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We study thermal conductivity in the disordered two-dimensional electron liquid in the presence of long-range

Coulomb interactions. We describe a microscopic analysis of the problem using the partition function defined

on the Keldysh contour as a starting point. We extend the renormalization group (RG) analysis developed for

thermal transport in the disordered Fermi liquid and include scattering processes induced by the long-range

Coulomb interaction in the sub-temperature energy range. For the thermal conductivity, unlike for the electric

conductivity, these scattering processes yield a logarithmic correction that may compete with the RG corrections.

The interest in this correction arises from the fact that it violates the Wiedemann–Franz law. We checked that

the sub-temperature correction to the thermal conductivity is not modified either by the inclusion of Fermi liquid

interaction amplitudes or as a result of the RG flow. We therefore expect that the answer obtained for this

correction is final. We use the theory to describe thermal transport on the metallic side of the metal–insulator

transition in Si MOSFETs.
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1. INTRODUCTION

At temperatures lower than the impurity scatter-

ing rate, i. e., in the diffusive regime, the electron liq-

uid acquires various nonanalytic quantum corrections

[1, 2]. At low temperatures, the calculation of these

corrections requires an RG analysis, which leads to cou-

pled flow equations for the diffusion constant, the in-

teraction constants, and the frequency coefficient [3–7]

(for a review, see [2, 8–10]). A systematic procedure

for the derivation of the RG equations in disordered

electron systems has been developed on the basis of

a field-theoretic description [3], the nonlinear sigma

model (NLσM). In a series of recent papers [11–13],

* E-mail: schwiete@uni-mainz.de

we extended the NLσM formalism to the study of ther-

mal transport. For this, we introduced time-dependent

“gravitational potentials” [14–16] as source fields into

the microscopic action. These sources are a conve-

nient tool for generating expressions for the heat den-

sity–heat density correlation function from the parti-

tion function, which is defined on the Keldysh contour.

Knowledge of the correlation function then allows ob-

taining the thermal conductivity.

In this paper, we include both the long-range

Coulomb interaction and Fermi-liquid-type interac-

tions. Besides the RG corrections, we focus our at-

tention on the sub-temperature energy range, which

is beyond the scope of the conventional RG analysis.

The main difference between the RG interval (1/τ, T )

and the sub-temperature energy range is that the tran-

sitions described by the standard RG procedure are
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virtual, but the sub-thermal range deals with on-shell

scattering. For the analysis of logarithmic corrections

to electric conductivity, the sub-thermal processes can

be neglected. For thermal conductivity, however, the

sub-thermal scattering processes induced by the long-

range Coulomb interaction also yield logarithmic cor-

rections. These corrections violate the Wiedemann–

Franz law (WFL) [17]. The calculation of thermal

conductivity therefore requires a two-stage procedure:

the leading logarithmic corrections originating from en-

ergies in the RG interval (1/τ, T ) can be absorbed

into the scale-dependent RG charges of the extended

NLσM, i. e., the model that also includes gravitational

potentials. Once all RG corrections are taken into ac-

count, we can find the sub-temperature correction us-

ing parameters determined by the current scale of the

RG procedure. As we show in what follows, however,

the sub-temperature corrections to the thermal conduc-

tivity caused by the long-range Coulomb interaction re-

main largely unaffected by the renormalizations. With

this result, we can apply the theory to the metallic side

of the metal–insulator transition in Si MOSFETs.

This paper is organized as follows: In Sec. 2, we

introduce the Keldysh action and collect basic formu-

las for the calculation of the heat density–heat den-

sity correlation function. Section 3 is devoted to the

discussion of the extended NLσM in the presence of

gravitational potentials. In Sec. 4, we obtain the RG

equations describing the flow of the gravitational po-

tentials as a function of temperature. Sections 5 and 6

deal with quantum corrections to the heat density–he-

at density correlation function. First, in Sec. 5, we in-

clude the corrections originating from the RG interval

of energies, and subsequently, we discuss sub-thermal

corrections in Sec. 6. The developed theory is applied

to the description of thermal transport on the metallic

side of the metal–insulator transition in Si MOSFETs

in Sec. 7. The results for the thermal resistance are

illustrated in the Figure.

2. KELDYSH ACTION AND THE

CORRELATION FUNCTION

Here, we follow the approach that we developed in

Refs. [11–13]. We introduce the Keldysh partition func-

tion as Z =
∫

D[ψ†, ψ] exp(iS[ψ†, ψ]). The action is

first limited to S = Sk, where

Sk[ψ
†, ψ] =

∫

C

dt

∫

r

(

ψ†i∂tψ − k[ψ
†, ψ]

)

(1)
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“Thermal resistance” Rk alongside with the resistance R; both

quantities are presented in dimensionless units; Rk coincides

with R if the WFL holds. In the discussed theory, the maxima

of Rk are shifted from the maximum of R by a value that

does not depend on the parameter Pmax, which is used as the

measure of violation of the WFL law

is defined on the Keldysh contour C [18, 19]. Here, k =

= h− µn, where h is the Hamiltonian density, n is the

particle density, µ is the chemical potential, and ψ =

= (ψ↑, ψ↓) and ψ† = (ψ∗
↑ , ψ

∗
↓) are vectors of Grassmann

fields accounting for the electrons with two spin com-

ponents. Interestingly, Sk is mainly determined by the

heat density k1), i. e., by the quantity we study.

The retarded heat density–heat density correlation

function is defined as

χkk(x1, x2) = −iθ(t1 − t2)〈[k̂(x1), k̂(x2)]〉T , (2)

where x = (r, t) and k̂ = ĥ−µn̂ is the heat density op-

erator. The angular brackets denote thermal averaging.

After introducing fields on the forward (+) and back-

ward (−) paths of the Keldysh contour, we can define

classical (cl) and quantum components (q) of the heat

density, kcl/q = 1
2
(k+ ± k−) [19]. Then the retarded

correlation function can be obtained as χkk(x1, x2) =

= −2i 〈kcl(x1)kq(x2)〉. Here, averaging is performed

with respect to the action Sk. This representation of

the correlation function motivates us to introduce the

source term

Sη = 2

∫

x

[η2(x)kcl(x) + η1(x)kq(x)] (3)

1) We refer to the “grand canonical energy” k = h − µn as
“heat density” because dk = T ds (s being the entropy density)
holds for the differential under the condition of a constant che-
mical potential. Note that this identification is not valid under
general conditions.
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into the action S = Sk + Sη, which allows generating

χkk as

χkk(x1, x2) =
i

2

δ2Z

δη2(x1)δη1(x2)

∣

∣

∣

∣

η1=η2=0

. (4)

The thermal conductivity κ is related to the di-

sorder-averaged correlation function 〈χkk(x1, x2)〉dis =

= χkk(x1 − x2) as [20]

κ = −
1

T
lim
ω→0

(

lim
q→0

[

ω

q2
Imχkk(q, ω)

])

. (5)

This expression is typical for a transport coefficient

related to a conserved quantity: we study heat con-

ductivity in a situation where mechanical work (e. g.,

caused by thermal expansion, or radiation of acoustic

waves) can be neglected.

3. GRAVITATIONAL POTENTIALS AND NLσM

The Hamiltonian density h = h0 + hint is chosen

to describe the electron liquid in a static disorder po-

tential. The noninteracting part of the Hamiltonian

density is

h0 =
1

2m∗

∑

α

∇ψ∗
α(x)∇ψα(x) + udis(r)n(x), (6)

where udis(r) is the disorder potential andm∗ is the (re-

normalized) mass. The interaction is subdivided into

singlet and triplet parts

hint,ρ =
1

2

∫

r′

n(r, t) Vρ(r− r′) n(r′, t), (7)

hint,σ = 2

∫

r′

s(r, t) Vσ(r− r′) s(r′, t), (8)

where we introduced the particle-number density and

spin densities

n(x) = ψ†
xσ

0ψx, s(x) =
1

2
ψ†
xσψx. (9)

The interactions in the singlet and triplet channels are

described by the amplitudes

Vρ(q) = V0(q) +
F ρ
0

2ν0
, Vσ(q) =

F σ
0

2ν0
. (10)

Here, F ρ
0 and F σ

0 are the phenomenological Fermi-li-

quid parameters [21, 22], and ν0 is the single-particle

density of states per spin direction. In Vρ(q), the bare

long-range part of the Coulomb interaction V0(q) is

separated from the short-range part; the q-dependence

of Vσ(q) is redundant. We anticipate that in the diffu-

sive limit Tτ ≪ 1, which we study here, only the zeroth

angular harmonics are effective.

To proceed, we perform the Keldysh rotation

[19, 23], and decouple the interaction terms using

a Hubbard–Stratonovich field θlk, where the index

k = 1, 2 labels the two Keldysh components (1, 2 cor-

respond to cl, q), and the index l = 0–3 denotes the

density and spin density interaction channels. After

this decoupling, we can write the action as

S =

∫

x

Ψ†{i∂t − [udis − µ](1 + η̂) + θ̂lσl}Ψ−

−

∫

x

1

2m∗
∇Ψ†(1 + η̂)∇Ψ+

∫

x

~θT
γ̂2

1 + η̂
V −1~θ. (11)

From now on, Ψ(x) and Ψ†(x) are fields with two Kel-

dysh components (their spin indices are not displayed);

the hat symbol indicates matrices in the Keldysh space.

The matrices θ̂ and η̂ are defined as η̂ =
∑

k=1,2 ηkγ̂k

and θ̂l =
∑

k=1,2 θ
l
kγ̂k, where γ̂1 = σ̂0, γ̂2 = σ̂x, and

σ̂0, σ̂x are Pauli matrices in the Keldysh space. The

Pauli matrices σl in Eq. (11) act in spin space. The ma-

trix V = diag[Vρ, Vσ, Vσ, Vσ] distinguishes the different

interaction channels.

An important remark is in order here. In the pre-

sentation of Eqs. (11) and (7), we ignore subtle ques-

tions related to the procedure of introducing gravita-

tional potentials for the long-range potential V0(q). A

detailed discussion of these questions can be found in

Ref. [13].

A disadvantage of the representation in Eq. (11)

is that the gravitational potentials couple directly to

the disorder potential udis, a fact that complicates the

derivation of the NLσM. As discussed in Refs. [11–13],

we can perform a transformation of the fields ψ and ψ̄

that removes the gravitational potential from the dis-

order term. This transformation is given by ψ →
√

λ̂ψ,

ψ̄ → ψ̄
√

λ̂, where λ̂ = 1/(1 + η̂). A term proportio-

nal to (∇η̂)2 emerging from this transformation may be

ignored due to the slowness of the gravitational poten-

tials acting as source fields. (The Jacobian arising from

the λ-transformation is featureless [12].) As a result,

the gravitational potentials are removed from h0 − µn.

At the same time, they reappear in the time-derivative

term and also change the structure of the interaction

part
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S =
1

2

∫

x

Ψ†(iλ̂
−→
∂ t − i

←−
∂ tλ̂)Ψ−

−

∫

x

Ψ†(udis − µ− λ̂θ̂
lσl)Ψ−

−

∫

x

1

2m∗
∇Ψ†∇Ψ+

∫

x

~θT (γ̂2λ̂)V
−1~θ. (12)

Starting from Eq. (12), the NLσM can be derived ac-

cording to the standard scheme [2, 7, 24–27]; the part

of the action that describes diffusion modes may be

written in the form

Sdm =
πν0i

4
Tr[D(∇Q̂)2 + 2iz{ε̂, λ̂}δQ̂],

+
i

2
(πν0)

2〈Tr[λ̂θ̂lσlδQ̂] Tr[θ̂kσkδQ̂]〉. (13)

Here, Q̂, δQ̂, λ̂, and θ̂ are matrices in the Keldysh

and spin spaces as well as in the frequency domain.

The trace Tr covers all degrees of freedom including

spin as well as integration over coordinates. The ma-

trix (λ̂r)εε′ = λ̂r,ε−ε′ and the same for θ̂, while Q̂εε′

generally depends on both frequency arguments. The

fluctuations of the matrix δQ̂ around its equilibrium

(saddle-point) position describe diffusion modes. The

structure of δQ̂ is specified in the next paragraph. We

note that the diffusion coefficient term in Sdm does not

contain the gravitational potentials. The parameter z

in the frequency term anticipates its renormalization

in the presence of electron–electron interaction [3]; the

initial value is z = 1. The (retarded) diffusion propaga-

tion determined by the first two terms in the action Sdm

is described by D(q, ω) = 1/(Dq2 − izω), the so-called

diffuson. The charge z can be considered the effective

“density of states” of the diffusion modes [28–30]. It

plays a central role for thermal transport [20], because

z determines the renormalization of the specific heat in

a disordered electron liquid [31]. As a result of renor-

malizations, the specific heat becomes c = zcFL, where

cFL = 2π2ν0T/3.

The noninteracting saddle point of the matrix

Q̂(r, ε, ε′) in Sdm is given by the matrix Λ̂ defined in

the Keldysh space as

Λ̂ε =

(

1 2Fε

0 −1

)

= ûεσ̂3ûε,

ûε =

(

1 Fε

0 −1

)

,

(14)

where Fε = th (ε/2T ) is the fermionic equilibrium dist-

ribution function; we note that ûε = û−1
ε . Devia-

tions from the saddle point are denoted as δQ̂(εε′) =

= uεδQ̂εε′uε′ , where δQ̂ = Q̂− σ̂3. The physics of dis-

ordered systems at low temperatures is dominated by

slow diffusive motion of electrons with energies . 1/τ .

The diffusion modes can be accounted for by consider-

ing gapless fluctuations around the saddle-point solu-

tion that respect the condition (Q̂ ◦ Q̂)t,t′ = δ(t − t′).

Here, the ◦ symbol denotes a convolution in time. Re-

stricting ourselves to this manifold, we have a conve-

nient parameterization

Q̂ = û ◦ Q̂ ◦ û, Q̂ = Û ◦ σ̂3 ◦ Û . (15)

Here, Û = Ût,t′(r) and (Û ◦ Û)t,t′ = δ(t− t′).

Finally, the brackets in the last term of the action

Sdm symbolize the contractions

〈θ0k,r,ωθ
0
l,r′,−ω′〉 =

i

4ν0
Γ̃ρ(r− r′)γkl2 · 2πδω−ω′ , (16)

and, for spin degrees of freedom,

〈θαk,r,ωθ
β
l,r′,−ω′〉 =

i

4ν0
Γσδr−r′γ

kl
2 · 2πδω−ω′δαβ (17)

with α, β ∈ {1, 2, 3}, where the interaction amplitudes

in the singlet and triplet channels, Γ̃ρ and Γσ respecti-

vely, acquire the form

Γ̃ρ(q) =
2ν0V0(q) + F ρ

0

1 + (2ν0V0(q) + F ρ
0 )
, Γσ =

F σ
0

1 + F σ
0

. (18)

It is convenient for our purposes to decompose the

interaction in the singlet channel into two parts [2, 3].

One of them is the statically screened Coulomb inter-

action Γ0(q), while the other is the short-range inter-

action Γρ that acts within the polarization operator

along with Γσ,

Γ̃ρ(q) = 2Γ0(q) + Γρ, (19)

where

Γ0(q) =
ν0

(1 + F ρ
0 )

2

1

V −1
0 (q) +

∂n

∂µ

,

Γρ =
F ρ
0

1 + F ρ
0

.

(20)

We note that the amplitudes Γρ and Γσ acquired a

form familiar from the Fermi liquid theory. We also

obtained the FL renormalization for ∂n
∂µ , the quantity

that determines the value of the polarization operator

in the static limit:

∂n

∂µ
=

2ν0
1 + F ρ

0

. (21)
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4. RG ANALYSIS OF THE NLσM IN THE

PRESENCE OF GRAVITATIONAL

POTENTIALS

For the discussion of the dynamical part of the cor-

relation function, it is sufficient to expand λ̂ ≈ 1 − η̂

in the action. It is preferable to use the interaction

amplitudes in the form

1

2
(Γρδαδδβγ+Γσσαδσβγ) = Γ1δαδδβγ−Γ2δαγδβδ, (22)

where

Γ1 =
1

2
(Γρ − Γσ), Γ2 = −Γσ. (23)

For this, we consider the action

Sζ =
πν0i

4
Tr[D(1+ζ̂D)(∇Q̂)2+2iz{ε̂, 1+ζ̂z}δQ̂] +

+
i

2
(πν0)

2

2
∑

n=0

〈Tr[(1 + ζ̂Γn
)φ̂nδQ̂] Tr[φ̂nδQ̂]〉, (24)

where ζ̂X(r, ε + ω, ε) = ûε+ωγ̂1ûεζX(r, ω) for X ∈

∈ {D, z,Γ0,Γ1,Γ2}. In what follows, we also use the

notation ζi and Xi with i = 1, . . . , 5. The contractions

for the fields φn, n = 0, 1, 2, generate the proper inter-

action terms with Γ0, Γ1, and Γ2:

〈φi0(x)φ
j
0(x

′)〉 =
i

2ν
Γ0(r− r′)δ(t− t′)γij2 , (25)

〈φi1(x)φ
j
1(x

′)〉 =
i

2ν
Γ1δ(x− x

′)γij2 , (26)

〈φi2,αβ(x)φ
j
2,γδ(x

′)〉 = −
i

2ν
Γ2δαδδβγδ(x− x

′)γij2 .(27)

The initial conditions are obtained from the compari-

son with Eq. (13),

ζz = ζΓ0
= ζΓ1

= ζΓ2
= −η1 = −η2, ζD = 0. (28)

The field ζD was introduced to account for the possibi-

lity that the sources migrate to the kinetic term under

the RG procedure. The reason why we separate ζΓ0
Γ0

from ζΓ1
Γ1, which both act in the singlet channel, is

that all the RG corrections to this channel go to the

short-range part only, while the long-range part stays

unchanged.

The general structure of the RG corrections is de-

termined by the number of independent momentum

integrations. Each integration leads to an additional

power in the inverse dimensionless conductance, the

small parameter of the RG expansion. At a given or-

der of the RG expansion, the dependence on the in-

teraction amplitudes can be accounted for through all

orders [3, 10]. It is therefore sufficient to extract the

ζX terms from the established RG diagrams. The pro-

cedure is described in detail in Ref. [12] for a system

with short-range interactions, i. e., in the absence of Γ0

and ξΓ0
. Here, we report the extension of this analysis

to the disordered electron liquid, i. e., to a system with

long-range Coulomb interaction.

The final result of the RG analysis based on the

extended NLσM acquires a very compact form:

∆(Xiζi) =

5
∑

j=1

ζjXj
∂

∂Xj
(∆Xi), (29)

where ∆X symbolizes a logarithmic correction to X .

The result holds for all X ∈ {D, z,Γ0,Γ1,Γ2}.

A comment is in order here as regards Eq. (29).

There is an important relation connecting different RG

charges [3, 10],

z − 2Γ1 + Γ2 =
1

1 + F ρ
0

. (30)

This relation considerably simplifies the RG equations.

It is worth noting that in Eq. (29), we must perform

the differentiation first, and use relation (30) only af-

terwards.

It has been explained in Refs. [11, 12], using the

known structure of the RG equations for the charges

Xi, that the initial values for the sources do not change

as a result of renormalization, if initially (i) ζD = 0

holds and (ii) all the remaining ζY are equal. It turns

out that this statement also holds for the disordered

electron liquid considered here and, moreover, condi-

tions (i) and (ii) are precisely satisfied by the initial

conditions stated below Eq. (27). As a result, rela-

tions (28) are unchanged in the course of the RG. We

note the important fact that ζD cannot be generated

by the other sources. Thus, we obtained a fixed point

in the multi-parametric RG flow, which is a rather non-

trivial result for a multi-parametric flow. We note the

multiplicative structure of Sζ in this connection: With

the exception of ζD, the source terms flow exactly as

their host terms under the RG,

∆(Xiζi) = ζi∆Xi, i ∈ {1, 2, 3, 4}. (31)

Finally, we recall that the RG procedure covers the

interval of energies with the elastic scattering rate 1/τ

as the upper cutoff and the temperature T as the lower

one (T ≪ 1/τ).
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5. THE RG ANALYSIS FOR THE HEAT

DENSITY–HEAT DENSITY CORRELATION

FUNCTION χkk

At this stage, we assume that the RG procedure

for the extended NLσM has already been completed.

To simplify the presentation, we temporarily ignore the

additional corrections arising from the sub-temperature

range in this section.

As usual, we decompose χkk into a static and a

dynamical part. It is known that the static part is

connected with the specific heat renormalized by elect-

ron–electron interactions. As a result of renormaliza-

tions, it acquires the factor z, χst
kk = −TzcFL. We now

turn to the dynamical part of the correlation function.

Since the RG procedure has already been completed,

it is permissible to calculate the correlation function in

the ladder approximation. In the ladder approxima-

tion, only those contributions are selected that do not

include an integration over momenta and frequencies of

the diffusion modes. (This was the purpose of the RG

procedure.) For the heat density–heat density correla-

tion function, the relevant contribution originates from

only those sources that enter the frequency part. We

write the relevant term of the action as

SεηQ =
1

2
πνγz⊳ Tr[{ε̂, η̂}δQ], (32)

where the dimensionless coefficient γz⊳ is introduced in

order to account for RG corrections to the frequency

vertex. We then obtain

χdyn
kk (x1, x2) = 2i(πν)2γ⊳(η1)γ⊳(η2)

∫

εε′ωω′

εε′∆ε′,ω′ ×

×
〈

dcl0;ε1ε2(r1)d
q
0;ε′

2
ε′
1

(r2)
〉

exp {−it1ω + it2ω
′} , (33)

where ε1,2 = ε±ω/2, ε′1,2 = ε′±ω′/2 and the matrices

dcl/q describe deviations of δQ from the saddle point.

Here, we introduced the window function

∆ε′,ω′ = Fε′+ω′/2 −Fε′−ω′/2. (34)

The appearance of the window function is characteris-

tic for the dynamical part of the correlation function.

For T → 0, it allows the frequencies ε′ to lie in the in-

terval (ε′−ω′/2, ε′+ω′/2); at finite temperatures, this

range broadens. Still, upon integration in ε′, the func-

tion ∆ε′,ω′ gives rise to the factor ω′. The correlation

function
〈

dcl0;ε1ε2(r1)d
q
0;ε′

2
ε′
1

(r2)
〉

describes the diffusive

propagation of particle–hole pairs in the singlet channel

(only the singlet channel contributes):

〈

d0cl;ε1ε2(q)d
0
q;ε3ε4(−q)

〉

= −
1

πν
D(q, ω)×

×
(

δε1,ε4δε2,ε3−δω,ε4−ε3 iπ∆ε1ε2 Γ̃ρ(q)D̃1(q, ω)
)

. (35)

The second term takes rescattering induced by the in-

teraction amplitude Γ̃ρ into consideration. Here, D is

the diffuson and the renormalized D1 is

D̃1(q, ω) = (Dq2−iz̃1ω)
−1 (36)

with z̃1(q) = z − Γ̃ρ(q). However, for the expression

of χdyn
kk (x1, x2) given in Eq. (33), rescattering is not ef-

fective since it gives rise to an independent frequency

integration of the type

∫

ε

ε∆ε+ω/2,ε−ω/2 = 0. (37)

Without rescattering, we immediately find

χdyn
kk (q, ω) = −2πνγz⊳(η1)γ

z
⊳(η2)iD(q, ω)×

×

∫

ε

ε2∆ε,ω ≈ γ
z
⊳(η1)γ

z
⊳(η2)c0T

−iω

Dq2 − izω
, (38)

where the relation
∫

ε

ε2∂εFε =
πT 2

3
(39)

has been used.

As we have argued in Refs. [11, 12], γz⊳(η1) =

= γz⊳(η2) = z. Then, after all renormalizations, the

dynamical part χdyn
kk can be written as

χdyn
kk (q, ω) = −cFLTz

izω

Dq2 − izω
. (40)

When joined with the static part, this gives the full

correlation function [20] in a form that is typical for a

correlation function of a conserved quantity,

χkk(q, ω) = −Tc
Dkq

2

Dkq2 − iω
, (41)

where Dk = D/z is the heat diffusion coefficient.

It follows from Eq. (5) for the thermal conductiv-

ity that κ = cDk = cFLD. We observe an important

cancelation between the renormalizations of the heat

diffusion coefficient Dk and the specific heat. In com-

bination with the RG results for the conductivity of

the disordered Fermi liquid, σ = 2e2ν0D, this yields
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the WFL [17]: κ/σ = π2T/3e2. Thus, for the virtual

transitions within the RG interval of energies described

by the standard RG procedure, the WFL holds even

in the presence of quantum corrections caused by the

interplay of diffusion modes and the electron–electron

interaction.

The result is by no means trivial: The WFL should

not be considered as a rigorous law outside the realm

of single-particle physics, as is already evident from the

fact that the electric potential couples to the particle

density only, while the gravitational potential probes

the entire Hamiltonian density. Still, the WFL holds

for the leading logarithmic corrections arising from RG

processes in a two-dimensional disordered electron sys-

tem.

A perturbative analysis of logarithmic corrections

to the heat density–heat density correlation function in

a two-dimensional electron gas, i. e., in a system with

long-range Coulomb interaction, has been performed

in Refs. [13, 20]. The corrections from the RG interval

can be used to formulate the RG equations according

to the usual procedure [4]. The use of the extended

NLσM, in turn, allows performing the RG analysis in

a more systematic fashion.

6. THE HEAT DENSITY–HEAT DENSITY

CORRELATION FUNCTION χkk IN THE

PRESENCE OF SUB-THERMAL

CORRECTIONS

In contrast to the RG integrals, the sub-thermal

contributions are determined by the combination

(Fε+ν +Fε−ν), where ν is the frequency transferred by

the electron interaction. Due to this combination, the

transferred frequency is limited either by temperature

or by the electron frequency |ε|. The effect crucially

depends on the dynamically screened Coulomb inter-

action Γ̃R
0;d(k, ν), for which we have the well-known

expression:

Γ̃R
0;d(k, ν) =

ν0
(1 + F ρ

0 )
2
×

×

(

V −1
0 (k) +

∂n

∂µ

DFLk
2

DFLk2 − iν

)−1

, (42)

where the electron density diffusion coefficient is

DFL = (1 + F ρ
0 )D; Γ̃R

0;d describes the dynamically

screened Coulomb interaction dressed by short-range

amplitudes both at the external vertices and within the

polarization operator.

For the sub-thermal corrections, the momentum in-

tegration is determined by small momenta. For a given

frequency ν, most important momenta satisfy the in-

equality |ν|/(Dκs) < k <
√

|ν|/D, where κs = 4πe2ν0
is the inverse screening radius. In this interval, we can

approximate the dynamically screened interaction as

Γ̃R
0;d(k, ν) ≈ −

1

2(1 + F ρ
0 )

2

iν

Dk2
. (43)

Eventually, the bare 1/Dk2 singularity gives rise to lo-

garithmic corrections. It is now clear that the contribu-

tions from the sub-temperature interval are important

in the case of the dynamically screened Coulomb inter-

action, for which Γ̃R
0;d(k, ν) is singular. For a short-ran-

ge interaction, the discussed interval of frequencies does

not exhibit any singularity and, therefore, is not impor-

tant.

We note that the interval |ν|/(Dκs) < k <
√

|ν|/D

is also responsible for the double-logarithmic depen-

dence of the tunneling density of states as well as other

spurious corrections that appear in intermediate stages

of the RG procedure. In the case of the sub-thermal

term, only a single-logarithm arises, because the al-

lowed frequencies ν are small, of the order of the tem-

perature. In contrast, a double-logarithmic dependence

is obtained for the integrals where the frequency takes

large values exceeding T .

In our recent paper [13], we verified that on a per-

turbative level, Eqs. (40) and (41) preserve their form

even in the presence of sub-thermal corrections. The

only modification is the diffusion coefficient

D̃ = D + δD. (44)

We now generalize this result by including the renor-

malized parameters from the RG interval. Since δD is

a correction, we can expand χdyn
kk . The result can be

written as

δχdyn
kk (q, ω) = cFLT iz

2ω(δD)q2D2(q, ω). (45)

In a diagrammatic language, the corrections to

δχdyn
kk which determine δD originate from two contri-

butions. One of the two contributions is found from

diagrams with a single vertical interaction line inside

a diffusion ladder. (Such corrections to the diffusion

coefficient arise in the sub-thermal regime only.) The

other contribution to δD originates from drag dia-

grams, which contain a product of two electron inter-

action amplitudes.

First, we consider those changes to the heat den-

sity–heat density correlation function from diagrams
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with vertical interaction lines which have their origin

in a correction on δD:

δχdyn
kk (q, ω) = 2iπz2Dq2D2

q,ω

∫

ε

ε∆ε,ω×

×

∫

k,ν

ν2(Fε−ν + Fε+ν)D
2
k,ν ImΓR

0;d(k, ν). (46)

Here, the amplitude ΓR
0;d is defined as

ΓR
0;d = Γ̃R

0;d

D2
1

D2
, D1(k, ν) =

1

Dk2 −
iν

1 + F ρ
0

. (47)

It includes the dynamical dressing of external vertices

of the screened Coulomb interaction caused by the

short-range amplitudes. In the interval of small mo-

menta indicated above Eq. (43) one may approximate

ΓR
0;d =

1

2(1+F ρ
0 )

D1(k, ν)

Dk2

1

D2(k, ν)
. (48)

The full result for the drag contribution to the heat

density–heat density correlation function reads as fol-

lows:

δχdyn
kk (q, ω) = −2iπz2D2

q,ω

∫

ε

ε∆ε,ω ×

×

∫

k,ν

ν2(Fε−ν+Fε+ν)Γ
R
0;d(k+q/2, ν)ΓA

0;d(k−q/2, ν)×

×Dk+q/2,ν

(

Dk+q/2,ν +Dk−q/2,ν

)

|q2 . (49)

Here, the notation |q2 indicates that the contribution

proportional to q2 needs to be extracted from the in-

tegral in order to get δD. The advanced diffuson D is

related to the retarded diffusion as Dq,ω = Dq,−ω; the

amplitude ΓA
0;d is defined as ΓA

0;d(k, ν) = ΓR
0;d(k,−ν).

The correction to δD arising from the drag diagrams

is twice smaller than the one from the vertical diagrams

and, furthermore, they are of opposite signs. Corre-

spondingly, the “incoming” contribution described by

the vertical diagram with the dynamically screened

Coulomb interaction line dominates. In this context

it is worth noting, however, that due to the presence of

other diagrams whose contributions cancel among each

other, the final answer could as well be attributed to

different diagrams. Therefore, an unambiguous inter-

pretation of individual diagrams in terms of physical

processes is not possible.

The total correction to the thermal conductivity

from sub-thermal energies reads

δκ =
T

12
log

Dκ2s
T

. (50)

This result coincides with the one existing in the lite-

rature [16, 33–35]. Here, the correction to the thermal

conductivity from sub-thermal energies has been ob-

tained with the use of the heat density–heat density

correlation function. This allowed us to obtain the re-

sult that all Fermi-liquid renormalization and the pa-

rameter z as well as all other RG renormalizations drop

out when calculating this correction.

7. THERMAL TRANSPORT NEAR THE

METAL INSULATOR TRANSITION IN

SI-MOSFETS

In this section, we apply the developed theory to the

description of thermal transport on the metallic side of

the metal–insulator transition in Si-MOSFETs. This

requires the inclusion of a valley degree of freedom nv

into the theory, as discussed in Ref. [32]. The coupled

RG equations that govern the flow of the dimensionless

resistance ρ = (4π2νnvD)−1 in combination with the

interaction amplitude w2 = Γ2/z are [32]

∂ρ

∂ξ
= ρ2

[

nv + 1 −

− (4n2
v − 1)

(

1 + w2

w2

ln(1 + w2)− 1

)]

, (51)

∂w2

∂ξ
=

1

2
ρ(1 + w2)

2. (52)

The temperature dependence is encoded in the loga-

rithmic variable ξ = ln(1/T τ). The first term in the

square brackets in the equation for ρ originates from the

Cooperon degrees of freedom and increases the tenden-

cy of the system to localize. It is worth mentioning that

the weak localization terms induced by the Cooperons

do not violated the WFL.

The solution of the coupled RG equations (51), (52)

depends on the number of valleys nv. By contrast,

the correction to the thermal conductivity from sub-

thermal energies is independent of nv. The argument

goes as follows. For the diagrams corresponding to the

contributions to δD discussed in Sec. 6, the number of

closed fermionic loops coincides with the number of in-

teraction lines. Each loop is proportional to nv, while

the interaction line in the case of the screened long-

range Coulomb interaction is inversely proportional to

nv. As a result, the nv-factors cancel out. Thus, the fi-

nite number of valleys does not change the result given

in Eq. (50).

Here, we limit ourselves to the case nv = 2, which

corresponds to Si MOSFETs. The dimensionless re-

sistance displays a maximum ρmax at a temperature
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denoted as Tmax. At Tmax, the interaction amplitude

takes the universal value w2 = 0.457. It is conve-

nient to introduce the new logarithmic variable η =

= ρmax ln(Tmax/T ). The structure of RG equations

(52) implies that the normalized resistance R(η) =

= ρ(η)/ρmax is a universal function of η; R(η) is dis-

played in the Figure.

Turning to the description of thermal transport, we

first define the “thermal resistance” as

ρk =
e2

2π2

L0T

κ
. (53)

This definition is motivated by the fact that ρk = ρ

holds as long as the WFL is satisfied. It is therefore na-

tural to introduce the dimensionless function Rk(η) =

= ρk(η)/ρmax, a thermal analog of R(η).

We now consider the effect of the WFL-violating

correction δκ in Eq. (50) on the function Rk; Rk(η)

can now be parameterized as

Rk(η) =
R(η)

1 +R(η)(Pmax + η/2)
, (54)

where

Pmax ≡
1

2
ρmax ln

Dκ2s
Tmax

=
ρmax − ρk(0)

ρk(0)
(55)

is a measure for the violation of the WFL law at the

temperature Tmax. In Eq. (54), we neglect the RG-flow

of D = D(η), which can appear as a refinement of η/2

in the denominator of Rk(η); such sub-leading terms

are beyond the accuracy of our RG procedure.

Remarkably, the maximum of Rk(η) is positioned at

a universal value (independent of Pmax), determined

by the condition R′/R2 = 1/2. This gives ηk,max ≈

≈ −0.0785. Examples for curves with Pmax = 0.2, 0.3,

0.4 are shown in the Figure.

8. CONCLUSION

In this paper, we developed a consistent theory of

thermal transport for the disordered electron liquid,

i. e., for a system with long-range Coulomb interactions

as well as short-range Fermi-liquid-type interactions in

the presence of disorder. For this, we incorporated

Luttinger’s gravitational potentials into the Keldysh

NLσM formalism and presented an analysis of logarith-

mic corrections to the heat density–heat density corre-

lation function. We used a two-stage procedure. First,

the RG procedure was implemented within the RG-in-

terval (1/τ, T ). This stage does not reveal a deviation

from the WFL. We used the results of the RG analy-

sis as a starting point for the second stage. Here, we

considered sub-thermal corrections violating the WFL.

These corrections originate from processes with excited

electron-hole pairs in the sub-thermal interval of en-

ergies. The sign of the overall correction is positive

δκ > 0.

The positive sign indicates that the incoming

scattering processes are dominant. Loosely speak-

ing, in the diffusive case with long-range Coulomb

interaction, electrons can use the energy ∼ T from

a remote region to facilitate heat transfer. Based on

this theory, we made a prediction for the temperature

dependence of the thermal resistance on the metallic

side of the metal-insulator transition in Si MOSFETs,

as illustrated in the Figure. This is the main result in

this paper.

This paper is our contribution to a special issue ded-

icated to Prof. L. V. Keldysh’s 85th birthday. The

Keldysh technique was absolutely crucial for develop-

ing the microscopic theory of thermal conductivity pre-

sented in this paper.
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