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quantities, in particular, to the evaluation of Renyi and Shannon entropy flows. We start with the formulation
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1. INTRODUCTION

The seminal work of Leonid Keldysh [1] has paved

the way to the modern understanding of quantum sys-

tems out of equilibrium. One can do much work in the

area armed just with the Fermi Golden Rule and some

defiance, yet a consistently scientific approach would

almost necessary involve the Keldysh formalism. The

formalism has been successfully applied for derivations

of dynamical equations of complex systems where intu-

ition ceases to work, like superconductors [2], strongly

correlated systems [3], and nonlinear sigma models [4].

For many years, the formalism was considered too

complicated for a practical researcher and hardly ap-

plied beyond several specific fields. The “Keldysh ap-

proach” sounded as a synonym of unnecessary theoriza-

tion and an antonym to clear physical reasoning. One

of us (Y. N.) remembers a talk given by a high-class

theorist with a taste for abstract models, young ex-

perimentalists being his primary audience. Somewhere

in the middle of the talk he said: “Now let us move

to physical quantities, namely, Keldysh Green’s func-

tions”. A burst of laugh lasted for quite a while.

The situation began to change in the 1990s, and

is quite different nowadays. The formalism receives

much more practical attention, more and more theo-

rists and numerical researchers become qualified, nice
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modern reviews [5, 6] have appeared in addition to the

classical ones [7]. A unique property of the Keldysh

formalism that distinguishes it from all other diagram

techniques [8] is that the zeroth-order approximation

is generally unstable with respect to perturbative cor-

rections. This property is widely appreciated now and

makes the technique an indispensable tool for complex

quantum dynamics.

Recent extensions of the Keldysh technique to

nonunitary evolution of the density matrix [9, 10] al-

low accessing nontrivial problems of quantum statis-

tics and analyzing large deviations from equilibrium

[11]. A finite-element approach to the Keldysh Green’s

functions for electrons, so-called quantum circuit the-

ory [9, 12], proved to be useful to build adequate models

of quantum nanostructures.

The Keldysh technique permits a natural formula-

tion in terms of path integrals [6], providing a very in-

structive picture of the “doubling” of a classical stochas-

tic variable when it is put on a Keldysh contour. This

provides a fundamental link between the Keldysh and

Feynman–Vernon formalism. The Keldysh action aris-

ing in this context can be evaluated by blocks, each

block being obtained from a nonunitary evolution [13].

The Landauer–Buttiker [14, 15] scattering approach is

given a compact and general formulation in terms of

the Keldysh action [13, 16]

All these extensions are still based on time evolu-

tion along a single “doubled” Keldysh contour. In this

paper, we discuss a recent extension in a different di-

rection. Technically, the extension involves time evolu-
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tion along many “doubled” contours. We refer to these

pairs of contours as parallel worlds (this terminology

has nothing to do with the attempt to interprete quan-

tum mechanics with the use of parallel worlds). The

closing of the contours is typically different for dif-

ferent subparts of the quantum system under consid-

eration: for some, the contours are closed separately

within each world, while for others they can go back

and forth through all the worlds.

As we show below, this formalism is natural and in-

dispensable for evaluating the quantities that are non-

linear in the density matrix. The physical meaning of

such quantities is not obvious since they do not conform

to the standard definition of a physical observable, al-

though they are commonly used in quantum informa-

tion theory [17], for instance, for entanglement charac-

terization. Most work and applications have been done

for evaluation of Renyi entropies [18–20]. We follow

these papers here.

The paper is organized as follows. In Sec. 2, we for-

mulate the standard Keldysh formalism in a way conve-

nient for the further presentation, putting emphasis on

the link between the Keldysh technique and the master

or Bloch equations. In Sec. 3, we explain the extension

of the formalism to nonunitary evolution, mostly con-

centrating on the example of full counting statistics of

energy flows [21], which is useful in the context of Renyi

entropy flows. Then we explain the use of the parallel

world concept for evaluating the conserved quantities

related to the products of density matrices of subparts

(Sec. 4) and formulate a diagram technique for this situ-

ation in Sec. 5. The relations between different Keldysh

correlators for a (sub)system in thermal equilibrium,

the so-called Kubo–Martin–Schwinger (KMS) [22] re-

lations, are important for single-world techniques. We

discuss their generalization to multiple worlds in Sec. 6.

The rest of the paper is devoted to specific examp-

les in which the general theory can be simplified and

elaborated. We concentrate on second-order diagrams

in Sec. 7 and explain the specifics of higher-order dia-

grams in Sec. 8. We briefly review our recent results on

quantum heat engines in Sec. 9. In Sec. 10, we discuss a

rather general correspondence between the statistics of

the energy flows and Renyi entropy flows. We conclude

in Sec. 11.

2. STANDARD KELDYSH FORMALISM

We first formulate the standard Keldysh formalism

in a way that illustrates its potential and at the same

time makes direct connections with the problems to be

considered in what follows. The starting point of the

formalism is the formal expression for the unitary time

evolution of the density matrix R̂ of a quantum sys-

tem governed by a (generally time-dependent) Hamil-

tonian Ĥ(t),

R̂(t) = Texp



i

t
∫

t′

dτĤ(τ)



 R̂(t′)×

× T̃exp



−i

t
∫

t′

dτĤ(τ)



 , (1)

where Texp (T̃exp) denotes time(anti)ordering in the

evolution exponents.

If we were up to exact quantum evolution of the

whole system, we would not need any Keldysh tech-

nique: the Schrödinger equation would suffice. At the

same time, the resulting density matrix would keep the

memory of the initial density matrix for infinite time.

This is rather unphysical. To address physical situa-

tions, we need to separate quantum variables into rel-

evant and less relevant ones. Quite generally, this can

be achieved by bipartition of the Hilbert space: we rep-

resent it as a direct product A ⊗ B of two subparts A

and B. The Hamiltonian decomposes as

Ĥ = ĤA + ĤB + ĤAB, (2)

where ĤAB is an operator that involves degrees of free-

dom in both subspaces, while HA, HB act in their re-

spective partitions only.

This opens up the opportunities to treat a great va-

riety of physical situations. For instance, system A can

be a small system with a finite number of states while

B can be an environment with an infinite number of

degrees of freedom. In this case, the density matrix

of B can be regarded as unchangeable in the course of

evolution, to play the role of a (thermal) reservoir for

A: the density matrix RA would then try to adjust to

the reservoirs. Alternatively, B can be a collection of

independent reservoirs kept at different conditions (like

temperatures and chemical potentials): the system A

would then try to adjust to these competing reservoirs

providing the flows of physical quantities, e. g., charge

or heat, between the reservoirs. Yet another possibility

is that A and B are both reservoirs and HAB represents

a junction between the two. In this case, both RA and

RB are unchangeable, while the junction provides the

flows to both reservoirs.

We assume that the completely separated systems,

whose dynamics are governed by ĤA + ĤB , form a

reasonable zeroth-order approximation and implement
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Fig. 1. Perturbation theory for a single density matrix on the

Keldysh contour

a perturbation technique in ĤAB keeping the calcula-

tions as general as possible. We assume the “adiabatic

switching” of the perturbation [23]: in the remote past,

the coupling is absent, and the density matrix is a di-

rect product over subspaces A and B,

R̂(−∞) = R̂A(−∞)⊗ R̂B(−∞),

R̂A(−∞) =
∑

a

pa|a〉〈a|; R̂B(−∞) =
∑

α

pα|α〉〈α|.

Here, we label the states in subspaces A (B) with Latin

(Greek) indexes. The coupling slowly increases achiev-

ing actual values at a time long before t. The time

evolution of the density matrix is given by

R̂(t) = Texp



i

t
∫

−∞

dτĤAB(τ)



 R̂(−∞)×

× T̃exp



−i

t
∫

−∞

dτĤAB(τ)



 , (3)

with ĤAB(τ) taken in the interaction representation.

Expanding this in HAB(τ) gives a perturbation series

most conveniently presented as diagrams involving the

Keldysh contour (Fig. 1). The operators in the per-

turbation series are ordered along the contour. Two

parts of the contour correspond to time evolution of

bras and kets in the density matrix. The crosses rep-

resent the (time-dependent) perturbation HAB(t) at a

certain time moment. The integration over time mo-

ments of all perturbations is implied. There is a state

index associated with each piece of the contour. Since

R̂(−∞) is diagonal, this index does not change when

passing this element. The index changes if a nondi-

agonal matrix element of the perturbation is involved.

Summation over the indices is implied.

In contrast to most perturbation theories, the ze-

roth-order approximation in the Keldysh formalism is

not stable with respect to small perturbations. For

r(– )¥ r( )t

t t

n

n n n m m

p n n m

Fig. 2. Master equation in the Keldysh formalism is obtained

from a resummation of the perturbation series whereby the

time line is separated into diagonal and nondiagonal (grey-

shaded) blocks. The state index here encompasses the indices

in both subspaces

instance, if A is small and B is a reservoir, R̂A is deter-

mined by the reservoir at an arbitrarily small coupling

strength and can have nothing to do with the initial

R̂A(−∞). This implies that we need to re-sum the

perturbation series. In a single world, there is a simple

way to re-sum the perturbation series and arrive at a

master equation that contains only diagonal elements

of density matrix (Fig. 2). For a diagram, we split the

time-line by perturbations into the blocks as shown in

Fig. 2. The blocks are of two sorts: diagonal ones,

that have the same state index on both contours, and

nondiagonal ones. To compute a diagram, we need to

integrate over time duration of each block. For nondi-

agonal blocks, the integrand is an oscillatory function

of time and the integral has a chance to converge. For

nondiagonal blocks, the integrand is a constant, and

the integral diverges. This indicates that the diagrams

have to be resumed. If we look at the time derivative of

the density matrix, it is contributed by the first nondi-

agonal block. Summation over the subsequent diagonal

blocks replaces R̂(−∞) with the density matrix at the

time moment immediately after the first nondiagonal

block. With this, the evolution equation for diagonal

matrix elements paα(t) ≡ Raα,aα can be written as (as-

suming summation over repeated indices)

d

dt
paα(t) =

∞
∫

0

dτWaα,bβ(τ)pbβ(t− τ) (4)

with Waα,bβ(τ) being the sum of the perturbation ex-

pansion comprising a nondiagonal block that starts

from the second order in ĤAB. It is natural to require

that the matrix elements of HAB are only nondiagonal,

that is, H
(AB)
aα,bβ = 0 if either a = b or α = β.

If paα(t) changes slowly in comparison with the ty-

pical time scale of the blocks, we can neglect this time

dependence in the integrand. The integration over
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the time duration of the blocks with different indices

gives the transition rates Γaα,bβ =
∫∞

0 dτ Waα,bβ(τ).

The unitarity guarantees that the integration over the

duration of the blocks with the same indices gives
∫∞

0 dτWaα,aα(τ) = −Γaα,bβ, the total transition rate

from the state |aα〉, which is the sum of the partial

transition rates, Γaα =
∑

bβ Γaα,bβ . In this way, we

arrive at the master equation in the traditional form

d

dt
paα = −Γaαpaα + Γaα,bβpbβ . (5)

There are situations where the nondiagonal ele-

ments of the density matrix are also relevant for the

dynamics. For instance, a relevant subset of quantum

states in A can be approximately degenerated such that

their energy separations are of the order of the rates

Γ, or such degeneracy is provided by a coherent drive

with a frequency that cancels the energy separations. A

generic example is the quantum heat engine described

in Sec. 9. We treat system B as a reservoir for system

A and sum over its states assuming the unchanged R̂B .

Instead of diagonal blocks, we define the blocks where

the states at two parts of the contour belong to the

relevant subset for A and the same state for B. After

the re-summation over these blocks, the evolution of

the density matrix in the relevant subset is given by

d

dt
ρab = i (Hr

acρcb − ρacH
r
cb) +

+

∞
∫

0

Wab,cd(τ)ρcd(t− τ), (6)

where Ĥr is an operator accounting for a weak dege-

neracy lifting in the relevant set and typically includes

the coherent drive. Under the assumptions of a slow

change of this matrix, ρcd(t− τ) ≈ ρcd(t), we can inte-

grate over the time duration τ of the blocks to arrive at

the Bloch equation in its traditional local-in-time form,

d

dt
ρab = i (Hr

acρcb − ρacH
r
cb) + Γab,cdρcd. (7)

The common feature of Eqs. (4)–(7) is the existence

of a stationary solution. Mathematically, the linear

operator acting on the density matrix in the right-hand

side of the equations has a zero eigenvalue. The exis-

tence of a stationary solution is obvious from physical

reasons and is a consequence of unitary dynamics. The

system approaches the stationary solution irrespective

of the initial condition at the start of its evolution: it

forgets the initial conditions. As we see in what fol-

lows, extensions of the Keldysh formalism typically do

not have a stationary solution.

3. EXTENDED KELDYSH TECHNIQUE

The extended Keldysh technique is formally defined

through an evolution with the Hamiltonians Ĥ+,− that

are different at the forward and backward parts of the

Keldysh contour [9, 10]:

R̂(t) = Texp



i

t
∫

−∞

dτĤ+(τ)



 R̂(−∞)×

× T̃exp



−i

t
∫

−∞

dτĤ−(τ)



 . (8)

While this equation is very similar to Eq. (1), the evo-

lution for different Hamiltonians is not unitary. Con-

sequently, R̂(t) is not a density matrix, in particular,

its trace is not 1. It is natural to call it a pseudo-

density matrix. Apparently, it is not physical: what is

the physical use of it?

We set the Hamiltonians to Ĥ±(τ) = Ĥ0 + χ±(τ)Î

and compute the trace Tr[R̂(t)]. This depends on

the values of χ±(τ) for all time moments preceding t,

Tr[R̂(t)] ≡ exp(S{χ±(τ)}). By expanding Eq. (8) in

χ±(τ), we see that S{χ±(τ)} is nothing but the gener-

ating function of all possible Keldysh cumulants of the

operator Î taken at different moments of time. There-

fore, it completely characterizes time-dependent quan-

tum fluctuations.

The functional S{χ±(τ)} is called the Keldysh ac-

tion and is routinely applied in the context of a path-in-

tegral formulation of the formalism [6]. In this case, H0

describes a subsystem subject to a quantum field χ±

that typically arises in the path-integral representation

of this variable, and S{χ±(τ)} describes the response

and back-action of the subsystem to this field. It can

be used as a block in the Feynman–Vernon action that

describes the fluctuation dynamics of the field [13].

Another application of the extended Keldysh for-

malism is the full counting statistics (FCS) [10]. We set

χ± = −χ/2, with χ being a constant in the time inter-

val (0, T ), called the counting field. The expansion of

the Keldysh action in χ produces the Keldysh-time-or-

dered cumulants of the quantum variable

Q =

T
∫

0

dτ I(τ).

Under certain conditions [10], the inverse of this gen-

erating function gives the propability of a change Q of

this variable during the time interval,

P (Q) =

∫

dχeiχQeS(χ). (9)
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This technique has been implemented for the FCS of

the charge transferred between the reservoirs [9, 10, 24].

An accurate definition of the FCS for conserved

quantities implements a gauge transformation in a bi-

partition. We consider an operator of a conserved

quantity Ô that is separable in the bipartition, Ô =

= ÔA + ÔB. We define a unitary transformation

ÛA(χ) = exp(iχÔA) and the Hamiltonians on two parts

of the contour as

Ĥ± = ÛA

(

±
χ

2

)

Ĥ ÛA

(

∓
χ

2

)

. (10)

Since HA,B commute with Ô, the coupling HAB is the

only part modified by this transformation,

Ĥ± = ĤA + ĤB + Ĥ±
AB. (11)

The evolution of the pseudo-density matrix is given by

an extension of Eq. (3),

R̂(t) = Texp



i

t
∫

−∞

dτ Ĥ+
AB(τ)



 R̂(−∞)×

× T̃exp



−i

t
∫

−∞

dτ Ĥ−
AB(τ)



 . (12)

The trace of R̂(t) defines a Keldysh action S(χ) that

gives the statistics of transfers of the quantity Ô

to/from the subsystem A.

This can describe the statistics of conserved quan-

tities such as current and energy flows, the latter being

of special interest for us. In this case, the conserved

quantity is the energy HA + HB [11, 21]. The uni-

tary transformation is equivalent to a time shift of the

operators in the interaction representation. The cou-

pling ĤAB can be quite generally represented as a sum

of the products of the operators Âi, B̂i acting in the

corresponding subspaces, ĤAB = ÂiB̂i. The modified

ĤAB is then given by

Ĥ±
AB(t) = Âi

(

t∓
χ

2

)

B̂i(t). (13)

The re-summation of the perturbation series made

in the preceding section is also relevant and is to be

done for the extended Keldysh formalism. The analo-

gous equations can be derived. Importantly, since the

dynamics is nonunitary, the blocks and rates do not

satisfy the sum rules imposed by unitarity and are gen-

erally dependent on counting fields. For instance, in

the extended master equation (cf. Eq. (5)),

d

dt
paα = −Γ̃aαpaα + Γaα,bβpbβ , (14)

where Γ̃aα 6=
∑

b,β Γbβ,aα.

Hence, there is no stationary solution of these equa-

tions even for stationary counting fields. Diagonalizing

the linear evolution operator gives a set of solutions of

the form

R̂(t) ∝ exp(−Dit), (15)

where Di are the eigenvalues of the operator. In the

long-time limit, the general solution is given by the

eigenvalue with the smallest real part, D0. This gives

a remarkably simple and constructive expression for the

Keldysh action in the limit of long time intervals T :

S(χ) = −T D0. (16)

4. WHY MULTIPLE WORLDS?

Although this fact is rarely discussed, in addition

to physical conserved quantities that are represented

by operators, there are conserved quantities that are

characteristics of the density matrix. They are formally

unphysical since they are not associated with any physi-

cal operator observable. An example is provided by the

Rényi entropies, which are defined as traces of integer

powers of the density matrix R̂ of a closed system

SM = Tr
{

R̂M
}

. (17)

Since the quantum evolution of the system is governed

by a Hamiltonian Ĥ and

−i~
dR̂

dt
= [Ĥ, R̂],

the density matrices at different moments of time are

related by a unitary transformation and the trace of

any power of R̂ does not depend on time, dSM/dt = 0.

The definition can be obviously extended to noninteger

M . The more common Shannon entropy is obtained

by taking the limit

S = −Tr{R̂ ln R̂} = − lim
M→1

∂SM

∂M
=

= − lim
M→1

(

lnSM

M − 1

)

. (18)

We note that lnSM is an extensive quantity propor-

tional to the system volume.

We now return to the context of bipartition. For

two systems A and B, we can define two sets of Rényi

entropies,

S
(A)
M = TrA

{

(

R̂(A)
)M

}

,

S
(B)
M = TrB

{

(

R̂(B)
)M

}

,

(19)
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where the reduced density matrices in the two sub-

spaces are defined via the respective partial traces

R̂(A) = TrB{R̂}, R̂(B) = TrA{R̂}. (20)

If the quantum evolutions of the systems are completely

independent,

Ĥ = ĤA + ĤB,

where HA,B are operators involving the corresponding

subspaces only, the entropies of both sets provide con-

served measures,

d

dt
S
(A)
M =

d

dt
S
(B)
M = 0.

If we take the coupling ĤAB into account, the Rényi

entropies are no longer conserved. We temporarily as-

sume that the systems A and B are infitely large and

are characterized by a continuous excitation spectrum

while HAB couples a relatively small number of degrees

of freedom in both systems. This situation is similar

to that of two metallic leads kept at different chemical

potentials and containing a practically infinite number

of electrons. If the leads are connected by a small junc-

tion, finite electric current flows through the junction,

while the distribution of electrons in the infinite leads

remains unchanged. From this analogy, it is natural

to conjecture that a finite Rényi entropy flow, Re-flow,

flows between subsystems A and B. We define the flows

as time derivatives of extensive quantities,

F
(A),(B)
M =≡

d

dt
lnS

(A),(B)
M . (21)

Owing to the conservation of the Rényi entropy in each

system, the Re-flows are independent of the exact bi-

partition of the system and are determined by the prop-

erties of the coupling, which is in principle described

by ĤAB rather than by the properties of systems A

and B, in full analogy with electrical current. But

there is an important difference. For physical quanti-

ties, the conservation holds in the whole system as well

as in each subsystem. For instance, elecrtical currents

to each lead must satisfy the relation IA + IB = 0.

As far as Rényi entropies are concerned, there is no

exact conservation law for the sum lnS
(A)
M + lnS

(B)
M

at finite ĤAB, although these quatities are extensive.

There is a conservation law for the total Rényi entropy

lnS(A+B). However, the latter at a finite ĤAB is the

sum lnS
(A)
M + lnS

(B)
M only approximately, up to terms

proportional to the volume of the system. Therefore,

in general,

F
(A)
M + F

(B)
M 6= 0.

t t

R
B
(–

)
¥

R
B
(–

)
¥

R
B
(–

)
¥

R
A
(–

)
¥

R
A
(–

)
¥

R
A
(–

)
¥

Fig. 3. A perturbation theory diagram for S
(A)
M

with M = 3.

It involves three parallel worlds. Reconnection of Keldysh con-

tours for subspaces A (black) and B (white) accounts for the

partial trace over B and matrix multiplication in A

How to compute the flows? The crucial observation

is that the standard Keldysh formalism as expressed

by Eq. (3) can be straightforwardly generalized to any

integer number M of density matrices. These matri-

ces undergo independent unitary evolution in the time

interval (−∞, t). It is constructive to think of a set

of M “parallel worlds” and draw the diagrams for the

perturbation series using M parallel bra and ket con-

tours. To compute S
(A)
M (t) with this set, we first need

to “split” the contours to account for a possibly different

ordering of operators in subspaces A and B (black and

white curves in Fig. 3, where M = 3). Then we need

to reconnect the contours at τ = t. All white contours

are closed within each world, which corresponds to the

partial trace over B for each density matrix involved.

In contrast to this, the black contours are connected

to form a single loop going through all the worlds; this

corresponds to matrix multiplication in definition (17)

of the Rényi entropy. This conveniently represents the

rules for operator ordering for any diagram of a parti-

cular order in HAB.

It is interesting to note that the sets of Rényi en-

tropies are not the only conserved measures character-

istic for a bipartition. Any polynomial in the density

matrix that is invariant under the group UA ⊗ UB of
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t t

R
B
(–

)
¥

R
B
(–

)
¥

R
B
(–

)
¥

R
A
(–

)
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R
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)
¥

R
A
(–
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Fig. 4. Reconnection of Keldysh contours for conserved mea-

sure K defined by Eq. (22)

unitary transformations in two subspaces would pro-

vide such a measure. To give a minimal example, we

label the states in A (B) with Latin (Greek) indices.

The quantity

K ≡ Raα,bγRbβ,cαRcγ,aβ (22)

is a conserved measure that can be reduced neither to

the Rényi entropies of the systems nor to the Rényi

entropy of the whole system. It is interesting to note

that reconnecting the contours in a different fashion

gives rise to the perturbation theory for other conserved

measures. For instance, for K, the contours are recon-

nected as shown in Fig. 4. Characterizing all such mea-

sures is an interesting research task beyond the scope

of this article.

5. DIAGRAM TECHNIQUES FOR MULTIPLE

WORLDS

We illustrate the diagram techniques arising in this

new context. We concentrate on evaluating S
(A)
M and

omit the index A for brevity. It is natural to require

that the matrix elements of HAB are only nondiagonal,

that is, H
(AB)
aα,bβ = 0 if either a = b or α = β. In this

case, the first nonvanishing diagram giving a correction

to SM is of the second order in HAB. Expressing it in

terms of the corrections to R̂A, we find

δS
(2)
M = M

∑

0≤N≤M

TrA

[

δR̂
(1)
A R̂N

A R̂
(1)
A R̂M−N−2

A

]

+

+MTrA

[

δR̂
(2)
A R̂N

A

]

. (23)

Here, we use the symmetry of the parallel worlds to

cyclically permute R̂A and its corrections under the

trace, which gives the factors M in front of the terms.

While there is a first-order correction to R̂, it is non-

diagonal in the B space. Hence, δR̂
(1)
A = 0: we see

below that this is not the case for the quantum heat

engine (Sec. 9), where the nondiagonal elements are

important. We only need to deal with δR̂
(2)
A that is

concentrated in a single world. The expansion in ĤAB

gives four terms that correspond to four ways to place

two ĤAB on two parts of the contour in a single world,

δR̂
(2)
A =

t
∫

−∞

dt1

t1
∫

−∞

dt2

(

−ĤAB(t1)ĤAB(t2)R̂AR̂B −

− R̂AR̂BĤAB(t2)ĤAB(t1) +

+ ĤAB(t1)R̂AR̂BĤAB(t2)+

+ ĤAB(t2)R̂AR̂BĤAB(t1)
)

. (24)

We need to substitute this in Eq. (23). We now assume

that ĤAB = ÂiB̂i with Âi and B̂i acting on the cor-

responding subspaces. We introduce the correlators of

these operators. Since the contours for the space B are

closed within each world, the correlator takes the usual

form

Cij(t1, t2) ≡ TrB

[

B̂i(t1)B̂j(t2)R̂B

]

. (25)

A general two-operator correlator in the space A is de-

fined as

KN,M
ij ≡ TrA

[

Âi(t1)R̂
N
A Âj(t2)R̂

M−N
A

]

S−1
M , (26)

with the indices N,M, 0 ≤ N ≤ M corresponding to

different arrangements on the contour traversing M

parallel worlds. We divide by S−1
M to keep this cor-

relator an extensive quantity. With this,

δS
(2)
M /SM =

t
∫

−∞

dt1

t1
∫

−∞

dt2W (t1 − t2) =

=

t
∫

−∞

dt1

∞
∫

0

dτ W (τ),
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where the block W (t1, t2) is expressed as

W (t1, t2) = −Cij(t1, t2)K
0,M
ij (t1, t2)−

− Cji(t2, t1)K
0,M
ji (t2, t1)+

+ Cji(t2, t1)K
1,M
ij (t1, t2)+

+ Cij(t1, t2)K
0,M
ij (t1, t2), (27)

with the four terms in this equation corresponding to

the four terms in Eq. (24). Therefore, the Re-flow is

expressed in terms of the block W as

FM =

∞
∫

0

dτ W (τ). (28)

More complex diagrams are expressed in terms of dia-

grams and higher-order correlators that have a similar

structure.

Expectedly, the correction to SM diverges as t in-

creases, and hence the Keldysh formalism for multi-

ple parallel worlds also requires re-summation. We can

introduce one big density matrix Raα,bβ, where the

M -dimensional “vector” index a comprises the state in-

dices in the space A for all bra contours, and all other

indices are defined similarly. The reduction of this den-

sity matrix and the resummation of diagonal blocks

leads to analogues of Eqs. (4)–(7). For instance, the

analogue of Eq. (4) in parallel worlds is given by

d

dt
paα(t) =

∞
∫

0

dτ Waα,bβ(τ)pbβ(t− τ), (29)

where W are the blocks computed similarly to those in

Eq. (27). Similarly, for the extended Keldysh technique

(see Eq. (15)), this equation has a set of nonstationary

solutions R̂(t) ∝ exp(−Dit). The eigenvalues Di and

the form of the solution are affected by the way the

contours are reconnected at t. For the connection way

that gives the Réneyi entropies, the Re-flows are ex-

pressed in terms of the eigenvalue with the smallest real

part, D0, which depends on the number of the worlds

involved,

FM = D0(M). (30)

6. KMS RELATIONS FOR MULTIPLE WORLDS

The correlators in a general nonequilibrium sys-

tem are independent. The state of thermal equilib-

rium gives rise to extra relations between the correla-

tors, which are important since they reduce the number

of independent parameters in the models of quantum

systems. These relations are traditionally called the

Kubo–Martin–Schwinger relations [22]. For instance,

the correlatorsCij (Eq. (25)) in the frequency represen-

tation are expressed in a KMS state at a temperature

T in terms of the real part of the dynamical suscepti-

bility χ̃ij(ω)

Cij(ω) = nB(ω)χ̃ij(ω), (31)

where nB(ω) ≡ 1/(eβω − 1), β = ~/kBT .

We show that similar relations hold for the multi-

world correlators Kij(ω) defined by Eq. (26). In the

frequency representation,

KN,M
ij (ω) =

∫ dτ eiντTr
{

Âi(0)R̂
N
A Âj(τ)R̂

M−N
A

}

Tr R̂M
A

.

This correlator can be rewritten in the energy basis,

KN,M
i,j =

∫

dτ eiωτ
∑

n,m

(

Ai,nm

e−βNEm

Z(β)N
×

× Aj,mne
i(Em−En)τ

e−βEn(M−N)

Z(β)M−N

)

Z(β)M

Z(βM)
=

= 2πδ (Em−En+ω)
Ai,nmAj,mne

−βEnM

Z(βM)
eβNω, (32)

where Z(β) is the partition function defined as

Z(β) =
∑

i

e−βEi .

The standard one-world correlator is

K0,1
ij (ω) =

∫

dτ exp(iωτ )Tr
{

Âi(0)Âj(τ)R̂A

}

/Tr R̂A,

which after simplifying becomes 2πδ (Em − En + ν) ×

× Ai,nmBj,mne
−βEn/Z(β). The KMS relation links

this to the dynamical susceptibility: K0,1
ij (ν) =

= χ̃ij(ν)nB(ν/T ). Substituting this in Eq. (32) gives

the generalized KMS relation

KN,M
ij (ω) = nB (Mω) eβωN χ̃ij (ω, β

∗) . (33)

While the correlators are for the system at the inverse

temperature β, the dynamical susceptibility is taken

at a different inverse temperature β∗ ≡ Mβ. Such

temperature rescaling looks surprising in the context of

KMS relations. However, this is natural in the context

of Rényi entropies. In the state of thermal equilibrium,

the Rényi entropy is expressed in terms of free energy

at the native and rescaled temperatures,

lnSM (β) = Mβ (F (β∗)− F (β)) . (34)
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Fig. 5. Second order diagrams for the time derivative of a

Rényi entropy. The contributions come only from perturba-

tions Ĥ
(AB) in the same world, only this world is shown in

each diagram. For all diagrams, the perturbations are taken at

time moments t and t
′
< t. The letters at the contours label

the states involved

7. EXAMPLE: SIMPLICITY WITH

SECOND-ORDER DIAGRAMS

We start with examples of the multi-world Keldysh

approach. In this section, we elaborate on second-or-

der diagrams and obtain a rather general picture of

Re-flows in this approximation. In a single world,

higher-order diagrams change the values of the rates

but do not change the dynamics qualitatively. As we

see in the next section, this is not the case in multi-

ple worlds: there, the higher-order diagrams do bring

a qualitative change.

We compute the Re-flows in the second order in

HAB in a way sligtly different from that used in the

preceding section. It is proficient to directy compute

the time derivative of SM . For diagrams, this corre-

sponds to placing one of the perturbations at τ = t.

The only way to satistfy the continuity of the state

index along the white contours is to place the second

perturbation in the same world. Four contributing di-

agramms are given in Fig. 5. We note that the same

four diagrams arise in the derivation of the Golden Rule

transition rate in the standard Keldysh formalism. The

specifics of Rényi entropies is reflected in extra factors

pM−1
a that the diagrams acquire in comparison with

the case of a single density matrix. We do not sepa-

rate ĤAB into subspaces and do not use the correlators,

but rather express the answer in terms of the matrix

elements of this operator,

∂

∂t
SM =



−M
∑

a,α;b,β

|H
(AB)
aα,bβ |

2pMa pα +

+ M
∑

a,α;b,β

|H
(AB)
aα,bβ |

2pbpβp
M−1
a



 ×

×

t
∫

−∞

dt′2Re
(

ei(t−t′)(Ei+Eα−Ej−Eβ)
)

. (35)

The integral over time t′ reduces to

2πδ(Ea + Eα − Eb − Eβ),

manifesting energy conservation between the initial

state |aα〉 and the final state |bβ〉.

This suggests that we can rewrite the whole expres-

sion in terms of Golden Rule rates Γaα,bβ of the tran-

sitions between the states |aα〉 and |bβ〉,

Γaα,bβ = 2π|H
(AB)
aα,bβ |

2δ(Ea + Eα − Eb − Eβ). (36)

With this, the flow is given by

(SM )FM = M
∑

a,α;b,β

Γaα;bβ(pbpβ − papα)p
M−1
a . (37)

We see that the flow vanishes if the systems are in ther-

modynamic equilibrium at the same temperature. In-

deed, in this case pbpβ/papα = exp((Eb + Eβ − Ea −

− Eα)/kBT ) = 1.

Since the transition rates Γaα,bβ in the Golden rule

approximation are symmetric under the permutation

aα ↔ bβ, we can regroup the terms to arrive at

(SM )FM = M
∑

a,b

Γa→bpa(p
M−1
b − pM−1

a ), (38)

where

Γa→b =
∑

α,β

Γaα;bβpα

gives the total transition rate from the state |a〉 to the

state |b〉 averaged over all possible configurations of sys-

tem B.
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We use Eq. (38) to derive a simplified expression

valid in the zero-temperature limit. In this limit, sys-

tem A is initially in the ground state |0〉, with p0 = 1

and pa = 0 for a 6= 0, SM = 1. We obtain

FM = −MΓ0, (39)

where Γ0 is the total transition rate from the ground

state to any other state. Remarkably, this involves no

assumption concerning system B: it can be very far

from equilibrium.

Equation (38) is also a convenient starting point to

derive the expression for the flow of the Shannon en-

tropy S. Taking the limit M → 1, we obtain

−
∂S

∂t
=

∑

a,b

ln

(

pb
pa

)

Γa→bpa. (40)

We assume thermal equilibrium for A. In this case,

ln (pb/pa) = (Ea − Eb)/kBT . Adding the energy

changes Eb −Ea in the course of individual transitions

from a to b, we prove that the energy flow to system A

equals
dE

dt
=

∑

a,b

Γa→b(Eb − Ea)pa.

Comparing this with Eq. (40), we recover the textbook

relation between the heat and entropy flows

dS

dt
=

1

kBT

dE

dt
, (41)

which appears to be universally valid within the se-

cond-order perturbation theory. Remarkably, this in-

vloves no assumption about system B.

8. EXAMPLE: HIGHER-ORDER DIAGRAMS

We analyse the fourth-order diagrams for the time

derivative of SM . As in the foregoing, we assume that

HAB does not contain diagonal elements. Since white

contours are closed within each world, the four pertur-

bations can come either all in the same world or in two

pairs in two different worlds. If all four come in the

same world, they describe a correction to one of the

Golden Rule transition rates. This correction does not

bring anything new and we disregard these diagrams in

what follows.

A diagram involving two different worlds is given in

Fig. 6. We see that in general the black contour enter-

ing a world with perturbations exits it with a different

state index. In the particular case where these indices

are the same, a = b, the diagram diverges upon integra-

tion over time. This is not surprising since we expand
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Fig. 6. A fourth-order “quantum” diagram for Rényi entropy

flows. The contibutions come from perturbations Ĥ
(AB) in

two different worlds, only these two worlds are shown. The

letters on the contours label the states involved

SM (t) ∝ exp(FM t). The fourth-order expansion thus

contains terms proportional to (F
(2)
M )2t/2, with F (2)

being the second-order contribution to the rate that

we have already calculated. Indeed, the diagram with

a = b is proportional to (F (2))2 and therefore does not

contribute to fourth-order correction to the flow. We

therefore concentrate on the case a 6= b. We call this

diagram quantum because we see below that it does not

permit an interpretation in terms of “classical” transi-

tion events. All expressions for F and dS/dt in this

section give fourth-order corrections to these quanti-

ties.

There are 16 diagramms of this sort corresponding

to the number of ways the pairs of Ĥ(AB) in each world

can be placed on the bra and ket contours. Adding all

of them, we can represent the fourth-order correction

in the form

d

dt
S
(A)
M = π

∑

a,b

|Aab|
2δ(Ea − Eb)

pM−1
a − pM−1

b

pa − pb
, (42)

Aab =
∑

c,α,β

H
(AB)
aα,cβH

(AB)
cβ,bα

(

π ((pa+pb)pα−2pcpβ) ×

× δ (Ea + Eα − Ec − Eβ)− i
pa − pb

Ea + Eα − Ec − Eβ

)

.

The structure of the matrix elements in the “amplitude”

Aab is the same as for the amplitude of the transition

from the state |aα〉 to the state |bα〉, that is, without a

change of the state of subsystem B. Such a transition

would seem to involve a virtual state |c, β〉. However,
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the rest of the expression for Aab does not support this

interpretation: rather, probabilities enter in a form sug-

gesting that the transition takes place between one of

the states |aα〉 and |bα〉 and the state |cβ〉. There-

fore, the expression can be associated with no “classi-

cal” transition and corresponds to no actual transition

rate.

We assume that the probabilities in system A de-

pend only on energies of the corresponding states. It

then follows from Ea = Eb that pa = pb. The term

in Aab with the energy difference in the denominator

vanishes and the flow reduces to

SMFM = (M − 1)π
∑

a,b

|Aab|
2δ(Ea − Eb)p

M−2
a , (43)

Aab = 2π
∑

c,α,β

H
(AB)
aα,cβH

(AB)
cβ,bα (papα − pcpβ) ×

× δ (Ea + Eα − Ec − Eβ) .

We note that if both systems are in thermal equilib-

rium, it follows from Ea + Eα = Ec + Eβ that papα =

= pcpβ and the “amplitudes” Aab vanish.

The “quantum” contibution derived manifests seri-

ous problems with the term-by-term perturbation theo-

ry in the zero-temperature limit, indicating a nonana-

lytic dependence of the flows on the coupling strength

in the limit of weak couplings and zero temperatures.

The contibution seems to have an evident zero-tempe-

rature limit, namely zero, at least if the ground state of

system A is not degenerate. Indeed, the delta-funcion

in Eq. (42) cannot be satisfied for any state b 6= a. How-

ever, the analytic continuation to noninteger M gives

rise to problems.

To see this, we can attempt to derive the Shannon

entropy flow by taking the limit M → 1 in Eq. (43).

We obtain

dS

dt
=

∑

a,b

|Aab|
2δ(Ea − Eb)

1

pa
, (44)

that is, the states with lesser probabilities pa contibute

most to the entropy flow! Since the probabilities of

the excited states quickly decrease with descreasing the

temperature, we expect a divergence of the Shanon en-

tropy flow as T → 0, in contrast to vanishing Re-flows.

In Ref. [18], the general expression has been elab-

orated for a typical quantum transport setup where

systems A and B are metallic leads kept at the same

temperature but at different chemical potentials shifted

by eV , and ĤAB describes electron tunneling between

the leads. The fourth-order Shannon entropy flow was

found to diverge exponentially as T → 0. This indi-

cates an intriguing nonanaliticity of the entropy flows

in the coupling strength.

9. EXAMPLE: FLOWS IN A QUANTUM HEAT

ENGINE

We give an example of the computation of Re-flows

in an interesting system.

A quantum heat engine (QHE) is a system of several

discrete quantum states connected to the environments

that are kept at different temperatures. The motiva-

tion for research in QHEs comes from studying models

of photocells and photosynthesis. The thermodynamics

of QHEs and their fluctuations in the quantum regime

is not a continuation of classical results in discrete en-

ergies; instead, features such as quantum coherence,

which have no classical analogue, contribute to the heat

exchange [19].

We consider a quantum system with discrete states

|n〉 separated into two sets {u} and {d}. All states

within a set have approximately the same energy Eu

(Ed), the splitting ǫn within a set being much smaller

than Eu − Ed > 0. The system is subject to the ex-

ternal field with the frequency ω ≈ Eu − Ed (we set

~, kB = 1 where appropriate), described by the Hamil-

tonian Hdr =
∑

m,nΩmn|m〉〈n|e−iωt + H.c., and the

relevant matrix elements are between the states of two

sets. To distinguish the sets, we introduce a matrix

ηnm, ηnm = 1 if n ∈ {u} and m ∈ {d}, ηnm = −1 if

n ∈ {d} and m ∈ {u}, and ηnm = 0 otherwise.

The quantum system is coupled to a number of envi-

ronments labeled by a, which are kept at different tem-

peratures Ta. We thus have a multipartition: the whole

space is separated into the space of QHE states and the

spaces of the environments. The interaction with an

environment is described by Hint =
∑

mn |m〉〈n|X̂
(a)
mn,

with X̂
(a)
mn being the operators in the space of environ-

ment a. We assume a linear response of each envi-

ronment to the state of the quantum system. In this

case, each environment is completely characterized by

a set of frequency-dependent generalized susceptibili-

ties χ
(a)
mn,pq(ν) that are related to the correlators of X̂a

defined as

S(a)
mn,pq(t) ≡ Tra{X̂

a
mn(0)X̂

a
pq(t)ρa}.

The fluctuation–dissipation theorem yields relations in

the frequency domain:

Smn,pq(ν) = nB(ν/T )χ̃mn,pq(ν),

where
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χ̃mn,pq(ν) ≡ (χmn,pq(ν)− χpq,mn(−ν))/i,

and the Bose distribution

nB(ν/T ) ≡ 1/(exp(βν)− 1).

We concentrate on the Re-flows in one of the en-

vironments, which we call a probe environment. The

rates induced by the probe environment are assumed to

be smaller than all other rates. In this case, we can con-

centrate on the second-order diagrams. We implement

the M -world Keldysh formalism where the contours of

the QHE and all environments except the probe one

are closed within each world, while the contour of the

probe environment traverses all the worlds. There are

two sorts of second-order diagrams. The diagrams of

the first sort, which we call incoherent, are whitin a sin-

gle world and are similar to those considered in Sec. 7.

The presence of nondiagonal elements of the density

matrix in the QHE gives rise to a new type of dia-

grams, which we call coherent one. In this case, two

perturbations are located in different worlds.

Collecting all diagrams (see Appendix B in [19]), we

express FM as

FM =
MnB(Mω/T )

nB((M − 1)ω/T )nB(ω/T )ω
(Qi −Qc). (45)

Thus, the R-flow is naturally separated into two

parts, which come from incoherent and coherent dia-

grams. The corresponding quantities Qi,c are expressed

in terms of the density matrix of the engine ρ and the

dynamical susceptibilities of the probe environment,

Qi = ω
∑

mnp;ηnp=1

ρmnχ̃pm,np(ω)(1 + nB(ω/T ))−

− ρmnχ̃np,pm(ω)nB(ω/T ), (46)

Qc = ω
∑

mnpq;ηpq=1

ρnmρqpχ̃mn,pq(ω). (47)

The same-world diagrams contribute to the inco-

herent part that is proportional to Qi, Qi is linear in ρ

and is therefore an observable. The different-world di-

agrams form the coherent part proportional Qc that is

quadratic in ρ and in principle would not be observable.

The M dependence is identical for both parts.

We interpret the parts and the quantities Qi,c: Qi is

an observable, being the total energy flow to the probe

environment. The terms proportional 1 + nB describe

absorption of energy quanta ~ω by the environment,

while those proportional nB correspond to the emis-

sion to the system. Upon taking the limit M → 1, the

incoherent part reproduces the textbook equation for

the entropy flow, FS = Qi/Tb.

The interpretation of the coherent part is more in-

volved and interesting. We replace |m〉〈n| in Hint

with classical external forces fmn with the time de-

pendence fmn ∝ exp(−iωηmn). These classical forces

would cause energy dissipation to the probe environ-

ment, which is determined from the forces and the dis-

sipative part of the susceptibility χ̃. This energy dissi-

pation is Qc.

Both parts of R-flows can be extracted from the

measurement results, although in a different way. The

entropy flow is not directly related to the energy flow.

Rather,

FS = (Qi −Qc)/Tb, (48)

the difference being due to quantum coherent effects in

our heat engine. A similar relation holds for the Renyi

entropy flow in the low-temperature limit

FM = M(Qi −Qc)/ω (49)

(this limit does not commute with the limit M → 1

since FS diverges at low temperatures). In the absence

of coherent effects, the low-temperature R-flow is read-

ily interpreted semiclassically [18], as the number of

events (in our case, ~ω quantum absorptions) per sec-

ond in M parallel worlds. With coherences, such simple

interpretation does not work since FM can be negative

[20].

10. EXAMPLE: EXACT CORRESPONDENCE

Another example of the Keldysh multi-world for-

malism is a relation that we derive for coherent and

incoherent second-order diagrams in the general time-

dependent situation. This relation gives an exact cor-

respondence between formally unphysical Re-flows and

physical observables, namely, the full counting statis-

tics of energy transfers considered in Sec. 3.

As discussed in Sec. 4, the Renyi entropies in quan-

tum physics are considered unphysical, or nonobserv-

able, due to their nonlinear dependence on the density

matrix. Such quantities cannot be determined from

immediate measurements; instead, their quantification

seems to be equivalent to determining the density ma-

trix. This requires reinitialization of the density ma-

trix between many successive measurements. There-

fore, the Renyi entropy flows between the systems are

conserved measures of nonphysical quantities.

An interesting and nontrivial question is as follows:

Is there any relation between the Renyi entropy flows

and the physical flows? An idea of such a relation was

first put forward by Levitov and Klich in [25], where

they proposed that the Shannon entropy flow can be
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quantified from the measurement of the full counting

statistics (FCS) of charge transfers. The validity of

this relation is restricted to zero temperature and obvi-

ously to the systems where interaction occurs by means

of charge transfer. In this section, we present a relation

that is similar in spirit (see [20] for details).

We consider two quantum systems A and B. We

assume that system A is infinitely large and is kept in

thermal equilibrium at a temperature T . System B is

arbitrary: it can encompass several degrees of freedom

as well as infinitely many of those. It does not have to

be in thermal equilibrium and in general is subject to

time-dependent forces. It is convenient to assume that

these forces are periodic with a period τ . However, this

period does not explicitly enter the formulation of our

result, which is also valid for aperiodic forces. The only

requirement is that there be a stationary limit of the

flows of physical quantities to system A. The station-

ary limit is defined by averaging the instant flow over

the period τ . For aperiodic forces, it is determined by

averaging over a sufficiently long time interval.

The energy transfer is statistical. In Sec. 3, we dis-

cussed the full counting statistics of energy transfers.

The FCS of energy transfer in system A during the time

interval [0, T ] can be determined from Eq. (12). For

quantification of the Renyi entropy flow, we need to

define an auxiliary FCS of energy transfer. The most

general interaction Hamiltonian is ĤAB =
∑

n ÂnB̂n

with Ân being operators in the space of the system in

thermal equilibrium, and B̂n being those in the space of

an arbitrary system. We replace B̂n with their average

values B̂n → 〈B̂n〉. The resulting Hamiltonian is that

of the equilibrium system subject to time-dependent

external forces. These forces induce energy transfers

to the system to be characterized by an FCS. We dis-

cuss possible physical realization of the scheme. So we

have two FCSs. In the limit of long T , their cumulant-

generating functions (Keldysh actions) are proportional

to the time interval, Si(ξ) = −f̄i(ξ) (incoherent) and

Sc(ξ) = −f̄c(ξ) (coherent), with ξ being the counting

field of energy transfer to/from system A.

Our main result is the exact correspondence

F̄
(β)
M /M = f̄

(Mβ)
i (ξ∗)− f̄ (Mβ)

c (ξ∗),

ξ∗ = iβ(M − 1),
(50)

which indicates that the Renyi entropy flow of the order

M to the system kept at the temperature T = 1/kBβ

is exactly equal to the difference of the FCS of incohe-

rent and coherent energy transfers to the system kept

at the temperature T/M at a fixed characteristic pa-

rameter ξ∗. This relation is valid in the weak-coupling

limit, where the interaction between the systems can

be treated perturbatively.

There is an obvious classical limit in the case where

quantum system B is considered classical. All operators

B̂n are numbers corresponding to classical forces acting

on the system in thermal equilibrium. In this case, the

dynamics of the system is governed by the Hamiltonian

in the degrees of freedom of the system and is therefore

unitary. In this case, there is no entropy flow. This

can be separately understood only from looking into

the FCS in correspondence (50): in this case, f̄i = f̄c.

The entropy/FCS correspondence (50) allows us to

quantify the time flow of the Renyi as well as Shannon

entropy. These quantities are not accessible in direct

measurement because they are nonlinear functions of

the density matrix. Direct measurements of the den-

sity matrix for a probe environment requires charac-

terization of the reduced density matrix of an infinite

system, which is a rather nontrivial procedure and re-

quires the complete and precise reinitialization of the

initial density matrix. However, measuring the entropy

flow from the correspondence requires that some gener-

ating functions be extracted from determining the sta-

tistical cumulants of transferred energy in experimental

data. This can be done equally well for imaginary and

real values of the characteristic parameter. The mea-

surement procedures may be complex, yet feasible and

physical.

The correspondence can have many other advan-

tages; for instance, a complete understanding of en-

tropy flows may help to identify the sources of fidelity

loss in quantum communications and methods to pre-

vent or control them.

11. CONCLUSIONS

We have formulated and illustrated a fascinating

extension of the Keldysh formalism to multiple parallel

worlds. Keldysh contours in this scheme are different

for different sub-parts of a quantum system, which pro-

vides dependences between the worlds. We explain that

the formalism naturally arises in the context of char-

acterizing the flows of conserved measures (Rényi en-

tropies) and illustrate its similarities with single-world

extensions of the Keldysh formalism.

It is a great honor for us to present these results in

a special issue celebrating numerous scientific merits of

Leonid Veniaminovich Keldysh. We gladly appreciate

his pioneering research that provided a powerful and

indispensable tool for many generations of quantum
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physicists, us including, and wish him many happy

returns of the day.

The research leading to these results has received

funding from the European Union Seventh Framework

Programme (FP7/2007–2013) under grant agreement

№308850 (INFERNOS).
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