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There are two paradigmatic frameworks for treating quantum systems coupled to a dissipative environment: the

Caldeira–Leggett and Ambegaokar–Eckern–Schön approaches. Here, we recall the differences between them

and explain the consequences of applying each to a zero-dimensional spin (having an SU(2) symmetry) in a

dissipative environment (a dissipative quantum dot near or beyond the Stoner instability point).
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The diagrammatic technique for nonequilibrium

systems developed in the pioneering works of Schwinger

and Keldysh plays a predominant role in theoretical

condensed matter physics [1, 2]. It is designed to

tackle real-time evolution of systems at and away from

equilibrium. Due to the developments of the last two

decades [3–5], it now provides a nonperturbative tool to

tackle interaction-induced strong correlations in quan-

tum many-body systems. In this paper, we discuss

an important prototypical problem, a quantum zero-

* E-mail: alexander.shnirman@kit.edu

dimensional degree of freedom in a dissipative environ-

ment, in which the Keldysh technique is of tremendous

use, providing an insight into the physics involved.

1. GENERAL PERSPECTIVE

We consider the dynamics of a quantum system cou-

pled to a dissipative environment. The resulting equa-

tion of motion is stochastic, which can be formulated

on any of the following three levels: (i) a fully clas-

sical Langevin equation, where both the variables are

classical (expectation values of observables) and the fre-

quency range of interest is ~ω < kBT (for Ohmic dis-
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а) Wave guide

b) NIN Tunnel junction

c) Landauer scattering setup

Resistor

Three approaches to envisioning dissipation: a) an LC circuit

(waveguide) extracting energy from the system; b ) a dissi-

pative tunnel junction suitable for the AES picture; c) the

Landauer picture consisting of a tunnel barrier (or a tunnel

juction) coupled to dissipative reservoirs

sipation, the noise spectrum is white); (ii) a semiclas-

sical hybrid description, within which the variables are

still classical coordinates, but the noise may be quan-

tum, having a high-frequency component ~ω > kBT

(Ref. [6]); (iii) a full-fledged quantum mechanical de-

scription, according to which the noise may contain

high-frequency quantum components, and the variables

of the quantum Langevin equation are operators within

the Heisenberg description. This approach is practiced,

e. g., in the field of quantum optics [7].

A paradigmatic framework to represent a dissipa-

tive environment, in a way that connects to our pre-

formed classical intuition, is to model an Ohmic resistor

quantum mechanically. We mention three approaches.

1. The Caldeira–Leggett (CL) modeling [8]: One in-

troduces an effective circuit consisting of an L–C trans-

mission line (with an infinitesimal imaginary term),

which can extract energy and current from the bare

quantum system (cf. Figure a).

2. The Ambegaokar–Eckern–Schön (AES) mode-

ling [9, 10]: Here, we model a tunnel junction (see Fi-

gure b ) assuming explicitly that its transparency is low,

and hence only lowest-order contributions to the tun-

neling should be accounted for. The resulting Hamilto-

nian represents reservoir degrees of freedom that give

rise to dissipation. Traditional applications of the CL

picture employed extended coordinates (which are not

indispensable, however: the CL action in the case of

a spin degree of freedom consists of compact coordi-

nates). By contrast, the AES approach introduces com-

pact (periodic) coordinates.

3. The Landauer picture [11–13]. Here, one mo-

dels the resistor by a tunnel barrier (of arbitrary trans-

parency) (see Figure c for the single-channel case). The

contribution of this tunnel barrier to the resistance is

given by R/(1 − R), where the reflection probability

off the barrier is equal to the modulus square of the

reflection amplitude, R = |r|2. This elastic backscat-

tering process yields the magnitude of the resistor; the

actual inelastic dissipation takes place in the connected

reservoirs. Such a model has been discussed, e. g., in

Ref. [14]. We do not consider this picture here.

The outline of this paper is as follows. In Sec. 2,

we briefly review earlier work, emphasizing the diffe-

rence between the CL and AES approaches to dissipa-

tive dynamics and focusing on charge dynamics. The

gauge symmetry underlying charge transport is U(1).

In Sec. 3, we recall the physics of a quantum dot (QD)

tuned to be near (but below) the Stoner instability. As

such, the QD supports large magnetization. With the

fluctuations in the magnitude of the spin ignored, the

spin degree of freedom has an SU(2) symmetry. The

coupling of such a QD to external leads gives rise to dis-

sipation, which is formulated and studied in the frame-

work of the AES approach (Sec. 4). In Sec. 4, we first

compare our AES analysis for the spin case to our re-

sults obtained within the CL framework. We then note

that this AES versus CL contrast differs from that in

the standard charge U(1) case. We conclude in Sec. 6.

2. CALDEIRA–LEGGETT VERSUS
AMBEGAOKAR–ECKERN–SCHÖN: THE

CHARGE U(1) CASE

We consider the dynamics associated with a cur-

rent running through a resistor, and compare the two

paradigmatic representation thereof, the CL and AES

ones.

2.1. CL action

The CL action of a current-biased linear resistor

(modeled as a transmission line) is

iSCL = −
∫

dt1dt2 α(t1, t2)
[ϕ(t1)− ϕ(t2)]

2

2
+

+ iSsource, (1)

where the dimensionless phase variable ϕ(t) represents

the effective flux variable Φ(t) via ϕ = 2π(Φ/Φ0),

where Φ0 = h/e is the flux quantum. The voltage

across the resistor is given by V = dΦ/dt, and Φ is the

degree of freedom canonically conjugate to the charge
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that has flown through the resistor Q =
∫

dt I. In

Eq. (1), α(t1, t2) is the kernel of the Ohmic bath [8].

Dropping the time-local terms (important for avoiding

renormalization of the nondissipative part of the ac-

tion), we obtain

iSCL =

∫

dt1dt2 α(t1, t2)ϕ(t1)ϕ(t2) + iSsource. (2)

We note that in the Keldysh notation, this action can

be written as

iSCL = iSsource+2

∞
∫

−∞

dt1

∞
∫

−∞

dt2

(

ϕc(t1)
ϕq(t1)

2

)

×

×
(

0 αA

αR αK

)

(t1−t2)







ϕc(t2)

ϕq(t2)

2






, (3)

where c and q refer to the classical and quantum compo-

nents on the Keldysh contour [4]1). The subscripts R,

A, and K refer to the retarded, advanced, and Keldysh

components of the matrix.

Employing the relation between the retarded and

the advanced components of the kernel α, αA(t2, t1) =

= −
[

αR(t1, t2)
]∗

, we can write the action as

iSCL = iSR
CL + iSK

CL + iSsource (4)

with

iSR
CL = 2i

∫

dt1dt2
[

ImαR(t1−t2)
]

ϕq(t1)ϕc(t2), (5)

iSK
CL =

1

2

∫

dt1dt2α
K(t1−t2)ϕq(t1)ϕq(t2), (6)

and

iSsource = i

∫

dtIex(t)
Φ0

2π
ϕq(t). (7)

One can [6] rewrite the Keldysh term of the action us-

ing the decoupling

exp

(

i

~
SK
CL

)

=

∫

Dξ exp
{

i

~

∫

dt ~ξ(t)ϕq(t)

}

×

× exp

{

1

2

∫

dt1dt2~ [αK ]
−1
t1,t2

ξ(t1)ξ(t2)

}

. (8)

It follows that

〈ξ(t1)ξ(t2)〉 =
1

~
αK(t1, t2). (9)

1) Unlike Ref. [4], we use the convention ϕc = (ϕu + ϕd)/2,
ϕq = ϕu−ϕd, where u and d refer to the respective forward and
backward parts of the Keldysh contour.

The resulting Langevin equation of motion is obtained

by calculating the variation iδSCL/δϕq(t) = 0. The

equation obtained is

Φ̇c(t)

R
= Iex + δI(t), (10)

where δI(t) ≡ eξ(t) represents stochastic current noise.

We note that the noise is additive, and is not affected

by the bias current.

In deriving Eq. (10), we used the fact that the dissi-

pative bath has an Ohmic spectrum [8], implying that

ImαR(t) =
1

2

1

R

~
2

e2
δ′(t) or

ReαR(ω) =
1

2

1

R

~
2

e2
ω,

(11)

where R is the resistance. The variation over the re-

tarded part of the action leads to

iδSR
CL

δΦq(t1)
=

2π

Φ0
2i

∫

dt2
[

ImαR(t1 − t2)
]

×

×
[

2π
Φc(t2)

Φ0

]

=
i

R
Φ̇c(t1). (12)

The Fourier transform of the current noise correlator is

given by

〈δI(t1)δI(t2)〉ω =
e2

~
αK(ω). (13)

At equilibrium,

αK(ω) =
[

αR(ω)− αA(ω)
]

coth
~ω

2kBT
. (14)

The fluctuation–dissipation theorem follows from

Eqs. (12) and (14):

〈δI(t1)δI(t2)〉ω =
~ω

R
coth

~ω

2kBT
. (15)

We note that the additivity of the noise and its inde-

pendence from the bias current (Eq. (10)) imply that

the noise is independent of Iex, i. e., absence of shot

noise.

2.2. AES action

The AES action is now given by

iSAES = −
∫

dt1dt2 α(t1, t2)×

× (1− cos [ϕ(t1)− ϕ(t2)]) + iSsource. (16)

The source term is the same as in the preceding case.

Similarly to the CL case, Eq. (4), we can write the

action as

iSAES = iSR
AES + iSK

AES + iSsource. (17)
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The retarded part is essentially identical to that in the

CL case, having to do with the fact that t1 and t2 are

very close to each other (cf. Eq. (11)), which allows us

to expand the cos term in Eq. (16). But the Keldysh

term is very different:

iSK
AES =

1

2

∫

dt1dt2α
K(t1 − t2)×

×
{

[cosϕ(t1)]q [cosϕ(t2)]q +

+ [sinϕ(t1)]q [sinϕ(t2)]q

}

. (18)

Decoupling the action via two auxiliary fields ξ1 and

ξ2, we obtain [10]

exp

(

i

~
SK
AES

)

=

∫

Dξ1Dξ2 ×

×exp

{

i

~

∫

dt ~
(

ξ1(t) [cosϕ(t)]q +ξ2(t) [sinϕ(t)]q

)

}

×

× exp

{

1

2

∫

dt1dt2~
[

αK
]−1

t1,t2
(ξ1(t1)ξ1(t2) +

+ ξ2(t1)ξ2(t2))

}

. (19)

The resulting equation of motion for the AES action is

Φ̇c(t)

R
= Iex − eξ1 sin

(

2π
Φc

Φ0

)

+

+ eξ2 cos

(

2π
Φc

Φ0

)

. (20)

This equation can be cast into the form of Eq. (10) by

writing δI(t) = δI1(t) + δI2(t) with the two indepen-

dent terms of current fluctuations defined as

δI1 = −eξ1 sin
(

2π
Φc

Φ0

)

,

δI2 = eξ2 cos

(

2π
Φc

Φ0

)

.

(21)

Equation of motion (20) implies that the noise is

nonadditive, as can be shown explicitly from the fol-

lowing iterative procedure. The zeroth iteration gives

Φc = V t, where V = IexR. Next, we introduce a cor-

rection Φc = V t+ δΦc and obtain

δΦ̇c(t)

R
= −eξ1 sin

(

2π
V t+ δΦc

Φ0

)

+

+ eξ2 cos

(

2π
V t+ δΦc

Φ0

)

. (22)

The first iteration consists in dropping δΦc in the

right-hand side of Eq. (22). The resulting stochastic

terms give rise to shot noise [10] (unlike the CL equa-

tion of motion). For eV ≫ kBT , we find

〈δI1(t1)δI1(t2)〉ω→0 = 〈δI2(t1)δI2(t2)〉ω→0 =

=
1

2
e
V

R
. (23)

3. A QUANTUM DOT NEAR THE STONER
PHASE TRANSITION

Over the past few decades, the physics of quantum

dots has become a focal point of research in nanoelect-

ronics. The introduction of the Universal Hamilto-

nian [15–18] has made it possible to take the effects

of electron–electron (e–e) interaction within a QD into

account in a controlled way. This approach is appli-

cable to a normal-metal QD when the Thouless energy

ETh and the mean single-particle level spacing δ satisfy

gQD ≡ ETh/δ ≫ 1. Here, gQD is the dimensionless

conductance of the QD. The single-particle level spac-

ing is given by δ ∼ 1/V ν0, where V is the volume of the

QD and ν0 is its density of states (DoS), and therefore

δ ∼ 1/Ld for a d-dimensional QD. The Thouless energy

ETh is the inverse time of flight (or diffusion time) of

an electron across the quantum dot.

Within this scheme, the interactions are split into

a sum of three spatially independent contributions in

the charging, spin-exchange, and Cooper channels. Ig-

noring the latter (see below), the charging term leads

to the phenomenon of Coulomb blockade, while the

spin-exchange term can drive the system towards the

Stoner instability [19]. In bulk systems, the exchange

interaction competes with the kinetic energy, leading to

Stoner instability. In finite-size systems, a mesoscopic

Stoner regime may be a precursor of the bulk thermo-

dynamic Stoner instability [15, 16]: a new phase, inter-

mediate between paramagnetic and ferromagnetic ones,

emerges, in which the total spin of the QD is finite but

not extensive (i. e., not proportional to the volume of

the dot). The mesoscopic Stoner regime can be realized

in QDs made of materials close to the thermodynamic

Stoner instability.

A QD in the metallic regime gQD ≫ 1 is described

by the universal Hamiltonian [15]

H = H0 +HC +HJ +Hλ. (24)

The noninteracting part of the universal Hamiltonian

is

H0 =
∑

α,σ

ǫαa
†
α,σaα,σ, (25)

where ǫα denotes the energy of a spin-degenerate (in-

dex σ) single-particle level α. The charging interaction

term
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HC = EC

(

N̂ −N0

)2

(26)

accounts for the Coulomb blockade. Here, EC ≡ e2/2C

denotes the charging energy of the QD with the self-

capacitance C, N0 represents the background charge,

and

N̂ =
∑

α,σ

a†α,σaα,σ

is the operator of the total number of electrons of the

dot. For an isolated QD, the total number of electrons

is fixed and, therefore, the charging interaction term

can be omitted. The term

HJ = −J Ŝ2 (27)

represents the ferromagnetic (J > 0) exchange interac-

tion within the dot, where

Ŝ =
∑

α

a†α,σ1
Sσ1σ2

aα,σ2

is the operator of the total spin of the dot. Here,

Sσ1σ2
≡ (1/2)σσ1σ2

, where σ = (σx, σy , σz) is a vector

made of Pauli matrices. The interaction in the Cooper

channel is described by

Hλ = λT †T , T =
∑

α

aα,↑aα,↓. (28)

In what follows, we do not take Hλ into account

for the following reasons. For the dots defined in a

2D electron gas, the interaction in the Cooper chan-

nel is typically repulsive and, therefore, renormalizes to

zero [16]. In the case of 3D QDs realized as small metal-

lic grains, the interaction in the Cooper channel can be

attractive, giving rise to interesting competition bet-

ween superconductivity and ferromagnetism [20–22].

In that case, we assume that there is a weak magnetic

field that suppresses the Cooper channel.

The starting point of our analysis of a dissipative

Stoner QD (near the Stoner instability point) is the

QD Hamiltonian

Hdot =
∑

α,σ

ǫαa
†
α,σaα,σ − JS2, (29)

where we ignore possible correlations between the

charging state and the spin configuration of the

QD [23].

We note that for an isotropic spin exchange inter-

action (the Heisenberg model), the mesoscopic Stoner

phase extends over 1/2 ≤ J/δ ≤ 1. In the anisotropic

case [24, 25], the lower boundary of this inequality slides

towards 1, with no mesoscopic Stoner phase for the

Ising spin [23, 26]. In the isotropic case, the ground-

state spin S is the integer (for an even number of elect-

rons in the QD) or half-integer (for an odd number)

that is closest to J/2(δ− J). This value increases with

increasing J and diverges as J → δ, which marks the

onset of the macroscopic Stoner ferromagnetic phase.

The problem is apparently easy to tackle theoretically.

The interaction terms of the universal Hamiltonian con-

sist only of zero-mode (zero wavenumber) contribu-

tions, which commute with each other. But the in-

clusion of the exchange term renders the problem non-

trivial: the resulting action, which consists of Pauli

matrices, is non-Abelian (more specifically, it is un-

derlain by an SU(2) symmetry). Attempts to study

the problem from different standpoints included the

Ising limit [23] and the perturbation theory in the Ising

anisotropy [24]. An exact solution that employs states

classified by the total number of electrons and the total

spin [27–29] requires the calculation of Clebsch–Gordan

coefficients, which is not an easy task. In this way, Al-

hassid and Rupp have found an exact solution for the

partition function in the absence of Zeeman splitting.

Elements of their analysis were then incorporated into

a master-equation analysis of electric [27, 28] and ther-

mal [30] properties. Independently, electron transport

through a QD for low temperatures (T ≪ δ) was stu-

died in [31]. That analysis, accounting for the charging

and exchange interactions, also employed a master-

equation approach.

An exact solution based on the Wei–Norman–Ko-

lokolov approach was presented in [32], and was then

extended to include randomness-induced spectral fluc-

tuations [33]. The tunneling density of states and the

spin susceptibility were calculated; other thermody-

namic and linear response correlations are calculable

as well. The study of shot noise near the Stoner point

was reported in [34].

We note that the exact solution approaches men-

tioned above, although elegant and powerful, are very

difficult to generalize to more complex setups, in par-

ticular, to setups where external leads are added (a

common means for the introduction of dissipation). An

efficient approximation that can be generalized to such

setups employs the adiabatic approximation of the spin

stochastic dynamics [35].

4. AES APPROACH FOR SU(2) SPIN

Our approach [36] can be viewed as a generaliza-

tion of the Landau–Lifschitz–Gilbert (LLG)–Langevin

equation [37, 38], central to the field of spintronics [39],
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to a regime where quantum dynamics dominates.

Stochastic LLG equations have been derived in nume-

rous publications for both a localized spin in an elect-

ronic environment (a situation of the Caldeira–Leggett

type) [40, 41] and a magnetization formed by itinerant

electrons [42, 43]. In all these works, the precession fre-

quency was assumed to be lower than the temperature

or the voltage, thus justifying the semiclassical treat-

ment of the problem. In this regime, the geometric

phase did not influence the Langevin terms.

Our derivation here is technically close to that in

Ref. [42]. However, in contrast to Ref. [42], we do

not limit ourselves to small deviations of the spin from

the instantaneous direction, but consider the action on

global trajectories covering the entire Bloch sphere.

To demonstrate the emergence of an AES-like ef-

fective action, we consider a QD with strong exchange

interaction coupled to a normal lead. The Hamiltonian

is H = Hdot +Hlead +Htun. The QD is described by

the magnetic part2) of the universal Hamiltonian [15]

Hdot =
∑

α,σ

ǫαa
†
α,σaα,σ − JS2 +B · S, (30)

where S ≡ (1/2)
∑

α,σ1,σ2
a†α,σ1

σσ1,σ2
aα,σ2

is the ope-

rator of the total spin on the QD, B is the external mag-

netic field, and J > 0 is the corresponding “zero mode”

ferromagnetic exchange constant. The Hamiltonian of

the lead and that describing the tunneling between the

dot and the lead are standard: Hlead =
∑

γ,σ ǫγc
†
γ,σcγ,σ

and Htun =
∑

α,γ,σ Vα,γa
†
α,σcγ,σ+H.c. We here assume

a nonmagnetic lead; γ is the orbital quantum number

describing eigenmodes of the lead.

We consider the Keldysh generating functional

Z =
∫

DΨ̄DΨ exp [iSΨ], where the Keldysh action

is given by SΨ =
∮

K
dt (iΨ̄∂tΨ − H) (plus the neces-

sary source terms, which are not written explicitly).

For brevity, Ψ denotes all fermionic fields and the

time t runs along the Keldysh contour. After stan-

dard Hubbard–Stratonovich manipulations [4, 32, 35]

decoupling the interaction term −JS2, we obtain

Z =
∫

DM exp [iSM ], and the action for the bosonic

vector M(t) becomes

iSM = tr ln

(

G−1
dot −V̂

−V̂ † G−1
lead

)

− i

∮

K

dt
|M|2
4J

, (31)

where

G−1
dot ≡ i∂t − ǫα − (M(t) +B) · σ/2

2) Here, we disregard the charging part of the “universal”
Hamiltonian, having in mind, e. g., systems of the type considered
in Refs. [42, 43]. Consequently, no Kondo physics is expected.

and G−1
lead ≡ i∂t − ǫγ . Both G−1

dot and G−1
lead are matri-

ces with time, spin, and orbital indexes. We introduce

M(t) ≡ M(t) + B. Expanding (31) in powers of the

tunneling matrix V̂ and re-summing, we easily obtain

iSM = tr lnG−1
lead + tr ln

(

G−1
dot − Σ

)

−

− i

∮

K

dt
|M−B|2

4J
, (32)

where the self energy is Σ ≡ V̂ GleadV̂
†. The first term

is trivial, i. e., it can never contain the source fields,

and is therefore dropped in what follows.

Rotating frame. We introduce the unit-length

vector

n(t) = (sin θ cosφ, sin θ sinφ, cos θ) (33)

through M(t) = M(t)n(t) and transform to a coor-

dinate system in which n coincides with the z axis:

n(t) · σ = R(t)σzR
†(t). This condition identifies the

unitary rotation matrix R as an element of SU(2)/U(1).

Indeed, if we use the Euler angle representation

R = exp

(

− iφ
2
σz

)

exp

(

− iθ
2
σy

)

×

× exp

(

− iψ
2
σz

)

, (34)

then the angles φ(t) and θ(t) determine the direc-

tion of n(t), while ψ(t) is arbitrary, i. e., the condition

n(t)·σ = RσzR
† is satisfied at any value of ψ(t). There-

fore, ψ represents the gauge freedom of the problem.

We introduce a shifted gauge field χ(t) ≡ φ(t) + ψ(t).

This way, a periodic boundary condition, e.g., in the

Matsubara representation R(τ) = R(τ +β), is satisfied

for χ(τ +β) = χ(τ)+4πm. (The fact that m is integer

is intimately related to the spin quantization [44].) We

can always assume trivial boundary conditions for χ,

i. e., m = 0. We keep this representation of the rota-

tion matrix R also for the Keldysh technique.

We perform a transition to the rotating frame and

obtain

iSM = tr ln
[

R†
(

G−1
dot − Σ

)

R
]

−

− i

∮

K

dt

[

M2

4J
− B ·M

2J

]

(35)

(we omit the constant term ∝ |B|2). For the Green’s

function of the dot, this gives

R†G−1
dotR = i∂t − ǫα − M(t)σz

2
−Q,
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where we define the gauge (Berry) term as Q ≡
≡ R†(−i∂t)R = Q‖ +Q⊥. Here,

Q‖ ≡ [φ̇(1− cos θ)− χ̇]
σz
2

and

Q⊥ ≡ −1

2
exp [iχσz]

[

θ̇ σy − φ̇ sin θ σx

]

exp [iφσz].

We note that Q depends on the choice of the gauge

field χ. Finally, we obtain

iSM = tr ln
[

G−1
dot,z −Q−R†ΣR

]

−

− i

∮

K

dt

[

M2

4J
− B ·M

2J

]

, (36)

where G−1
dot,z ≡ i∂t − ǫα − (1/2)M(t)σz.

To find the semiclassical trajectories of the mag-

netization, we need to consider paths M(t), θ(t), φ(t)

on the Keldysh contour such that the quantum com-

ponents are small. The quantum (q) and classical (c)

components of the fields are expressed in terms of the

forward (u) and backward (d) components [4], i. e.,

φq(t) = φu(t) − φd(t) and φc(t) = (φu(t) + φd(t))/2.

Performing the standard Keldysh rotation [4], we thus

obtain

iSM = tr ln
[

G̃−1
dot,z − Q̃− R̃†Σ̃R̃

]

+

+ i

∫

dt
B ·Mq

2J
− i

∫

dt
McMq

2J
, (37)

where G̃−1
dot,z ≡ τxG

−1
dot,z. The local-in-time matrix

fields Q(t) and R(t) also acquire a 2 × 2 matrix struc-

ture in the Keldysh space, e. g., Q̃ = Qcτx + Qqτ0/2,

where τx,y,z,0 are the standard Pauli matrices.

The adiabatic limit. Thus far, we have made no

approximations. The action in (37) governs the dy-

namics of both the magnetization amplitude M(t) and

the magnetization direction n(t). Here, we focus on

the case of a large amplitude M (more precisely, M

fluctuating around a large average value M0). Such a

situation arises either on the ferromagnetic side of the

Stoner transition or on the paramagnetic side, but very

close to the transition. In the latter case, as was shown

in Refs. [32, 35], integrating out the fast angular mo-

tion of n creates an effective potential for M , forcing

it to acquire a finite average value. More precisely the

angular motion with frequencies ω ≫ max [T,B] (we

adopt the units ~ = kB = 1) can be integrated out,

renormalizing the effective potential for the slow part

of M(t). The very interesting question of the dissipa-

tive dynamics of slow longitudinal fluctuations of M(t)

in the mesoscopic Stoner regime will be addressed else-

where. Here, we focus on the slow angular motion and

substitute M(t) = M0. Thus, the last term in (37)

can be dropped. We note that in the adiabatic limit,

we can neglect Q̃⊥ because it contributes only in the

second order in dn/dt [35].

The idea now is to expand action (37) in both Q̃

(which is small due to the slowness of n(t)) and R̃†Σ̃R̃

(which is small due to the smallness of the tunneling

amplitudes). A straightforward analysis reveals that

a naive expansion to the lowest order in both violates

the gauge invariance with respect to the choice of χ(t).

It can be shown that the expansion in R̃†Σ̃R̃ is gauge

invariant only if all orders of Q̃ are taken into account,

i. e., if (G̃−1
dot,z−Q̃)−1 is used as the zeroth-order Green’s

function in the expansion. This problem necessitates a

clever choice of gauge, such that (G̃−1
dot,z − Q̃)−1 is as

close to G̃dot,z as possible, i. e., the effect of Q̃ is “mini-

mized”.

Choice of gauge. Because action (37) is gauge in-

variant, we are allowed to choose the most convenient

form of χ(t). We make the choice

χ̇c(t) = φ̇c(t) (1 − cos θc(t)),

χq(t) = φq(t) (1− cos θc(t)),
(38)

which satisfies the necessary boundary conditions

χq(t = ±∞) = 0.

Here, we present a detailed justification of the gauge

in Eq. (38). Ideally, we should have chosen a gauge that

would lead to Q‖ = 0. Seemingly, this might have been

achieved with the choice χ̇(t) = φ̇(t) (1 − cos θ(t)) on

both branches of the Keldysh contour. But this choice

violates our desired boundary conditions because the

integrals over χ̇ accumulated between t = −∞ and t =

= +∞ on the upper and lower Keldysh branches are

different. Such a difference would show up as non-

trivial boundary conditions on χq at either t = −∞
or t = +∞. In other words, had we selected χ̇(t) =

= φ̇(t) (1 − cos θ(t)), we whould have violated the re-

quirement χq(t = ±∞) = 0. We note, however, that

to the linear order in the quantum components, the

condition

χ̇(t) = φ̇(t) (1 − cos θ(t))

yields

χ̇q = φ̇q(1− cos θc) + θq sin θc φ̇c,

leading to
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χq(t) =

t
∫

dt′
[

φ̇q(t
′)(1− cos θc(t

′)) +

+ θq(t
′) sin θc(t

′) φ̇c(t
′)
]

= φq(t)(1 − cos θc(t))+

+

t
∫

dt′ sin θc(t
′)
[

θq(t
′) φ̇c(t

′)− θ̇c(t
′)φq(t

′)
]

.

The first term vanishes at t = ±∞, but the last term

does not. We thus include only the first term in χq,

leading to Eq. (38). The gauge in (38) satisfies the

boundary conditions and leads to the desired cancela-

tion Qc
‖ = 0, whereas the quantum component of Q‖

remains nonzero:

Q‖,q =
1

2
σz sin θc

[

φ̇cθq − θ̇cφq

]

. (39)

At the same time, this choice allows expanding the Kel-

dysh action in the small φq and θq because there are

no φ̇q terms remaining in (39).

Berry phase (Wess–Zumino–Novikov–Wit-

ten (WZNW) action). Expanding the term of the

zeroth order in Σ̃ in action (37) to the first order in Q̃,

we obtain the Berry phase (WZNW) action well known

in spin physics (see, e. g., Refs. [44, 45])

iSWZNW = −1

2

∫

dt tr
[

GK
dot,z(t, t)Q‖,q(t)

]

, (40)

which after a straightforward calculation becomes

iSWZNW = iS

∫

dt sin θc

[

φ̇cθq − θ̇cφq

]

, (41)

where S ≡ N(M0)/2 is the (dimensionless) spin of the

dot. Here, N(M0) is the number of orbital levels of the

dot in the energy interval M0 around the Fermi energy.

Roughly, S = M0ρ̄dot/2, where ρ̄dot is the density of

states averaged over the energy interval M0. The ef-

fects of mesoscopic fluctuations of the density of states

were considered in Ref. [33].

AES action. The central result in this paper

is the AES-like [9, 10] effective action, which we ob-

tain by expanding (37) to the first order in R̃†Σ̃R̃:

iSAES = −tr
[

G̃dot,zR̃
† Σ̃ R̃

]

. This gives

iSAES = −g
∫

dt1dt2tr







(

R†
c(t1)

R†
q(t1)

2

)

×

×
(

0 αA

αR αK

)

(t1−t2)







Rc(t2)

Rq(t2)

2












, (42)

where g ≡ (~/e2)(G↑ +G↓)/2. Here, Gσ ≡ 2π (e2/~)×
× |V |2 ρleadρσdot is the tunneling conduction of the spin

projection σ, ρ
↑/↓
dot are the densities of states at the

respective ↑ and ↓ Fermi levels, and the density of

states in the lead, ρlead, is spin independent. The stan-

dard [10] Ohmic kernel functions are given by αR(ω)−
− αA(ω) = 2ω and αK(ω) = 2ω coth(ω/2T ). Action

(42) strongly resembles the AES action [10], with the

U(1) exponents exp [iϕ/2] replaced by the SU(2) mat-

rices R. Fixing the gauge of R is an essential part of

our procedure.

Semiclassical equations of motion. From effec-

tive action (42), we derive the semiclassical equation of

motion. We follow the ideas proposed in Ref. [6]. Using

the representation

R = A0σ0 + iAxσx + iAyσy + iAzσz ,

with

A0 ≡ cos
θ

2
cos

χ

2
, Ax ≡ sin

θ

2
sin
(

φ− χ

2

)

,

Ay ≡ − sin
θ

2
cos
(

φ− χ

2

)

, Az ≡ − cos
θ

2
sin

χ

2
,

we rewrite the AES action (Eq. (42)) as

SAES = SR
AES + SK

AES ,

where

iSR
AES = −2ig

∫

dt1dt2
[

ImαR(t1 − t2)
]

×

×
∑

j

Aj,q(t1)Aj,c(t2), (43)

iSK
AES = −g

2

∫

dt1dt2 αK(t1 − t2)×

×
∑

j

Aj,q(t1)Aj,q(t2). (44)

Here, j = 0, x, y, z. The Keldysh part of action (44)

leads to random Langevin forces. This can be shown [6]

using the Hubbard–Stratonovich transformation

exp
(

iSK
AES

)

=

∫





∏

j=0,x,y,z

Dξj



 ×

× exp





∫

dt







i
∑

j=0,x,y,z

ξjAj,q







+ iSξ



 , (45)

where the action Sξ is given by

iSξ = − 1

2g

∑

j

∫

dt1dt2
[

αK
]−1

(t1−t2)
ξj(t1)ξj(t2). (46)
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In other words, 〈ξj(t1)ξk(t2)〉 = δjk g α
K(t1 − t2) and

〈ξj〉 = 0. We obtain Langevin equations (47) from

δiStotal

δφq(t)
=
δiStotal

δθq(t)
= 0,

where

iStotal ≡ iSB+iSWZNW+iSR
AES+

∫

dt
∑

j

iξjAj,q.

Here, iSB = −iSγ B
∫

dt sin θc θq is the action related

to the magnetic field (in the z direction). Prior to per-

forming the variation of the action, the field χ is re-

placed according to the gauge-fixing choice (Eq. (38)).

Finally, we use the relation α
′′

R(t) = (∂t + C)δ(t) (the

constant C is important for causality but drops out in

our calculation) and obtain the equations of motion

θ̇c + g̃ sin θcφ̇c = ηθ,

sin θc

(

φ̇c − γB
)

− g̃ θ̇c = ηφ.
(47)

Here, g̃ ≡ g/2S and γ = (Jρ̄dot)
−1 is the “gyro-

magnetic” constant of the order of unity. The Langevin

forces (torques) are given by

ηθ =
1

2S
cos

θc
2

[

ξx cos
(

φc −
χc

2

)

+

+ ξy sin
(

φc −
χc

2

)]

−

− 1

2S
sin

θc
2

[

ξz cos
χc

2
+ ξ0 sin

χc

2

]

,

ηφ =− 1

2S
cos

θc
2

[

ξx sin
(

φc −
χc

2

)

−

− ξy cos
(

φc −
χc

2

)]

−

− 1

2S
sin

θc
2

[

ξz sin
χc

2
− ξ0 cos

χc

2

]

.

(48)

The left-hand sides of Eqs. (47) represent the standard

Landau–Lifshitz–Gilbert (LLG) equations [37] (with-

out a random torque). The right-hand sides repre-

sent the random Langevin torque. The latter is ex-

pressed in terms of four independent stochastic vari-

ables ξj (j = 0, x, y, z), which satisfy 〈ξj(t1)ξk(t2)〉 =

= δjk g α
K(t1 − t2) and 〈ξj〉 = 0. On the Gaussian

level, i. e., if fluctuations of θc and φc are neglected

in Eqs. (48), the Langevin forces ηθ and ηφ are inde-

pendent of each other and have the same autocorrela-

tion functions: 〈ηθ(t1)ηφ(t2)〉 = 0 and 〈ηθ(t1)ηθ(t2)〉 =
= 〈ηφ(t1)ηφ(t2)〉. We emphasize that, in general, the

noise depends on the angles θc and φc, leading to com-

plicated dynamics within Eqs. (47). In the classical

domain, i. e., for frequencies much lower than T , we

can approximate

〈ξj(t1)ξk(t2)〉 = 4gT δ(t1 − t2) δjk.

Then

〈ηφ(t1)ηφ(t2)〉 = 〈ηθ(t1)ηθ(t2)〉 = (gT/S2)δ(t1 − t2).

Thus, the situation is simple and we reproduce the

treatment in Ref. [38].

Effective temperature. In the quantum high-

frequency domain, the situation is different. We cannot

interpret the four independent fields ξn as representing

the components of a fluctuating magnetic field. A close

inspection of Eqs. (47) shows that in the regime of weak

dissipation, S ≫ 1 and g̃ ≪ 1, the spin can precess with

the frequency B̃ ≡ γB/(1 + g̃2) at an almost constant

θ for a long time of the order of (shorter than) (g̃B̃)−1.

For such time scales, we can approximate φc = B̃t and

χc = (1−cosθc)φc = (1−cos θc)B̃t. Thus, the Langevin

fields ξn in (48) are multiplied by fast oscillating cosines

and sines with the frequencies ωcos ≡ B̃ cos2(θc/2) and

ωsin ≡ B̃ sin2(θc/2). Therefore3),

〈ηφ,θ(t1)ηφ,θ(t2)〉ω=0 =

=
g

4S2

[

cos2
(

θc
2

)

αK (ωcos) +

+ sin2
(

θc
2

)

αK (ωsin)

]

. (49)

In the quantum regime T ≪ B̃, these correlation func-

tions differ substantially from the classical ones,

〈ηφ(t)ηφ(t′)〉ω=0 = 〈ηθ(t)ηθ(t′)〉ω=0 =
gT

S2
.

Hence, if the spin could be held for a long time on a

constant θc = θ0 trajectory (one possible way to do so

was proposed in Ref. [36]), the diffusion would be deter-

mined by quantum noise at the frequencies ωc and ωs,

which are governed by the geometric phase. More pre-

cisely, the spread of θc and φc (in the rotating frame)

would then be given by (∆θ)2 = sin2 θ0 (∆φ)
2 = Dt,

where

D = (g/S2)Teff , (50)

and the effective temperature is calculated from (49) to

be

Teff =
B̃

2
cos4

(

θ0
2

)

coth

[

B̃

2T
cos2

(

θ0
2

)

]

+

+
B̃

2
sin4

(

θ0
2

)

coth

[

B̃

2T
sin2

(

θ0
2

)

]

. (51)

3) We drop nonstationary terms depending on t1 + t2 here.
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We emphasize once again that this semiclassical ana-

lysis is valid for a highly nonequilibrium situation in

which the spin is driven and is kept artificially at a

trajectory with θc = θ0 6= 0.

Semiclassical approximation. We are now ready

to discuss the physical meaning of the semiclassical ap-

proximation, i. e., the expansion of action (42) through

the second order in θq and φq. The nonexpanded ac-

tion is periodic in both θq and φq . The periodicity in

φq corresponds to the quantization of the z spin com-

ponent Sz = S cos θc. By expanding, we restrict our-

selves to the long-time limit, in which Sz has already

“jumped” many times by ∆Sz = 1 in the course of spin

diffusion. We therefore neglect cumulants of spin noise

higher than the second (see, e. g., Ref. [46] for a si-

milar discussion of charge noise). However, we obtain

a correct second cumulant with down-converted quan-

tum noise (similar to shot noise in the charge sector).

This is due to the “multiplicative noise” character of

our Keldysh action (42) similar to the original AES

case [10] (see also [47]).

Equilibrium dynamics near θc = 0. In the ab-

sence of external driving at T ≪ B̃, Eqs. (47) lead to

fast relaxation of the spin towards the north pole of the

Bloch sphere, i. e., θc = 0. Here, we show that the ef-

fective temperature introduced above loses its meaning

in this case. Near the north pole, the spherical coordi-

nates are not applicable and we rewrite Langevin equa-

tions (47) in Cartesian coordinates. Namely, we define

x = sin θc cosφc ≈ θc cosφc and y ≈ θc sinφc. The new

Langevin equations for x and y (valid for x, y ≪ 1)

become

ẋ = −B̃y − gB̃x+
1

2S(1 + g̃2)
(ξx − gξy) ,

ẏ = B̃x− gB̃y +
1

2S(1 + g̃2)
(ξy + gξx) .

(52)

A straightforward analysis of these linear equations

leads to the stationary widths (standard deviations)

of the order of ∆x = ∆y ∼ 1/
√
S. Taking the stan-

dard relation 〈S2〉 = 〈S2
x〉 + 〈S2

y〉 + 〈S2
z 〉 = S(S + 1)

into account, we observe that in the pure state Sz = S,

the relation 〈S2
x〉 + 〈S2

y〉 = S2(∆x2 + ∆y2) = S holds.

Thus, fluctuations of the order of ∆x = ∆y ∼ 1/
√
S

are purely quantum (they would be of this order also for

∆Sz ∼ 1) and the semiclassical analysis is inapplicable

in this case.

5. CL VERSUS AES

In this section, we compare the SU(2) AES model

described in Sec. 4 with the straightforward generalisa-

tion of the Caldeira–Legget model for the spin SU(2)

case. We further analyze the similarities and the dif-

ferences between AES and CL approaches in the U(1)

and SU(2) cases.

5.1. CL in the spin SU(2) case

The CL action arises from the interaction of the

type Hint = h · n. Here, n ≡ S/S and the vector

field h represents isotropic fluctuations of an effective

magnetic field with the Keldysh correlation function

〈TKhn(t1)hm(t2)〉 = gα(t1, t2) δn,m, where the times

t1 and t2 are on the Keldysh contour. In reality, the

field h can be, e. g., due to the Kondo coupling of the

localized spin S to the electron–hole continuum. The

coupling constant g is chosen such that the equations of

motion are exactly the same as in the AES case, where

g was proportional to the tunneling conductance. As-

suming that the fluctuations are Gaussian, we obtain

the effective action

SCL =
g

2

∮

K

dt1

∮

K

dt2 α(t1, t2) (1− n(t1)n(t2)) . (53)

The Keldysh analysis similar to that presented above

again produces Eqs. (47), but the Langevin terms look

different:

ηθ =
1

2S
(−ξx sinφ+ ξy cosφ) ,

ηφ =
sin θ

2S
ξz −

cos θ

2S
(ξx cosφ+ ξy sinφ) .

(54)

Only three random fields ξn (n = x, y, z) are needed.

Their fluctuations are given by

〈ξn(t1)ξm(t2)〉 = δnm g αK(t1 − t2).

Exactly these equations are derived in Ref. [38] before

making the high-temperature approximation, which

makes the cosφ and sinφ factors in the right hand side

unimportant. In contrast to the AES case, we obtain

〈ηθ(t1)ηθ(t2)〉ω=0 =
g

4S2
αK

(

ω = B̃
)

,

〈ηφ(t1)ηφ(t2)〉ω=0 =
g

4S2
×

×
[

cos2 θc α
K
(

ω = B̃
)

+ sin2 θc α
K (ω = 0)

]

.

(55)

We observe that the diffusion is not isotropic is

this case. That is, in the θ-direction, the diffusion is

characterized by Dθ = (g/S2)Tθ, where Tθ = (B̃/2)×
× coth

(

B̃/2T
)

. For the φ-direction, we obtain Dφ =

= (g/S2)Tφ with

Tφ =
1

2
cos2 θ B̃ coth

B̃

2T
+sin2 θ T = cos2 θ Tθ+sin2 θ T.
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We observe that Tθ > Tφ. This anisotropy is most pro-

nounced for θ = π/2 and T ≪ B̃. We emphasise once

again that the above-mentioned diffusion occurs in a

highly nonequilibrium case of a spin being artificially

held on a trajectory with constant θ 6= 0. At equilib-

rium, as in the AES case, the semiclassical analysis is

not applicable.

5.2. Comparisons: CL and AES for U(1) and

SU(2) cases

Here, we compare the similarities and differences

between the CL and the AES pictures in the U(1)

charge case with those in the SU(2) spin case. In the

U(1) case, the semiclassical equation of motion can

be cast in the form of Eq. (10) for both the CL and

AES models. But the Langevin term, i. e., the fluctu-

ating current δI, is entirely different in the two mod-

els at low temperatures kBT ≪ eV . In the CL case,

δI = eξ is produced by one stochastic variable ξ, whose

noise spectrum is Ohmic at equilibrium. In the AES

case, two independent stochastic variables ξ1 and ξ2
are needed (see Eq. (21)). Both these variables have

equilibrium Ohmic noise, but, due to the multiplica-

tive oscillating factors in Eq. (21), the noise of δI at

zero frequency is determined by the noise of ξ1,2 at

the frequency V . This leads to the appearance of shot

noise.

Analogously, in the SU(2) spin case, both CL and

AES models lead to the semiclassical stochastic LLG

equations of form (47). The two Langevin terms (spin

torques) ηθ and ηφ are different in the two models, ho-

wever. In the CL case, ηθ and ηφ can be expressed

(see Eq. (54)) via three independent stochastic vari-

ables ξx, ξy, ξz (all having Ohmic equilibrium noise

spectra). But in the AES case, we need four indepen-

dent stochastic variables ξx, ξy, ξz , ξ0 with an Ohmic

equilibrium spectrum (see Eq. (48)).

In both SU(2) CL and SU(2) AES models, the noise

is multiplicative. That is, in both Eq. (54) and Eq. (48),

the independent Langevin variables are multiplied by

trigonometric functions of the Euler angles θ and φ.

Hence, in both models, the frequency shifts are sim-

ilar to those leading to shot noise in the U(1) case.

But these frequency shifts are very different in the CL

and the AES cases. We again consider the example

of the spin being held artificially on a trajectory with

θ = θ0 6= 0 and precessing with a frequency B̃. In the

CL model, the spectrum of ξz is not shifted, whereas

the spectra of ξx and ξy are shifted by B̃. By contrast,

in the AES case, the spectra of ξx and ξy are shifted by

ωcos ≡ B̃ cos2(θ0/2) and the spectra of ξz and ξ0 are

shifted by ωsin ≡ B̃ sin2(θ0/2). Both these factors are

geometrical and are determined by the Berry phase of

the spin’s trajectory.

6. CONCLUSIONS

In this paper, we review the Caldera–Leggett and

Ambegaokar–Eckern–Schön approaches to dissipation.

We first remind the reader about the well-known

physics of dissipative charge dynamics underlain by

the U(1) symmetry. Then we provide an analogous

treatment for the dissipative SU(2) spin dynamics. In

both cases, the Keldysh technique allows deriving the

semiclassical Langevin equations of motion. Except in

the CL U(1) case, the noise is multiplicative, which

leads to the admixture of high-frequency (quantum)

noise components to the low-frequency dynamics. This

gives rise to shot noise in the charge dynamics as well

as to the novel phenomenon of geometric dephasing in

the dynamics of large spins.
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