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We analyze the role of local geometry in the spin and orbital interaction in transition metal compounds with

orbital degeneracy. We stress that the tendency observed in the most studied case (transition metals in O6

octahedra with one common oxygen — common corner of neighboring octahedra — and with ∼ 180
◦ metal–oxy-

gen–metal bonds), that ferro-orbital ordering renders antiferro-spin coupling and, vice versa, antiferro-orbitals

give ferro-spin ordering, is not valid in the general case, in particular, for octahedra with a common edge and

with ∼ 90
◦ M–O–M bonds. Special attention is paid to the “third case”, that of neighboring octahedra with a

common face (three common oxygens), which has largely been disregarded until now, although there are many

real systems with this geometry. Interestingly enough, the spin–orbital exchange in this case turns out to be

simpler and more symmetric than in the first two cases. We also consider which form the effective exchange

takes for different geometries in the case of strong spin–orbit coupling.
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1. INTRODUCTION

The study of correlated systems with orbital or-

dering is currently a very active field of research in

solid state physics. Orbital ordering not only is ac-

companied (or caused) by structural transitions, but

also largely determines magnetic properties of many

materials, e. g., transition-metal oxides: according to

the Goodenough–Kanamori–Anderson rules [1], the or-

bital occupation largely determines the magnitude and

even the sign of exchange interaction. By modifying or-

bital occupation, one can control magnetic properties

of a system [2]. Besides more traditional electron–lat-

tice (Jahn–Teller) mechanism [3] of orbital ordering, a

purely electronic (exchange) mechanism can also lead

* E-mail: khomskii@ph2.uni-koeln.de

to both orbital and magnetic ordering [4], which appear

to be coupled.

The coupled spin and orbital ordering depends not

only on the electronic structure of constituent ions but

also on the local geometry of the system. The most

often treated case is the system with a transition metal

ion (M) surrounded by the ligand (e. g., oxygen, O)

octahedra, with these neighboring MO6 octahedra ha-

ving one common oxygen (common corner) with the

M–O–M angle of about 180◦ (it may also be smaller

than 180◦, but small deviations of this angle from 180◦

do not play an important role; see, e. g., [5]). This sit-

uation is met, for example, in such important systems

as perovskites, e. g., CMR manganites (LaSr)MnO3

or in high-Tc cuprates like (LaSr)2CuO4. Much is

known in this case: what form takes the electron–lattice

(Jahn–Teller) interaction that leads to orbital ordering

and how the spin exchange looks. The general conclu-

sion reached in the study of these systems is that ferro-
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orbital ordering usually leads to the antiferromagnetic

spin ordering and vice versa, antiferro-orbital order-

ing gives rise to the ferromagnetic spin exchange. This

“rule” became a kind of “folklore” and is used by many

theoreticians and experimentalists to explain or predict

the type of coupled spin and orbital ordering in various

systems with different crystal structures. However, we

must realize that this “rule” was derived for this par-

ticular geometry, and it does not have to be fulfilled in

other cases. For example, it is not the case for neigh-

boring MO6 octahedra having two common oxygens

(common edge) with the M–O–M angle of about 90◦.

There are a number of interesting and important ma-

terials with this local geometry, including the “battery

material” LiCoO2, many frustrated systems, multifer-

roics, etc. (we note that the deviations from the “pure”

90◦ M–O–M angle may have more drastic consequences

here). As we discuss below (see also [5, 6]), this general

“rule” is strongly violated in this case.

There also exists a much less studied “third case”

of neighbors with three common oxygens, the systems

with MO6 octahedra sharing a common face. Under-

standing the systematics of coupled spin and orbital

ordering in these different cases is an interesting and

practically important problem, which is discussed in

this paper.

In addition to the local M–O geometry, which is

crucial for the superexchange originating from the vir-

tual hopping of d electrons via ligands, e. g., oxygens, in

the second and the third cases (common edge and com-

mon face), in contrast to the simpler case of a common

corner, electron hopping leading to superexchange can

occur not only via ligands: there may also exist a signi-

ficant direct overlap of certain d orbitals of neighboring

transition metal ions. The resulting direct exchange

should also be taken into account in certain cases; it

can lead to very nontrivial effects [6].

One more factor, important especially for heavy

(4d, 5d) transition metals and attracting much atten-

tion nowadays, is the role of the relativistic spin–orbit

coupling, which for these elements could be very signif-

icant and which could sometimes dominate the proper-

ties of corresponding systems. In this paper, we con-

sider these effects for different geometries.

The plan of the paper is as follows. In Secs. 2

and 3, we briefly summarize the known properties of

spin and orbital exchange for the geometries with a

common corner (the M–O–M angle of about 180◦) and

common edge (90◦ M–O–M bonds). In particular, we

want to stress several important features that distin-

guish these two cases. We also compare the situation in

these two cases for systems with strong spin–orbit cou-

pling. Then, in Secs. 4 and 5, we discuss the much less

studied case of systems with a common face of neigh-

boring MO6 octahedra, partly using the results of our

recent paper [7] and generalizing those to the case a

finite noncubic crystal field and also to that of signif-

icant spin–orbit coupling. The details of calculations

are given in Appendix.

2. SYSTEMS WITH THE COMMON-CORNER

GEOMETRY

The geometry of systems with MO6 octahedra sha-

ring a common corner is illustrated in Fig. 1a. Here, the

transition metals are rather far away from each other,

with ligand (oxygen) ions in between. In such a situa-

tion, all electron hoppings occur via oxygens. We also

show in Fig. 1b what the crystal field splitting is in the

case of ideal octahedra. For the tetragonal reference

frame with axes directed from M to O ions, the eg or-

bitals are |x2−y2〉 and |3z2−r2〉, while the t2g orbitals

are |xy〉, |yz〉, and |zx〉.
In the simple case of one electron or one hole in a

doubly degenerate eg orbital (Cu2+ or low-spin Ni3+),

we can describe the state of an ion by the spin S =

= 1/2 and by the orbital occupation, which can also be

mapped into pseudospin-1/2 situation, with the pseu-

dospin projection τz = 1/2 corresponding to orbital 1,

say |x2−y2〉, and τz = −1/2 to orbital 2, |3z2−r2〉. We

can also make arbitrary linear superpositions of these

states, of the type

α|3z2 − r2〉+ β|x2 − y2〉, |α|2 + |β|2 = 1,

where coefficients α and β can in principle be complex

[8]. For one electron per site and in the strongly inter-

acting case (with the Hubbard on-site electron repul-

sion U much larger than the electron hopping integral

t), the usual treatment in the perturbation theory in

t/U leads to the following schematic form of the ex-

change Hamiltonian:

H = J1
∑

〈ij〉

Si · Sj +
∑

〈ij〉

Jαβ
2,ijτ

α
i τ

β
j +

+
∑

〈ij〉

Jαβ
3,ij(Si · Sj)(τ

α
i τ

β
j ), (1)

where the summation is taken over the nearest-nei-

ghbor sites, Si is the spin of site i, and the pseu-

dospin operators τi describe the orbital state in the

case of double orbital degeneracy (say, for eg levels).

The spin part of this exchange is of a Heisenberg type

(Si ·Sj), but the orbital part may be more complicated,
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Fig. 1. (a) Corner-sharing octahedra: large and small circles respectively denote metal and ligand ions. (b ) Crystal field (CF)

splitting of d orbitals of the metal ion

containing anisotropic terms like τzi τ
z
j , τ

x
i τ

x
j , τ

z
i τ

x
j , etc.,

which, in addition, depend on the relative orientation

of sites i and j. Only in a more symmetric model (not

actually realized for eg states) with the effective d–d

hopping such that t11 = t22 = t, t12 = 0 does the effec-

tive Hamiltonian take the simpler symmetric form [4]

H = J
∑

〈ij〉

(

1

2
+ 2Si · Sj

)(

1

2
+ 2τi · τj

)

, (2)

which has a rather high, not only SU(2) × SU(2), but

even SU(4) symmetry [9–11]. Similarly, one can obtain

the effective spin–orbital model for triply degenerate

t2g electrons, which, instead of pseudospin-1/2 orbital

operators τi, would contain effective orbital l = 1 oper-

ators, li, describing three t2g states [12]. In the general

case, these operators enter not only as lilj, but also

with invariants of the type lzi l
z
j − 2/3 or lxi l

y
j + lyi l

x
j , etc.

As mentioned in the Introduction, in the doubly

degenerate case for simple lattices such as that of per-

ovskites AMO3 with MO6 octahedra having common

corner (one common oxygen, with the M–O–M angle

of ≈ 180◦, see Fig. 1a), the typical situation is that

the ferro-orbital ordering gives rise to the antiferromag-

netic spin exchange, whereas antiferro-orbital ordering

is rather favorable for spin ferromagnetism. However,

we must realize that this conclusion was reached in a

particular case, for systems with particular geometry,

with 180◦ M–O–M superexchange, and the situation is

very different in other cases, as we demonstrate below.

We conclude this section by presenting the results

for this geometry in the case of the strong spin–orbit

coupling. The spin–orbit coupling is quenched for eg
electrons (see, e. g. [1, 5]), but the interesting and non-

trivial results can occur for partially filled t2g levels.

However, just this is the typical situation for the 4d and

5d compounds for which spin–orbit coupling is strong:

due to the large crystal field splitting ∆CF = 10Dq

and smaller Hund’s energy (Hund’s rule coupling JH
is 0.8–0.9 eV for 3d elements, 0.6–0.7 eV for 4d, and

near 0.5 eV for 5d), these ions are usually in the low-

spin state, i. e., their electrons first fill the t2g levels,

and only for nd > 6 electrons start to occupy the eg
levels. In these cases, one can sometimes project elec-

tronic states to the ground-state multiplets calculated

including spin–orbit coupling. Here, we have to dis-

criminate between the cases with different electron oc-

cupation (a less-than-half-filled t2g shell, nt2g < 3, and

a more-than-half-filled shell, nt2g > 3). The second (or

the third) Hund’s rule for partially filled t2g shells tells

us that the ground state multiplet for nt2g < 3 cor-

responds to the maximum possible total momentum

j, and for a more-than-half-filled t2g shell, — to the

minimum possible j. In effect, e. g., for dominating

spin–orbit coupling, the ions with the d5 configuration

(Ir4+, Os3+) would have a Kramers doublet j = 1/2 as

a ground state (for the t2g triplet, leff = 1 and S =

= 1/2, which gives the j = 1/2 doublet as a ground

state), which can be described by the effective spin

σ = 1/2 (usual Pauli matrices) [5, 13]. The superex-

change can then be projected onto this subspace and

written through the pseudospin j = 1/2 operators. The

form of this exchange for strongly localized electrons

(U > JH ≫ t) has been obtained for perovskites with

180◦ exchange, e. g., Sr2IrO4, and for 90◦ exchange,

e. g., for Na2IrO3, in Ref. [14]. The resulting exchange

interaction in terms of j = 1/2 looks very different: it

is predominantly Heisenberg-like for 180◦ bonds, but

is strongly anisotropic (Ising-like) for each Ir–O–Ir pair

in case of IrO6 octahedra with common edge oxygens.

Indeed, for corner-sharing octahedra, the dominant ex-

change has the simple Heisenberg form [14]

H = J
∑

〈ij〉

σi · σj , (3)
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where σ are the Pauli matrices describing the effec-

tive spin 1/2 for the j = 1/2 Kramers doublets. We

see that the strong spin–orbit coupling can effectively

remove orbital degeneracy, and instead of the compli-

cated spin–orbital Hamiltonian of the type of Eqs. (1)

or (2) (or an even more complicated form for the triple

t2g degeneracy; see above and Ref. [12]), we obtain the

simple Heisenberg interaction (3). However, whether

in real cases we indeed meet the situation in which the

spin–orbit coupling dominates, is a special question,

which should be addressed for each specific system.

3. SPIN-ORBITAL EXCHANGE FOR

OCTAHEDRA WITH A COMMON EDGE

Another typical situation in transition-metal com-

pounds is that with neighboring transition-metal ions

having two common oxygens; for systems with MO6 oc-

tahedra, this is the case of a common edge, with ≈ 90◦

M–O–M bonds, see Fig. 2 (instead of oxygens, there

may be other ligands: halogens such as F, Cl, or S,

Se, Te, etc.). This situation is typical, for example,

for B sites of spinels, or in layered materials with CdI2
or with delafossite structures, etc. In this case, the

situation with spin–orbital exchange is quite different

from that for octahedra with a common corner (see,

e. g., [15] and the discussion below). For example, for

eg electrons, the exchange interaction is ferromagnetic

for both ferro- and antiferro-orbital ordering. The ef-

fective superexchange interaction in the case of doubly

degenerate eg orbitals schematically has the form [15]

(in the symmetric case)

H12 = −J̃

(

3

4
+S1 · S2

)[(

1

2
+T z

x,1

)(

1

2
+T z

y,2

)

+

+

(

1

2
+ T z

y,1

)(

1

2
+ T z

x,2

)]

, (4)

Fig. 2. Edge-sharing octahedra. Large and small circles re-

spectively denote metal and ligand ions

where the first multiplier is the projection operator to

a ferromagnetic (spin-triplet) state of a dimer M1M2,

and the first term in square brackets is the projection to

the orbitals |3x2− r2〉 and |3y2− r2〉 at respective sites

1 and 2 and similarly for the second term in the square

brackets, with the corresponding exchange of relevant

orbitals (Fig. 3a). Here, T z
x and T z

y are the operators

corresponding to |3x2 − r2〉 and |3y2 − r2〉 orbitals:

T z
x =

1

2
τz −

√
3

2
τx,

T z
y =

1

2
τz +

√
3

2
τx.

(5)

Only these orbitals overlap with |px〉 and |py〉 orbitals

of oxygens Oa (and “reversed” orbitals |3y2 − r2〉 on

the site M1 and |3x2 − r2〉 on site M2 with p orbitals

of Ob) and contribute to exchange; orthogonal orbitals

do not overlap with p orbitals and do not contribute to

the exchange (e. g., the |y2 − z2〉 orbital at a site M1 is

orthogonal to all p orbitals of oxygen Oa in Fig. 3a). In

effect, the spin exchange turns out to be ferromagnetic

for any ordering of eg orbitals.

This fact is also illustrated in Fig. 3b for |x2 − y2〉
ferro-orbital ordering. This orbital from the site M1

overlaps with the |px〉 orbital of oxygen Oa (and with

the |py〉 orbital of oxygen Ob), whereas the same d or-

bital of the transition-metal site M2 overlaps with the

orthogonal |py〉 orbital of this oxygen (and with the

|px〉 orbital of oxygen Ob). In effect, we have ferro-

magnetic spin exchange of these two ions, stabilized by

the Hund’s rule exchange at an oxygen, JH,p, when we

virtually move two electrons from this oxygen to the

transition-metal sites M1 and M2, such that the result-

ing ferromagnetic exchange constant becomes

J̃ ∼
t4pd

∆2
CT (∆CT + Up/2)

JH,p

(∆CT + Up/2)
, (6)

where tpd is the metal–oxygen p–d hopping amplitude,

∆CT is the charge-transfer energy needed to move an

electron from an oxygen to a metal ion, dnp6 → dn+1p5,

and Up is the on-site Coulomb repulsion energy of p

electrons at an oxygen site. Such a situation occurs,

for instance, in Mn3O4 spinel, with Mn3+ ion at octa-

hedral sites: the B–B exchange is here ferromagnetic,

despite the ferro-orbital ordering (in this case, the oc-

cupied eg orbitals are |3z2−r2〉 with the corresponding

strong tetragonal elongation with c/a ∼ 1.15). We note

that this result is valid for Mott–Hubbard insulators,

and it should be modified for the charge-transfer insu-

lators [16] (see, e. g., [14, 17]).

We also note that for t2g electrons with 90◦ M–O–M

bonds in contrast to the eg case, we can have both
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Fig. 3. (a) “Active” orbitals contributing to the M1–Oa–M2 superexchange for the 90
◦ metal–oxygen–metal bonds typical for the

common edge geometry. (b ) Ferro-orbital ordering of |x2 − y2〉 orbitals in the xy plane in the case of edge-sharing octahedra.

(c) Antiferro-orbital ordering of |yz〉 and |zx〉 orbitals in the xy plane in the case of edge-sharing octahedra

ferro- and antiferromagnetic exchange, depending on

the orbital occupation and on the exchange path. For

antiferro-orbital ordering with orbitals shown in Fig. 3c

(occupied orbitals are |zx〉 and |yz〉 on the M2O2 pla-

quette in the xy plane), the overlap with the |pz〉 or-

bital of the oxygen Oa gives strong antiferromagnetic

spin exchange with

J̃ ∼
t4pd
∆2

CT

[

1

U
+

1

∆CT + Up/2

]

. (7)

For a different orbital occupation, however, the exchan-

ge could again be ferromagnetic (see, e. g., Ref. [5, 18]

for details).

We also note that in the case of 90◦ M–O–M bonds,

the direct d–d hopping amplitude tdd, for example, for

the |xy〉 orbitals lying in the xy plane in Fig. 3c and

pointing directly toward one another (along the diago-

nal on the M2O2 plaquette), may be quite significant

and give a contribution to the antiferromagnetic ex-

change J of about t2dd/U .

The situation with a common edge is also much

richer and more complicated than that with a common

corner in the case of strong spin–orbit coupling. Again,

as we discussed above, the nontrivial effects appear for

partially filled t2g shells, and we have to consider se-

parately the cases with a less than-half-filled t2g shell

nt2g < 3, and a more-than-half-filled shell nt2g > 3. As

mentioned above, in the first case, we have an inverted

multiplet order, with the multiplet with the maximum

j (and maximum degeneracy) lying lower in energy.

This case is more difficult to consider technically, but

at present it also attracts less attention, even though

one might expect some interesting properties in this

case as well. However, the main attention is attracted

nowadays to the second case, e. g., to the systems with

Ir4+, Ru3+ (d5), and Ir5+, Ru4+ (d4), where the ground

state of an isolated ion is the state with the minimum

j = 1/2 for d5 and the nonmagnetic j = 0 state for the

d4 configuration. How good is the limit of isolated ions

for concentrated systems, in which the intersite elec-

tron hopping may become comparable to or even ex-

ceed the spin–orbit coupling, is a very important and

open question. However, if the atomic limit could be

used as a valid starting point and the electron hopping

be treated as a small perturbation, one would obtain a

very nontrivial result for d5 ions (like Ir4+) in the com-

mon edge geometry: the resulting exchange projected

to j = 1/2 states has not a Heisenberg, but rather an

Ising form [14] of the type of σzσz , where the z axis is

the direction perpendicular to the plane of the M2O2

(e. g., Ir2O2) plaquette. For systems with honeycomb

lattices like Na2IrO3 [19] or RuCl3 [20], the resulting

exchange contains different effective spin combinations

(σxσx, σyσy, and σzσz) for different bonds, and hence

in effect these compounds may be an example of what

is known as system with the Kitaev interaction [21] —

a particular case of the so-called compass model [4]

(see also [22]). From our perspective, we again see

that strong spin–orbit coupling acts against the usual

(Jahn–Teller) orbital ordering, reducing initial degen-

eracy of the system differently than the usual orbital

ordering does.

4. SPIN–ORBITAL EXCHANGE FOR THE

OCTAHEDRA WITH A COMMON FACE

Both situations, with MO6 octahedra with com-

mon corners (one common ligand, ∼ 180◦ M–O–M

bonds) and with a common edge (two common oxy-

gens, ∼ 90◦ M–O–M bonds) are rather well studied the-

oretically and are considered in many publications (see,

e. g., [1, 4, 5, 18]). However, there exists a third, much

less studied situation with neighboring MO6 octahe-

dra having a common face, i. e., having three common
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Fig. 4. A chain of face-sharing octahedra. Large and small

circles respectively denote metal and ligand ions. The a1g or-

bital, which has a strong direct overlap with a similar orbital

on the neighboring site, is shown for one transition metal ion

oxygens. This situation is illustrated schematically in

Fig. 4. Here, the superexchange occurs via three oxy-

gens, with the M–O–M angle for ideal (undistorted)

MO6 octahedra equal to about 70.5◦. In this case (as

well as in the case of edge-sharing octahedra, see Fig. 2)

the direct d–d hopping can be rather large (the metal–

metal distance in Figs. 2 and 4 is usually rather short,

sometimes even shorter than that distance in the corre-

sponding metal!); for a common face, the correspond-

ing orbital of a1g symmetry has a form shown for one

transition-metal ion in Fig. 4. The situation with the

orbital ordering and the form of the resulting spin and

orbital exchange for compounds with face-sharing oc-

tahedra was not known until recently. Nevertheless,

experimentally there are many transition-metal com-

pounds with such a geometry. These are, for example,

hexagonal crystals like BaCoO3 [23], CsCuCl3 [24], or

Ba9Rh8O24 [25] (see the right part of Fig. 5, containing

infinite columns of face-sharing ML6 octahedra, where

L stands for ligands O, Cl,. . . ). Many other similar sys-

tems have finite face-sharing blocks, e. g., Ba5AlIr2O11

[26], BaIrO3 [27], or BaRuO3 [28, 29], Ba3CuSb2O9

[30]. There can exist more complicated connections

of such blocks, like in Ba4Ru3O10 [31] (the middle part

of Fig. 5). Such systems have very diverse properties:

some of them are metallic, but there are also good insu-

lators among them, with very different magnetic prop-

erties. Anyway, the first problem to consider for such

systems is the question of a possible orbital and mag-

netic exchange in this geometry. This question was

recently addressed in [7]; below, we, first, briefly repro-

duce these results, and then generalize them to certain

specific situations, in particular, to the case of different

distortions of octahedra and to the strong spin–orbit

coupling.

We consider the form of the spin–orbital (“Ku-

gel–Khomskii”) superexchange for transition metals

with double or triple orbital degeneracy for neighbo-

ring transition-metal ions with face-sharing octahedra.

One surprising result of our study is that, whereas the

form of orbital term in Hamiltonian (1) is rather com-

plicated for a doubly degenerate system of perovskite

type with 180◦ M–O–M bonds [4], a situation similar

to the symmetric model in Eq. (2) is realized for a com-

mon face. In effect, in such real systems, the dominant

term proportional to t2/U in the spin–orbital superex-

change has a very high symmetry, SU(4), and therefore

such materials may be real examples of the applicability

of such a fancy model (the higher-order terms in this

Hamiltonian, containing Hund’s rule coupling, JH/U

or JH/∆CT [16], have a more complicated form; see

below).

The MO6 octahedra often have trigonal distortions

in such geometry (e. g., they are elongated or com-

pressed along the vertical z axis connecting transition-

metal ions in the chain). Such local distortions lead

to the splitting of t2g orbitals into the a1g singlet and

the eπg doublet, Fig. 6b; the original eg (eσg ) doublet

remains unsplit. Also the crystal structure itself leads

to such a trigonal crystal field splitting even for ideal

undistorted MO6 octahedra, in particular, due to in-

teractions with the transition metal ions in neighboring

octahedra. It can be shown that if we have a partially

filled eπg doublet, the resulting superexchange is very

similar to that for “real” eg electrons. Nevertheless,

there is one important difference when we are dealing

with t2g states, in contrast to eg ones: for eg states,

the orbital momentum is quenched and the real rela-

tivistic spin–orbit coupling λl · S does not work in the

first order, but for t2g electrons it is not the case, and

the spin–orbit coupling has to be taken into account.

It can modify the resulting form of superexchange even

when spin–orbit coupling is relatively weak. The effect

of spin–orbit coupling can be especially important for

heavy 4d and especially 5d elements, for which λ may

be comparable with the Hund’s rule coupling constant

JH and even with the Hubbard interaction U . In this
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Fig. 5. (Color online) Different arrays of face-sharing octahedra in various transition metal compounds
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Fig. 6. (a) Magnetic atom (M) surrounded by a trigonally distorted oxygen (O) octahedron in transition metal compounds with

face sharing. Distortions are determined by the angle θ; the value cos θ0 = 1/
√
3 corresponds to an undistorted octahedron.

Magnetic atoms often form a quasi-one-dimensional chain directed along the z axis. (b ) Crystal field splitting of d orbitals of the

magnetic atom. The splitting of t2g levels (∆1) is due to both the trigonal distortions of oxygen octahedra and the contribution

from the neighboring M atoms to the crystal field. The sign of ∆1 can be different depending on the type of distortions

case, we may again need to go over to the description

in terms of the effective total momentum j = l + S.

As mentioned in Sec. 2, for Ir4+ (t52g), for example, the

resulting picture corresponds to the doublet j = 1/2.

The form of the resulting exchange for these effec-

tive Kramers doublets j = 1/2 in the cases of a common

corner and a common edge was presented in Secs. 2 and

3. How this interaction would look for the face-sharing

octahedra, e. g., in BaIrO3, was not studied yet; we

consider this case, too, and derive the corresponding

form of the superexchange. It turns out that for the fa-

ce-sharing octahedra, the form of the exchange for this

doublet is again more symmetric and has the Heisen-

berg form σi ·σj , i. e., it resembles the case of the 180◦

Ir–O–Ir bonds.

4.1. The model

We consider a linear chain of 3d ions located at the

centers of anion octahedra with face-sharing geometry.

Two reference systems are of interest: the local tetrago-

nal reference system of each magnetic ion and a global

trigonal system in which the z axis is directed along the

chain and the x and y axes are in the plane perpendi-
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cular to the chain. We note that two nearest-neighbor

ions have relatively rotated local axes and therefore we

cannot use the same tetragonal reference system for

them. The local tetragonal reference systems are cho-

sen such that the trigonal z axis corresponds to the

same [111] direction for them. In what follows, we

choose the trigonal reference frame as shown in Fig. 6a.

The trigonal distortions can be characterized by the

angle θ also shown in this figure. For the ideal MO6

octahedron, we have θ = θ0 ≡ arccos(1/
√
3 ) = 54.74◦,

while the M–O–M angle is β0 = π − 2θ0 ≈ 70.5◦.

The crystal field felt by the magnetic ions has an

important component of cubic symmetry due to the

octahedra of anions, and also a component with trigo-

nal symmetry due to both the ions along the chain and

the trigonal distortions of octahedra. In an octahedral

field, the electron d levels are split into a triple-dege-

nerate level (t2g) and a doubly degenerate level (eg).

These levels can be further split by the trigonal field

and the spin–orbit coupling. We study these cases se-

parately.

4.2. Undistorted octahedra, eg levels

As a minimum model for the chain, we take the

Hubbard model for degenerate electrons, in which we

also make a simplifying assumption that the on-site

Hubbard repulsion U is the same for all orbitals (i. e.,

we effectively put the Hund’s rule coupling JH to zero).

This simplification is sufficient for our main purposes;

we mention possible modifications due to the inclusion

of JH when necessary. This Hamiltonian has the form

H =
∑

〈ij〉

∑

γγ′

∑

σσ′

tγγ
′

ij c†iγσcjγ′σ′ +

+
U

2

∑

i

∑

γγ′

∑

σσ′

niγσniγ′σ′(1− δγγ′δσσ′), (8)

c†iγσ and ciγσ are the creation and annihilation opera-

tors of a d electron with the orbital state γ and spin

projection σ located at site i, niγσ = c†iγσciγσ, and

〈ij〉 denotes the summation over nearest-neighbor sites.

The first term describes the kinetic energy and the se-

cond one corresponds to the on-site Coulomb repulsion,

which we treat as the largest parameter (i. e., we con-

sider the case of strong Mott insulators with orbital de-

generacy). As is shown below, the situation where the

effective d–d hopping occurs via ligands (in this case,

via three oxygens, see Fig. 6a) can also be reduced to

this form.

We first consider the chain build up by the ideal

metal–oxygen octahedra. We start with calculating the

orbitals of interest at each site. It is known (see, e. g.,

Ref. [13]) that both the trigonal field and the spin–or-

bit coupling do not split the eg levels. In the trigonal

coordinate system, the eg doublet for two neighboring

magnetic ions along the chain can be written as [7, 32]

|d1〉 =
1√
3
|x2 − y2〉 −

√

2

3
|xz〉,

|e1〉 = − 1√
3
|xy〉 −

√

2

3
|yz〉

(9)

for an ion M1 and

|d2〉 =
1√
3
|x2 − y2〉+

√

2

3
|xz〉,

|e2〉 = − 1√
3
|xy〉+

√

2

3
|yz〉

(10)

for the nearest-neighbor ion M2.

Electron hopping amplitudes entering Hamiltonian

(8) have two contributions in our case, which can be

of the same order of magnitude for this particular geo-

metry: the direct hopping between two magnetic ions

along the chain, td–dγγ′ , and the indirect (superexchange)

hopping via the anions, tvia A
γγ′ . We consider both situa-

tions separately.

It is easy to see that the direct d–d hopping exists

only between the same orbitals. The corresponding

hopping integrals can be expressed through the Sla-

ter–Koster parameters [33]

〈xy|t̂|xy〉 = 〈x2 − y2|t̂|x2 − y2〉 = Vddδ, (11)

〈yz|t̂|yz〉 = 〈xz|t̂|xz〉 = Vddπ. (12)

Hence, in effect, we have only diagonal (and equal) hop-

pings

td−d = td−d
|d2〉|d1〉

= td–d|e2〉|e1〉
=

1

3
Vddδ +

2

3
Vddπ (13)

and
td–d|e2〉|d1〉

= td–d|e2〉|d1〉
= 0. (14)

Similarly, it can be shown that the hopping inte-

grals via intermediate oxygen ions, after we sum over

all three of them, have the same feature [7],

tvia A
γγ′ = t = t0δγγ′, t0 =

3

2
(t1 + t2), (15)

where t1 = 〈d1|t̂via O|d2〉 and t2 = 〈e1|t̂via O|e2〉 are

the hopping integrals via one of the oxygen ions. As

a result, we here have exactly the same situation as

in the symmetric model described in Sec. 2, with the

hopping between two degenerate orbitals satisfying the
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relations t11 = t22 = t and t12 = 0, and therefore,

in the leading approximation, we actually have SU(4)

spin–orbital model (2) also in the case of face-sharing

transition metal compounds.

This is a rather general result based only on the

existence of the three-fold trigonal axis and it does not

depend on the specific features of the superexchange

paths.

When going beyond the lowest order and including

the Hund’s rule coupling JH , the total exchange takes

the form (see also [4])

Heff =
t2

U

∑

〈ij〉

{(

1

2
+ Si · Sj

)(

1

2
+ τi · τj

)

+

+
JH/U

1− (JH/U)2

[

2
(

τi · τj − τzi τ
z
j

)

−
(

1

2
+ 2Si · Sj

)

×

×
(

1

2
−2τzi τ

z
j

)]

+
(JH/U)2

1−(JH/U)2

[

−
(

1

2
−2τzi τ

z
j

)

+

+ 2

(

1

2
+ Si · Sj

)

(

τi · τj − τzi τ
z
j

)

]}

. (16)

We note here that, strictly speaking, similarly to

the case of a common edge in Sec. 3, Hamiltonian (16)

is valid only for Mott–Hubbard insulators, when U <

< ∆CT . The opposite limit of charge-transfer insula-

tors, U > ∆CT , requires separate analysis.

4.3. Undistorted octahedra, the t2g case

The systems with transition-metal ions surrounded

by octahedra with a common face typically have the

trigonal symmetry, even for regular MO6 octahedra.

In reality, however, these octahedra are also usually

distorted. Such distortions could preserve the C3 sym-

metry and would correspond to a compression or stret-

ching of these octahedra along the z direction shown in

Fig. 6a. The trigonal crystal field does not split the eg
levels, but leads to a splitting of the t2g levels into an

a1g singlet and an eπg doublet. Which level lies lower,

singlet or doublet, depends on the sign of the trigonal

crystal field. In the trigonal coordinate system (with

the z axis along the chain), these wave functions are as

follows: for the a1g singlet,

|a1〉 = |3z2 − r2〉, (17)

and for the eπg doublet,

|b1〉 = − 2√
6
|xy〉+ 1√

3
|yz〉,

|c1〉 =
2√
6
|x2 − y2〉+ 1√

3
|xz〉

(18)

for an ion M1, and the same singlet

|a2〉 = |3z2 − r2〉 (19)

and a doublet

|b2〉 = − 2√
6
|xy〉 − 1√

3
|yz〉,

|c2〉 =
2√
6
|x2 − y2〉 − 1√

3
|xz〉

(20)

for the nearest-neighbor ion M2.

These expressions are valid for the ideal MO6 oc-

tahedra, where the M–O–M angle is about 70.5◦. The

trigonal distortions lead to modifications of the eπg wave

functions. A detailed description of such modifications

is given in the Appendix. These modifications, how-

ever, do not change the main conclusion that here too,

only diagonal hoppings are nonzero (see below).

If one electron occupies the a1g level, there remains

no orbital degeneracy, and the spin exchange is triv-

ially antiferromagnetic. More interesting is the case of

one electron (or hole) at the eπg level. It can be shown

[7] that in this case, similar to the case of “real” eg
electrons discussed in Sec. 4.2, we have a symmetric

model with the hoppings 〈b1|t̂|b2〉 = 〈c1|t̂|c2〉 = t and

〈b1|t̂|c2〉 = 0, and hence we also eventually have the

resulting spin–orbital model (2) with the SU(4) sym-

metry, or the more general exchange (16). The de-

tailed form of wave functions |b〉 and |c〉 depends on

the noncubic (here, trigonal) crystal field, and it is dif-

ferent from those written above (see the Appendix),

but it does not change conclusions qualitative and

only changes numerical values of exchange constants

in Hamiltonians (2) and (16).

4.4. Role of spin–orbital interaction

In Secs. 2 and 3, we already presented the form of

the effective exchange interaction in the case of a very

strong spin–orbit coupling, for which (e. g., for ions like

Ir4+ or Ru3+ with the d5 configuration) the whole de-

scription can sometimes be reduced to that of a se-

parate j = 1/2 Kramers doublet (see the E3 doublet

in Fig. 7). In this subsection, we consider the same

problem for systems with common faces, also taking

trigonal crystal field mentioned in the previous section

into account.

First, we consider the simplest case of regular oc-

tahedra with the degenerate t2g orbital triplet in same

case of ions like Ir4+ for a strong spin–orbit coupling.

In this case, the wave functions of the separate j = 1/2
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Fig. 7. Spin–orbital interaction splits the eπg and a1g energy

levels into three Kramers doublets with energies E1, E2, and

E3. For undistorted octahedra and negligible effect of nearest-

neighbor magnetic atoms, there is one quartet with energy

E1 = E2 = −λ/2 and one doublet with energy E3 = 2λ

doublet E3 for the site M1 are analogous to those dis-

cussed in [5, 13, 14]:

|j = +1/2〉 = 1√
3
[−|a1g, ↑〉+ |(−c1 + ib1), ↓〉] ,

|j = −1/2〉 = 1√
3
[−|a1g, ↓〉+ |(c1 + ib1), ↑〉] ,

(21)

and a similar expression for the site M2 with the wave

functions |b2〉 and |c2〉 instead of |b1〉 and |c1〉 (see

(17)–(20)). Here, a1g states correspond to lzeff = 0,

and the states |b1 ± ic1〉 to states with lzeff = ±1 for

quantization along the z axis in the global coordinate

system of Fig. 6a.

Projecting into this manifold and using wave func-

tions (17)–(20), we easily obtain that the hopping ma-

trix elements are diagonal and equal to each other both

for direct d–d hopping and for hopping via oxygens,

〈1/2|t̂|1/2〉 = 〈−1/2|t̂| − 1/2〉 = t,

〈1/2|t̂| − 1/2〉 = 0.
(22)

Similarly to the case in Sec. 2, we immediately see that

the exchange written in terms of the effective spin 1/2

of the j = 1/2 doublet again takes the form of Heisen-

berg interaction (3).

We now consider which modifications we can ex-

pect in the case of trigonal splitting of t2g states, and

also of other electron occupations. We note that the

treatment below deals with one-electron levels, i. e., ef-

fectively corresponds not to the Russel–Sounders, but

to the JJ coupling. This is actually the assumption im-

plicitly made in most treatments of systems with strong

spin–orbit coupling like iridates, although it is not al-

ways stated explicitly.

As mentioned above, for systems with a common

face, the trigonal splitting of t2g levels is very typical.

The detailed treatment of this situation is given in the

Appendix. Here, we summarize and qualitatively ex-

plain the main findings. As can be shown, inclusion of

both (strong) spin–orbit coupling and the trigonal crys-

tal field leads to the structure of levels shown in Fig. 7.

Typically, except at some isolated points in a param-

eter space, the t2g levels are split into three Kramers

doublets (for the cubic crystal field, the doublets E1

and E2 in Fig. 7 are degenerate and combine into a

j = 3/2 quartet). For example, if we have a system

like Ir4+ (d5), we have one electron at the E3 doublet.

In general, wave functions (21) of this doublet would

be different from those of unsplit t2g triplets. Never-

theless, at least for the large t2g–eg splitting 10Dq (ig-

noring a possible admixture of “real” eg states), these

are all composed of a superposition of t2g functions

(17)–(20) or of functions with |lz = 0〉 = |a1g〉 and

|lz = ±1〉 = (1/
√
2)|b1,2 ± ic1,2〉 in the form

|+〉 = c0|lz = 0, ↑〉+ c1|lz = |+ 1, ↓〉,
|−〉 = c0|lz = 0, ↓〉+ c−1|lz = | − 1, ↑〉

(23)

with c1 = c−1 and c20 + c21 = 1. Again, in the gen-

eral case, when we take into account that hopping ma-

trix elements are nonzero only for diagonal hopping,

〈0|t̂|0〉 = t0, 〈+|t̂|+〉 = 〈−|t̂|−〉 = t1, and nondiagonal

hoppings are zero, 〈0|t̂| ± 1〉 = 〈+|t̂|−〉 = 0, we fi-

nally obtain that also in this general case, we have the

same symmetric situation, with 〈+|t̂|+〉 = 〈−|t̂|−〉 = t,

〈+|t̂|−〉 = 0, i. e., we have only a diagonal and equal

hopping within the E3 doublet.

Consequently, in this case in general, in the leading

approximation, we obtain simple Heisenberg interac-

tion (3) for this Kramers doublet (if indeed spin–orbit

coupling is strong enough for this doublet to be well

separated from the E1 and E2 levels). This can be

traced back to the fact that electron hopping, on the

one hand, preserves spin, t↑,↑ = t↓,↓ = t, t↑,↓ = 0,

but also conserves the orbital momentum, and hence

that 〈0|t̂|0〉, 〈+1|t̂| + 1〉, and 〈−1|t̂| − 1〉 are nonzero,

but hoppings with a change of the orbital momentum

disappear, i. e., nondiagonal matrix elements are zero.

This in effect is responsible for the realization of the

symmetric model, which finally gives the Heisenberg

interaction for very strong spin–orbit coupling (an iso-

lated doublet E3). However, in the general situation,

for an arbitrary relation between the spin–orbit cou-

pling and the crystal field splitting and for other signs

of this trigonal crystal field and other filling of d levels,

the situation can be very different and may require spe-

571



D. I. Khomskii, K. I. Kugel, A. O. Sboychakov, S. V. Streltsov ЖЭТФ, том 149, вып. 3, 2016

cial treatment (some basis for which is presented in the

Appendix).

5. CONCLUSIONS

In this paper, we presented a survey of the spin–or-

bital interaction for orbitally degenerate Mott insu-

lators for different local geometries (MO6 octahedra

with a common corner, a common edge, or a com-

mon face), paying main attention to the “third case” of

the common face, which, strangely enough, was prac-

tically not considered in the existing literature. The

main message is that the general form and the details

of the spin–orbital (“Kugel–Khomskii”) exchange inter-

action very strongly depends on this local geometry,

and therefore the commonly accepted paradigm (fer-

ro-orbitals ↔ antiferro-spins, and vice versa, antiferro-

orbitals ↔ ferro-spins), derived for 180◦ degree me-

tal–oxygen–metal bonds (common corner), is not valid

in general.

Rather surprisingly, the “third case” of octahedra

with a common face turns out to be in some sense sim-

pler and more symmetric than the other two situations,

despite the apparently more complicated local geome-

try (exchange via three oxygens, with a “not simple”

M–O–M angle about 70◦, etc.). In particular, for dou-

bly degenerate case (eg orbitals or an eπg doublet pro-

duced out of a t2g triplet by trigonal splitting, typi-

cal for this case) the effective spin–orbital model has a

highly symmetric form (2), i. e., it contains scalar prod-

ucts of both spin operators S and orbital operators τ

describing the orbital doublet. The resulting exchange

(2) has not only the SU(2)× SU(2) symmetry dictated

by these scalar products, but they also enter with coef-

ficients such that the resulting symmetry is even much

higher, SU(4), yielding a very nice theoretical model,

which for example is exactly solvable in the 1D case,

etc.

Thus, the materials with MO6 octahedra sharing

a face can be good model systems for studying pos-

sible manifestations of this high symmetry. Similarly,

local geometry largely determines the resulting form

of the exchange in case of a very strong spin–orbit

coupling λL · S — the situation typical for 4d and 5d

systems. As is already known, for example, for ions

with the d5 configuration, such as the currently po-

pular Ir4+, the exchange Hamiltonian for the lowest

Kramers doublet j = 1/2 has the Heisenberg form

for 180◦ M–O–M bonds (common corner), but it is

a highly anisotropic (locally Ising) interaction for 90◦

bonds (common edge). Again, the situation for sys-

tems with a common face turns out to be simpler in

the case of strong spin–orbit coupling. The exchange

for Kramers doublets j = 1/2 again has the Heisenberg

form, H ∼ J
∑

σi · σj , where σ is the effective spin

describing the j = 1/2 doublet.

We have also shown that the account taken of the

trigonal splitting, very typical of the case of a com-

mon face, does not change the situation qualitatively,

although definite quantitative changes appear.

These situations considered above, although the

most typical ones, do not exhaust all the variety of

local geometries met in transition metal compounds.

For example, transition-metal ions can be not in O6

octahedra but, for example, in O4 tetrahedra, like A

sites in spinels or Co ions in YBaCo4O7. Or they

may be in trigonal bipyramids (Mn in YMnO3) or in

prisms (half of Co ions in Ca3Co2O6), etc. Every such

case requires special treatment, one cannot uncriti-

cally transfer the know-how acquired in considering

the spin–orbit system, say, in perovskites to these

cases. An important conclusion is that this concerns

not only these, more complicated cases but also the

situation with more conventional materials containing

transition-metal ions in O6 octahedra, which may be

more complicated than is usually assumed. Apart from

the specific results for the “third case” of octahedra

sharing a face, this warning is the main message of

this paper.
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APPENDIX

Effects of trigonal distortions

1. Face-sharing geometry with trigonal distortions.

Wave functions and energy levels

Actually, we never deal with ideal octahedra. In

particular, the chain of face-sharing octahedra is usu-
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ally stretched or compressed. The effect of such dis-

tortions can be described in terms of the crystal field

of trigonal symmetry. Below, in Part 1, for complete-

ness, we briefly reproduce and extend the results of the

treatment of trigonal splitting in Ref. [7]; these results

are important for us for the general treatment of the

effect of the spin–orbit coupling in Part 2 of Appendix.

An elementary building block of the transition

metal compounds with face-sharing octahedra is shown

in Fig. 6a. Each magnetic atom is surrounded by a

distorted oxygen octahedron. Distortions can be de-

scribed by a single parameter θ, which is the angle

between the z axis and the line connecting M and O

atoms (see Fig. 6a). For an undistorted octahedron,

we have θ = θ0 = arccos(1/
√
3 ). The crystal field

splits 5-fold degenerate d electron levels of the tran-

sition metal atom into two doubly degenerate eσg , eπg
levels, and an a1g level, like shown above in Fig. 6b.

The energy difference ∆1 between the eπg and a1g le-

vels can be positive or negative depending on the type

of trigonal distortions and other parameters of the sys-

tem.

We should find the wave functions of the eσg , eπg ,

and a1g levels in the case of distorted octahedra. We

first neglect the contribution to the crystal field from

neighboring magnetic cations. In the point-charge ap-

proximation, the crystal field potential acting onto a

chosen cation located at a point r can be represented

as a sum of Coulomb terms

V (r) = v0
∑

i

r0
|r− ri|

, (A.1)

where ri are the positions of ligand ions. For d states,

the existence of the three-fold symmetry axis leads to a

significant simplification of the expression for the crys-

tal field

V (r) = v0(r) + v1(r)
3
∑

s=1

P2(cos θs)+

+ v2(r)
3
∑

s=1

P4(cos θs), (A.2)

where P2 and P4 are the Legendre polynomials,

P2(x) =
1

2
(3x2 − 1), P4(x) =

1

8
(34x4 − 30x2 + 3).

Here, we took the symmetry in the arrangement of

two opposite edges of the ligand octahedron into ac-

count, and as a result we have

cos θs = cos θ cos θ′+sin θ sin θ′ cos

(

φ′−2πs

3

)

, (A.3)

where θ′ and φ′ describe the direction of r =

= r{sin θ′ cosφ′, sin θ′ sinφ′, cos θ′}.
Next, it is necessary to find the matrix elements of

the crystal field for the complete set of d functions and

to diagonalize the corresponding matrix. This gives us

both the wave functions of eσg , eπg , and a1g levels and

their energies, depending on the trigonal distortions.

The details of such calculations can be found in [7].

Choosing the reference frame as is shown in Fig. 6a, we

eventually obtain expressions for the wave functions in

the forms similar to those discussed above for undis-

torted octahedra. For the eg levels (eσg orbitals), we

have (cf. Eqs. (9), (10))

|d1,2〉 = sin
α

2
|x2 − y2〉 ∓ cos

α

2
|xz〉,

|e1,2〉 = − sin
α

2
|xy〉 ∓ cos

α

2
|yz〉.

(A.4)

For the t2g orbitals, we have the same a1g singlet,

Eqs. (17) and (19), and the eπg doublet (cf. with

Eqs. (18) and (20)),

|b1,2〉 = − cos
α

2
|xy〉 ± sin

α

2
|yz〉,

|c1,2〉 = cos
α

2
|x2 − y2〉 ± sin

α

2
|xz〉.

(A.5)

The “∓” and “±” signs in the above expressions for

cation wave functions for neighboring magnetic ions

occur since the oxygen octahedra surrounding neigh-

boring metal ions are transformed into each other by

the 180◦ rotation about the z axis. The parameter α

in Eqs. (A.4) and (A.5) depends on the trigonal distor-

tions as

cosα =
a√

a2 + b2
, a = a2 + a4, (A.6)

where

a4 = −3

2

(

5

2
cos4 θ − 15

7
cos2 θ +

3

14

)

,

a2 =
27

35
κ
(

3 cos2 θ − 1
)

, b = 3 sin3 θ cos θ.

(A.7)

The parameter κ is defined as

κ =

∞
∫

0

v1(r)R
2
d(r)r

2 dr

∞
∫

0

v2(r)R
2
d(r)r

2 dr

. (A.8)

This parameter depends both on the crystal field coef-

ficients v1,2(r) (see expansion (A.2)) and on the radial

part of the wave function Rd(r) for d electrons. The
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value of κ depends on the material under study. Both

semianalytic and ab initio calculations done in Ref. [7]

give the estimate κ ∼ 0.1–1.

For the ideal octahedron, we have α = α0 ≡
≡ π − 2θ0 = arccos(1/3). Substituting this value in

Eqs. (A.4) and (A.5), we arrive at the results presented

in Sec. 4.3. Stretching (compression) of oxygen octa-

hedra tends to make α < α0 (α > α0).

We now analyze the behavior of the eσg , eπg , and

a1g energy levels under trigonal distortions. Figure 8

shows the dependence of the energies Eeσ
g
, Eeπ

g
, and

Ea1g
on the angle θ varying near θ0 ≈ 54.74◦ calculated

for two different values of κ. For an ideal octahedron,

we have ∆1 = Eeπ
g
− Ea1g

= 0 for any κ. The sign

of ∆1 depends on both the type of trigonal distortion

(stretching for θ < θ0 or compression for θ > θ0) and

the value of κ. When κ . 0.5, the stretching (com-

pression) of the octahedron is ∆1 > 0 (∆1 < 0), while

for κ & 0.5, the situation is opposite (see Fig. 8a,b ).

We note that we consider only distortions with θ near

θ0, when ∆2 = Eeσ
g
− Ea1g

∼ 10Dq ≫ |∆1|. Such a

situation corresponds to the experiment for all known

compounds. At the same time, the sign of ∆1 can be

different for different systems. For example, ∆1 > 0

for BaCoO3 with the chains of face-sharing Co4+O6

octahedra [23].

These results were obtained neglecting the effect of

neighboring metal atoms in the chain. Taking the con-

tribution to the crystal field from these atoms into ac-

count modifies the parameter a2 as

a2 → a2 −
27κ

35

Z∗

12 cos2 θ
, (A.9)

where Z∗ is the effective charge (in units of e) of the

metal ion. The parameters a4 and b, as well as re-

lations (A.4)–(A.6) remain the same. The crystal field

from neighboring metal atoms tends to increase ∆1 and

the parameter α. The dependence of the eσg , eπg , and

a1g energies levels calculated for nonzero Z∗ is shown

in Fig. 8c.

The wave functions in Eqs. (A.4) and (A.5) are the

generalization of those considered in the previous sec-

tion to the case of arbitrary trigonal distortion charac-

terized by an angle α. It is quite straightforward to

demonstrate that a similar structure of the eσg and eπg
wave function leads to the same symmetric spin–orbital

Hamiltonian (2) with the SU(4) symmetry at any given

value of α.

D2

D2

D2

D1 < 0

D1 < 0

D1 > 0

D1 > 0

D1 > 0

a

b

c

q0 = 54.74°

q0 = 54.74°

q0 = 54.74°

45°

45°

45°

50°

50°

50°

55°

55°

55°

60°

60°

60°

65°

65°

65°

0

0

0

0.4

0.4

0.4

–0.4

–0.4

–0.4

E/DCF

E/DCF

E/DCF

q

q

q

D1 < 0

Fig. 8. Energies Ea1g
(solid line), Eeπ

g
(dashed line), and Eeσ

g

(dot-dash line) versus the angle θ, calculated for (a) κ = 0.1,

Z∗

= 0, (b ) κ = 1, Z∗

= 0, and (c) κ = 0.1, Z∗

= 3

2. Spin–orbit coupling in the case of trigonally

distorted octahedra

We start from the analysis of the structure of

d-electron levels. The spin–orbital interaction Hamil-
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tonian has the form

HSO = λl · S. (A.10)

To find eigenenergies and eigenfunctions of the d-

electron levels, we represent the orbital momentum op-

erators lz and l± = lx ± ily in the basis of wave func-

tions |µ〉 in which the matrix describing the crystal field

splitting is diagonal:
(

ˆ̃
lz

)

µν
= 〈µ| lz |ν〉,

(

ˆ̃
l±

)

µν
= 〈µ| l± |ν〉. (A.11)

The basic wave functions are

|µ〉 = {|eσg1〉, |eσg2〉, |eπg1〉, |eπg2〉, |a1g〉},

where
|eσg1〉 = |d1〉, |eσg2〉 = |e1〉,
|eπg1〉 = |b1〉, |eπg2〉 = |c1〉

(A.12)

for a magnetic ion M1, and

|eσg1〉 = |d2〉, |eσg2〉 = |e2〉,
|eπg1〉 = |b2〉, |eπg2〉 = |c2〉,

(A.13)

for a magnetic ion M2 (for the definition of |b1,2〉, |c1,2〉,
|d1,2〉, and |e1,2〉, see Eqs. (A.4) and (A.5)). The basic

wave function |a1g〉 is the same for both magnetic ions;

it is given by Eq. (17). In this basis, the 5×5 matrix V̂

describing the crystal field is diagonal and has the form

V̂ = diag{∆2,∆2,∆1,∆1, 0}. The spin–orbit coupling

breaks the degeneracy of d levels with respect to the

electron spin. Keeping this in mind, we introduce the

second (spin) index to the basic wave functions |µ〉 →
→ |µ, σ〉 with σ =↑, ↓. The total Hamiltonian can then

be represented in the form of a 10 × 10 matrix, which

can be written in the block-matrix form

Ĥ =

(

V̂ 0

0 V̂

)

+
λ

2

( ˆ̃
lz

ˆ̃
l−

ˆ̃
l+ −ˆ̃

lz

)

. (A.14)

Diagonalizing Ĥ gives the structure of electron levels

in the presence of spin–orbit coupling. In the general

case, the eigenenergies can be found only numerically.

Here, we consider the limit ∆2 ≫ ∆1, λ, which is re-

alized for a majority of transition metal compounds.

In addition, we are interesting in the low-energy sector

|µ̄, σ〉 = {|eπg1, σ〉, |eπg2, σ〉, |a1g, σ〉}. The projection of

Ĥ to this reduced basis decreases the rank of the matrix

to 6. As a result, we are able to obtain analytic expres-

sions for the eigenenergies and eigenfunctions. There

are three doublets with the energies (see Fig. 7)

E1 = 2 (∆1 −∆) ,

E2 = ∆−
√

∆2 + ξ2,

E3 = ∆+
√

∆2 + ξ2,

(A.15)

where

∆ =
∆1

2
+

1 + 3 cosα

8
λ, ξ =

√

3

2
sin

α

2
λ. (A.16)

The eigenfunctions |v(s)1,2〉 corresponding to the energies

Es (s = 1, 2, 3) are

|v(1)1 〉 = |v1, ↑〉, |v(1)2 〉 = |v2, ↓〉, (A.17)

|v(2)1 〉 = cos δ|a1g, ↑〉+ sin δ|v1, ↓〉,
|v(2)2 〉 = cos δ|a1g, ↓〉+ sin δ|v2, ↑〉,

(A.18)

|v(3)1 〉 = − sin δ|a1g, ↑〉+ cos δ|v1, ↓〉,
|v(3)2 〉 = − sin δ|a1g, ↓〉+ cos δ|v2, ↑〉,

(A.19)

where

|v1,2, σ〉 =
1√
2

(

i|eπg1, σ〉 ∓ |eπg2, σ〉
)

(A.20)

and

tan 2δ =
ξ

∆
. (A.21)

We note that while energies of the doublets, Es, are the

same for the M1 and M2 magnetic ions, the correspon-

ding eigenfunctions are different due to the ± signs in

Eq. (A.5) defining the eigenfunctions of the eπg levels.

We also note that Eqs. (A.15)–(A.21) were obtained in

the limit as ∆2 → ∞. The corrections to this result

from the eσg sector can be found in the perturbation

theory in Es/∆2.

Formulas (A.15)–(A.21) are simplified in the limits

of small and large spin–orbit coupling in comparison to

the trigonal splitting. In the former case, λ ≪ ∆1, we

obtain the energy levels up to the first order in λ/∆1

as

E1 ≈ ∆1 −
1 + 3 cosα

4
λ,

E2 ≈ ∆1 +
1 + 3 cosα

4
λ, E3 ≈ 0.

(A.22)

In the opposite limit λ ≫ ∆1, in the leading order, we

obtain

E1 ≈ −1 + 3 cosα

4
λ,

E2 ≈ −3− 3 cosα

4
λ, E3 ≈ λ.

(A.23)

In this case, the parameter δ in Eqs. (A.18) and (A.19)

is

tan δ =

√

3

2
sin

α

2
. (A.24)

For ideal octahedra and the negligible effect of nea-

rest-neighbor magnetic atoms (α = α0 = arccos(1/3),
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Fig. 9. The energies of the Kramers doublets E1, E2, and E3,

as functions of the angle θ calculated for (a) κ = 0.1, Z∗

= 0,

(b ) κ = 1, Z∗

= 0, and (c) κ = 0.1, Z∗

= 3. For all panels,

λ/∆CF = 0.5

∆1 ≡ 0), the formulas for Es and δ are simplified even

further:

E1 = E2 = −λ

2
, E3 = λ,

δ = arcsin
(

1/
√
3
)

.
(A.25)

Thus, in this case, we have the low-energy (if λ > 0)

quartet and a higher-energy doublet. In such a situa-

tion, we can introduce the effective angular momentum

for the t2g levels, leff = 1, and the effective Hamilto-

nian becomes Heff = −λleff · S. We note the opposite

sign of spin–orbit coupling in comparison to the origi-

nal Hamiltonian in Eq. (A.10).

We now consider the behavior of the Kramers doub-

lets for trigonal distortions. The dependences of E1,

E2, and E3 on the angle θ calculated for λ/∆CF = 0.5

and different system parameters κ and Z∗ are shown

in Fig. 9. Analysis shows that for considerably large

λ, the energy E3 lies above E1 and E2. If we neglect

the effect of the neighboring magnetic ions on the crys-

tal field (Z∗ = 0), we obtain that E1 < E2 for the

stretched (θ < θ0) octahedra and E1 > E2 for the

compressed (θ > θ0) octahedra (see Fig. 9a,b ). The

contribution of the magnetic ions to the crystal field

tends to make E1 > E2 (see Fig. 9c).

By considering each of three doublets separately, it

is easy to demonstrate that the electron hopping inte-

grals between the corresponding wave functions again

satisfy the condition t11 = t22 = t, t12 = 0 and

hence the exchange has the Heisenberg form, H ∼
∼ J

∑

σi · σj, where σ is the effective spin describing

the j = 1/2 doublet. However, σ has its own physical

meaning for each doublet. This is always true for one

electron or hole at the E3 level, but in the case of E1

or E2, the doublets must be sufficiently far from the

level-crossing point.
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