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ELECTRON GAS INDUCED IN SrTiO3
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This mini-review is dedicated to the 85th birthday of Prof. L. V. Keldysh, from whom we have learned so
much. In this paper, we study the potential and electron density depth profiles in surface accumulation layers in
crystals with a large and nonlinear dielectric response such as SrTiO3 (STO) in the cases of planar, spherical,
and cylindrical geometries. The electron gas can be created by applying an induction D0 to the STO surface.
We describe the lattice dielectric response of STO using the Landau–Ginzburg free energy expansion and employ
the Thomas–Fermi (TF) approximation for the electron gas. For the planar geometry, we arrive at the electron
density profile n(x) ∝ (x+ d)−12/7, where d ∝ D

−7/5
0 . We extend our results to overlapping electron gases in

GTO/STO/GTO heterojunctions and electron gases created by spill-out from NSTO (heavily n-type doped
STO) layers into STO. Generalization of our approach to a spherical donor cluster creating a big TF atom
with electrons in STO brings us to the problem of supercharged nuclei. It is known that for an atom with a
nuclear charge Ze where Z > 170, electrons collapse onto the nucleus, resulting in a net charge Zn < Z. Here,
instead of relativistic physics, the collapse is caused by the nonlinear dielectric response. Electrons collapse into
the charged spherical donor cluster with radius R when its total charge number Z exceeds the critical value
Zc ≈ R/a, where a is the lattice constant. The net charge eZn grows with Z until Z exceeds Z∗

≈ (R/a)9/7.
After this point, the charge number of the compact core Zn remains ≈ Z∗, with the rest Z∗ electrons forming
a sparse TF atom with it. We extend our studies of collapse to the case of long cylindrical clusters as well.
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DOI: 10.7868/S004445101603007X

1. INTRODUCTION

In recent years, there has been growing interest in
the investigation of ABO3 perovskite crystals, which
are important for numerous technological applications
and show intriguing magnetic, superconducting, and
multiferroic properties [1]. Special attention [2, 3]
is paid to heterostructures involving SrTiO3 (STO),
which is a semiconductor with a band gap ≈ 3.2 eV [4]
and a large dielectric constant κ ranging from 2 × 104

at liquid helium temperatures to 350 at room temper-
ature. As with conventional semiconductors, SrTiO3

can be used as a building block for different types of
devices, with reasonably large mobility [5, 6].

Many devices are based on the accumulation layer
of electrons near a heterojunction interface involving

* E-mail: fuxxx254@umn.edu

a moderately n-type doped STO. For example, we
can have an electron accumulation layer on the STO
side of the GTO/STO heterojunction induced by the
electric field resulting from the “polar catastrophe” in
GdTiO3 (GTO) [7] (see Fig. 1). The role of GTO
can also be played by perovskites LaAlO3 [2, 5, 6],
NdAlO3, LaVO3 [8], PrAlO3, NdGaO3 [9], LaGaO3

[10], LaTiO3 [11], and others producing the polar catas-
trophe [7]. An electron gas can be accumulated using
a field effect [12–14]. In Refs. [15] and [16], the authors
accumulated up to 1014 cm−2 electrons on the surface
of STO using ionic liquid gating. Inside bulk STO,
δ-doping can be used to introduce two accumulation
layers of electrons [17–19]. It is natural to think that
the depth profiles of the potential and electron density
inside STO have a universal origin in all these devices.

Interface properties determine characteristics of all
these devices. Not surprisingly, the potential and elec-
tron density depth profiles in such devices have at-
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Fig. 1. (Color online). Schematic energy diagram of an accu-
mulation layer in a moderately n-doped STO. The band gap is
Eg. Electrons (grey (blue) region) are attracted by an external
induction D0. The characteristic width of the electron gas is
d. In the bulk of STO, the Fermi level εF is near the bottom

of the conduction band (plotted by the dashed line)

tracted attention from the experimental [20–23] and
theoretical standpoints [15, 24–28]. For example, ex-
perimental data show that electrons are distributed in
a layer of width ≈ 5–10 nm near the LaAlO3/SrTiO3

interface. Theoretical works that attempt to explain
such behavior are based on microscopic numerical cal-
culations.

The goal of this minireview based on Refs. [29] and
[30] is to create a simple, mostly phenomenological ap-
proach for describing the electron density depth profiles
in STO. To account for the nonlinear dielectric response
in STO, we use the Landau–Ginzburg free energy ex-
pansion [31, 32]. Electrons are almost everywhere de-
scribed in the Thomas–Fermi approximation [33]. Al-
though we mostly concentrate on accumulation layers
in STO, the developed approach is applicable to KTaO3

[34] and CaTiO3 [35] serving as the host media for ac-
cumulation layers as well.

Our main result is a new form for the potential and
electron density depth profiles in various planar STO
structures due to the nonlinear dielectric response. In
particular, for an accumulation layer in STO created by
an external interfacial induction D0, we find an electron
concentration n(x) that depends on the distance from
the surface x as n(x) ∝ (x+d)−12/7, where the width d

decreases with D0 as d ∝ D
−7/5
0 . It is shown in Ref. [30]

that these relations seem to agree with experimental
data [21, 22]. Using this basic solution for a separate
accumulation layer, we study more complicated prob-
lems where accumulation layers overlap, e. g., the struc-
ture of GTO/STO/GTO multi-heterojunctions [36–38].
We calculate how electron density profiles evolve as a

function of the distance between two heterojunctions.
Another planar problem arises when the accumulation
layer is created in STO that is a part of the modulation
doped structure of NSTO/STO [39–43]. In this case,
electrons spill out from the heavily n-type doped STO
layer (NSTO) and the induction D0 is self-consistently
provided by the depletion layer in NSTO.

The experience with above planar problems allows
us to study the electron gas in STO created by external
charges or the electric field with spherical and cylindri-
cal symmetry. Such devices can be realized by doping
the bulk STO by generating oxygen vacancies at high
temperatures. The vacancies either form along a net-
work of extended defects [44] or assemble together to
lower the system energy [45, 46], producing large posi-
tively charged donor clusters.

Another way to more controllably create such a
cluster is to “draw” a disc of charge by the atomic force
microscope (AFM) tip on the surface of an LAO/STO
structure with the subcritical thickness for LaAlO3

(LAO) [47, 48]. The potential caused by such a posi-
tive disc in the bulk STO is similar to that of a charged
sphere.

We consider a spherical donor cluster with radius
R and charge Ze. At relatively small Z, there are Z

electrons located at distances from κb/Z to the Bohr
radius κb from the cluster, which form a Thomas–Fermi
“atom” [49] with it. Here, b = ~

2/m∗e2 and m∗ ≈ 1.5m

is the effective electron mass in STO [30] with m being
the free electron mass. Since κ is large, the electrons
are far away from the cluster and the whole “atom” is
very big. As Z increases, the electron gas swells in-
ward to hold more electrons. However, we find that as
Z goes beyond a certain value Zc (κb/Z is still much
larger than R at this moment), the physical picture
is qualitatively altered. Surrounding electrons start to
collapse into the cluster and the net cluster charge is
renormalized from Ze to Zne with Zn ≪ Z at very
large Z.

The effect of charge renormalization is not new
[50, 51]. For a highly charged atomic nucleus with
charge Ze, the vacuum is predicted to be unstable
against creation of electron–positron pairs, resulting in
a collapse of electrons onto the nucleus with positrons
emitted [50]. This instability happens when Z > Zc

with Zc ≈ 170 & 1/α, where α = e2/~c ≈ 1/137 is
the fine structure constant. When Z exceeds Z∗ ≈
≈ 1/α3/2 ≈ 1373/2, the net charge saturates at Z∗ (see
Ref. [51]). In the condensed matter setting, there are
similar phenomena in narrow-band gap semiconduc-
tors and Weyl semimetals [51] as well as graphene [52].
In all these cases, the collapse occurs because the en-
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Fig. 2. (Color online). The number of collapsed electrons S

and the renormalized net charge Zne as a function of the orig-
inal charge Ze. S is shown by the thin solid line (red), Zn

is denoted by the thick solid line (blue), and the dotted line
(black) is a guide-to-eye where Zn = Z. Zc denotes the critical
value where electrons begin to collapse and Z∗ is the satura-
tion point where Zn stops growing. a) Collapse of electrons
and charge renormalization for highly charged nuclei. S ∝ Z3

at Zc ≪ Z ≪ Z∗ (see Ref. [53]). b ) Collapse of electrons and
charge renormalization for spherical donor clusters in STO.

S ∝ Z9/2 at Zc ≪ Z ≪ Z∗

ergy dispersion of electrons is relativistic in the strong
Coulomb field of a compact donor cluster playing the
role of a nucleus. In our work, however, the collapse
originates from the strong nonlinearity of the dielectric
constant in STO at small distances from the cluster. In
the case of a spherical donor cluster, this nonlinearity
leads to the change of the attractive potential near the
cluster from being ∝ 1/r to ∝ 1/r5, resulting in the
collapse of nonrelativistic electrons to the cluster.

The phenomena of electron collapse and charge
renormalization in both heavy nuclei and our work are
presented in Fig. 2. In our case, the first electron col-
lapses at Z ≈ Zc ≈ R/a, where a is the lattice con-
stant, and at Z ≫ Z∗ ≈ (R/a)9/7, the net charge of
the nucleus Zne saturates as Zn ≈ Z∗.

We use the Thomas–Fermi approximation to show
how the electron gas collapses into the cluster at Z ≫
≫ Zc and find the corresponding electron density pro-
file of the new two-scale Thomas–Fermi atom (see
Fig. 9).

The remainder of this paper is organized as fol-
lows. In Sec. 2, we define the model based on the
Landau–Ginzburg theory for calculating the lattice di-
electric response and describe the STO parameters. In
Sec. 3, we use the Thomas–Fermi approach to calculate
the electron accumulation layer for a single GTO/STO
heterojunction induced by the polar catastrophe. In
Sec. 4, we consider the case of multiple heterojunc-
tions where accumulation layers from different inter-
faces overlap. In Sec. 5, we consider the case where
the electrons spill out from a heavily n-type doped
STO material (NSTO) to the moderately n-type doped
one for both a single junction and multi-junctions. In
Secs. 6 and 7, we extend our studies to the nonplanar
structure consisting of spherical or cylindrical donor
clusters inside STO. In Sec. 8, we go beyond the zero
temperature and investigate the thermal ionization of
spherical donor clusters and its experimental implica-
tions. Section 9 provides a summary and conclusion.

2. THE MODEL

Bulk STO typically is an n-type semiconductor with
a concentration of donors N > 1017 cm−3. We discuss
the position of the Fermi energy εF in such crystals.
The electron spectrum near the bottom of the conduc-
tion band is complicated [54], and in order to make
the problem of an accumulation layer tractable analyt-
ically, we assume that it is isotropic and nondegener-
ate with the effective mass m∗ ≈ 1.5 m [30], where
m is free electron mass. Within the hydrogenic the-
ory of shallow donors, the donor Bohr radius is equal
to κb, where b = ~

2/m∗e2 ≈ 0.35Å, e is the elec-
tron charge, and κ is dielectric constant of the ma-
terial. At room temperature when κ = 350, the Bohr
radius κb = 123Å is so large that the Mott criterion for
the metal–insulator transition in doped semiconductors
Ncb

3 = 0.02/κ3 leads to a very small critical concen-
tration Nc = 1 · 1016 cm−3. At helium temperatures,
κ = 2 · 104 and Nc = 6 · 1010 cm−3. Thus, at the
experimentally relevant concentration of donors N >

> 1017 cm−3, we are dealing with a moderately doped
semiconductor in which the Fermi energy lies in the
conduction band of STO. On the other hand, due to
the relatively high effective mass, the bulk Fermi en-
ergy εF is smaller than the bending energy of the con-
duction band bottom near the interface (see Fig. 1).
For example, for N = 1018 cm−3, the low-temperature
Fermi energy calculated from the bottom of the conduc-
tion band is εF ≈ 4 meV, which can be up to 100 times
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smaller than the bending energy of the conduction band
bottom in an accumulation layer for GTO/STO. There-
fore, we assume below that the Fermi energy coincides
with the bottom of the conduction band.

We are interested in the electron distribution near
an interface of STO. We consider the case where the
axis x is directed perpendicular to the interface (plane
x = 0) and lies along the [100] axis of a cubic crystal
of STO. (In fact, STO changes symmetry from cubic
to tetragonal at T ≈ 110 K, but the distortion is small
[55] and can be neglected). An external induction D0

applied from the left (see Fig. 1) is directed along the
x axis. In that case, the problem is effectively one-di-
mensional. If the charge density is denoted by ρ(x),
then the potential depth profile ϕ(x) in the system is
determined by the equations

dD

dx
= 4πρ, D = E + 4πP,

dϕ

dx
= −E, (1)

where D(x), E(x), and P (x) are the electric displace-
ment field (the induction), the electric field, and the
electric polarization in STO. Equations (1) should be
solved with proper boundary conditions. For example,
for a single accumulation layer, the boundary condi-
tions are D(0) = D0 and ϕ(∞) = 0.

To solve system (1), we need to know two material
relationships E(P ) and ρ(ϕ). We start from the lat-
tice dielectric response E(P ). STO is well known as a
quantum paraelectric, where the onset of ferroelectric
order is suppressed by quantum fluctuations [56].

A powerful approach to describing the properties
of ferroelectric-like materials is based on the Lan-
dau–Ginzburg theory. For a continuous second-order
phase transition, the Landau–Ginzburg expression of
the free energy density F is represented as a power se-
ries expansion with respect to the polarization P :

F = F0 +
τ

2
P 2 +

1

4
A

1

P 2
0

P 4 − EP, (2)

where F0 stands for the free energy density at P = 0

and τ = 4π/(κ − 1) ≈ 4π/κ is the inverse suscepti-
bility. In this work, 0 < τ ≪ 1, P0 = e/a2 is the
characteristic polarization, and a ≈ 3.9Å [55] is the
lattice constant. The coefficient A describes the non-
linear dielectric response. For all estimates below, we
use A = 0.8 following from Ref. [30]. The last term in
Eq. (2) is responsible for the interaction between the
polarization and the electric field E. In general, F de-
pends on the components of the vector P , but in the
chosen geometry the problem is one-dimensional, and
all vectors are directed along the x axis. The crystal

polarization P is determined by minimizing the free en-
ergy density F in the presence of the electric field E,
δF/δP = 0. This condition relates E and P ,

E =
4π

κ
P +

A

P 2
0

P 3. (3)

We note that E ≪ 4πP and thus D = E+4πP ≈ 4πP .
The induction Dc at which the transition from linear
to nonlinear dielectric response occurs can be found by
equating the first and second terms in expression (3):

Dc = P0

√
(4π)3

κA
. (4)

If D ≪ Dc, the dielectric response of STO is linear
and we can use the simplified expression for the electric
field:

E =
D

κ
. (5)

For D ≫ Dc, the dielectric response of STO is non-
linear and we must instead use the expression

E =
A

(4π)3P 2
0

D3. (6)

Next, we should specify ρ(ϕ), which depends on the
specific device of interest.

3. A SINGLE ACCUMULATION LAYER

In a single heterojunction, the external induction
D0 caused by the “polar catastrophe” on the interface
attracts electrons with a three-dimensional concentra-
tion n(x) inside the accumulation layer of STO (see
Fig. 1). Our goal is to find the electron depth profile
n(x) and its characteristic width d.

Due to the electric neutrality, the number of accu-
mulated electrons has to compensate the external field
D0, i. e.,

4πe

∞∫

0

n(x) dx = D0. (7)

To take the electron screening of the external field into
account, we use the Thomas–Fermi approach [33, 49]
in which the electron concentration n(x) and self-con-
sistent potential profile ϕ(x) are related as −eϕ(x) +

+ µ(x) = εF = 0, where

µ(x) = (3π2)2/3
~
2

2m
[n(x)]2/3 (8)

is the chemical potential of the electron gas. Thus, we
can obtain the solution of Eqs. (1) by replacing ρ(x)
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with en(x) and using relations (5) and (6). For a lin-
ear dielectric response, we obtain the equation for the
potential

d2

dx2

(
ϕ

e/b

)
=

23/2

3π2

1

b2
1

κ

(
ϕ

e/b

)3/2

. (9)

We use the boundary condition ϕ = 0 at x → ∞ and
obtain the solution [57]:

ϕ(x) = C1
e

b
κ2

(
b

x+ d

)4

, (10)

n(x) = C2
1

b3
κ3

(
b

x+ d

)6

, (11)

where C1 = (225/8)π2 ≈ 278 and C2 = 1125π/8 ≈ 442.
For a nonlinear dielectric response, we obtain the equa-
tion for the potential

d

dx

[(
d

dx

ϕ

e/b

)1/3
]
=

23/2

3π2

1

b4/3
×

×A1/3

(
e/b2

P0

)2/3 (
ϕ

e/b

)3/2

. (12)

With the same boundary condition, we have the solu-
tion

ϕ(x) = C3
e

b

(
b

a

)8/7
1

A2/7

(
b

x+ d

)8/7

, (13)

n(x) = C4
1

b3

(
b

a

)12/7
1

A3/7

(
b

x+ d

)12/7

, (14)

where

C3 =

(
5636π12

7823

)1/7

≈ 5.8,

C4 =

(
5932π426

712

)1/7

≈ 1.3.

The characteristic length d can be obtained using
the neutrality condition (see Eq. (7)). For a linear di-
electric response, this gives

d = C5b
(a
b

)2/5

κ3/5

(
e/a2

D0

)1/5

, (15)

where C5 = (π2225/2)1/5 ≈ 4. For a nonlinear dielect-
ric response,

d = C6b
(a
b

)2/5
(
e/a2

D0

)7/5
1

A3/5
, (16)

where C6 = (16/7)(5232π11)1/5 ≈ 84. The induction
Dc at which the transition from linear to nonlinear

dielectric response occurs can be found by equating
Eqs. (15) and (16). This gives

Dc =
C7√
A

e

a2

√
1

κ
, (17)

where C7 = (221π9/75)1/6 ≈ 12, consistent with
Eq. (4). For STO, the critical field Dc depends on tem-
perature: Dc ≈ 0.1e/a2 for helium temperature and
Dc ≈ 0.7e/a2 for room temperature.

The three-dimensional concentration profile n(x)

for the nonlinear dielectric response in Eq. (14) is the
main result in this section. We note that n(x) has a
very long tail with a weak 12/7 power law dependence,
which may lead to some arbitrariness in measurements
of the width of the electron gas. Indeed, only 39 % of
electrons are located within the distance 0 < x < d near
the interface and 68 % of electrons are located within
0 < x < 4d. In the calculation above, we used a con-
tinuous model. Actually, along the [100] axis, STO
is composed of alternating TiO2 and SrO layers. The
conduction band of SrTiO3 corresponds to the bands
composed of mainly 3d orbitals of Ti. Integrating n(x)

over each lattice cell in Table we obtain a percentage
of electrons in each of the 10 first TiO2 layers of STO
in the case D = 2πe/a2.

We can see from Eqs. (11) and (14) that the tails
of the electron depth profiles n(x) at x ≫ d do not
depend on D0 and behave like

n(x) = C2
1

b3
κ3

(
b

x

)6

(18)

and

n(x) = C4
1

b3

(
b

a

)12/7
1

A3/7

(
b

x

)12/7

(19)

for linear and nonlinear dielectric responses, respecti-
vely. Even for D0 ≫ Dc, when the electron distribution
n(x) at moderately large x is described by dependence
(14), the polarization becomes smaller at very large
distances and the linear dielectric response takes over,
such that the n(x) dependence switches from Eq. (14)
to Eq. (11). This happens at the distance

x0 = b

(
C2

C4

)7/30

A1/10
(a
b

)2/5

κ7/10 (20)

(x0 = 360 nm and 20 nm for helium and room temper-
ature respectively). Thus, the tail of n(x) is universal.
For small D0 < Dc, the tail has the form n(x) ∝ x−6.
For D0 > Dc, it has the form n(x) ∝ x−12/7 for x < x0

and n(x) ∝ x−6 for x > x0.

534



ЖЭТФ, том 149, вып. 3, 2016 Electron gas induced in SrTiO3

Table. Percentage of electrons in the TiO2 layer M of STO for D0 = 2πe/a2, corresponding to the total surface density
0.5e/a2

M 1 2 3 4 5 6 7 8 9 10

% 27.9 14.4 9.0 6.2 4.6 3.5 2.8 2.3 1.9 1.6

On the other hand, we have to remember that our
theory is correct only when n(x) is larger than the con-
centration of donors in the bulk of the material.

We check whether the Thomas–Fermi approxima-
tion is applicable at x ∼ d, i. e., kF d ≫ 1. Here, kF =

= (3π2)1/3n(0)1/3 is the wavevector of an electron at
the Fermi level. For D0 ≪ Dc,

kF d = C8κ
2/5

(
b

a

)2/5 (
D0

e/a2

)1/5

, (21)

while for D0 ≫ Dc,

kF d = C9
1

A2/5

(
b

a

)2/5 (
e/a2

D0

)3/5

, (22)

where C8 = (5333π3/24)1/5 ≈ 6 and C9 = (4/7) ×
×(15π3)3/5 ≈ 23. We can see that kF d > 1 in the range
2·10−7e/a2 < D0 < 40 e/a2 for room temperature. For
lower temperatures, this interval is even larger. Thus,
the Thomas–Fermi (TF) approximation is applicable
for practically all reasonable induction D0.

We now consider how the applicability of the TF
approximation holds with growing x. The TF param-
eter n1/3x can be estimated with the help of Eqs. (18)
and (19) and we then obtain

n1/3x ≈






(x
b

)3/7

, x < x0 ,

κb

x
, x > x0 .

(23)

Thus, the TF approximation is valid in the whole
range of nonlinear and linear dielectric response and
fails only at a very large distance from the interface
x = κb.

4. TWO OVERLAPPING ACCUMULATION

LAYERS

In Sec. 3, we investigated a single accumulation
layer induced in STO. In the GTO/STO/GTO struc-
ture [36–38], an accumulation layer forms near each
interface and these two layers overlap with each other.
When the STO layer is thick, one can expect that the

Fig. 3. GTO/STO/GTO structure with wide enough GTO lay-
ers and an STO layer of width 2L. The GTO layers generate

D0 = 2πe/a2 on each interface

two accumulation layers overlap weakly by the vanish-
ing tails and the final electron distribution can be de-
scribed as a simple addition of two accumulation layers
given by Eq. (14). (The induction D0 on each interface
is 4πe/2a2 > Dc and we are interested only in the re-
gion where the distance to the interface is smaller than
x0. We therefore use the nonlinear dielectric response
here.) However, as the STO layer becomes thinner, the
overlap becomes stronger. Due to the nonlinear physics
here, the electron density profile changes substantially.
Below, we study the density profile of the electron gas
in the GTO/STO/GTO structure where the width of
the STO layer is 2L (see Fig. 3).

To make the mathematics more compact, in Secs. 4
and 5, we employ the dimensionless notations, in which
Eq. (12) is rewritten as

d

dξ

(
dχ

dξ

)1/3

= αχ3/2, ξ > 0. (24)

Here, ξ = x/b is the scaled distance from one inter-
face, χ = ϕ/(e/b) is the potential in the units of e/b,
and α = 23/2(a/b)4/3A1/3/3π2. Also, from Eq. (8), we
know that

n(x) =
C10

b3

[
ϕ(x)

e/b

]3/2
, (25)

where C10 = 23/2/3π2 ≈ 0.1. The electron density n(x)

can be scaled as

ñ(ξ) = A1/3(a/b)4/3n(x)b3

and we then have

ñ(ξ) = αχ3/2, (26)
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Fig. 4. Electron distribution at different values of L, which is
the half-width of the STO layer (a is the lattice constant).
The thick solid lines are the electron concentration n(x) in
the unit of n(0), where n(0) is the electron concentration at
x = 0. When L is not very large, the electron density profile is
substantially different from the addition of two accumulation

layers described by Eq. (14)

which is the dimensionless form of the TF approxi-
mation. The width of the STO layer is scaled as
2L̃ = 2L/b.

According to Eq. (24), we can obtain

dχ

dξ
= −

(
8

5
αχ5/2 + g1

)3/4

, (27)

where g1 is a constant arising from the integration. By
integrating Eq. (27), we obtain

χ(0)∫

χ(L̃)

dχ
(
(8/5)αχ5/2 + g1

)3/4 =

L̃∫

0

dξ = L̃. (28)

In this structure, each GTO/STO heterojunction pro-
vides a fixed number of electrons to the accumulation
layer inside STO, which is e/2 per unit cell with the in-
terfacial induction D0 = 4πe/2a2. Using Eq. (6), this
gives the value of dχ/dξ on the ξ = 0 and ξ = 2L̃

interfaces, which is ∝ E ∝ D3
0. Due to the symme-

try, the electric field is zero in the middle of the STO
layer, which means that dχ/dξ = 0 at ξ = L̃. We can
choose a value for g1 and calculate χ(L̃) and χ(0) using
Eq. (27). Then we can put boundary values of χ into
Eq. (28) and obtain the corresponding value of L̃(g1).
Reversing L̃(g1), we find the function g1(L̃). There-
fore, at any given value of L̃, we can pin down g1 and
use Eq. (27) to numerically obtain the whole electron
profile inside STO.

To realize this, we need to try various values of g1
and tune accordingly until we find the L̃ we want. In
this process, it is necessary to know what values of g1
are physically possible. It is obvious that the extreme

values of g1 appear as L̃ → 0 and L̃ → ∞. In the for-
mer case, electrons are almost uniformly distributed
over the thin STO layer with dχ/dξ ≈ 0 and the
electron density is approximately 1/2a2L̃ everywhere,
which gives the value of χ inside STO by Eq. (26) (see
Fig. 4). From Eq. (27), we know that at dχ/dξ = 0, a
bigger value of χ corresponds to a smaller value of g1.
In this case, we therefore obtain the minimum value of
g1 as

g1
min = −

8
[
A1/3(a/b)4/3b3(0.5/a2L̃)

]5/3

5α2/3
. (29)

Since L̃ can be arbitrarily small (with the lattice con-
stant a regarded as infinitesimal), we actually have
g1

min = −∞.
In the latter case, where the STO layer is very thick,

the two interfaces are quite independent and tails of
accumulation layers barely overlap. Hence, near the
center of the STO layer where dχ/dξ = 0, the electron
density vanishes. This gives the maximum value of g1
as g1

max = 0. In this case, the electron distribution is
close to the simple addition of two accumulation layers
described by Eq. (14) (see Fig. 4).

We thus obtain the domain of g1 as (−∞, 0 ]. This
means that we can choose whatever value for g1 and ob-
tain physically meaningful results. By trying different
values of g1, we can find the electron density profiles
at certain L̃ that we are interested in. In Fig. 4, we
show our results for electron density profiles at three
different values of L. We see the evolution from an al-
most constant n(x) at L = 2a around which the quan-
tum criticality is observed [38] to the one reminiscent
of two weakly overlapping tails of accumulation layers
described by Eq. (14) at L = 8a.

It is easy to see that n(x) is quite flat near the mid-
dle. This is actually an effect of the nonlinear dielectric
response as we show below. Indeed, due to the symme-
try of the structure, for the potential χ(ξ), derivatives
of an odd order, including dχ/dξ, are all vanishing in
the middle. Using Eq. (24), the second-order deriva-
tive d2χ/dξ2 is found to be proportional to dχ/dξ and
is then also zero at ξ = L̃ while the fourth-order deriva-
tive is nonzero. This explains why the density changes
so slowly near the middle of the STO layer. We empha-
size again that this “flattening” effect originates from
the nonlinear dielectric response. When the response is
linear, the differential equation is described by Eq. (9),
according to which the second-order derivative d2χ/dξ2

is nonzero even at dχ/dξ = 0. The density change near
the middle is then faster.
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Fig. 5. The electron distribution in a single NSTO/STO junc-
tion. The distance x is in units of the decay length d = bd̃.
The electron density n(x) is in units of the donor concentration

n0. This figure is universal for all values of n0

5. SPILL-OUT OF ELECTRONS FROM

HEAVILY DOPED n-TYPE STO (NSTO) INTO

STO

In the NSTO/STO junctions [39, 40], the interface is
formed between a moderately n-type doped STO with
the Fermi level close to the conduction band bottom
(below we simply refer to it as STO) and a heavily
n-type doped STO (NSTO), which has a much higher
Fermi level. We start from considering a single junction
between thick layers of NSTO and STO. In this case, as
a result of the original difference between Fermi levels,
electrons spill out into STO to create a common Fermi
level and the total number of spilled electrons depends
only on the doping level inside NSTO. Below, we study
the electron distribution for this scenario (see Fig. 5)
assuming that the donor concentration in NSTO is so
large that dielectric response is nonlinear. (The linear
case of such spill-out problems was first addressed by
Frenkel [57].)

Inside NSTO, the charge concentration is
[n0 − n(x)]e, where n0 is the density of the posi-
tive background charge inside the doping layer and
n(x) is the electron density at a distance x from
the interface. According to the Thomas–Fermi
approximation, we have

d

dξ

(
dχ

dξ

)1/3

= αχ3/2 − ñ0, ξ ≤ 0, (30)

where ñ0 = A1/3(a/b)4/3n0b
3 is the scaled background

charge concentration. From Eq. (30), it can be derived
that

dχ

dξ
= −

(
8

5
αχ5/2 − 4ñ0χ+ g2

)3/4

, ξ ≤ 0, (31)

where g2 is a constant that we determine from the bo-
undary conditions. Since ñ(ξ) = ñ0 at ξ → −∞, we
have dχ/dξ = 0 and χ = (ñ0/α)

2/3. Therefore,

g2 =
12

5

ñ
5/3
0

α2/3
. (32)

We now switch to the STO side. By rewriting
Eq. (13) in the dimensionless form, we then have

χ =
χc

(ξ + d̃) 8/7
, ξ > 0, (33)

which gives

dχ

dξ
= −

(
8

5
αχ5/2

)3/4

. (34)

Here, d̃ = d/b is the scaled decay length and χc =

=
(
2353/74α3

)2/7
. Since the interfacial field D0 is now

no longer a fixed value, we cannot use Eq. (16) to obtain
the decay length. Instead, using the boundary condi-
tion that χ and dχ/dξ are continuous at ξ = 0, which
is applicable to both Eqs. (31) and (34), we then have

g2 = 4ñ0χ(0) =
4ñ0χc

d̃ 8/7
. (35)

Together with Eq. (32), this gives

d̃ =

(
5χc

3

)7/8 (
α

ñ0

)7/12

, (36)

which yields the expression for the decay length.
Above we have derived the electron distribution in-

side STO. Using differential equation (31) and the bo-
undary values of χ and dχ/dξ at ξ = 0, the electron
density profile inside NSTO can also be obtained nu-
merically. A schematic plot of the electron distribution
is presented in Fig. 5. This is the universal curve inde-
pendent of the value of ñ0.

We now dwell on the case of a heavily doped
NSTO layer with the width 2t embedded in STO
(STO/NSTO/STO structure). Experimentally used δ

layers have sharp boundaries [58] with a well-defined
volume concentration n0. We can imagine two limit
cases. When NSTO layer is so wide that its half-width
t is much larger than the width of the electron gas in
STO, we can use the above single-junction theory for
the two separate STO/NSTO and NSTO/STO junc-
tions.

In the opposite case where t is much smaller than
the width d of the electron gas on each side, most elect-
rons are located outside such a δ-layer. As a result,
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STOSTO NSTO NSTO

0 2L–2t x

Fig. 6. Periodic NSTO/STO structure. The width of the
NSTO layer is 2t and the width of the STO layer is 2L

the effective two-dimensional charge density 2tn0 cre-
ates two accumulation electron gases on both sides from
the δ-layer. The external electric field for each gas is
D0 = 4πn0t. The width of the gas is determined by
Eq. (16) if D0 > Dc, which is given by Eq. (17).

Below, we discuss how such a peculiar distribution
of electrons may affect the low-temperature transport
properties of the structure. Namely, for a fixed con-
centration n0, we find the ratio of the mobility µδ for
a δ-doped structure with t ≪ d to the bulk mobility µb

for a structure with t ≫ d.
We focus on low temperatures where electrons are

mostly scattered by donors and the phonon scattering
is negligible. The scattering cross section of an electron
on an ionized donor is Σ ≈ a2 (a is the lattice constant)
and does not depend on the electron energy. Indeed,
the Coulomb impact parameter for an electron with
the Fermi energy εF = (3π2n)2/3~2/2m is I = e2/κεF .
For the concentration n larger than 1017 cm−3, I ≪ a.
As a result, the cross section saturates at the neutral-
impurity cross section Σ ≈ a2. This unique feature
of materials with high dielectric constant [59] simpli-
fies the calculation of the mobility. In the case of δ-
doping, most of the electrons live outside the layer and
are scattered by donors only when they move through
this layer. This leads to a reduced effective concentra-
tion of scattering centers n0t/d, which is much smaller
than the concentration n0 in the t ≫ d case. At t ≪ d,
the Fermi velocity of the electron gas is

vδ ≈ (~/m)(n0t/d)
1/3 ∝ t4/5

since d ∝ t−7/5 for the nonlinear dielectric response,
while for t ≫ d, the velocity vb does not depend on t.
As a result,

µδ/µb = (d/t)(vb/vδ) ∝ t−16/5.

Thus, the mobility µδ decreases with t at t ≪ d and
at t ≈ d saturates at the bulk value µb. This effect
probably was observed in Ref. [60].

We now address more complicated periodic struc-
tures formed by NSTO and STO [41–43] (see Fig. 6).

0

0.5

1.0

–0.5 0 1.0–1.0 0.5
x L/

n x n( )/ 0

L a= 2

L a= 6

L a= 10

Fig. 7. Electron distribution from −t to L plotted as t = L for
different values of L. The solid lines are the electron density
n(x) in the unit of n0, where n0 is the donor concentration in
NSTO. This graph is plotted at n0 = 0.5/a3, where a is the
lattice constant. As the layers become thinner, the electron
distribution is more uniform, deviating from the one shown in

Fig. 5

Inside each NSTO layer, the potential should satisfy
Eq. (31) while in STO, it obeys Eq. (27). Similarly to
Eq. (28), we obtain

χ(−t̃)∫

χ(0)

dχ
(
(8/5)αχ5/2−4ñ0χ+g2

)3/4 =

0∫

−t̃

dξ = t̃, (37)

where t̃ = t/b and 2t̃ is the dimensionless width of the
NSTO layer. Similarly to what we have done above, we
can choose certain values for g2 and χ(0) = χ0, where
χ(0) is the scaled potential on the interface. Then we
can calculate the corresponding t̃ and L̃ and the elec-
tron density profile. Thus, in reverse, at any given t̃

and L̃, we can find the electron distribution. Again,
we need to find the physical range of g2 and χ0, which
can be done similarly to what we did in Sec. 4. Given
values of t̃ and L̃, we try different g2 and χ0 from their
domains until we find the t̃ and L̃ we want. In this way,
we obtain the electron distribution for three different
values of L̃ in Fig. 7 (for simplicity, we choose t̃ = L̃

here). We see that as L = bL̃ increases, the periodic
electron density profile n(x) evolves from being rela-
tively constant to strongly oscillating. Again, we can
see a “flattening” effect near the middle of each layer,
either STO or NSTO. Like what we did in Sec. 4, we
can verify that all derivatives of χ vanish in the middle
of both layers until the fourth-order one.

We also dwell on a recently discovered new type
of STO-based heterojunction formed by STO and
NdTiO3 (NTO). In this structure, the ceiling of the va-
lence band created by the Mott gap in NTO is above the
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bottom of the conduction band of STO [61, 62]. Hence,
in addition to the “polar discontinuity” [5, 63, 64], the
broken-gap band alignment further brings electrons
into STO by the electron “spill-out” and the electron
distribution becomes more complicated. One can basi-
cally use the methods employed in this section to solve
the problem. The difference due to the presence of the
“polar discontinuity” is the abrupt jump of the induc-
tion field on the interface, which gains an additional
value of 4πe/2a2 when going from NTO to STO. One
should note that the dielectric response inside NTO is
linear and the potential obeys Eq. (9). This gives an
expression of the potential derivative dχ/dξ different
from Eq. (31). Also one should know the density of
states below the Mott gap in NTO in order to solve
for the electron distribution. The rest of the procedure
is quite similar and one can then obtain the electron
density profile in this structure.

6. SPHERICAL DONOR CLUSTERS

So far, we have considered only the planar struc-
tures based on STO. In Secs. 6 and 7, we extend our
studies to other nonplanar geometries (spherical and
cylindrical). To make the physics clearer, we return
to the dimensional expressions for physical quantities
from now on as in Sec. 3.

6.1. Renormalization of charge

We consider a large spherical donor cluster of the
radius R and the total positive charge Ze such that a ≪
≪ R < κb/Z (for example, R can be 3 nm and Z ≈ 60).
If the dielectric response is linear, the electrons are
mainly located at distances between r1 = κb/Z and
rA = κb from the cluster [49]. For a very large κ,
these radii are huge (rA = 700 nm in STO at liquid he-
lium temperature) and the electrons are far away from
the cluster. However, at small distances, the dielectric
response is nonlinear and changes the potential form.
If the potential energy outweighs the kinetic energy,
electrons are attracted to the cluster and renormalize
the net charge. To see when this happens, we look at
the specific form of the electric potential in this situ-
ation. We can calculate the potential from differential
equations (38a) and (38b) applicable to the spherical
structure:

(
d

dr
+
2

r

)(
dϕ

dr

)1/3

=
A1/3e

P
2/3
0

[n(r)−n0] ,

r < R, (38a)
(

d

dr
+

2

r

)(
dϕ

dr

)1/3

=
A1/3e

P
2/3
0

n(r), r > R, (38b)

where r is the radius from the cluster center, n(r) is
the electron density at radius r, and n0 is the donor
concentration inside the cluster. However, due to the
simple charge distribution here, we can obtain the po-
tential in an easier way. At r > R, the sphere looks like
a point charge and D(r) = Ze/r2. Using this together
with Eqs. (1) and (3), we can calculate the electric field
and obtain the electric potential ϕ(r) as

ϕ(r) =
A

P 2
0

(
Ze

4π

)3
1

5r5
, R < r ≪ r1, (39)

with ϕ(r = ∞) defined as zero. Inside the cluster at
r < R, since the charge is uniformly distributed over
the sphere, the total positive charge enclosed in the
sphere of radius x is equal to Zer3/R3, whence D(r) =

= Zer/R3. We then find the corresponding potential

ϕ(r) =
A

P 2
0

(
Ze

4π

)3 (
9

20

1

R5
− 1

4

r4

R9

)
,

0 < r < R,

(40)

using the boundary condition ϕ(r = R−) = ϕ(r = R+).

A schematic graph of the potential energy U(r) =

= −eϕ(r) is shown in Fig. 8 by the thick solid line.
The Hamiltonian for a single electron is H =

= p2/2m∗ − eϕ(r), where p is the momentum of the
electron and m∗ is the effective electron mass in STO
[30]. If we approximately set p ≈ ~/2r, we obtain a
positive total energy of the electron everywhere when
Z is very small. This means that there are no bound
states of the electron in the cluster. However, when Z

is big enough such that Z > Zc, the electron can have
negative total energy at r < R and collapse into the
cluster. Using Eqs. (39) and (40), we find

Zc ≈
4π(b/Aa)1/3R

a
∼ R

a
≫ 1. (41)

As Z continues increasing, more and more electrons
get inside the cluster, filling it from the center where
the potential energy is lowest (see Fig. 8). The sing-
le-electron picture no longer applies. Instead, we use
the Thomas–Fermi approximation [49] with the elec-
trochemical potential µ = 0, which gives Eq. (25). (We
continue to assume here that the bulk STO is a mod-
erately doped semiconductor.)
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Fig. 8. (Color online). Potential energy of electrons U(r) =

= −eϕ(r) caused by the spherical donor cluster of radius R

as a function of the distance r from the cluster center. ϕ0 is
defined as n(ϕ0) = n0, where n0 = 3Z/4πR3 and n(r) is a
function of ϕ(r) given by Eq. (25). The thick solid line (blue)
represents the potential profile of a cluster of charge Z . Z∗

which is in the regime of weak charge renormalization. The
thin solid line (red) represents the potential of a cluster at
Z ≫ Z∗ in the strong renormalization regime, where the two
vertical dotted lines show edges of the “double-layer” structure
of width ∼ d ≪ R. The horizontal dashed line indicates the
position of the chemical potential µ = 0. r∗ is the external
radius of the collapsed electron gas where the Thomas–Fermi

approach fails

When the number of collapsed electrons S is small,
their influence on the electric potential is weak. We
can still use Eqs. (39) and (40) for ϕ(r) and obtain the
corresponding expression of n(r). At r > R, since ϕ(r)

is ∝ 1/r5, we find n(r) ∝ 1/r15/2. In this way, we
calculate S as

S =

∞∫

0

n(r)4πr2dr = 0.5Z

(
Z

Z∗

)7/2

∝ Z9/2, (42)

where

Z∗ =

[
4π(b/Aa)1/3R

a

]9/7
. (43)

The net charge number of the cluster is

Zn = Z − S = Z

[
1− 0.5

(
Z

Z∗

)7/2
]
. (44)

We can see that when Zc ≪ Z ≪ Z∗, we have S ≪ Z

and Zn . Z, meaning that the charge renormalization
is weak. However, at Z ∼ Z∗, according to Eqs. (42)
and (44), we have Zn ∼ S ∼ Z∗. The potential con-
tributed by electrons is no longer perturbative. This
brings us to the new regime of strong renormalization
of charge.

We show that at Z ≫ Z∗, the net charge Zne satu-
rates at the level of Z∗e. Indeed, when Z grows beyond
Z∗, Zn cannot decrease and therefore cannot be much
smaller than Z∗. At the same time, it cannot con-
tinue increasing, otherwise as follows from Eqs. (39)
and (42) with Z replaced by Zn ≫ Z∗, the total elec-
tron charge surrounding the charge Zne at r > R would
become Se ≈ Zne(Zn/Z

∗)7/2 ≫ Zne, leading to a neg-
ative charge seen from infinity. Thus, at Z ≫ Z∗,
the net charge Zn saturates at the universal value of
the order of Z∗. This result is qualitatively similar to
the one obtained for heavy nuclei and donor clusters in
Weyl semimetals and narrow-band gap semiconductors
in Ref. [51].

In the next subsection, we show how the renorma-
lization of charge at Z ≫ Z∗ is realized through cer-
tain distribution of electrons, in which a “double layer”
structure (see Fig. 8) plays an important role.

6.2. Radial distribution of electrons

At Z ≫ Z∗, the charge renormalization is strong
and the most of the sphere of radius R is completely
neutralized by electrons. In the neutral center of the
sphere, the electron density is n(r) = n0, where n0 =

= 3Z/4πR3 is the density of the positive charge inside
the cluster. The corresponding “internal” electric po-
tential is ϕin(r) = ϕ0, where ϕ0 is given by n(ϕ0) =

= n0 using Eq. (25). It follows that ϕin(r) is then
∝ (n0a

3)2/3 ∝ [Z/(R/a)3]2/3. Outside the cluster,
when the charge is renormalized to Zn, we have a po-
tential ϕout(r) similar to Eq. (39) with Z replaced by
Zn. Since Zn is ∼ Z∗, where Z∗ is given by Eq. (43), we
have ϕout(r) ∝ (R/a)−8/7 at a distance r of the order
R. Thus, close to the cluster surface, the ratio of the
outside potential ϕout(r) to the inside potential ϕin(r)

is ≈ (R/a)6/7/Z2/3 ≪ 1 since Z ≫ Z∗ ≈ (R/a)9/7.
This indicates a sharp potential drop across the sphere
surface.

At 0 < R − r ≪ R, there is a thin layer of un-
compensated positive charges. At 0 < r − R ≪ R,
a potential higher than farther away means a larger
electron concentration that forms a negative layer close
to the surface. This “double-layer” structure resembles
a capacitor, which quickly brings the potential down
across the surface as shown in Fig. 8. An analogous
structure also exists in heavy nuclei [50, 53] with the
charge Z ≫ 1/α3/2.

To make the analysis more quantitative, we need
to know the specific potential profile in this region.
Near the cluster surface, we can approximately use a
plane solution of ϕ(r), i. e., ignore the 2/r term in the
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left-hand side of Eqs. (38a) and (38b). This kind of
solution for r & R is given by Eq. (13) with x = r −
−R ≪ R, which is the distance to the surface, and the
characteristic decay length d ≪ R is given by Eq. (36),
which in the dimensional form is

d =
C11

A1/4

(
b

a

)1/4
a

(n0a3)7/12
, (45)

where C11 ≈ 2. By expressing n0 in terms of Z and R,
we obtain d/R ∝ (Z∗/Z)7/12 ≪ 1 at Z ≫ Z∗.

Correspondingly, the radial electron concentration
at x & R is given by

n(r)r2 =
C12

A3/7

1

b3

(
b

a

)24/7 (
a

x+ d

)12/7

r2 ≈

≈ C12

A3/7

1

b3

(
b

a

)24/7 (
a

x+ d

)12/7

R2, (46)

where r ≈ R and C12 ≈ 1.
Since the “double-layer” structure resembles a plane

capacitor, near the surface, the potential drops prac-
tically linearly with the radius. Using Eq. (13), we
find ϕ(r) ≈ [1 − 8x/7d]ϕ(R) at 0 < x = r − R ≪ d,
which gives the electric field 8ϕ(R)/7d inside the “dou-
ble layer”. At r < R, this electric field persists and
gives ϕ(r) ≈ [1+ 8(−x)/7d]ϕ(R) at 0 < −x = R− r ≪
≪ d. As r decreases further, the positive layer ends
and the potential crosses over to the constant value ϕ0

given by n(ϕ0) = n0 using Eq. (25).
According to Eq. (13), when x = r−R is compara-

ble to R and the plane approximation is about to lose
its validity, ϕ(r) is ∝ (R/a)−8/7. It is weak enough to
match the low electric potential ϕout(r) ∝ (R/a)−8/7

caused by the renormalized charge Zn ∼ Z∗ at r ∼ R.
The plane solution then crosses over to the potential
ϕout(r) ∝ Z∗3/r5, which is the asymptotic form at
large distances.

A schematic plot of the potential energy U(r) =

= −eϕ(r) as a function of radius r is shown in Fig. 8
by the thin solid line. The corresponding radial distri-
bution of electrons is shown in Fig. 9 by the thick solid
line.

So far, we have obtained a 1/r5 potential ϕ(r) and
1/r11/2 radial electron concentration n(r)r2 at r ≫ R

in both weak and strong charge renormalization cases.
However, as the electron density decreases to certain
extent such that the Fermi wavelength λ is comparable
to the radius r, the gas is no longer degenerate and the
Thomas–Fermi approach fails. Since λ ≈ n(r)−1/3, we
find this radius as r∗ ≈ Z∗a at Z ≫ Z∗. We should
then return to the Schrödinger equation used for a sin-
gle electron. Since the uncertainty principle estimates

r R/

nr n R
2 2/ 0

rm rArc

100 10110–1

10–4

10–2

100

102

Fig. 9. (Color online). Radial electron concentration n(r)r2 as
a function of radius r for the two-scale Thomas–Fermi atom
formed by the supercritical cluster of donors (solid lines). The
thick solid line (red) represents the inner collapsed electrons
at r < rc, where the dielectric response is nonlinear. The thin
solid line (blue) shows the electrons belonging to the outer
shell, which form the standard Thomas–Fermi atom with the
renormalized nucleus charge Z∗ at r > rc, where the dielec-
tric response is linear. This electron gas ends at the Bohr
radius rA = κb while most of the electrons are at the ra-
dius rm = κb/Z∗1/3. For contrast, the dotted line (black)
denotes the electrons forming a conventional Thomas–Fermi
atom [39, 49] with a nucleus of charge Z when P0 is infinity
and there is no range with nonlinear dielectric response. The
reduction of electron density in the outer shell of electrons due
to the collapse is substantial. The reason this is not imme-
diately seen from the difference of height between the dotted
line (black) and the thin solid line (blue) is that we use a log-
arithmic scale here. n0 is defined as 3Z/4πR3. This graph
is plotted at b = 0.35Å, a = 3.9Å, A = 0.9, R = 4.4a,

κ = 20000, n0 = 0.8/a3

that the kinetic energy decays as 1/r2 while the po-
tential energy is ∝ −Z∗3/r5, the potential energy is
smaller than the kinetic energy in magnitude at r > r∗,
which means that electrons cannot stay at radii larger
than r∗. We can also find that using the Thomas–Fermi
solution ϕout(r), the total electron number calculated
at r > r∗ is ∼ 1, which again indicates that there is
no electron at r > r∗, considering the discreteness of
electron charge. As a result, the 1/r11/2 tail of the ra-
dial electron concentration does not continue to infinity
but stops at the radius r∗. This is a semiclassical result.
Quantum mechanical analysis shows that the electron
density does not go to zero right at r∗ but decays expo-
nentially after this point. Since this decay is fast and
brings very small corrections to the edge of the inner
electron gas, we do not consider it here.

At κ = ∞, the rest of the electrons are at the
infinity, and we are therefore dealing with a positive
ion with a charge Z∗. At finite but very large κ, at
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certain distance from the cluster, the field is so small
that P >

√
4π/κAP0 is no longer satisfied and the

linear dielectric response is recovered. Things then be-
come quite familiar. Electrons are mainly located be-
tween r1 = κb/Z∗ and rA = κb with the majority at
the radius rm = κb/Z∗1/3, as given by the Thomas–
Fermi model [49]. Although quantum mechanics gives
a nonzero electron density at r < r1, the number of
total electrons within this radius is only ∼ 1 and can
be ignored. Hence, approximately, when r1 ≫ r∗, i. e.,
κ ≫ (Z∗)2 ≈ (R/a)18/7, there is a spatial separation
between inner collapsed electrons and outer ones that
form the usual Thomas–Fermi atom with the renor-
malized nucleus. When κ is not so big, such separa-
tion is absent, which actually happens more often in
real situations. The inner tail then connects to the
outer electrons with the Thomas–Fermi approach valid
all the way and the dielectric response becomes lin-
ear at r = rc ∝ aκ1/4Z∗1/2. We note that as long
as κ is large enough to satisfy rm ≫ R, which gives
κ ≫ (R/a)10/7, the majority of the outer electrons
located at rm do not intrude into the cluster or the
highly screening double-layer structure near the cluster
surface. The charge renormalization process remains
undisturbed and the total net charge seen by outer elec-
trons is still Z∗. The corresponding radial electron con-
centration n(r)r2 is shown in Fig. 9. At κ ≪ (R/a)10/7,
the dielectric response is linear in most of the space. In
that case, almost all electrons reside in the cluster with
only some spill-out near the surface. The positive and
negative charges are uniformly distributed inside the
cluster as described by the Thompson “jelly” model.

7. CYLINDRICAL DONOR CLUSTERS

In some cases, the donor clusters are more like long
cylinders than spheres. Then, a cluster is described
by the linear charge density ηe while its radius is still
denoted as R. We use a cylindrical coordinate system
with the z axis along the axis of the cylinder cluster and
r as the distance from the axis. We show that when the
charge density ηe is larger than a certain value ηce, elec-
trons begin to collapse into the cluster and the charge
density is weakly renormalized. When η exceeds an-
other value η∗ ≫ ηc, the renormalization becomes so
strong that the net density ηn remains ≈ η∗ regardless
of the original density η. Our problem is similar to that
of the charged vacuum condensate near superconduct-
ing cosmic strings [65], and is also reminiscent of the

Onsager–Manning condensation in salty water [66]1).
Renormalization of linear charge density. For a uni-

formly charged cylindrical cluster with a linear charge
density ηe, similarly to what we did in Sec. 6, we have
D(r) = 2η(r)e/r, where η(r) is the total linear charge
density enclosed in the cylinder of radius r and η(r) =

= ηr2/R2 at r < R and η(r) = η at r > R. We can
then calculate the electric field using Eqs. (1) and (3)
and find the electric potential ϕ(r) as

ϕ(r) =

=





A

P 2
0

( ηe

2π

)3
(
3

4

1

R2
−1

4

r4

R6

)
, 0 < r < R, (47a)

A

P 2
0

( ηe

2π

)3 1

2r2
, R < r, (47b)

with ϕ(r = ∞) chosen to be 0. The corresponding po-
tential energy U(r) = −eϕ(r) is shown in Fig. 11 by
the thick solid line. Using the Schrödinger equation
and setting the momentum p ≈ ~/2r, we find that the
tightly bound states of electrons, in which electrons are
strongly confined within the cluster (at r < R), exist
only when η > ηc, where

ηc ≈ 2π

(
b

Aa

)1/3
1

a
, (48)

which, contrary to Zc obtained in the spherical case,
does not depend on R. Electrons begin to collapse
into the cluster at η > ηc and in the beginning they
are located near the axis, where the potential energy
is lowest (see Fig. 11). With increasing η, the electron
density grows and we can adopt the Thomas–Fermi de-
scription. Using Eqs. (25) and (47b), we then find the
electron density n(r) ∝ 1/r3 at r > R, and the total
number of collapsed electron per unit length is

θ =

∞∫

0

n(r)2πrdr = 0.5η

(
η

η∗

)7/2

∝ η9/2, (49)

where

η∗ =
1

a

[
2π

(
b

Aa

)1/3
]9/7 (

R

a

)2/7

. (50)

The net charge density ηne is then renormalized to

ηn = η − θ = η

[
1− 0.5

(
η

η∗

)7/2
]
. (51)

1) For example, in salty water, the negative linear charge den-
sity of DNA is renormalized from ≈ −4e/lB to the universal net
value −e/lB due to the condensation of Na+ ions onto the DNA
surface. Here, lB = e2/κwkBT ≈ 7Å, where κw = 81 is the
dielectric constant of water and T is the room temperature.
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Fig. 10. (Color online). The number of collapsed electrons per
unit length θ and the renormalized net linear charge density
ηn as a function of the cluster linear charge density η. The
thick solid line (blue) shows ηn(η). The thin solid line (red)
represents θ(η). The dotted line (black) is a guide-to-eye with

ηn = η. θ(η) ∝ η9/2 at ηc ≪ η ≪ η∗

At η ≪ η∗, the renormalization of charge density is
weak and ηn grows with η. At η > η∗, the renorma-
lization effect becomes strong. Most of the cluster is
then neutralized by electrons and the final net density
ηn is much smaller than η. Following the logic similar
to that in the spherical case, and by using Eq. (49),
one can show that ηn reaches a saturation value of η∗

at η ≫ η∗. The dependence of ηn on η is shown in
Fig. 10.

Radial distribution of electrons. At η ≫ η∗, there
are many collapsed electrons inside the cluster, where
n(r) = n0 = η/πR2 and the potential energy is low.
Again, there is a “double-layer” structure on the surface
that provides steep growth of the potential energy with
r at r = R. Close to the cylinder surface at 0 < x =

= r−R ≪ R, as for the sphere, we can approximately
use a plane solution of ϕ(r) given by Eq. (13). The ex-
pression of the characteristic decay length d is also the
same as in Eq. (45). When x = r−R is comparable to
R, the plane solution crosses over to the fast decaying
potential ∝ 1/r2 given by Eq. (47b) with η replaced
by ηn ≈ η∗. A schematic plot of the potential energy
U(r) = −eϕ(r) is shown in Fig. 11.

This potential produces a universal tail of the elec-
tron density n(r) ∼ 1/r3. The corresponding radial
electron concentration n(r)r is ∼ 1/r2. Since the Fermi
wavelength λ ≈ n(r)−1/3, we see that λ ∼ r, i. e., the
Thomas–Fermi approach is only marginally valid. The
collapsed electrons extend until the linear dielectric re-
sponse is recovered and then connect to the outer elec-
trons.

0

–0.5

–1.0

10 2 43
r R/

U r e( )/ j0

m

Fig. 11. (Color online). Potential energy of electrons U(r) =

= −eϕ(r) caused by a cylindrical donor cluster of radius R

as a function of the distance r from the cluster center. ϕ0

is defined as n(ϕ0) = n0, where n0 = η/πR2 and n(r) is
a function of ϕ(r) given by Eq. (25). The thick solid line
(blue) represents the potential profile of a cluster of charge
density η . η∗, which is in the regime of weak renormalization
of charge. The thin solid line (red) represents the potential
of a cluster with η ≫ η∗, which is in the strong renormal-
ization regime. The two vertical dotted lines show edges of
the “double-layer” structure of width ∼ d ≪ R. The horizon-
tal dashed line (black) indicates the position of the chemical

potential µ = 0

8. FINITE-TEMPERATURE EFFECT IN

SPHERICAL DONOR CLUSTERS AND ITS

EXPERIMENTAL IMPLICATIONS

So far, we dealt with zero temperature. At a fi-
nite temperature T , the neutral cluster atom can be
ionized due to the entropy gain of ionized electrons.
The donor cluster atom becomes a positive ion with a
charge Zi(T )e. We recall that the TF approach is valid
at all distances until rA = κb. The first ionization en-
ergy of the cluster atom is then negligible (= e2/κ2b ≈
≈ 10−7 eV), and therefore the cluster atoms are always
partially ionized. Our goal below is to find this ion-
ization charge for the spherical donor clusters. Similar
analyses for the cylindrical clusters can be found in
Ref. [29] and are not repeated here.

We assume that we have a small but finite three-
dimensional concentration N of spherical clusters and
the charge Zi(T ) < Z∗, i. e., the outer electron shell
is still incompletely ionized. Such a cluster can bind
electrons with an ionization energy Zi(T )

2e2/κ2b. We
can find Zi(T ) by equating this energy with the de-
crease in the free energy per electron kBT ln(n0/n) due
to the entropy increase (the entropy increase can be
derived according to § 104 of Ref. [32]), where kB is
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the Boltzmann constant, n = Zi(T )N is the concen-
tration of ionized electrons, and n0 = 2/λ3 with λ =

=
√
2π~2/m∗kBT being the de Broglie wavelength of

free electrons at the temperature T . At κ = 20000,
b = 0.29Å, and m∗ = 1.8me, where me is the electron
mass and N = 1015 cm−3 (estimated from the fact that
the concentration of total donor electrons is around
1018 cm−3 and each cluster contributes ∼ 300 donor
electrons), we have Zi(T ) & Z∗ at T & 8 K with Z∗ =

= 100, which is a reasonable estimate. This shows that
the outer electrons are completely ionized at tempera-
tures that are not too low. For the inner core electrons,
the dielectric response is nonlinear and the attractive
potential is stronger. The ionization energy is therefore
higher, ≈ A(Z∗e/4π)3/5P 2

0R
5 for electrons at r ≈ R.

At R = 4a, it is found that only at T > 450 K can the
inner electrons be ionized by a considerable quantity
(the 1/r15/2 tail is completely stripped then). Hence,
the inner electrons are robust against the thermal ion-
ization.

Experimentally, charged clusters can be created
controllably on the surface of an LAO/STO structure
when the LAO layer is of a subcritical thickness . 3

unit cell [47, 48]. A conducting atomic force microscope
(AFM) tip is placed in contact with the top LAO sur-
face and biased at a certain voltage with respect to
the interface, which is held at electric ground. When
the voltage is positive, a locally metallic interface is
produced between LAO and STO, where some positive
charges are accumulated in the shape of a disc. The
same writing process can also create a periodic array
of charged discs.

We first concentrate on a disc of positive charge cre-
ated in this manner on the STO surface. Close to the
surface and in the bulk STO, we should apply the plane
solution given by Eq. (14). When the distance r from
the disc center is large, i.e., r ≫ R, the disc behaves
like a charged sphere. Our results for a sphere are still
qualitatively correct in this case.

In a periodic array of highly charged discs with the
period 2L (see Fig. 3a in Ref. [47]), the linear concen-
tration of free electrons responsible for the conductance
at a very low temperature is of the order of n(L)L2,
where n(r) is the electron density around a spherical
donor cluster given by Sec. 6. When the overlapping
parts between neighboring discs belong to the outer
electron shells, the corresponding density at r = L

is that of a Thomas–Fermi atom with the charge Z∗.
In this situation, the overlapping external atmosphere
forms conductive “bridges” between discs at low tem-
perature. When T increases, however, the outer elec-
trons are ionized and the bridges are gone. These free

electrons spread out over the bulk STO. At T . 30 K,
electrons are scattered mainly by the Coulomb poten-
tial of donors and the corresponding mobility decreases
with a decreased electron velocity. For the electrons
ionized into the vast region of the bulk STO, they are
no longer degenerate, and hence their velocity becomes
much smaller at relatively low temperature. This re-
sults in a much smaller mobility of the ionized electrons
than those bound along the chain. Their contribution
to the conductivity is thus negligible. The system be-
comes more resistive due to the ionization and one can
observe a sharp decrease of the conductivity along the
chain.

9. CONCLUSION

In this paper, we have studied the potential and
electron density depth profiles in surface accumulation
layers in crystals with a large and nonlinear dielectric
response such as STO in the cases of planar, spherical,
and cylindrical geometries. We use the Landau–Ginz-
burg free energy expansion for the dielectric response
of STO and adopt the Thomas–Fermi approximation
for its electron gas.

For the planar geometry, we predict an electron den-
sity profile n(x) ∝ (x+ d)−12/7, where d ∝ D

−7/5
0 with

D0 as the surface induction and x as the distance from
the interface. Here, we skipped the comparison of this
result with experimental data, which can be found in
Ref. [30]. The data generally show a reasonable agree-
ment with our predictions. We extend our studies from
a single accumulation layer to overlapping ones, and
also investigate the electron “spill-out” from a heavily
n-type doped STO (NSTO) into a moderately n-type
doped STO.

In the second part of this paper, we study the
collapse of electrons onto spherical and cylindrical
donor clusters. Such “fall-to-the-center” originates
from the very fast decrease of the electron potential
energy near the cluster, which is ∝ (−1/r5) in the
spherical case, and in turn is a result of the strongly
nonlinear dielectric response of STO. This leads to a
very unusual two-scale shape of the electron density
around the cluster. We show how such a shape can be
verified experimentally.

We are grateful to B. Jalan, E. B. Kolomeisky,
M. Schecter, and S. Stemmer for the helpful discus-
sions. This work was supported primarily by the Natio-
nal Science Foundation through the University of Min-
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