур 900–1000 °C [43] и 900–1100 °C [44]. Авторы работ [43, 44] отмечают, что упругие свойства β -титана практически не зависят от температуры. На основании этого в настоящей работе величины μ_{β} и ν_{β} также считали

ν	μ, ΓΠα	$C_{11},$ $\Gamma\Pi a$	$C_{12},$ ГПа	$C_{13},$ ГПа	С ₃₃ , ГПа	$C_{44},$ ГПа	$\frac{2C_{44}}{C_{11} - C_{12}}$	Сплав	Ссылки
FIIY									
0.322	43.36	162.4	92.0	69.0	180.7	46.7	1.33	Ti	[42]
0.319	44.33	163.6	92.3	67.9	185.2	47.7	1.34	Ti	[43]
0.342	41.00		_		_	_	_	Ті поликрист.	[44]
0.323	45.30	174.0	95.0	72.0	190.0	45.0	1.14	Ti*	[46]
0.298	50.23	172.0	82.0	68.0	191.0	51.0	1.13	Ti*	[46]
0.387	28.20	143.0	110.0	90.0	177.0	40.0	2.42	$Ti-6Al-4V^*$	[47]
0.311	47.85	170.0	92.0	70.0	192.0	52.0	1.33	$Ti-6Al-4V^*$	[48]
	•		-		OI	ĮΚ	•		
0.399	16.41	99.0	85.0	_	_	33.6	4.80	Ti**	[49]
0.387	18.08	97.7	82.7	_	_	37.5	5.00	Ti**	[50]
0.402	20.89	134.0	110.0	_	_	36.0	3.00	Ti**	[51]
0.391	20.70	_	_	_	_	_	_	Ті поликрист.**	[43]
0.420	17.50	_	_	_	_	_	_	Ті поликрист.**	[44]
0.370	27.56	140.0	99.5		_	39.7	1.96	Ti-29.4V at. $\%$	[18]
0.362	30.34	149.0	100.5	_	_	40.9	1.69	Ti-38.5V at. $\%$	[18]
0.358	34.13	167.6	105.1	_	_	41.3	1.32	Ti-53V at. $\%$	[18]
0.355	38.47	192.3	111.1	_	_	41.5	1.02	Ті-73V ат. %	[18]
0.385	20.65	111.5	91.2	_	_	39.1	3.85	Ті экстр. на 0%V	
0.373	36.86	130.0	90.0	_	_	65.0	3.25	Ti-6Al-4V*	[47]
0.317	28.27	138.0	108.0	_	_	51.0	3.40	$Ti-6Al-4V^*$	[48]

Таблица 3. Упругие модули α - и β -фаз сплавов титана

Примечания: C_{ij} определены методом моделирования; C_{ij} и μ определены экспериментально при 1000 °C [43,44,49,50] и 1020 °C [51]; остальные значения C_{ij} получены экспериментально при комнатной температуре.

температурно-независимыми. При этом была сделана попытка учесть влияние содержания ванадия на μ_{β} и ν_{β} . Для этого были использованы значения C_{ij} , экспериментально полученные для монокристаллов β -титана с содержанием ванадия 29–73 ат. % (30.7– 74.2 % по массе) после их охлаждения в соляном растворе [2, 5, 18] (см. табл. 3). Экстраполяция этих данных к нулевому содержанию ванадия дает значения C_{ij} близкие к чистому титану при 1000 °C [49,50] (см. табл. 3) и позволяет оценить C_{ij} , μ_{β} и ν_{β} β -фазы с заданной концентрацией ванадия (см. табл. 2). Определенное таким образом значение μ_{β} оказалось примерно на 15% меньше, а значение ν_{β} — на 15% больше по сравнению с данными, полученными методом моделирования [48] для β -фазы с содержанием ванадия 15.4%.

Выполненный анализ позволил получить исходные данные, необходимые для расчета величины удельной межфазной поверхностной энергии в сплаве ВТ6 при различных температурах, которые сведены в табл. 2.

Рис. 4. *a*) Влияние температуры обработки сплава BT6 на величину удельной энергии E_{Σ} межфазной β/α -границы и ее составляющих E^S и \overline{E}_y^P . δ) Влияние параметра β_y на величину удельной энергии \overline{E}_y^P

Рис. 5. Влияние температуры обработки сплава BT6 на величину несоответствия межатомных расстояний в направлениях x, y и z (a) и на расстояния между дислокациями и ступенями, компенсирующими несоответствия на межфазной β/α -границе (δ)

4. РЕЗУЛЬТАТЫ ОЦЕНКИ УДЕЛЬНОЙ МЕЖФАЗНОЙ ПОВЕРХНОСТНОЙ ЭНЕРГИИ И ИХ ОБСУЖДЕНИЕ

Результаты оценки удельной энергии E_{Σ} межфазной β/α -границы в сплаве ВТ6 и ее компонент \overline{E}_{y}^{P} и E^{S} по формулам (1)–(10) с использованием данных из табл. 2 представлены на рис. 4*a*. Полученные значения величины E_{Σ} и ее компонент можно считать вполне разумными по следующим причинам.

Они удовлетворительно согласуются с результатами оценок удельных энергий межфазной β/α -

границы в сплаве Ti-5Al-2.5Sn-0.05Fe, выполненных фазово-полевым методом моделирования [16], и ступенчатых границ между ГЦК- и ОЦК-фазами в сплавах на основе железа и никеля [14].

Они адекватно отражают физические представления о строении межфазной границы. Например, при увеличении расстояния p_y между *с*дислокациями несоответствия величина β_y , которая характеризует «плотность» дислокаций несоответствия с «вектором Бюргерса» c_y , будет стремиться к нулю [23]; следовательно, будет стремиться к нулю и энергия \overline{E}_{y}^{P} , обусловленная присутствием с-дислокаций несоответствия (рис. 4б).

Основной вклад в удельную энергию E_{Σ} межфазной границы вносит составляющая \overline{E}_y^F (около 85%), обусловленная присутствием с-дислокаций, компенсирующих несоответствие межатомного расстояния f_y . Удельная энергия E^S , связанная с компенсацией несоответствий f_x и f_z за счет образования структурных ступенек и наклонных дислокаций несоответствия, мала и увеличивается с понижением температуры гораздо медленнее, чем \overline{E}_{y}^{P} (см. рис. 4*a*). Различия в изменении составляющих \overline{E}_{u}^{P} и E^S с понижением температуры от 975 до 600 °C, очевидно, связаны с разницей в изменении величин несоответствия и, следовательно, периодичности появления дислокаций и ступеней на межфазной границе. В указанном интервале температур величина f_{y} возрастает (рис. 5*a*), и расстояние p_{y} между *с*-дислокациями несоответствия сокращается примерно в 1.7 раз (рис. 56). При этом f_x увеличивается в 1.3 раза, а f_z уменьшается в 1.4 раза (рис. 5*a*), в результате чего периодичность l_x ступеней и расстояние \overline{p}_{r} между наклонными дислокациями несоответствия (tilt misfit dislocations, TMD) изменяются мало (рис. 5б).

С понижением температуры от 975 до 600 °С удельная энергия ступенчатой межфазной границы в сплаве ВТ6 возрастает от 0.15 до 0.24 Дж/м² (см. рис. 4*a*), приближаясь к энергии некогерентной границы E_{IIB} (incoherent interphase boundary)¹). Рост E_{Σ} прежде всего связан с обогащением β -фазы ванадием, которое происходит не только при понижении температуры обработки в пределах двухфазной ($\alpha + \beta$)-области, но и в ходе длительных выдержек сплава при постоянных температурах, что обеспечивает приближение составов фаз к равновесному. Согласно работам [1,3,35,53], равновесное содержание ванадия в β -фазе сплава Ti-6Al-4V при 600 °С составляет около 30 % по массе, тогда как по результа-

там эксперимента [35], которые использовались для оценки E_{Σ} , оно вдвое меньше, около 15.4%. Обогащение β -фазы ванадием будет сопровождаться увеличением модуля сдвига (примерно на 12%), уменьшением параметра решетки β -фазы (примерно на 1%) и ростом E_{Σ} примерно на 30% — до 0.3 Дж/м², т. е. величина E_{Σ} может достигнуть уровня энергии некогерентной границы, и свойства межфазных границ (диффузионная проницаемость, взаимодействие с дислокациями и др.) могут существенно измениться.

Результаты выполненных оценок дают дополнительную информацию для понимания причин стабильности/нестабильности микроструктуры и свойств титановых сплавов при внешних воздействиях. Например, еще раз подтверждается необходимость деформации для преобразования пластинчатой микроструктуры в глобулярную. Видно (см. рис. 4а), что при относительно высоких температурах, обеспечивающих достаточную скорость развития диффузионных процессов, энергия межфазной β/α -границы низкая, и появление термодинамического стимула для развития сфероидизации пластинчатых частиц при отжиге маловероятно. При относительно низких температурах (не выше 600 °C) и длительных выдержках строение межфазных β/α -границ может измениться с полукогерентного на некогерентное, что отрицательно повлияет на характеристики ползучести и длительной прочности.

Полученные данные открывают дополнительные возможности для контролируемого изменения структуры и свойств межфазных границ. Этому направлению материаловедения (grain boundary engineering) в последнее время уделяется большое внимание. Следует отметить, что влияние на энергию межфазной границы такого важного фактора, как химический состав сплава и фаз, может быть более сложным, чем рассмотрено в данной работе. Развитие этого направления представляет интерес как для лучшего понимания строения межфазных границ, так и для улучшения свойств сплавов.

5. ВЫВОДЫ

Результаты теоретического исследования влияния температуры на величину удельной энергии межфазной β/α -границы, выполненного с учетом литературных данных об изменении параметров решеток и упругих свойств фаз сплава ВТ6, показали, что

¹⁾ Поскольку удельная энергия некогерентной межфазной границы близка к энергии нерегулярной большеутловой межзеренной границы ($\theta \ge 0.26$ рад) [13, 14, 22], оценка величины E_{IIB} была выполнена по уравнению Рида–Шокли $\gamma = [\mu b \theta / 4\pi (1 - \nu)](A - \ln \theta)$, где γ — удельная энергия границы наклона, b — вектор Бюргерса, θ — угол разориентировки границы ($0 < \theta \le 0.26$ рад или $0 < \theta \le 15^{\circ}$), A — безразмерный параметр, который обычно принимают равным от -0.347до 0 [6, 16, 22]. Температурные зависимости $E_{IIB} = \gamma$ при $\theta =$ = 0.26 рад, A = -0.347 и A = 0 были получены с использованием данных (μ , ν и $b = a_{\alpha}$) из табл. 2 и показаны на рис. 4aпунктирными линиями. (Заметим, что верхняя оценка обеспечивает лучшее соответствие экспериментальных и расчетных значений для большеугловых границ зерен в ГЦК-металлах.)

1) удельная энергия межфазной β/α -границы в сплаве ВТ6 повышается от 0.15 до 0.24 Дж/м² при снижении температуры обработки от 975 до 600 °C;

2) энергия ступенчатой межфазной границы в основном зависит от плотности краевых дислокаций, компенсирующих несоответствие межатомных расстояний в направлении $[0001]_{\alpha} \parallel [110]_{\beta}$; энергия, связанная с образованием структурных ступенек и наклонных дислокаций несоответствия, обеспечивающих сопряжение фаз в направлениях $[\overline{2}110]_{\alpha} \parallel [1\overline{1}1]_{\beta}$ и $[0\overline{1}10]_{\alpha} \parallel [\overline{1}12]_{\beta}$, составляет около 15 % от суммарной;

3) уменьшение параметра решетки β -фазы, обусловленное увеличением содержания ванадия, приводит к заметному уменьшению расстояния между краевыми дислокациями несоответствия и слабо влияет на протяженность структурных ступеней и расстояние между наклонными дислокациями несоответствия.

ЛИТЕРАТУРА

- С. П. Белов, М. Я. Брун, С. Г. Глазунов и др., Металловедение титана и его сплавов, под ред. С. Г. Глазунова, Б. А. Колачева, Металлургия, Москва (1992).
- G. Lütjering and J. C. Williams, *Titanium Engineering Materials and Processes*, Springer-Verlag, Berlin–Heidelberg (2007).
- У. Цвиккер, Титан и его сплавы, Металлургия, Москва (1979).
- 4. S. L. Semiatin and D. U. Furrer, in ASM Handbook, Fundamentals of Modeling for Metals Processing, ed. by S. L. Semiatin and D. U. Furrer, Materials Park, OH: ASM International (2009), Vol. 22, p. 536.
- D. Banerjee and J. C. Williams, Acta Mater. 61, 844 (2013).
- S. Zherebtsov, G. Salishchev, and S. L. Semiatin, Phil. Mag. Lett. 90, 903 (2010).
- S. Suri, G. B. Viswanathan, T. Neeraj et al., Acta Mater. 47, 1019 (1999).
- M. Cabibbo, S. Zherebtsov, S. Mironov, and G. Salishchev, J. Mater. Sci. 48, 1100 (2013).
- S. Zherebtsov, M. Murzinova, G. Salishchev, and S. L. Semiatin, Acta Mater. 59, 4138 (2011).
- С. В. Жеребцов, Деформация и разрушение материалов № 10, 16 (2012).

- С. З. Бокштейн, Диффузия и структура металлов, Металлургия, Москва (1973).
- M. I. Mazurski and G. A. Salishchev, Phys. Stat. Sol. (b) 188, 653 (1995).
- Physical Metallurgy, Vol. 2, ed. by R. W. Cahn and P. Haasen, Elsevier Sci., North-Holland (1996).
- Physical Metallurgy, ed. by D. E. Laughlin and K. Hono, Newnes (2014).
- 15. А. Келли, Р. Никлсон, Дисперсионное твердение. Успехи физики металлов, пер. с англ. под ред. Л. К. Гордиенко, Е. Н. Власовой, Металлургия, Москва (1966).
- 16. R. Shi, N. Ma, and Y. Wang, Acta Mater. 60, 4172 (2012).
- 17. A. Dehghan-Manshadi and R. J. Dippenaar, Mater. Sci. Eng. A 528, 1833 (2011).
- 18. Е. В. Коллингз, Физическое металловедение титановых сплавов, пер. с англ. под ред. Б. И. Веркина, В. А. Москоленко, Металлургия, Москва (1988).
- T. Ozaki, H. Matsumoto, S. Watanabe, and S. Hanada, Mater. Trans. 45, 2776 (2004).
- 20. J. H. van der Merwe, Proc. Phys. Soc. A 63, 616 (1950).
- 21. В. М. Косевич, В. М. Иевлев, Л. С. Палатник, А. И. Федоренко, Структура межкристаллитных и межсфазных границ, Металлургия, Москва (1980).
- 22. А. Келли, Г. Гровс, Кристаллография и дефекты в кристаллах, пер. с англ. под ред. М. П. Шаскольской, Мир, Москва (1974).
- 23. G. J. Shiflet, Mater. Sci. Eng. 81, 61 (1986).
- 24. J. P. Hirth, G. Spannos, M. G. Hall, and H. I. Aaronson, Acta Mater. 46, 857 (1998).
- 25. T. Furuhara, H. J. Lee, E. S. K. Menon, and H. I. Aaronson, Metall. Trans. A 21, 1627 (1990).
- 26. T. Furuhara, T. Ogawa, and T. Maki, Phil. Mag. Lett. 72, 175 (1995).
- 27. R. C. Pond, S. Celotto, and J. P. Hirth, Acta Mater.51, 5385 (2003).
- 28. R. C. Pond, X. Ma, Y. W. Chai, and J. P. Hirth, Dislocations in Solids 13, 225 (2007).
- S. Nag, R. Banerjee, R. Srinivasan et al., Acta Mater.
 57, 2136 (2009).
- 30. T. Furuhara, J. M. Howe, and H. I. Aaronson, Acta Metall. Mater. 39, 2873 (1991).

- 31. N. Miyano, K. Ameyama, and G. C. Weatherly, Mater. Trans. 43, 1547 (2002).
- 32. M. G. Hall, H. I. Aaronson, and K. R. Kinsma, Surf. Sci. 31, 257 (1972).
- 33. J. H. van der Merwe, G. J. Shiflet, and P. M. Stoop, Metall. Trans. A 22, 1165 (1991).
- 34. J. H. van der Merwe and G. J. Shiflet, Acta Metal. Mater. 42, 1173 (1994).
- 35. J. W. Elmer, T. A. Palmer, S. S. Babub, and E. D. Specht, Mater. Sci. Eng. A 391, 104 (2005).
- 36. S. Malinov, W. Sha, Z. Guo et al., Mater. Character. 48, 279 (2002).
- 37. А. А. Ильин, В. М. Майстров, В. В. Засыпкин, Металлофизика 8(6), 112 (1986).
- 38. O. N. Senkov, B. C. Chakoumakos, J. J. Jonas, and F. H. Froes, Mater. Res. Bull. 36, 1431 (2001).
- 39. P. Barriobero-Vila, G. Requena, T. Buslaps et al., J. Alloys Comp. 626, 330 (2015).
- 40. A. K. Swarnakar, O. Van der Biest, and B. Baufeld, J. Alloys Comp. 509, 2723 (2011).
- 41. А. А. Ильин, М. Ю. Коллеров, В. В. Засыпкин, В. М. Майстров, Металловедение и термическая обработка металлов № 1, 52 (1986).
- 42. E. S. Fisher and C. J. Renken, Phys. Rev. 135, 2A, A482 (1964).

- 43. H. Ogi, S. Kai, H. Ledbetter et al., Acta Mater. 52, 2075 (2004).
- 44. O. N. Senkov, M. Dubois, and J. J. Jonas, Metall. Mater. Trans. A 27, 3963 (1996).
- 45. Г. Дж. Фрост, М. Ф. Эшби, Карты механизмов деформации, Металлургия, Челябинск (1989).
- 46. R. G. Hennig, T. J. Lenosky, D. R. Trinkle et al., Phys. Rev. B 78, 054121 (2008).
- 47. A. M. Stapleton, S. L. Raghunathan, I. Bantounas et al., Acta Mater. 56, 6186 (2008).
- 48. J. L. W. Warwick, J. Coakley, S. L. Raghunathan et al., Acta Mater. 60, 4117 (2012).
- 49. E. S. Fisher and D. Dever, in *Science, Technology and Application of Titanium*, ed. by R. I. Jaffee and N. E. Promisel, Pergamon Press, Oxford, UK (1968), p. 373.
- H. Ledbetter, H. Ogi, S. Kai et al., J. Appl. Phys. 95, 4642 (2004).
- W. Petry, A. Heimig, J. Trampenau et al., Phys. Rev. B 43, 10933 (1991).
- **52**. Т. Д. Шермергор, *Теория упругости микронеоднородных сред*, Наука, Москва (1977).
- W. Sha and S. Malinov, *Titanium Alloys: Modelling* of Microstructure, Properties and Applications, Woodhead Publ. Lim. and CRC Press LLC (2009).