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We consider a dynamical phase transition induced by a short optical pulse in a system prone to thermodyna-

mical instability. We address the case of pumping to excitons whose density contributes directly to the order

parameter. To describe both thermodynamic and dynamic effects on equal footing, we adopt a view of the

excitonic insulator for the phase transition and suggest a formation of the Bose condensate for the pumped

excitons. The work is motivated by experiments in donor–acceptor organic compounds with a neutral-ionic

phase transition coupled to the spontaneous lattice dimerization and to charge transfer excitons. The double

nature of the ensemble of excitons leads to an intricate time evolution, in particular to macroscopic quantum

oscillations from the interference between the Bose condensate of excitons and the ground state of the excitonic

insulator. The coupling of excitons and the order parameter also leads to self-trapping of their wave function,

akin to self-focusing in optics. The locally enhanced density of excitons can surpass a critical value to trigger

the phase transformation, even if the mean density is below the required threshold. The system is stratified in

domains that evolve through dynamical phase transitions and sequences of merging. The new circumstances in

experiments and theory bring to life, once again, some remarkable inventions made by L. V. Keldysh.
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1. INTRODUCTION

1.1. Aftermaths of optical pulses: from

Bose–Einstein condensation of excitons to the

excitonic insulator

Phase transformations induced by short optical
pulses are a new mainstream in studies of coopera-
tive electronic states (see materials of recent meetings
[1–3] and the collection [4]). In experiments on pump–
induced phase transitions (PIPT) in electronic systems,
the pumping usually proceeds via transitions among
filled and empty electronic bands. A more special and
rare technique is the pumping to bound excitations;

* E-mail: brazov@lptms.u-psud.fr

the excitons whose concentration can reach a very high
value of 10 % per unit cell.

In its pure form, such an ensemble of excitons can
already show a number of coherent effects, including
their Bose–Einstein condensation (BEC), the idea of
which was pioneered by Keldysh and co-authors [5].
In theory, this prediction was followed and elaborated
through decades till nowadays (see, e. g., [6] and recent
review [7]). About the same time, the word “exciton”
was introduced in another concept, that of an excitonic
insulator [8], following a vague suggestion in [9] and its
first elaboration [10]. The excitonic insulator is a hypo-
thetical phase of a semiconductor that appears if the
total energy of an exciton Eex = Eg − Eb vanishes,
Eex → 0. This possibility implies that the conduction
gap Eg and the binding energy Eb can be manipulated
(e. g., by pressure or composition) independently. Soon,
it became clear that the excitonic insulator is a mir-
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ror part of the Keldysh–Kopaev state that had already
been suggested [11]. The “excitonic insulator” became
the common nickname for a state formed by the ap-
pearance of the electron–hole condensate on top of a
semiconducting or semimetallic state. A large number
of theoretical studies followed soon (e. g., [12–15] in the
first wave). The notion of the excitonic insulator is re-
vived nowadays as a convenient interpretation of phase
transitions in various electronic materials [16–18]. We
also recall the old suggestions and attempts to reach
the excitonic insulator state by means of extreme con-
ditions such as high magnetic fields (see [19, 20] for
experiments and [21, 22] for peculiarities in a theory).

Already in static conditions, the microscopic theory
of the thermodynamic excitonic insulator phase just
below the transition and the theory of the BEC of op-
tically pumped excitons are closely related, differing
mostly by the respective monitoring parameters, the
chemical potential µex and the density nex of excitons.
For the optical pumping, this duality was strongly em-
phasized later, around 1990, in a new wave of the theory
of intense optical pumping in semiconductors. A more
recent publication [23] offers a good literature review
and a systematic refinement of these results. The stu-
dies were provoked by observations of the optical Stark
effect for a nonresonant pumping (with the photon en-
ergy below Eex) when the excitonic insulator appears
virtually and lasts only in the course of pumping. For
what was called a resonant pumping (i. e., above Eex or
even above the fundamental edge Eg > Eex), the exci-
tonic insulator appeared as a persistent phase [24], but
the stationary state may not be achievable [25]. Rather,
the system exposes long-lasting large-amplitude oscil-
lations, which is in line with the modern knowledge in
PIPT.

The arrival of the PIPT science gives a new momen-
tum to studies of ensembles of excitons with opening to
coherent effects. By now, experiments were limited to
the so-called neutral-ionic transitions, but actually the
range of realizations is unlimited since all non metal-
lic systems prone to phase transitions have one type
of exciton or another available for pumping. Recently,
we presented [26, 27] a phenomenological modeling of
spacio-temporal effects expected when optical excitons
are coupled to the order parameter of a first-order
phase transition, as it happens in the neutral-ionic case.
The phenomenological approach allowed describing the
thermodynamic transition jointly with the evolution of
the optically pumped ensemble of excitons.

In our picture, a quasi-condensate of excitons ap-
pears as an inhomogeneous macroscopic quantum state,
which then evolves while interacting with other de-

grees of freedom prone to instability. Via these interac-
tions with soft modes, the excitons are subject to self-
trapping (cf. [28] for polarons and [29] for fluctuons),
akin to self-focusing in optics. This locally enhances
their density, which can surpass a critical value to trig-
ger the phase transformation, even if the mean density
is below the required threshold for the global transition.
We have recovered dynamical interplays of fields such
as the collective wave function of excitons, the elect-
ronic charge transfer and polarization, and the lattice
dimerization. We have found various transient effects:
self-trapping, dynamic formation of domains separated
by walls, subsequent merging of domains and collapse
of walls, and emittance of propagating wave fronts.

That model and the results could be applicable
to situations where the excitons and the order para-
meter are essentially different while interacting fields.
This could be the case of pumping to high-energy in-
tramolecular excitons in donor–acceptor systems with
the neutral-ionic transition, as it has been realized ex-
perimentally in [30].

In this article, we consider the case where the tran-
sition order parameter and the intensity of pumping
excitations are of the same origin as it happens for the
low-energy charge-transfer excitons [31] in the neut-
ral-ionic transition. The BEC of excitons is involved
in both situations, but the last case also brings to light
the excitonic insulator state coupled to the BEC.

To describe both thermodynamic and dynamic ef-
fects on the same root we adopt a view of the excitonic
insulator for the phase transition. With only the main
ingredient, the vanishing of the excitation energy, the
concept is too broad, as just a generic view of quantum
phase transitions in electronic systems. The focused
concept of the excitonic insulator is distinguished when
the number of excitons, both in the ground state and
out-of-equilibrium, is approximately conserved. (If it is
conserved precisely as had been stated in most theories
before the clarifying work by Keldysh and co-authors
[12], then the thermodynamics of the phase transition
is not affected essentially but there would be no dy-
namical path to the excitonic insulator state, which is
of particular importance in the context of PIPT; see
precisions in the next section.)

The theory of PIPTs faces great challenges when
started ab initio at the microscopic level (see, e. g., [32]
for a review and [33]). But over longer time scales, the
evolution should be governed by collective variables like
the order parameter and lattice deformations. The ef-
fectiveness of such a phenomenological approach has
been proved by a detailed modeling of coherent dyna-
mics of a macroscopic electronic order through destruc-
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tion and recovering of the charge density wave state.
That allowed describing effects such as dynamic sym-
metry breaking, stratification in domains and subse-
quent collapses of their walls, all in detailed accordance
with experiment (see, e. g., [34]). Another example was
the modeling [35] of the recently discovered [36] swit-
ching to a truly stable hidden state of a polaronic Mott
insulator in 1T-TaS2. The phenomenological approach
becomes inevitable when considering spacially inhomo-
geneous regimes that ultimately appear here. That is
what we keep using in the presented study.

1.2. The neutral-ionic transition as an

excitonic insulator

Relevant neutral-ionic transitions occur in bimo-
lecular donor–acceptor chains (D−ρ–Aρ, in particular
TTF-CA, see the references in [31, 37]) that show a
variable charge transfer ρ between the lower ρN in the
quasi-neutral high-temperature phase and a higher ρI
in the low-temperature ionic phase. The first-order
transition in ρ alone would go without a symmetry
breaking and could be described by a generic double-
well curve for the free energy W (ρ) with two minima
at neutral and ionic states. In spite of the essential
distance (ρN=0.32 and ρI=0.52 at the phase coexis-
tence), the separating barrier is small, and hence we
deal with a first-order phase transition that is close to a
second-order one. That is confirmed by observations of
a critical increase in the dielectric constant [37] as a pre-
cursor of ferroelectricity and of the Kohn anomaly (see
[38] and the references therein) as a precursor for the
lattice dimerization instability. More richness comes
from another degree of freedom, the alternating mole-
cular displacements h: the ionic phase is accompanied
by lattice dimerization, and hense there is a symme-
try breaking and the transition could have been of the
second order, which is not the case nevertheless: the
jump in h is concomitant with the jump in ρ.

Remarkably, TTF-CA and related materials pos-
sess two types of observable and treatable excitons: the
intramolecular Frenkel-type excitons as a high-energy
(2.33 eV) mode of the TTF molecule and the low-energy
(0.6 eV) charge-transfer excitons. In the last case, an
electron is activated from the predominantly donor-
formed band to the acceptor-formed band, but the elec-
tron and the hole are kept bound as for Wannier–Mott
excitons in semiconductors. The charge-transfer exci-
ton increases the charge disproportion ρ above its initial
value, coming from the simple hybridization of donor-
and acceptor-originated bands. Thus, the neutral-ionic
transition can be viewed as accumulation of virtual e–h

pairs in the ionic ground state. With the charge-trans-
fer exciton as the bound state lying well below the un-
bound e–h threshold Eg ≈ 1.5 eV, the charge transfer
can be seen as coming predominantly from excitons,
whence the picture of the excitonic inuslator. The cases
of intramolecular exciton and charge-transfer exciton
correspond to profound experimental studies by Koshi-
hara [30] and Okamoto [31] with co-authors. Our ear-
lier theoretical work [26, 27] can refer to the case of the
intramolecular exciton.

We underline the quantum nature of the char-
ge-transfer exciton in both its internal structure and
motion. Internally, this is a symmetric superposition
of states where dipole dimers are formed by the charge
transfer from a donor site to the surrounding accep-
tor sites. Within the classical llustration, that is used
sometimes, there would be either left- or right-directed
dimer with corresponding opposite electric polariza-
tions. But with the quantum superposition, the dipole
moment vanishes, to be weakly restored after lattice
dimerization, which breaks the inversion symmetry and
mixes states of excitons of even and odd parities. With
respect to the motion as a whole, the lowest-energy
state of the exciton is ideally (up to inhomogeneities as
we see below) a plane wave delocalized over the sample
in the state with the momentum k = 0, like in conden-
sates of polaritons (see [39] for a review). This descrip-
tion is complementary to the popular classical picture
of classical domain walls (the solitons) propagating as
a falling domino array.

2. THE MODEL

2.1. Integration of the Bose condensation of

excitons and of the excitonic insulator in

dynamics of neutral-ionic transitions

In the case of pumping into the intramolecular exci-
ton near the neutral-ionic transition, the excitons and
the order parameter were essentially different while in-
teracting fields, and it was therefore quite straightfor-
ward to formulate a phenomenological model [26, 27].
In case of the charge-transfer exciton, both the exci-
tation and the long-range ordering are built from pro-
cesses of electronic transfer between donor and acceptor
molecules. Although the number of independent fields
is reduced, conceptually this case is more intricate.

The dualism of the exciton density q and the ther-
modynamic order parameter ρ − ρN already outlined
in Sec. 1.2 do not seem to be quite compatible: the
thermodynamic charge transfer is given by a redistri-
bution of the charge density ρ, which is the single real
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field both in equilibrium and in evolution. The charge-
transfer density from the pumped ensemble of exci-
tons is given by the exciton number density q ∝ |Ψ|2,
and hence the field is still real but its evolution is
given by the complex wave function Ψ = q1/2 exp(iϕ)

of the BEC, and a hidden degree of freedom — the
phase ϕ — comes to the sight. The evolution of this
phase can be traced directly because its time derivative
gives the observable instantaneous energy of the exci-
ton Eex(t) = −~∂tϕ in the frame of their ensemble.

This dualism between the density of microscopic ex-
citons and the thermodynamic charge ordering calls for
refining another dualism: among explicit coherent os-
cillations of the order parameter and those of the wave
function of excitons, which interfere but keep the differ-
ent origins. In general, collective oscillations might be
superimposed on the frequency Eex(t)/~, but now, with
strong variations of Eex, the two time dependences can-
not be disentangled and must be considered on equal
footing.

2.2. The energy functional and evolution

equations

To build a unified approach to two faces of the
charge transfer, we describe the phase transition as the
one of the excitonic insulator state — a view that is
becoming popular, nowadays, as one can see from the
papers we have cited above. The notion of the excitonic
insulator can be applied to a large category of quantum
phase transitions where the instability comes from the
vanishing of the energy Eex of an excitation which is
here a bound state of the e–h pair. The instability for
negative Eex < 0 is compensated by repulsion of exci-
tons which determines the equilibrium concentration.
A particular convenience is that the excitonic insulator
and BEC theories are identical except that the first is
monitored by the chemical potential while the second
one by the mean density. The time evolution genera-
lizes and unifies both views, which we exploit in what
follows.

The increase in the average charge-transfer inten-
sity does not break the symmetry, similarly to the
liquid–vapor transition; a first-order phase transition
is then expected in general. (In systems of our inte-
rest, there is also a discrete symmetry breaking thanks
to appearing of the lattice deformations h, which can
take the values ±h0(ρ) in equilibrium at a given ρ; but
for the sake of transparency, we disregard this variable
for a while.) The energy functional W (ρ) is minimal
in equilibrium, which can occur at two values ρ1 and
ρ2, one of which is metastable except at the transi-
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Fig. 1. Coulomb interactions of the electron and the hole:

(a) normal and (b ) anomalous, with the annihilation of ex-

citon pairs

tion temperature Tc of the first-order transition, where
W (ρ1) = W (ρ2).

At short times of PIPTs and/or at low tempera-
ture, the system behaves dynamically as is described
by a Hamiltonian containing the kinetic energy density
proportional to ρ̇2. It leads to a second-order differen-
tial equation ∂2

t ρ ∝ −δW/δρ, which does not preserve
ρ at all and does not result in a bottleneck for trans-
formations among phases with different mean values
of ρ. In conditions of PIPT, such a system performs
large-amplitude pendulum oscillations (see a clear ex-
perimental example in [34]). With some dissipation
taken into account, it is eventually driven towards one
of equilibrium states ρ1 or ρ2.

Actually, the optical pumping gives rise initially to
a high density of excitons, which, in case of resonant
pumping or after relaxation in general, can be described
by the common wave function Ψ of the quasi-conden-
sate with the density q = |Ψ|2 contributing to ρ =

= ρ1 + q. The system of excitons itself can be de-
scribed as interacting bosons whose phenomenological
treatment at low temperature can be based upon the
adapted Gross–Pitaevskii theory. And that would lead
to a kind of nonlinear Schrödinger equation (NLSE),
which commonly preserves the number of excitons, and
would therefore prohibit any evolution of ρ.

The escape from these contradictions can be found
following the work by Keldysh and co-authors [12]:
there are processes of creation and annihilation of pairs
of excitons from/to the vacuum coming from matrix
elements of the Coulomb interaction, which transfer
two electrons across the gap, between filled and empty
bands (see Fig. 1). That gives rise to the amplitude S

of simultaneous annihilation of two excitons. Finally,
the excitonic insulator free energy acquires the phase-
fixing terms

(S∗Ψ2 + SΨ∗2)/2 , S = |S|eiα

and hence the generalized Ginzburg–Pitaevskii equa-
tion (see below) does not preserve the total number of
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particles. (Here and hereafter, we assume the given
phase α = 0 which can always be done by shifting the
origin of the variable phase ϕ.) For the founding ex-
citonic insulator scenario of condensation of Wannier–
Mott-type excitons, these anomalous terms are small
compared with the dominant Coulomb energy Eb as
|S|/Eb ∝ (a/R)d, where a is the lattice spacing, R ≫ a

is a large exciton radius, and d is the space dimension.
For local excitons with R ∝ a, there is no smallness;
the phase can be strongly fixed and the system must
show the behavior expected of the generic scalar order
parameter.

By the definition of the excitonic insulator, the pha-
se-fixing terms are small, |S| ≪ 1, and hence the total
complex order parameter Ψ still is to be exploited. For
a typical neutral-ionic material, the bare value of S may
not very be small: both because R is only of a few a

and because of low d = 1. But the same fact that the
system is nearly one-dimensional brings, as always in
one dimension, strong phase fluctuations that reduce
functions periodic in ϕ. Hence, the effective value

|S| → |S|〈exp(2iϕ)〉 ≈ |S| exp(−2〈ϕ2〉)

can be small; it can even be renormalized to zero.
We work with a special form of the Ginzburg–Pi-

taevskii equation that is applicable when boson occu-
pation numbers for all relevant states are much bigger
than unity. For the system of excitons on a d-dimen-
sional lattice, the condition is that their mean density
per lattice site is x ≫ (T/D)d. With the exciton band-
width D ∼ 103 K, this inequality can always be satis-
fied for a typical experimental value T ∼ 10 K. Even if
the initial value of x is not sufficiently high, the kine-
tics of many-particle cooling feeds the low-energy states
such that the Ginzburg–Pitaevskii theory becomes ap-
plicable sooner or later. This is an advantage of the
fast PIPT technique, where the integral time of ob-
servations is shorter than the recombination time of
excitons.

Varying the energy functional W (to be specified in
Eq. (6) below) over Ψ yields the generalized Ginzburg–
Pitaevskii equation

i~∂tΨ+ i~ΓΨ =
δH

δΨ∗
= − ~

2

2M
∂2

xΨ+

+ V (q)Ψ− SΨ∗,

V (q) = dW/dq = Eex.

(1)

The perturbations proportional to Γ (see below
Eq. (2)) and S describe the respective relaxation of am-
plitude and locking of the phase. The relaxation rate
Γ might have a complicated behavior, passing through

different regimes. In the most dilute limit of isolated
excitons, apparently Γ = 1/τex is the inverse life time
for the exciton recombination. Actually, our vanishing
q still assumes a macroscopic concentration when the
radiational recombination is dominated by stimulated
emission; then, according to the Bose–Einstein statis-
tics, Γ decreases as Γ ∝ q. Approaching the high-q
equilibrium phase at q ≈ q0, where the excitons con-
stitute the ground state, Γ → 0 should vanish since
there is no channel of decay at the energy minimum.
That is rigorously true below the neutral-ionic transi-
tion when the high q state has a minimal energy. If
it is metastable, then we neglect its evaporation over
the barrier towards the q = 0 region. If there were
no phase dependence through the S term, then sim-
ply Γ should vanish together with V , and hence we
can write a qualitative interpolation between the two
limits as Γ ⇒ G(q)qV (q)/~, where G(q) is some struc-
tureless dimensionless function of q (which we take as a
constant in the illustrative numerical modeling). This
expression tells us that Γ < 0 (meaning amplification
instead of the decay) in the region between the barrier
and the high-q minimum where V < 0 (see Fig. 2).
This is not unphysical since here the system is indeed
unstable with respect to spontaneous creation of exci-
tons whose energy becomes negative as in the excitonic
insulator. Bringing the system to this range of q by
pumping the excitons is similar to instantaneous cros-
sing the boundary of the excitonic insulator state by
varying a thermodynamic monitoring parameter.

In view of the phase dependence, the equilibrium
state is determined by both q and ϕ approaching the
energy minimum ϕ = 0 (modulo π), q ≈ q0 in some
complicated way. Instead of guessing Γ as a function of
two variables, it is more instructive and basic to realize
that the energy relaxation terminates when ∂tϕ = 0.
Then

Γ ⇒ −G

2i
(Ψ∗∂tΨ−Ψ∂tΨ

∗) = −Gq∂tϕ =

=
Gq

~
Eex(t, x), G ≈ const. (2)

The quations for q and ϕ written below show that
this expression is indeed a generalization of the rela-
tion Γ ⇒ G(q)qV (q).

For the zero dimension D = 0 of a quantum dot or
for a spacially homogeneous regime ∂xΨ ≡ 0, it is in-
structive to write the above equations in the variables
q, ϕ (∂tϕ = ϕ̇, ∂tq = q̇):

~ϕ̇ = −V + |S| cos(2ϕ), (3)
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Fig. 2. Plots of the ground-state energy W (q) and the potential V (q) = dW/dq above the first-order transition: (a) for a

metastable generic excitonic insulator; (b ) for the neutral-ionic system after minimization of W (q, h) over the lattice displace-

ment h. Vertical dashed lines separate four intervals of q (from left to right): repulsion, attraction, creation, and again repulsion

of excitons. (c) density plot of W (q, h) showing all three locally stable states

q̇ = −Γq + 2 |S| q sin(2ϕ) = Gq2ϕ̇+ |S| q sin(2ϕ) =
= −(G/~)q2(V − |S| cos(2ϕ)) + 2 |S| q sin(2ϕ). (4)

The polar trajectory q(ϕ) is given by the solution of
the equation

dq

dϕ
=

q2(V − |S| cos(2ϕ))G/~− |S| q sin(2ϕ)
V − |S| cos(2ϕ) . (5)

Approaching the neutral phase with a residual but
still macroscopic density of excitons, q → 0, V → E0

ex,
we obtain the vanishing concentration of isolated ex-
citons whith the shifted energy ES =

√

(E0
ex)

2 − |S|2.
The wave function oscillates as

Ψ ∝
(

√

E0
ex − |S| cos(ωSt) + i

√

E0
ex + |S| sin(ωSt)

)

,

where ωS = ES/~. For the high-q phase, unlike the
q = 0 one, the energy has a smooth minimum at q0
where V (q0) = 0; then ∂tΨ = 0 implies that

sin(2ϕ) = 0, −V + |S| cos(2ϕ) = 0,

i. e.,
ϕ0 = ϕ = πn/2, V (q0) = |S|(−1)n.

We note that the equilibrium value is displaced from
q0 by the effect of the S term.

2.3. Taking account of dimerizations

We now come to the realities of neutral-ionic tran-
sitions by recalling the symmetry breaking order pa-
rameter, the dimerization h. We work with the energy
function

W (q, h) = E0

exq+
a

2
q2+

b

3
q3+

d

2
(qh−q)h2+

f

4
h4,

V (q, h) =
∂W (q, h)

∂q
= E0

ex + aq + bq2 − h2d

2
.

(6)

The phenomenological model of the generic excitonic
insulator would contain only the terms without the
symmetry breaking field of displacements h; then, to
obtain the regime with the (meta) stable state at q0 > 0

coexisting with the still stable state at q = 0, we might
assume the negative a < acr = −2

√

bE0
ex (attraction

of excitons), but positive Eex > 0. In applications to
neutral-ionic transitions, we leave a > acr (it can even
be positive a > 0, corresponding to the repulsion of
excitons, which guarantees local microscopic stability),
because the energy minimum at q > 0 is built with the
help of the induced instability, at all q > qh, of the field
h describing the dimerization. The effect of h cannot
depend on its sign, whence the coupling proportional
to −qh2; it can be viewed as a decrease in the exciton
energy by dimerization, which can come from the mix-
ing of even and odd excitonic states when the inversion
symmetry is broken at h 6= 0. As a second-order pertur-
bation in h, it should be negative as we have specified.
We can also add a higher order coupling proportional
to −q2h2 which is the effect of dimerization on the in-
teraction of excitons. In the presence of h 6= 0, the
inversion symmetry is broken (the state is ferroelect-
ric!), and the excitons acquire dipole moments along
the chain, whence the attractive dipole–dipole contri-
bution, which guarantees the negative sign of this inter-
action. Taking both effects into account, we can write
the interaction term as (qh − q)(d1 + d2q)h

2/2, with
d1, d2 > 0.

The equation for h(t, x) follows from the variation
over h of the energy functional augmented by the lat-
tice kinetic energy and elasticity:

K(∂2

t + γ∂t)h−Ks2∂2

xh+ d(q − q)h+ fh3 = 0. (7)
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Here, s is the sound velocity and qhd/K = ω2, where
ω is the h-mode frequency in the virgin state q = 0.
Equations (6), (7), and (2) with V (q) generalized to
V (q, h) from (6) constitute the full system used in our
minimalistic modeling.

3. RESULTS OF NUMERICAL MODELING

3.1. Generic excitonic insulator

We first consider the generic model of the excitonic
insulator schematically. Here, the transition is of the
second order, governed by only one field Ψ, and the
phenomenological energy has the simplest form

W (q) = E0

exq + aq2/2, V (q) = E0

ex + aq.

In the excitonic insulator phase, E0
ex < 0. We select

the equilibrium position q0 = −Eex/a = 1 and hide
the coefficient a in time rescaling. In the thus reduced
equations, we choose S = 0.1 and fix the attenuation
coefficient in (2) as G = 0.01. The pumping intensity
determines the initial value qi. The results are shown
in Fig. 3 as linear plots for q(t) and ϕ(t) and as para-
metric polar plots for q(ϕ).

There is a small critical deviation qi − q0 (to any
side) beyond which the phase is unlocked (the S term is
not effective), q oscillates with little attenuation around
qi, and the phase rotates almost linearly in t (superim-
posed by oscillations as well as q(t)). This regime cor-
responds to the collective mode of excitons with oscilla-
tions coming from a macroscopic quantum interference
due to the particle production to/from the excitonic
insulator ground state. But with time the attenuation
proceeds towards the energy minimum, q crosses the
critical deviation towards q0, and the phase locks via a
dynamic transition. With attenuating oscillations,the
phase approaches an equilibrium value from the se-
quence π(n + 1/2), where n is the number of half-pe-
riods processed before the locking. Also with attenu-
ated oscillations, q(t) approaches the equilibrium value
displaced from 1 by effect of the S term.

Figure 3 shows the time dependences for the phase
and the amplitude, and the trajectory as a paramet-
ric polar plot for q(ϕ). The initial deviation (pumping
from the equilibrium qeq = 1.05 to some initial qi = 1.4

at a given equilibrium phase ϕ = π/2) provokes the un-
locked regime, which lasts until t ≈ 40 with nearly two
(there can be many) rotations over the initial circular
trajectory. Here, the amplitude is close to a constant
(the number of excitons in the condensate is nearly
conserved), while the phase decreases almost linearly
in time, with a nearly constant exciton energy. With

q(t) slowly decreasing because of relaxation in the num-
ber of excitons, a locking transition takes place after
which the amplitude gradually returns to thermody-
namic equilibrium while the phase is locked at a new
allowed value π(n+ 1/2), here with n = −3.

3.2. Generic first-order phase transition

We now turn to the case of a generic first-order
phase transition which may be due to attraction of ex-
citons, as is sometimes considered for semiconductors
[5, 40, 41]. This example also builds a bridge to our
primary goal of a multi-field system. We choose the
ground state energy as

W (q) =
q

1.05

[

(q − 1)2 + 0.05
]

, V (q) =
dW

dq
,

which is plotted above in Fig. 2. W (q) is normalized
such that the bare exciton energy is E0

ex = V (0) = 1.
With these parameters, we are below the thermody-
namic phase transition to the excitonic insulator state,
which nevertheless can exist as a metastable state (the
minimum of W (q) at q0 ≈ 1).

For a very high pumping exceeding the position of
the metastable excitonic insulator, qi > q0, the behav-
ior shown in Fig. 4 is qualitatively similar to the above
case of the generic excitonic insulator with the second-
order transition (Fig. 3).

At a lower pumping, but still above the position of
the barrier in W (q), q0 > qi > qb ≈ 0.36, there is a fast
crossover to the regime of oscillating relaxation towards
the excitonic insulator state, with no clear unlocked
regime, as demonstrated in Fig. 5 for qi = 0.35935 (just
above the barrier). After some waiting time (which is
pronounced here because of the chosen close proximity
to the critical pumping), strong oscillations develop in
both q and ϕ. After a long relaxation accompanied by
attenuating oscillations, q finds a new equilibrium at
the position of the metastable excitonic insulator while
the phase returns to the initial value π/2.

For an even lower sub-barrier pumping qi < qb, the
system relaxes to the virgin no-exciton state, as is also
shown in Fig. 5. The curves are superimposed by oscil-
lations, which, at least at sufficiently long t, correspond
to the energy E0

ex of the bare exciton.

3.3. Multi-field model for the neutral-ionic

transition

The modeling is based on Eqs. (1), (6), and (7)
describing a coupled evolution of the complex order
parameter Ψ and of the dimerization h. Numerically,
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we try to stay within the range of parameters known
or estimated for a real material with an neutral-ionic
transition. The plausible numbers are given in the Ap-
pendix.

3.3.1. Neutral-ionic system at space independent

conditions

First, we generalize the generic models considered
previously by looking for a space-independent solution.
The time dependences are shown in the plots in Fig. 6;
they have been calculated for the realistic parameters
described in the Appendix. The Fig. 6a shows results
for the subcritical regime when the system is pumped
from the neutral state to qi = 0.01 < qh = 0.03 ≪ qI ,
keeping the unperturbed initial hi = 0. (Recall, see
Fig. 2b, that qI ≈ 0.2 and |hI | ≈ 0.03 in equilibrium of
the ionic phase.) After some waiting time th ≈ 1000,
pronounced oscillations in h(t) emerge and then de-
crease with a tendency to saturation at h ≈ 0.002. But
at t∗ ≈ 9000, the dynamical regime switches abruptly
to weaker oscillations around h = 0. All the way, q(t)
decreases monotonically while Eex stays nearly con-
stant close to the unperturbed value E0

ex = 0.6. On
both sides of the transition, oscillations in Eex(t) are
small but change in character (as it could be seen by
comparison with the modeling at S = 0, which is not
shown). At t < t∗, Eex(t) oscillates together with h(t)

at the lattice frequency ω, while at t > t∗, the oscilla-
tions of Eex(t) are seen only if S 6= 0, and hence they
are related to the macroscopic quantum interference:
excitons pair creation from the vacuum admixes the
basic state at E0

ex with states at 3E0
ex and −E0

ex.
Figure 6b shows the results for the supercritical

regime after pumping to the level much higher than
the threshold qh but still below the new equilibrium:
qi = 0.15 < qI = 0.2 (again starting with the un-
perturbed hi = 0). At short times, we see a smooth
decrease in q(t) and Eex(t) until the initiation of h(t)
at t∗ ≈ 300. It is followed by formation of lattice oscil-
lations, now around a finite value of h together with a
finite value of the weaker oscillating q(t). In this regime
of an accidentally found intermediate equilibrium, the
exciton energy strongly oscillates around zero such that
the mean phase does not change much. After another
crossover at t ≈ 1700, the oscillations of Eex(t) make
preferable excursions to negative values: we see this
from the phase, which starts anomalously growing in
average. In this regime, the excitons are preferably
generated from the vacuum, and hence q(t) starts to
increase (with time it rises above the initial pumping
level). Then, after the clearly seen lock-in transition at

tlock ≈ 2600, the final equilibrium becomes apparent
but with the new rise of strong oscillations in q(t) and
h(t) provoked by this final dynamical transition.

3.3.2. Spontaneous domain structure

For an extended system, spatially homogeneous so-
lutions may not be stable because of the interaction
between the excitons and the order parameter. For a
low concentration and above the BEC transition, that
would be effects of self-trapping of individual excitons
[28]. For the macroscopic description of the BEC, the
effect resembles self-focusing in nonlinear optics. In
the last case, the optical “bright solitons” appear be-
cause of the negative nonlinearity — the term a|Ψ|2Ψ
with a < 0 in the NLSE. When the NLSE for clas-
sical waves becomes the Ginzburg–Pitaevskii equation
for an ensemble of quantum Bose particles like the ex-
citons, the negative a means attraction of particles,
which gives rise to the the microscopic instability [41]
of the Bose gas with respect to the collapse to a liquid
state (for cold atoms) or with a probable dissociation
to e–h droplets for excitons (this is one more oppor-
tunity to recognize another very well-known invention
by Keldysh, see [40]). In our case, the excitons them-
selves are repulsive, a > 0; but if the order parameter
is excluded (which is not possible explicitly), then the
direct repulsion is overcome by effective attraction. Mi-
croscopically, this attraction is indirect and retarded,
and hence it may not lead to an instability towards the
dense phase. But at larger time and space scales, the
effective attraction can win, leading to spatially modu-
lated structures. The effect has been modeled in detail
[26, 27] for a system where the excitons and the or-
der parameter are essentially different entities, like in-
tramolecular excitons with respect to charge transfer in
materials with the neutral-ionic transition. The effect
is also present here within the model of the excitonic
insulator for the neutral-ionic transition with pumping
to charge-transfer excitons.

Below we present results of modeling the spacio-
temporal behavior with the anomalous interaction ne-
glected, S = 0. In all cases, the initial wave function
is taken as the lowest state in the box of the width
2L = 200 (in units of the intermolecular spacing):

Ψ(x, 0) = Ψi(x) =
√
qi cos(πx/2L).

The initial maximal intensity is chosen as qi ≈
≈ 0.15–0.17, which is well above the barrier but still
below the equilibrium value q0 = 0.2 of the ionic state,
and a further 1/

√
2 below the mean equilibrium value

487



S. Brazovskii, N. Kirova ЖЭТФ, том 149, вып. 3, 2016

t . 10 –3
t . 10 –3

5 10 1 2 315 20

100h

30h

10q

10q

Eex

Eex/2

j/100p
0

0.2

–0.2

0.4

0.6

0.8 2

–2

1

–1

0

a b

Fig. 6. Plots for t dependences Eex, q, and h at (a) the subcritical pumping and (b ) the supercritical one

t . 10 –4

t . 10 –4

a

b

h

q

0.04

0.03

0.03

0.02

0.02

0.01

0.01

0

0

1

1

2

2

3

3

0

0

50

50

–50

–50

–100

–100

100

100

t

t

x

x

h

q

x

x

t = 20000

t = 20000

t = 10000

t = 1000

t = 10000

t = 500

t = 0

t = 300

0

0

50

50

–50

–50

100

100

–100

–100

0.030

0.020

0.020

0.010

0.010

0.025

0.015

0.015

0.005

0.005

Fig. 7. Plots for the post-pumping evolution of (a) h(x, t) and (b ) q(x, t) for a homogeneous seeding of h(x, 0)

488



ЖЭТФ, том 149, вып. 3, 2016 The excitonic insulator route trough a dynamical phase. . .

100

100

50

50

–50

–50

–100

–100

0

0

2.0

2.0

1.5

1.5

1.0

1.0

0.5

0.5

0 x

x

t·10 –4

t·10 –4

0.04

0.04

–0.04

0.02

0.02

0.01

0.03

–0.02

0

0

h

q

–100

–100

100

100

50

500

–50

–50

x

x

–0.01

0.01

0.02

0.03

0.20

0.15

0.10

0.05

–0.02

–0.03

h

q

t= 20000

t= 20000

t= 10000

t= 600

t = 300

t= 500

t= 0

a

b

Fig. 8. Plots for the post-pumping evolution of (a) h(x, t) and (b ) q(x, t) for development of a two-domain configuration after
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for the whole sample. The dimerization field h(x, t) is
seeded as a very small value h(x, 0) = hi(x) ∼ 10−8.

Figure 7 shows the results for the homogeneous
seeding hi(x) = const. The density q first decreases
maintaining the broad initial shape. Then the self-trap-
ping progresses, culminating at t ≈ 10000 by a sharp
rise of the central peak; soon, a rectangular shape is
formed separating the system into a narrow domain
of the perfect ionic phase surrounded by the wings of
the nearly perfect neutral phase. The dimerization
h(x, t) becomes pronounced by t ≈ 300; by t ≈ 500,
the two strong side peaks are visible in the cross sec-
tion. The three-dimensional plot shows that these are
passing ways emitted by the fast nucleation of self-trap-
ping. The later evolution resembles the one for q(x, t).
The difference is that oscillations of q are concentrated
within the narrow nucleation region.

Because of the two-fold degeneracy with respect to
the field h, the self-trapping direction of h depends on
the sign of the initial seeding of hi, irrespective of how
small its magnitude is. With the constantly present
initial inhomogeneities, the nucleation of different do-
mains becomes inevitable. For a transparent illustra-
tion, we make the stepwise seeding hi(x) with oppo-
site signs at two halves of the sample. The results are
shown in Fig. 8. The antisymmetric shape of h(x, t) is
preserved at all t, and hence the domain wall (the kink-
soliton) is always present around x = 0. The humps in
h(x) rise to the oder of magnitude of the final scale
±h0 at t ≈ 300. Soon, at t ≈ 600, h(x) spreads wider
in the course of high-amplitude oscillations, which ac-
tually are of dynamical origin, from a sequence of waves
emitted at the early time of fast growth at small x. At
higher t, the shape becomes smooth again. The final
profile shows the ideally flat plateaus at |x| < 50 of the
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pure ionic phase with exactly h(x) ≡ ±h0 = ±0.03.
They are surrounded by crossover layers of decreasing
h(x), spreading over 50 < |x| < 80, which makes a dif-
ference with respect to the previous case. Beyond the
sharp boundary towards the outer regions at 80 < |x|,
the system stays at the prepumping neutral state with
h(x) ≡ 0. The plots of q(x, t) confirm the formation
of the ionic phase at |x| < 50 but the plateau is frag-
mented by a sequence of narrow deep rims. In contrast
to h(x, t), there is no sharp second boundary towards
the neutral phase: q(x) keeps tails comparable with the
initial distribution just after the pumping.

Formation of flat sharply bounded plateaus cor-
responding to an ideal phase separation was not ex-
pected from a common experience with NLSE and
Ginzburg–Pitaevskii equations, where the self-focusing
profiles show smooth bell-shaped humps. The differ-
ence seems to come from the threshold formation of h
with increasing q, giving rise to the kink in the depen-
dence V (q) as shown above in Fig. 2.

There is an apparent correspondence between the
shown pictures and the earlier schemes invoking soli-
tons [42, 43]. Thus, the final domain wall between
domains with opposite signs of h corresponds to the
always allowed, presumably spin-carrying, solitons in
[42]. The humps within the domains of a given sign of
h, appearing here because of self-trapping, correspond
to pairs of charged spinless solitons that are the walls
framing the ionic string within the neutral domain [43].
Indeed, these solitons are always confined in pairs ex-
cept exactly at the transition temperature. Solitons in
neutral-ionic systems in relation to the ferroelectricity
will be reviewed in more detail in [44].

4. THE WORK TO BE DONE: A TWO-FLUID

KINETICS

The excitons forming the excitonic insulator ground
state are in the condensed form by definition. In the
modeling presented above, we have additionally sup-
posed that all the pumped excitons also form the BEC,
and hence the whole ensemble can be described by a
single wave function Ψ of the collective state. Cer-
tainly, there is also the normal component because the
temperature is not very low and because of the ini-
tial incoherent background coming from excitons that
were excited non-resonantly, with the phonon-assisted
absorption of photons. Within this article, we do not
discuss the very important questions of kinetics of non
condensed particles, relying on experimental facts of
fast initial equilibration. A future microscopical study

can be advanced thanks to the progress in the theory
of equilibration in a gas of excitons [45] and polari-
tons [46–48], and to the general understanding of a non
equilibrium Bose gas motivated by problems in cold
atoms [49–51]. There are two levels of difficulties on
this way. One, having been surpassed reasonably in the
existing literature, is the kinetics of occupation num-
bers leading to the growing of the low-momentum peak
while approaching the BEC. Another is the establish-
ing of coherence, allowing the Ginzburg–Pitaevskii de-
scription to be introduced; this final step has not been
passed yet, to our knowledge, to treatable implemen-
tations, except a heavy duty numerical work [52, 53].
For the ideal model of the weakly interacting Bose gas,
there is a fair overlap between the regime of the micro-
scopical kinetic and the collective NLSE-based descrip-
tions. But the price is that turbulent mixing must be
taken into account in the NLSE [52, 53] or equivalently
the Ginzburg–Pitaevskii equation must be considered
stochastically rather than deterministically [48]. For
applications in solid state physics, the universality of
the NLSE is not much helpful as regards the BEC of
excitons and polaritons, because other channels of the
relaxation become more important than collisions of
bosons: emission of phonons [45] or disorder [54]. New
features appear such as the final threshold for pumping
to reach the BEC of excitons even at T = 0 [45].

For the stationary BEC of polaritons, the theory
is usually simplified by considering the normal compo-
nent as a separate quasi-equilibrium reservoir, which
can be characterized by the density n or the chemical
potential µn (see [39, 46–48]). While this approach,
mainly reduced to the cases of the stationary pumping,
will doubtfully be extended to our systems, we briefly
outline its possible application below as an absolutely
minimalistic description.

A certain ground for the separation into two di-
stinct, particle-exchanging reservoirs comes from sug-
gesting a bottleneck — a minimum Emin of the kinetic
energy — where the pumped excitations accumulate
after the initial rapid cooling. It is tempting to asso-
ciate Emin with the energy of the lowest lattice mode
interacting with excitons. In our case, a good candi-
date is the soft mode in the dip of the Kohn anomaly,
which should exist as a precursor for the lattice dimer-
ization instability, (see [38] and the references therein).
That can also be the Debye frequency of the acoustical
spectrum; both candidates converge to Emin ∼ 100 K.

We can make a simplifying, and quite plausible, sug-
gestion that all reservoirs of excitons contribute addi-
tively to the order parameter: the charge transfer be-
comes ∆ρ = q + n, where still q = |Ψ|2. Then the
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system energy and the particle potential are simply
W (q+n) and V (q+n). Now Ginzburg–Pitaevskii equa-
tion (2) is further generalized to

i~∂tΨ = − ~
2

2M
∂2

xΨ+V (|Ψ|2+n)Ψ+
i

2
RnΨ− S

2Ψ∗
,

where R is a conversion rate. This has to be comple-
mented by an equation for n, which we choose as a
simple rate equation (cf. [46])

∂tn− ∂xb∂xµnn = P −Rn|Ψ|2, |Ψ|2 = q,

where µn(n) and b(n) are the chemical potential and
the mobility (see [54]) of normal particles, P (t) is the
pump intensity profile; being short, it can be omitted
in favor of the initial condition n(0) = n0 =

∫

P (t) dt.
Since we are now considering relatively short times,

we omit the decay terms proportional to G for the total
number of excitons but instead introduce the conver-
sion rate R regulating the exchange between the reser-
voirs. The function R must change sign as a function of
the discrepancy δµ = µn − µc of chemical potentials in
the normal and condensed subsystems. We shall adopt
the simplest linear form valid at |δµ| ≪ T ; otherwise,
it can be generalized to R ∝ sinh(δµ/T ) or to a more
complicated nonsymmetric form. With a common def-
inition for the chemical potential µc of the BEC, we
have

µc = −~∂tϕ+
~
2

2M
(∂xϕ)

2, µn = V (|Ψ|2+n)+Emin,

R = k(µn − µc)/~.

The equation of state µn(n) can be estimated from the
standard theory of a weakly interacting Bose gas. Now,
the space-independent Eqs. (3) and (4) are generalized
as

~ϕ̇ = −V (q + n) + S cos(2ϕ), (8)

q̇ = qR+Sq sin(2ϕ) = kqn(ϕ̇+µn/~)+Sq sin(2ϕ) =

= (k/~)qn(Emin + S cos(2ϕ)) + Sq sin(2ϕ), (9)

ṅ = P − kqn(ϕ̇+ µn/~) =

= P − (k/~)qn(Emin + S cos(2ϕ)). (10)

The equation for h is generalized as

K(∂2

t +γ∂t)h−Ks2∂2

xh+d(qh−q−n)h+fh3 = 0. (11)

The numerical modeling of the resulting equations and,
hopefully, of more complicated dynamical-kinetic sys-
tem, will be discussed elsewhere.

5. DISCUSSION AND CONCLUSIONS

We have presented results of a phenomenological
modeling for a system prone to a weakly first-order
phase transition after it is exposed to the optical pump-
ing to a high concentration of excitons. We focused on
the cases where the excitation density and a thermo-
dynamic variable present the same entity. The best-
known example is the neutral-ionic transition in donor–
acceptor compounds where the charge-transfer excitons
play the role of optical excitations and give the inter-
molecular electronic transfer as the phase transition
order parameter. Both thermodynamic and dynamic
effects can be described on the same root by viewing
the ordered state as an excitonic insulator. Our main
assumption was that a quasi-condensate of optically
pumped excitons appears sufficiently early as a macro-
scopic quantum state. It evolves by interacting with
other degrees of freedom prone to instability, leading to
self-trapping of excitons akin to self-focusing in optics.
A distinguished feature is the appearance of oscillations
coming from the macroscopic quantum coherence.

Our studies are only most natural first steps in the
complicated problem, and it is necessary to quote what
has not or could not be done. We have been work-
ing within a phenomenological approach that can be
characterized as the one that would be valid if it could
be derived microscopically. Even within these reser-
vations, it is desirable to also take the normal, non-
condensed density of excitons and its (re)conversion
(from)to the condensate into account. Indeed, temper-
atures in the experiments are comparable with the es-
timated degeneracy temperature of the BEC, and they
are further enhanced in the early stage after the pump-
ing pulse. The not-quite-resonance pumping also con-
tributes to the initial incoherent density. With a pro-
gressive dilution of the exciton number, the BEC tran-
sition must be passed back even at low temperature.

Our primary emphasis was upon the quantum na-
ture of the exciton motion, which forces their delocali-
zation into plain waves. That would happen inevitably
for an ideal resonance pumping when a single photon
creates a single exciton with the momentum k = 0. In
reality, a large part of photons is absorbed with an ac-
cess energy, which gives rise to the exciton in a complex
with other modes whose total momentum is still zero,
but the exciton acquires a momentum and the associ-
ated kinetic energy. The initial relaxation by collisions
leaves the exciton as a wave packet rather than a pure
state, which still cannot be viewed as localized at a
single molecule or a dimer, as it is commonly pictured
in the scenario of “falling dominos”. The loss of the
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kinetic energy from such a sharp localization will be
more than 0.1 eV as estimated from the exciton band-
width in optical absorption. Then, with cooling below
1000 K the exciton descends to the plane wave state
at the bottom of its band. The smooth localization,
which we have modeled here and previously [35], then
develops as self-trapping; its length is determined by
the balance between gaining the potential energy and
loosing the quantum kinetic energy of the exciton. In
either case, the kinetics of cooling must be taken into
account and the incoherent component of the exciton
ensemble should be added. Microscopic theories of the
dynamical BEC offer an important experience to learn,
being motivated by problems in polaritons (see, e. g.,
[46, 47] and more references in review [39]) and cold
atoms [48, 49, 51]. The theory is able to reproduce
the growing of occupation numbers at lowest energies,
as it was beautifully traced in experiments with cold
atoms. But establishing phase coherence has not been
clearly derived yet; the Ginzburg–Pitaevskii-type equa-
tions appear from the microscopic theory in a stochastic
rather than deterministic form.

Contrary to a simple and treatable microscopic na-
ture of excitons in semiconductors, polaritons, and cold
atoms, we here face a very complicated origin of the
exciton and of the affected instabilities: intramolecular
electronic correlations as a source of charge transfer
against the Coulomb and kinetic energies, cooperative
correlations leading to the spin-Peierls instability of lat-
tice dimerization.

Among applications to neutral-ionic transitions in
organic donor–acceptor materials, we face the fermi-
onization of excitons as initially repulsive Bose parti-
cles, because of the rather one-dimensional structure
of these materials. More specifically, there is an un-
resolved problem of the commonly accepted interpre-
tation of the absorption peak at 0.6 eV as the char-
ge-transfer exciton energy Eex, because it keeps nearly
the same position in the ionic phase as in the neutral
one. This is not compatible with our, and probably any,
phenomenological theory: the strongest effect of exci-
tons on the equilibrium value of ρ implies the reciprocal
effect of ρ on Eex. The extensive microscopic modeling
in [32] also shows the expected strong dependence.

We believe that the suggested picture, the app-
roach, and the illustrations will encourage a more solid
theoretical work and will stimulate experimental stud-
ies of PIPT in systems possessing features of the exci-
tonic insulator and/or allowing pumping to the excita-
tion modes coupled to a parameter of a nearby phase
transition.

The authors are grateful to Prof. H. Okamoto
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neutral-ionic transitions and for numerous discussions.
One of the authors (S. B.) wishes to acknowledge fund-
ing from the ERC AdG “Trajectory”.

APPENDIX

Physical parameters and estimations

We must relate the constants in Eqs. (2), (6), and
(7) with physical parameters and estimate their values.

qI : the charge transfer goes from ρN = 0.32 to ρI =

= 0.52, whence qI = 0.2.
E0

ex: the charge-transfer exciton energy E0
ex =

= 0.6 eV is known.
a: a is the parameter of exciton interaction, which

is bounded from above by the energy of exciton disso-
ciation, that is, a ∼ 10−1 eV.

c and qh: at the transition temperature TNI , WI =

= WN and dWI/dq = 0 which yields qh ≈ 0.01 and
c ≈ 1.4.

f : in units of d = 7.4Å, the dimerization in the
ionic phase is hI = 0.03 [37]. Knowing qI and hI , we
obtain f/c = (qI/qh − 1)/h2

I .
b: the requirement for the correct boundary be-

tween neutral and ionic states gives b ≈ 50. We note
the much higher value of b compared with the estima-
tion b ∝ a/qI = 5a from considering the energy term
bq3 as an unharmonism with respect to aq2.

m: the experimental width of the exciton absorp-
tion line gives the estimate ~

2/2md2 = 0.2÷ 0.3 eV.
ω, γ: the period of coherent oscillations is Tosc =

= 0.6 ps, and the dimer mode frequency is then ω =

= 2π/Tosc ≈ 10−2 fs−1. Their relaxation time is τh =

= 3÷7 ps [31]; taking it as 5 ps, the damping parameter
is γ = 1/ωτh ≈ 0.02.

G: the inverse lifetime of residual ionic segments is
τI = 20 ps [31], and therefore the modeling should yield
the dynamical phase transition at a time of the order
of 10Tosc. This requires G ∼ 10−3.

A: it is expressed via ω and the sound velocity s as
A/c = s2/ω2 ≈ 0.02 from the estimate s ∝ d/Tosc ≈
≈ 105 cm/s, which is on the scale of values measured
for other charge-transfer compounds.
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