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We briefly review the generalized dynamic mean-field theory DMFT+Σ applied to both repulsive and attractive

disordered Hubbard models. We examine the general problem of metal–insulator transition and the phase dia-

gram in the repulsive case, as well as the BCS–BEC crossover region of the attractive model, demonstrating a

certain universality of single-electron properties under disordering in both models. We also discuss and compare

the results for the density of states and dynamic conductivity in the repulsive and attractive cases and the

generalized Anderson theorem behavior of the superconducting critical temperature in the disordered attractive

case. A brief discussion of the behavior of Ginzburg–Landau coefficients under disordering in the BCS–BEC

crossover region is also presented.
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1. INTRODUCTION

Strongly correlated electronic systems, which are

mainly realized in a range of compounds containing

transition or rare-earth elements with partially filled

3d, 4f , or 5f shells, attract attention of scientists be-

cause of their unusual physical properties and are no-

torious for major difficulties in theoretical description.

Perhaps the most significant development in this area

has been the discovery of high-temperature supercon-

ductivity in copper oxides, which are considered a typ-

ical example of strongly correlated systems.

Early qualitative ideas formulated mainly by Mott

[1] as well as the introduction of the seminal model by

Hubbard [2] inspired hundreds of theoretical papers,

which now constitute a separate branch of condensed

matter theory. Probably the most impressive achieve-

ment if this field in recent years was the development of

dynamical mean-field theory (DMFT), which provides

an asymptotically exact solution of the Hubbard model

in the limit of infinitely many dimensions [3–8].

* E-mail: Kuchinsk@iep.uran.ru
** E-mail: Sadovski@iep.uran.ru

Most of the studies of strongly correlated systems

within the Hubbard model are devoted to the case of

repulsive interactions among electrons, which are di-

rectly related to many topical problems, with most at-

tention payed to the physics of high-Tc superconducti-

vity in cuprates and the general problem of the metal–

insulator transition in cuprates and other similar oxides

of transition metals.

Another direction of research is the studies of the

Hubbard model with attractive interaction, which is

related mainly to a rather old problem of strong-

coupling superconductivity, especially to the the-

oretical description of the notorious BCS-to-BEC

(Bardeen–Cooper–Schrieffer to Bose–Einstein conden-

sation) crossover, which is also directly related to the

problem of high-Tc superconductivity in copper oxides.

Starting with pioneering papers by Eagles and Leggett

[9, 10] at T = 0 and the important progress achieved

by Nozières and Schmitt-Rink [11], who suggested an

effective method to study the transition temperature

crossover region, this field has produced a large num-

ber of theoretical papers published during the recent

years, including successfull applications of the DMFT

approach.

This last area of research is also directly connected

with recent progress in experimental studies of quan-

tum gases in magnetic and optical dipole traps, as well
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as in optical lattices, with controllable parameters, such

as the density and interaction strength (cf. reviews

[12, 13]), which has increased the interest in super-

conductivity (superfluidity of fermions) with a strong

pairing interaction, including the BCS–BEC crossover

region.

In recent years, we have developed the so-called ge-

neralized DMFT+Σ approach [14–17], which is very

convenient for the studies of different additional inter-

actions in the repulsive Hubbard model, such as pseu-

dogap fluctuations [14–17], disorder [18, 19], electron–

phonon interaction [20], and so on. This approach is

also well suited to the analysis of two-particle proper-

ties, such as the optical (dynamic) conductivity [18, 21].

In Ref. [22], we used this approximation to calculate

single-particle properties of the normal phase and opti-

cal conductivity in the attractive Hubbard model. Re-

cently, we used the DMFT+Σ approach to study dis-

order influence on the superconducting transition tem-

perature in this model [23, 24].

Below, we concentrate on a discussion the of dis-

order effects in both repulsive and attractive Hubbard

models. There are not so many works devoted to the

studies of disorder effects in Hubbard models, because

of many theoretical complications related to the prob-

lem of the interplay of disorder scattering and Hub-

bard interaction. We concentrate exclusively on our

DMFT+Σ approach, which is actually very convenient

here and provides a good interpolation scheme between

different limit cases. We discuss the results obtained in

our previous work, and similarities and dissimilarities

of disorder effects in repulsive and attractive Hubbard

models, in some cases demonstrating universal depen-

dences on disorder.

2. BASICS OF THE DMFT+Σ APPROACH TO

DISORDERED SYSTEMS

The Hamiltonian of a disordered Hubbard model

can be written as

H = −t
∑

〈ij〉σ

a†iσajσ +
∑

iσ

ǫiniσ + U
∑

i

ni↑ni↓, (1)

where t > 0 is the transfer integral between nearest

sites of the lattice, U is the onsite interaction (U > 0

in the case of repulsive interaction, and U < 0 in the

case of attraction), niσ = a†iσaiσ is the operator of the

number of electrons on lattice site i, aiσ (a†iσ) is the

annihilation (creation) operator for the electron with

spin σ on site i. The local energy levels ǫi are assumed

to be independent random variables at different lattice

+ ++ ... + + ... +

i

i

i

i

i

i

a b

Fig. 1. Typical “skeleton” self-energy diagrams in the

DMFT+Σ approximation

sites (Anderson disorder) [25]. To simplify the diagram

technique in what follows, we assume the Gaussian dis-

tribution of these energy levels:

P(ǫi) =
1√
2π∆

exp

(

− ǫ2i
2∆2

)

. (2)

The parameter ∆ represents the measure of disorder

and this Gaussian random field (with “white noise”

correlation on different lattice sites) generates “impu-

rity” scattering and leads to the standard diagram tech-

nique for calculating the ensemble-averaged Green’s

functions [26].

The generalized DMFT+Σ approach [14–17] ex-

tends the standard DMFT [5–7] by introducing an ad-

ditional self-energy Σp(ε) (in the general case, mo-

mentum dependent), which is due to some interaction

mechanism outside the DMFT. It gives an effective pro-

cedure to calculate both single- and two-particle pro-

perties [18, 21]. The single-particle Green’s function is

then written in the form

G(ε,p) =
1

ε+ µ− ε(p)− Σ(ε)− Σp(ε)
, (3)

where ε(p) is the “bare” electronic dispersion, while the

total self-energy completely neglects the interference

between the Hubbard and additional interaction and is

given by the additive sum of the local self-energy Σ(ε)

of DMFT and the “external” self-energy Σp(ε). This

preserves the standard structure of DMFT equations

[5–7]. However, there are two important differences for

the standard DMFT. At each iteration of the DMFT

loop, we recalculate the “external” self-energy Σp(ε) us-

ing some approximate scheme for the description of the

“external” interaction, and the local Green’s function is

“dressed” by Σp(ε) at each step of the standard DMFT

procedure.

In Fig. 1, we show the typical “skeleton” diagrams

for self-energy in DMFT+Σ. Here, the first two terms

are local DFMT self-energy diagrams due to the Hub-

bard interaction, while two diagrams in the middle

show contributions to self-energy from the additional

interaction (dashed interaction lines), and the last dia-

gram b is a typical example of the interference process,
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which is neglected. Indeed, once we neglect such an

interference, the total self-energy is defined as a simple

sum of two contributions shown in Fig. 1a.

As an effective Anderson impurity solver in our

DMFT calculations, we have always used the numeri-

cal renormalization group [27], which allows performing

calculations at rather low temperatures.

For the self-energy due to disorder scattering pro-

duced by Hamiltonian (1), we use the simplest approx-

imation neglecting the diagrams with “intersecting” in-

teraction lines (like those in the fourth diagram in

Fig. 1a), i. e., the so-called self-consistent Born approx-

imation, represented by the third diagram in Fig. 1a.

For the Gaussian distribution of site energies, it is mo-

mentum independent and is given by

Σp(ε) → ∆2
∑

p

G(ε,p), (4)

where G(ε,p) is the single-particle Green’s function (3),

and ∆ is the strength of site energy disorder.

In what follows, we mainly consider the three-

dimensional system with a “bare” semi-elliptic density

of states (per unit cell and one spin projection), with

the total bandwidth 2D, which is given by

N0(ε) =
2

πD2

√

D2 − ε2. (5)

In this case, we can directly demonstrate, that the dis-

order influence on single-particle properties of the dis-

ordered Hubbard model (both repulsive and attractive)

is completely described in the DMFT+Σ approxima-

tion by effects of general band widening by disorder

scattering. Actually, in the system of self-consistent

DMFT+Σ equations [15, 17, 18], both the “bare” band

spectrum and disorder scattering enter only at the stage

of calculations of the local Green’s function:

Gii =
∑

p

G(ε,p), (6)

where the full Green’s function G(ε,p) is determined

by Eq. (3), while the self-energy due to disorder, in the

self-consistent Born approximation, is given by Eq. (4).

Then the local Green’s function takes the form

Gii =

D
∫

−D

dε′
N0(ε

′)

ε+ µ− ε′ − Σ(ε)−∆2Gii

=

=

D
∫

−D

dε′
N0(ε

′)

Et − ε′
, (7)

where we introduce

Et = ε+ µ− Σ(ε)−∆2Gii.

In the case of a semi-elliptic density of states (5), this

integral can be calculated in analytic form, and the lo-

cal Green’s function then becomes

Gii = 2
Et −

√

E2
t −D2

D2
. (8)

It can be easily seen that Eq. (8) represents one of the

roots of the quadratic equation

G−1
ii = Et −

D2

4
Gii, (9)

reproducing the correct limit Gii → E−1
t for an in-

finitely narrow (D → 0) band. Then we can write

G−1
ii = ε+ µ− Σ(ε)−∆2Gii −

D2

4
Gii =

= ε+ µ− Σ(ε)−
D2

eff

4
Gii, (10)

where we introduce the effective half-width of the band

(in the absence of electronic correlations, i. e., for U =

= 0) widened by disorder scattering:

Deff = D

√

1 + 4
∆2

D2
. (11)

Comparing (7), (9), and (10), we immediately see that

the local Green’s function can be written as

Gii =

Deff
∫

−Deff

dε′
Ñ0(ε

′)

ε+ µ− ε′ − Σ(ε)
, (12)

where

Ñ0(ε) =
2

πD2
eff

√

D2
eff − ε2 (13)

represents the density of states in the absence of the in-

teraction U widened by disorder. The density of states

in the presence of disorder remains semi-elliptic, and

therefore all effects of disorder scattering on single-par-

ticle properties of the disordered Hubbard model in

the DMFT+Σ approximation reduce to only disorder

widening of the conduction band, i. e., to the replace-

ment D → Deff .

Within the DMFT+Σ approach, we can also inves-

tigate the two-particle properties [18, 21]. After the

general analysis based on the Ward identity derived in

Ref. [21], we can show that the real part of the dynami-

cal (optical) conductivity in the DMFT+Σ approxima-

tion is given by [18, 21]
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Fig. 2. Density of states of the Hubbard model at half-filling for different disorder levels ∆ [18]. (a) Correlated metal with

U = 2.5D. (b ) Mott insulator with U = 4.5D. Temperature T/2D = 0.0005

Reσ(ω) =
e2ω

2π

∞
∫

−∞

dε [f(ε−)− f(ε+)] ×

× Re

{

φ0RA
ε (ω)

[

1− ΣR(ε+)− ΣA(ε−)

ω

]2

−

− φ0RR
ε (ω)

[

1− ΣR(ε+)− ΣR(ε−)

ω

]2
}

, (14)

where e is the electron charge, f(ε±) is the Fermi dis-

tribution with ε± = ε± ω/2, and

φ0RR(RA)
ε (ω) =

= lim
q→0

q−2
(

Φ0RR(RA)
ε (ω,q)− Φ0RR(RA)

ε (ω, 0)
)

, (15)

where the two-particle loops Φ
0RR(RA)
ε (ω,q) contain all

vertex corrections from disorder scattering, but do not

include any vertex corrections from Hubbard interac-

tion (see the details in Ref. [18]). This considerably

simplifies calculations of optical conductivity within

the DMFT+Σ approximation, because we only have to

solve the single-particle problem for the local self-ener-

gy Σ(ε±) via the DMFT+Σ procedure, while nontri-

vial contributions from disorder scattering enter only

via Φ
0RR(RA)
ε (ω,q), which can be calculated in an ap-

propriate approximation, neglecting vertex corrections

from Hubbard interaction. To be more specific, to ob-

tain the loop contributions Φ
0RR(RA)
ε (ω,q) determined

by disorder scattering, we can either use the standard

“ladder” approximation for weak disorder or, follow-

ing Ref. [18], use a direct generalization of the self-

consistent theory of localization [28–30], which allows

treating the case of strong enough disorder. In this ap-

proach, conductivity is mainly determined by the gen-

eralized diffusion coefficient obtained from a simple ex-

tension of the self-consistency equation [28–30] of this

theory, which is to be solved in combination with the

DMFT+Σ procedure [18].

3. MOTT–ANDERSON TRANSITION IN

DISORDERED SYSTEMS

Below, we present some of the most interesting re-

sults for the repulsive Hubbard model at half-filling

with semi-elliptic bare density of states (5) with the

bandwidth 2D [18], which is qualitatively well suited

to describe the three-dimensional case. The density of

states is given below in units of the number of states in

the energy interval for a cubic unit cell of the volume

a3 (where a is the lattice constant) and for one spin

projection. The conductivity values are always given

in natural units of e2/~a.

3.1. Evolution of the density of states

In the standard DMFT approximation, the density

of states of the repulsive Hubbard model at half-filling

has a typical three-peak structure [5, 6, 32] with quite a

narrow quasiparticle (central) peak at the Fermi level

and rather wide upper and lower Hubbard bands lo-

cated at energies ε ∼ ±U/2. As the Hubbard repul-

sive interaction U grows, the quasiparticle band nar-

rows within the metallic phase and disappears at the

Mott–Hubbard metal–insulator transition at the criti-

cal interaction value Uc2/2D ≈ 1.5. At larger values of

U , we observe an insulating gap at the Fermi level.
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Fig. 3. Universal dependence of the properly normalized density of states on the normalized energy ε/2Deff in the Hubbard

model for different disorder levels ∆. (a) correlated metal (U/2Deff = 1.0) with no disorder and for ∆/2D = 0.25. (b ) Mott

insulator (U/2Deff = 3.0) without disorder and for ∆/2D = 0.25. Temperature T/2Deff = 0.0009

In Fig. 2, we present our results [18] for DMFT+Σ

densities of states for a typical strongly correlated metal

with U = 2.5D, both in the absense of disorder and

for different values of disorder scattering ∆, including

strong enough disorder, which transforms the corre-

lated metal to a correlated Anderson insulator. In the

metallic phase, disorder scattering leads to a typical

broadening and suppression of the density of states.

Much more unusual is the result obtained for U =

= 4.5D, typical for the Mott insulator phase and shown

in Fig. 2b. Here, we observe the recovery of the cen-

tral peak (quasiparticle band) in the density of states

with an increase in disorder, transforming the Mott in-

sulator to correlated metal or to a correlated Anderson

insulator. A similar behavior of the density of states

for the disordered Hubbard model was also reported in

Ref. [31], using direct numerical DMFT calculations in

finite lattices.

The physical origin of this quite unexpected central

peak restoration is evident. The control parameter of

the metal–insulator transition in DMFT is the ratio of

the Hubbard interaction U to the bare bandwidth 2D.

Introduction of disorder (in the absense of Hubbard

interaction) leads to a new effective bandwidth 2Deff

(cf. (11)), which increases with disorder. This leads to

diminishing values of the ratio U/2Deff , which in its

turn causes the restoration of the quasiparticle band.

Furthermore, in complete accordance with analytic

arguments presented above, the behavior of the density

of states in the disordered Hubbard model with semi-

elliptic density of states actually demonstrates a univer-

sal dependence on disorder. This is clearly seen from

Fig. 3, where we show properly normalized typical den-

sities of states 2DeffN(ε) in the metallic phase (with

the normalized interaction value U/2Deff = 1.0) and

the insulating phase (corresponding to U/2Deff = 3.0)

without disorder and for the typical value of disorder

scattering ∆/2D = 0.25. The densities of states in

the absence and in the presence of disorder are actu-

ally described by the same (universal) dependences if

expressed via properly normalized parameters.

In the absense of disorder, one of the characteristic

features of the Mott–Hubbard metal–insulator transi-

tion is the hysteresis behavior of the density of states,

occurrring as U decreases starting from the insulat-

ing phase [6, 32]. The Mott insulator phase remains

(meta)stable down to rather small values of U deep

within the correlated metal phase, and the metallic

phase is restored only at about Uc1/2D ≈ 1. The cor-

responding interval of the interaction parameter Uc1 <

< U < Uc2 represents a coexistence region of the metal-

lic and Mott insulating phases, where, from a thermo-

dynamic standpoint, the metallic phase is more stable

[6, 32, 33]. Such a hysteresis in the behavior of the

density of states is also observed in the presence of dis-

order [18, 19].

3.2. Optical conductivity: Mott–Hubbard and

Anderson transitions

In the absence of disorder, our calculations repro-

duce the conventional DMFT results [5, 6], with the

optical conductivity characterized by a typical Drude

peak at low frequencies and a wide maximum at ω ∼ U ,

which corresponds to optical transitions to the upper

10 ЖЭТФ, вып. 3
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Fig. 4. Real part of the optical conductivity of the Hubbard model at half-filling for different disorder levels ∆ [18]. (a) typical

correlated metal with U = 2.5D. Curves 1, 2 describe the metallic phase, curve 3 corresponds to the mobility edge (Anderson

transition), curves 4, 5 correspond to a correlated Anderson insulator. (b ) typical Mott insulator with U = 4.5D. Curves 1, 2

correspond to a Mott insulator, curve 3 to the mobility edge (Anderson transition), curves 4, 5 to a correlated Anderson insulator.

The inset shows the low-frequency region magnified. Temperature T/2D = 0.0005

Hubbard band. As U increases, the Drude peak is sup-

pressed and disappears completely at the Mott transi-

tion. Introducing disorder leads to qualitative changes

in the frequency dependence of the optical conductivi-

ty.

Figure 4a shows the real part of the optical conduc-

tivity of the Hubbard model at half-filling for different

disorder levels ∆ and U = 2.5D typical for a corre-

lated metal. Transitions to the upper Hubbard bands

at energies ω ∼ U are almost unobservable. However,

it is clearly visible that the metallic Drude peak typi-

cally centered at the zero frequency is broadened and

suppressed by disorder, gradually transforming into a

peak at a finite frequency because of the Anderson lo-

calization effects. The Anderson transition takes plase

at ∆c ≈ 0.74D (corresponding to curve 3 on all figu-

res here). We note that this value explicitly depends

on the value of the cutoff in the equation for the gen-

eralized diffusion coefficient, which is defined up to a

coefficient of the order of unity [26, 29]. Naive expec-

tations can lead to the conclusion that a narrow quasi-

particle band at the Fermi level (formed in a strongly

correlated metal) can be localized much more easily

than the usual conduction band. However, these ex-

pectations are wrong and the band localizes only at

rather large disorder ∆c ∼ D of the order of the con-

duction band width ∼ 2D. This is in qualitative agree-

ment with the results for localization transition in the

two-band model [36].

In the DMFT+Σ approach, the critical disorder

value ∆c does not depend on U because the interac-

tion effects enter here only through ∆ΣRA(ω) → 0 as

ω → 0 (for T = 0, ε = 0), and therefore the influence of

interaction just disappears at ω = 0. In fact, this is the

main shortcoming of the DMFT+Σ approach, originat-

ing from the neglect of the interference effect between

interaction and impurity scattering. A significant role

of these interference effects is actually well known for a

long time [34, 35]. However, the neglect of these effects

allows us to perform a reasonable physical interpolation

between two main limits: that of the Anderson transi-

tion due to disorder and the Mott–Hubbard transition

due to strong correlations.

In Fig. 4b, we show the real part of the optical

conductivity of the Mott–Hubbard insulator with U =

= 4.5D for different disorder levels ∆. In the inset, we

show low-frequency data, demonstarting different types

of conductivity behavior, especially close to the Ander-

son transition and within the Mott insulator phase. On

the main part of the figure, the contribution to con-

ductivity from transitions to the upper Hubbard band

at ω ∼ U is clearly seen. Disorder growth results in

the appearance of finite conductivity for the frequen-

cies inside the Mott–Hubbard gap, correlating with the

restoration of the quasiparticle band in the density of

states within the gap as shown in Fig. 2b. This con-

ductivity for ∆ < ∆c is metallic (finite in the static

limit ω = 0), and for ∆ > ∆c at low frequencies, we
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obtain Reσ(ω) ∼ ω2, which is typical for an Anderson

insulator [26, 28–30].

Somewhat unusual is the appearance in Reσ(ω) of

a peak at finite frequencies even in the metallic phase.

This happens because of the importance of localization

effects. In the “ladder” approximation for Φ0RA
ε (ω,q),

with all localization effects neglected, we obtain the

usual Drude peak at ω = 0 [18], while taking localiza-

tion effects into account shifts the peak in Reσ(ω) to

finite frequencies.

Above, we presented the data for conductivity ob-

tained in the case of increasing U from the metallic

to the Mott insulator phase. As U decreases from the

Mott insulator phase, we observe a hysteresis of con-

ductivity in the coexistence region defined (in the ab-

sense of disorder) by the inequality Uc1 < U < Uc2. A

hysteresis of conductivity is also observed in the coex-

istence region in the presence of disorder. More details

can be found in Refs. [18, 19].

In general, the picture of the conductivity behavior

obtained in the DMFT+Σ approximation is rather rich,

demonstarting both the Mott–Hubbard transition due

to strong correlations and the disorder-induced Ander-

son (localization) transition. The complicated beha-

vior under disordering is essentially determined by the

two-particle Green’s function behavior and does not

show a kind of universality demonstrated above for the

single-particle density of states.

3.3. Phase diagram of the disordered Hubbard

model at half-filling

The phase diagram of the repulsive disordered Hub-

bard model at half-filling was studied in Ref. [31], using

direct DMFT numerics for lattices with a finite num-

ber of sites with random realizations of energies ǫi in

(1), with subsequent averaging over many lattice real-

izations to obtain the averaged density of states and

the geometric mean local density of states, which al-

lows determining the critical disorder for the Anderson

transition. Below, we present our results on the dis-

ordered Hubbard-model phase diagram obtained from

the density of states and optical conductivity calcula-

tions in the DMFT+Σ approach [18].

The calculated disorder–correlation strength (∆, U)

phase diagram at zero temperature is shown in Fig. 5

(actual calculations were performed at a very low value

T/2D = 0.0005). The Anderson transition line ∆c ≈
≈ 0.37D is defined as the disorder strength for which

static conductivity vanishes at T = 0. The Mott–

Hubbard transition can be detected either from the cen-
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Fig. 5. Phase diagram of the disordered Hubbard model

[18]. Continuous curves are Mott insulator phase boundaries

Uc1,c2(∆) obtained from the analytic estimate in Eq. (17). Dif-

ferent symbols represent results for these boudaries obtained

from calculations from the density of states and optical con-

ductivity. The Anderson transition line is given by ∆c = 0.37

tral peak disappearance in the density of states or from

the optical conductivity by observation of gap closing

in the insulating phase or from the static conductivity

disappearance in the metallic phase.

We have already noted that the DMFT+Σ approxi-

mation gives a universal (U -independent) value of the

critical disorder ∆c because of the neglect of interfe-

rence between disorder scattering and Hubbard inter-

action. This leads to a difference between the phase

diagram in Fig. 5 and the one obtained by numerical

simulations in Ref. [31]. At the same time, the qualita-

tive form of our phase diagram is highly nontrivial and

qualitatively coincides with the results in Ref. [31]. The

main difference is the conservation of Hubbard bands

in our results even in the limit of high enough disor-

der, while they just disappear in Ref. [31]. The phase

coexistence region in Fig. 5 slowly widens as disorder

increases instead of vanishing at some “critical” point

as on the phase diagram in Ref. [31]. The coexistence

boundaries (Mott insulator phase boundaries) obtained

with a decrease or increase in U , represented by curves

Uc1(∆) and Uc2(∆) in Fig. 5, can actually be obtained

from the simple equation

Uc1,c2(∆)

Deff

=
Uc1,c2

D
, (16)

where the effective bandwidth in the presence of disor-

der is calculated for U = 0 within self-consistent Born

approximation (4), (11). Hence, the boundaries of the
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coexistence region (which also define the boundaries of

the Mott insulator phase) are given by

Uc1,c2(∆) = Uc1,c2

√

1 + 4
∆2

D2
. (17)

They are shown in Fig. 5 by dotted and solid lines.

Phase transition points detected from the disappear-

ance of a quasiparticle peak as well as points following

from qualitative changes of conductivity behavior are

shown in Fig. 5 by different symbols. These symbols

demonstrate very good agreement with analytic results,

confirming the choice of ratio (16) as a control param-

eter of the Mott transition in the presence of disor-

der. This transition is essentially controlled by simple

band-widening effects due to disorder scattering, simi-

larly to the behavior of the density of states discussed

above.

We note that the values of the normalized density

of states 2DeffN(ε) are universal along each of these

boundaries, as well as along any curve in the (∆,U)

plane determined by the equation

U(∆) = U(0)

√

1 + 4
∆2

D2
(18)

in accordance with our discussion of the universal de-

pendence of the densities of states on disorder presented

above.

Essentially similar results were obtained for the be-

havior of the density of states, dynamic conductivity,

and the phase diagram [19] in the case of the conduc-

tion band with a “flat” density of states in the absence

of disorder and interactions, which qualitatively corre-

sponds to the two-dimensional case. This is not sur-

prising because large enough disorder and interactions

both transform the “flat” band into a kind of smeared

semi-elliptic band. Some explicit examples of this kind

of behavior are presented below in the case of the at-

tractive Hubbard model.

4. ATTRACTIVE HUBBARD MODEL WITH

DISORDER

The studies of superconductivity in the BCS–BEC

crossover region attracts theorists for a rather long time

[10] and most important progress here was achieved by

Nozieres and Schmitt-Rink [11], who proposed an ef-

fective approach to describe the Tc crossover. The at-

tractive Hubbard model is probably the simplest model

allowing theoretical studies of the BCS–BEC crossover

[11]. This model was studied within DMFT in a num-

ber of recent papers [37–40]. But only a few results were

obtained for the normal (nonsuperconducting) phase of

this model, especially in the disordered case. Similarly,

there were practically no studies of two-particle proper-

ties, such as optical conductivity. Below, we present a

summary of our results obtained within the DMFT+Σ

approach and compare then with similar results for the

repulsive Hubbard model.

4.1. Density of states and optical conductivity

In the special case of a half-filled band (n = 1),

the densities of states of attractive and repulsive Hub-

bard models just coincide (due to an exact mapping of

these models onto each other). Below, we discuss the

more typical case of a quarter-filled band (n = 0.5).

In Fig. 6, we show the densities of states obtained for

T/2D = 0.05 for different values of attractive inter-

action (U < 0). Figure 6a is to be compared with

Fig. 6b, where we present similar results for the re-

pulsive (U > 0) case. We can see that the densities

of states close to the Fermi level decrease with an in-

crease in U , both for attraction (Fig. 6a) and repulsion

(Fig. 6b ), but a significant increase in |U | in the repul-

sive case leads only to the vanishing of the quasiparticle

peak, such that the density of states at the Fermi level

becomes practically independent of U , while in the at-

tractive case, the increase in |U | leads to the supercon-

ducting pseudogap opening at the Fermi level (curve 3

in Fig. 6a); for |U |/2D > 1.2, we observe the full gap

opening at the Fermi level (curves 4, 5 in Fig. 7). This

gap is not directly related to the emergence of a super-

conducting state, but is due to the appearance of pre-

formed Cooper pairs at the temperatures larger than

the superconducting transition temperature (which is

lower than the temperature T/2D = 0.05 used in our

calculations). Here, we actually observe the important

difference between attractive and repulsive cases: in

case of repulsion, a deviation from half-filling leads to

a metallic state for arbitrary values of U and the insu-

lating gap opens at large U not at the Fermi level.

This picture of the evolution of the density of states

as |U | increases is also supported by the behavior of op-

tical conductivity shown in Fig. 7. We see that the in-

crease in |U | leads to the replacement of the Drude peak

at zero frequency (curves 1–3 in Fig. 7) by a pseudo-

gap dip (curves 5 and 6 in Fig. 7) and a wide maximum

of the conductivity at a finite frequency, related with

transitions across the pseudogap. A further increase

in |U | leads to the opening of the full gap in the opti-

cal conductivity due to the formation of Cooper pairs

(curves 7–9 in Fig. 7).
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In Fig. 8, we present the evolution of the density

of states and optical conductivity with changing dis-

order. At weak enough attraction (|U |/2D = 0.8,

Fig. 8a,b ), the growth of disorder just widens the den-

sity of states. Disorder effectively masks peculiarities

of the density of states due to correlation effects. In

particular, the quasiparticle peak and the “wings” due

to the upper and lower Hubbard bands presented in

Fig. 8a in the absence of disorder completely vanish

at strong enough disorder. Evolution of the optical

conductivity with the growth of disorder ∆, shown in

Fig. 8b, generally agrees with the evolution of the den-

sity of states. Weak enough disorder (curves 1, 2 in

Fig. 8b ) leads to some increase in the static conduc-

tivity, which is related with suppression of correlation

effects at the Fermi level (curves 1, 2 in Fig. 8a). Fur-

ther increasing disorder leads to significant widening of

the band and a decrease in the density of states (curve 3

in Fig. 8a,b ), which leads to a decrease in static con-

ductivity. Finally, the growth of disorder leads to An-

derson localization, which occurs at ∆/2D = 0.37 for

T = 0 [18]. However, we here consider the case of a suf-

ficiently high temperature T/2D = 0.05, such that the

static conductivity (see curve 5 in Fig. 8b ) always re-

mains finite, although the localization behavior is also

clearly seen and σ(ω) ∼ ω2. At larger values of the

attractive interaction |U |/2D = 1, the evolution of the

density of states and optical conductivity are largely

similar (Fig. 8c,d ). But in the absence of disorder, we

then observe a Cooper pairing pseudogap in the den-

sity of states, while disorder leads to its suppression,

leading both to the growth of the density of states at

the Fermi level and the related growth of static conduc-

tivity. Finally, at a still larger attraction |U |/2D = 1.6

(Fig. 8e,f) in the absence of disorder, there is a real

Cooper pairing gap in the density of states. This gap

is also evident in the optical conductivity. With an in-

crease in disorder, the Cooper pairing gap in both the

density of states and conductivity becomes narrower

(curves 2, 3 ). A further increase in disorder leads to

the complete suppression of this gap and restoration of

a metallic state with a finite density of states at the
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Fermi level and finite static conductivity. This closure

of the Cooper gap is obviously related to the effective

growth of the conduction bandwidth 2Deff , which leads

to the decrease in the |U |/2Deff ratio, which actually

controls the formation of the Cooper gap. The situation

here is similar to the closure of the Mott gap by dis-

order in the repulsive Hubbard model discussed above

[18]. However, at large disorder (curve 5 in Fig. 8f),

we clearly observe the localization behavior, such that

the growth of disorder at T = 0 first leads to a metallic

state (the closure of the Cooper pairing gap), while the

further growth induces the Anderson metal–insulator

transition. A similar picture is observed for large pos-

itive U at half-filling (n = 1) [18], where the growth

of disorder leads to the Mott-insulator–correlated-me-

tal–Anderson-insulator transition.
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We now demonstrate the universality of the disor-

der dependence of the density of states as an example of

the most important single-particle property. We con-

centrate on the most typical case of the evolution of

the density of states shown in Fig. 8a. We can easily

convince ourselves that this evolution is only due to the

general widening of the band due to disorder (cf. (11)),

because all the data for the density of states fit the

same universal curve replotted in appropriate new vari-

ables, with all energies (and temperature) normalized

by the effective bandwidth by replacing D → Deff , as

shown in Fig. 9a, in complete accordance with results

obtained above in the repulsive Hubbard model for a

semi-elliptic band.

In the case of the initial (“bare”) conduction band

with a flat density of states, there is no complete uni-

versality, as is seen from Fig. 9b for sufficiently low

values of disorder. However, for large disorder, the

dashed curve in Fig. 9b practically coincides with uni-

versal curve for the density of states shown in Fig. 9a.

This reflects the simple fact that at enough disorder,

the flat density of states is effectively transformed into

a semi-elliptic one [24].

4.2. Generalized Anderson theorem

The superconducting transition temperature Tc is

not a single-particle characteristic of the system in gen-

eral. The Cooper instability determining Tc is related

to a divergence of the two-particle loop in the Cooper

channel. In the weak-coupling limit, when supercon-

ductivity is due to the appearance of Cooper pairs at

Tc, disorder only slightly influences superconductivity

with s-wave pairing [41, 42]. This is the essence of

the so-called Anderson theorem, and changes of Tc are

only due to the relatively small changes of the density

of states at the Fermi level induced by disorder.

In the BCS–BEC crossover region and in the strong-

coupling region, the Nozieres–Schmitt-Rink approach

[11] assumes that corrections due to strong pairing at-

traction significantly change the chemical potential of

the system, while possible corrections due to this in-

teraction to the Cooper instability condition can be

neglected, and we can hence always use the weak-

coupling (ladder) approximation. Then the condi-

tion of a Cooper instability in the disordered Hubbard

model takes the form

1 = −|U |χ0(q = 0, ωm = 0), (19)

where

χ0(q = 0, ωm = 0) = −T
∑

n

∑

pp′

Φpp′(εn) (20)

represents the two-particle loop (susceptibility) in the

Cooper channel “dressed” only by disorder scattering,

and Φpp′(εn) is the averaged two-particle Green’s func-

tion in the Cooper channel (ωm = 2πmT and εn =

= πT (2n + 1) are the usual boson and fermion Mat-

subara frequencies).

Using the exact Ward identity derived in Ref. [21] ,

G(εn,p)−G(−εn,−p) = −
∑

p′

Φpp′(εn)×

× (G−1
0 (εn,p

′)−G−1
0 (−εn,−p

′)), (21)

where G(εn,p) is the impurity-averaged single-particle

Green’s function (not containing Hubbard interaction

corrections!), we can show [24] that Cooper suscepti-

bility (20) is given by

χ0(q = 0, ωm = 0) =

= T
∑

n

1

2iεn

(

∑

p

G(εn,p)−
∑

p

G(−εn,p)

)

=

= T
∑

n

1

iεn

∑

p

G(εn,p). (22)

After the standard summation over Matsubara frequen-

cies [26], we obtain

χ0(q = 0, ωm = 0) =
1

4πi
×

×
∞
∫

−∞

dε

ε

(

∑

p

GR(ε,p)−
∑

p

GA(ε,p)

)

th
ε

2T
=

= −
∞
∫

−∞

dε

2ε
Ñ0(ε) th

ε

2T
, (23)

where Ñ0(ε) is the density of states (U = 0) renormal-

ized by disorder scattering. In Eq. (23), the energy ε

origin is at the chemical potential. If the origin of en-

ergy is shifted to the middle of the conduction band, we

have to replace ε → ε−µ, and the condition of Cooper

instability (19) leads to the following equation for Tc:

1 =
|U |
2

∞
∫

−∞

dε Ñ0(ε)(ε− µ)−1 th
ε− µ

2Tc

. (24)

The chemical potential of the system at different

values of U and ∆ should now be determined from

DMFT+Σ calculations, i. e., from the standard equa-

tion for the number of electrons (band-filling), deter-

mined by the Green’s function given by Eq. (3), which

allows finding Tc for a wide range of model param-

eters, including the BCS–BEC crossover and strong
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ature on the attractive interaction strength. Black squares,

white circles, and white squares respectively show the results in

Refs. [37, 38, 40] for a quarter-filled band with n = 0.5. Stars

represent the results obtained numerically from the instabil-

ity criterion for the normal phase in Ref. [22]. Filled circles

show Tc in the Nozieres–Schmitt-Rink approximations, com-

bined with DMFT [22]. The continuous black curve represents

the BCS theory result

coupling regions, as well as for different levels of dis-

order. This is the gist of the Nozieres–Schmitt-Rink

approximation: in the weak coupling region, the su-

perconducting transition temperature is controlled by

the equation for Cooper instability (24), while in the

strong-coupling limit, it is determined by the tempera-

ture of Bose–Einstein condensation, which is controlled

by the chemical potential. Then the joint solution of

Eq. (24) and the equation for the chemical potential

guarantees the correct interpolation for Tc through the

BCS–BEC crossover region. In the absence of disorder,

this combination of the Nozieres–Schmitt-Rink approx-

imation with DMFT produces the results for the criti-

cal temperature, which, as shown in Fig. 10, are almost

quantitatively close to the exact results obtained by di-

rect numerical DMFT calculations [22, 37, 38, 40], but

demand much less numerical efforts.

Equation (24) demonstrates that the Cooper insta-

bility depends on disorder only through the disorder

dependence of the density of states Ñ0(ε), which is the

main statement of the Anderson theorem. Within the

Nozieres–Schmitt-Rink approach, Eq. (24) is also pre-

served in the strong-coupling region, where the criti-

cal temperature is determined by the BEC condition

for compact Cooper pairs. However, the chemical po-

tential µ entering Eq. (24) may significantly depend

on disorder. In the DMFT+Σ approximation, this

dependence of the chemical potential (as well as any

other single-particle characteristics) in the model with

a semi-elliptic density of states is only due to the disor-

der widening of the conduction band. In this sense,

both in the BCS–BEC crossover region and in the

strong-coupling limit, a kind of generalized Anderson

theorem actually holds and Eq. (24) leads to a univer-

sal dependence of Tc on disorder, due to the change
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D → Deff . Such a universality is fully confirmed by

direct numerical calculations of Tc in this model, per-

formed in Ref. [23].

In Fig. 11, we present the dependence of Tc (nor-

malized by the critical temperature in the absence of

disorder Tc0 = Tc(∆ = 0)) on disorder for different

values of the pairing interaction U for both models of

the initial semi-elliptic density of states (Fig. 11a) and

for a flat density of states (Fig. 11b ). Qualitatively,

the evolution of Tc with disorder is the same for both

models. In the weak-coupling limit (U/2D ≪ 1), dis-

order slightly suppresses Tc (curves 1 ). At interme-

diate couplings (U/2D ∼ 1), weak disorder increases

Tc, while a further increase in disorder suppresses the

critical temperature (curves 3 ). In the strong-coupling

region (U/2D ≫ 1), the growth of disorder leads to a

significant increase in the critical temperature (curves

4, 5 ). But this rather complicated dependence of Tc

on disorder is actually completely determined simply

by disorder widening of the initial (U = 0) conduction

band, demonstrating the validity of the generalized An-

derson theorem for all values of U . In Fig. 12, the curve

with octagons shows the dependence of the critical tem-

perature Tc/2D on the coupling strength U/2D in the

absence of disorder (∆ = 0) for both models of the ini-

tial conduction bands (semi-elliptic in Fig. 12a and flat

in Fig. 12b ). In both models, the superconducting tran-

sition temperature is well described by the BCS model

in the weak-coupling region (in Fig. 12a, the dashed

curve represents a solution of the BCS model, with Tc

determined by Eq. (24), with the chemical potential in-

dependent of U and determined by the quarter-filling

of the “bare” band), while in the strong-coupling re-

gion, the critical temperature is determined by Bose–

Einstein condesation of Cooper pairs and decreases as

t2/U with an increase in U (inversely proportional to

the effective mass of the pair), passing through a max-

imum at U/2Deff ∼ 1. The other symbols in Fig. 12a

show the results for Tc obtained by a combination of the

DMFT+Σ and Nozieres–Schmitt-Rink approximations

for a semi-elliptic band. We can see that all data (ex-

pressed in normalized units of U/2Deff and Tc/2Deff )

ideally fit the universal curve obtained in the absence

of disorder. For a flat band, the results of our calcu-

lations are shown in Fig. 12b and we do not observe

the complete universality: data points corresponding

to different degrees of disorder slightly deviate from

the curve obtained in the absence of disorder. However,

with an increase in disorder, the flat density of states

gradually transforms to a semi-elliptic one and our data

points move toward the universal curve obtained in the

semi-elliptic case and shown by the dashed curve in

Fig. 12b, confirming the validity of the generalized An-

derson theorem also in this case.

4.3. Ginzburg–Landau coefficients

The universal dependence on disorder is also ob-

served for the Ginzburg–Landau expansion coefficients

A (the homogeneous quadratic term of the expansion)

and B (the fourth-order term), related to Cooper-

channel vertices with the zero sum of incoming (out-
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going) momenta, q = 0. The coefficient A is given

by [26]

A(T ) = χ0(q = 0, T )− χ0(q = 0, Tc), (25)

where χ0(q = 0, T ) is Cooper susceptibility (20), and

subtraction of χ0(q = 0, Tc) guarantees the zero value

of A(T = Tc). Using (19) to determine χ0(q = 0, Tc)

and (23) for χ0(q = 0, T ), we obtain

A(T ) =
1

|U | −
∞
∫

−∞

dε Ñ0(ε) (2(ε−µ))−1 th
ε−µ

2T
, (26)

whence the coefficient A(T ) vanishes as T → Tc, and

can be written as

A(T ) = a(T − Tc). (27)

For a “bare” band with a semi-elliptic density of states,

the dependence of a on disorder is related only to the

general widening of the band by disorder, i. e., is com-

pletely described by the replacement D → Deff . Thus,

in the presence of disorder, we obtain the universal de-

pendence of a on U (normalized by Deff ), shown in

Fig. 13a.

The Ginzburg–Landau coefficient B is determined

by the “loop” diagram with four Cooper vertices [26].

After a rather complicated analysis, to be presented

elsewhere, based on some generalizations of Ward iden-

tity (21), it can be shown exactly that B is given by

B =

∞
∫

−∞

dε

4(ε− µ)3
×

×
(

th
ε− µ

2T
− (ε− µ)/2T

ch2(ε− µ)/2T

)

Ñ0(ε). (28)

Hence, the dependence of the coefficient B on disor-

der, similarly to A, is determined only by the density

of states Ñ0(ε) renormalized (widened) by disorder and

the chemical potential µ. Then, in the case of a semi-el-

liptic density of states, the dependence of B on disorder

is reduced to the simple replacement D → Deff , and

the presence of disorder we again obtain the universal

dependence of B on U , shown in Fig. 13b.

We note that Eqs. (26) and (28) for the coefficients

A and B were otained using the exact Ward identities

and also remain valid in the limit of strong disorder (the

Anderson localized phase), where both A and B depend

on disorder also only via the effective bandwidth Deff .

This universal dependence on disorder (due to only

the replacement D → Deff ) is also reflected in the spe-

cific heat discontinuity at the transition temperature,

which is determined by the coefficients a and B:

Cs(Tc)− Cn(Tc) = Tc

a2

B
. (29)

To determine the coefficient C in the gradient term

of the Ginzburg–Landau expansion, we need the know-

ledge of the nontrivial of q-dependence of the Cooper

vertex [26], which is essentially changed by disorder

scattering. In particular, the behavior of the coeffi-
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Fig. 13. Universal dependence of the Ginzburg–Landau coefficients (a) a and (b ) B on the Hubbard attraction for different

disorder levels. The dotted line with black squares shows the case ∆ = 0

cient C qualitatively changes at the Anderson localiza-

tion transition [41]. Thus, the coefficient C is basically

determined by two-particle charateristics of the system

and does not demonstrate a universal dependence on

disorder due to only changes of the effective bandwidth.

4.4. Number of local pairs

Disorder in the attractive Hubbard model also leads

to the suppression of the number of local pairs (dou-

bly occupied sites). The average number of local pairs

is determined by the local (single site) pair correlation

function 〈n↑n↓〉, which in the absence of disorder in-

creases with the increase in the Hubbard attraction U

from 〈n↑n↓〉 = 〈n↑〉〈n↑〉 = n2/4 for U/2Deff ≪ 1 to

〈n↑n↓〉 = n/2 for U/2Deff ≫ 1, when all electrons

become paired. In our calculations, n = 0.5 (a quar-

ter-filled band), whence n/2 = 0.25 and n2/4 = 0.0625.

The increase in Deff with disorder leads to an effective

suppression of the parameter U/2Deff and the corre-

sponding suppression of the number of doubly occupied

sites. In Fig. 14a, we show the disorder dependence of

the number of doubly occupied sites for three differ-

ent values of the Hubbard attraction. In all cases, the

growth of disorder suppresses the number of doubly oc-

cupied sites (local pairs). Similarly to Tc, the change

of the number of local pairs with disorder can be at-

tributed only to the change of the effective bandwidth

(11) with the increase in disorder. In Fig. 14b, the

curve with black squares shows the dependence of the

number of doubly occupied sites on attractive inter-

action in the absence of disorder at the temperature

T/2D = 0.0586. This curve is actually universal: the

dependence of the number of local pairs 〈n↑n↓〉 on the

scaled parameter U/2Deff with an appropriately scaled

temperature T/2Deff = 0.0586 in the presence of disor-

der is given by the same curve that is shown by circles

representing data obtained for five different disorder

levels shown in Fig. 14b for U/2D = 1.

5. CONCLUSION

In this paper, in the framework of the DMFT+Σ

generalization of dynamic mean field theory [17], we

have studied and compared disorder effects in both

repulsive and attractive Hubbard models. We exam-

ined the problems of both Mott–Hubbard and Ander-

son-metal–insulator transitions in repulsive case, and

the BCS–BEC crossover region of the attractive Hub-

bard model. We also performed extensive calculations

of the densities of states and dynamic (optical) coduc-

tivity for a wide range of interactions U and at differ-

ent disorder levels ∆, demonstrating similarities and

dissimilarities between repulsive and attractive cases.

We have shown analytically for case conduction

band with a semi-elliptic density of states (which is

a good approximation for the three-dimensional case)

that in the DMFT+Σ approximation, disorder influ-

ences all single-particle properties (e. g., density of

states) in a universal way: all changes of these proper-

ties are due to only the disorder widening of the con-

duction band. In the model of a conduction band

with a flat density of states (which is more appro-

priate for two-dimensional systems), there is no such
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Fig. 14. (a) Dependence of the number of local pairs on disorder for different values of the Hubbard attraction and (b ) the

universal dependence on disorder expressed via normalized variables at the fixed value U/2D = 1

an universality in the region of weak disorder. But

the main effects are again due to the general widen-

ing of the band and the complete universality is re-

stored for high enough disorder, when the density of

states effectively becomes semi-elliptic. Similar uni-

versal dependences on disorder are also reflected in

the phase diagram of the repulsive Hubbard model

and in the superconducting critical temperature of the

attractive Hubbard model, where the combination of

DMFT+Σ and Nozieres–Schmitt-Rink approximations

demonstrates the validity of the generalized Anderson

theorem in both the BCS–BEC crossover and strong-

coupling regions.

Naturally, no universal dependences on disorder

were obtained for the two-particle properties like op-

tical conductivity, where vertex corrections due to dis-

order scattering become very important, leading to new

physics, like that of Anderson transition.

Overall, using the DMFT+Σ approximation to

analyze the disorder effects in the Hubbard model

was shown to produce reasonable results for the phase

diagram in the repulsive case, as compared to exact

numerical simulations of disorder in DMFT, the be-

havior of the density of states and optical conductivity

in both repulsive and attractive cases. However,

the role of approximations made in DMFT+Σ,

such as the neglect of the interference of disorder scat-

tering and correlation effects, deserves further studies.

It is a pleasure and honor to dedicate this short re-

view to Professor Leonid Keldysh’ 85th birthday. This

work is supported by the RSF grant №14-12-00502.
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