ВЛИЯНИЕ ДАВЛЕНИЯ НА МЕЖСЛОЕВОЙ ТРАНСПОРТ И ЭЛЕКТРОННУЮ СТРУКТУРУ В КВАЗИДВУМЕРНОМ ДВУХСЛОЙНОМ ОРГАНИЧЕСКОМ МЕТАЛЛЕ θ -(BETS) $_4$ HgBr $_4$ (C $_6$ H $_5$ Cl)

Р. Б. Любовский ^{а,b}, С. И. Песоцкий ^{а,b*}, Е. И. Жиляева ^а, Р. Н. Любовская ^а

^а Институт проблем химической физики Российской академии наук 142432, Черноголовка, Московская обл., Россия

^b International Laboratory of High Magnetic Fields and Low Temperatures 52-421, Wroclaw, Poland

Поступила в редакцию 10 июля 2015 г.

Изучено поведение межслоевого сопротивления и магнитосопротивления в квазидвумерном двухслойном органическом металле θ -(BETS)₄HgBr₄(C₆H₅Cl) при нормальном давлении и при гидростатическом давлении 10 кбар. Установлено, что при атмосферном давлении межслоевой транспорт осуществляется в некогерентном режиме. Приложение давления не меняет электронной структуры проводящих слоев, но вызывает переход к слабонекогерентному режиму при низких температурах.

DOI: 10.7868/S0044451016010181

1. ВВЕДЕНИЕ

Объектом предлагаемого исследования явились монокристаллические образцы квазидвумерного органического металла (BETS)₄HgBr₄(C_6H_5Cl), где ВЕТЅ — бис(этилендитиа)тетраселенофульвален. Как и в абсолютном большинстве слоистых органических проводников [1, 2], его структура представляет собой чередование катионных слоев, состоящих из молекул BETS, обладающих металлической проводимостью внутри слоя, и непроводящих анионных слоев. Такая структура обеспечивает анизотропию проводимости вдоль и перпендикулярно слоям в несколько порядков, формируя хорошо выраженную квазидвумерную электронную систему. Главная отличительная особенность исследованного слоистого металла связана с фазовым переходом при $T\approx$ 240 K [3,4]. Выше этой температуры его кристаллическая структура является тетрагональной, а упаковка молекул BETS во всех катионных слоях одинакова и соответствует упаковке θ -типа [3, 4]. Соответственно, поверхность Ферми (П Φ) внутри катионного слоя одинакова для всех слоев обратной решетки.

При температуре, меньшей температуры перехода, симметрия решетки понижается до моноклинной [4]. При этом элементарная ячейка содержит два металлических слоя, в которых, при сохранении θ типа упаковки, молекулы BETS имеют различную ориентацию, что приводит к образованию двух различных П
Ф. Эта структура соответствует новому типу квазидвумерных органических металлов — так называемому двухслойному металлу. В таких объектах, в отличие от традиционных квазидвумерных органических металлов, электронная структура катионного слоя транслируется через слой. При этом в соседних слоях она может соответствовать 1) двум металлам; 2) металлу и диэлектрику с малой щелью; 3) металлу и диэлектрику с большой щелью (см., например, обзор [5]).

Двухслойный органический металл $(BETS)_4HgBr_4(C_6H_5Cl)$ относится к первому типу. Следует отметить, что таких материалов достаточно мало. В основном встречаются второй и третий типы устройства соседних катионных слоев [5]. Данный материал был, по-видимому, практически единственным объектом указанного типа, в котором подробно исследовались квантовые осцилляции магнитосопротивления, позволяющие

^{*} E-mail: pesot@icp.ac.ru

получить представление о П Φ металла [4]. Эти исследования показали наличие в спектре до восьми частот осцилляций Шубникова – де Гааза (ШдГ). Однако величины таких частот в модели Лифшица – Косевича не согласуются с теоретическим расчетом электронных орбит, сделанных на основе рентгеноструктурных данных. Одна из версий такого расхождения связана с возможностью электронного движения по орбитам, сформированным из участков П Φ , принадлежащих соседним катионным слоям. Такие орбиты могут иметь весьма сложный вид и зависеть от вероятности электронного перехода на соседний слой.

Предлагаемая работа содержит ана-ЛИЗ межслоевого электронного переноса в $(BETS)_4HgBr_4(C_6H_5Cl)$. Panee полученные peзультаты измерения температурных зависимостей сопротивления, которые показали металлический характер проводимости вдоль проводящих слоев и неметаллический перпендикулярно к ним [3, 4], позволили говорить о некогерентном режиме межслоевого транспорта. В настоящей статье приводятся результаты измерения угловых и полевых зависимостей магнитосопротивления, подтверждающие версию некогерентного переноса. Кроме того, приводятся результаты исследования магнитосопротивления под давлением $P \sim 10$ кбар и оценивается влияние такого давления как на характер межслоевого транспорта, так и на электронную структуру катионных слоев в (BETS)₄HgBr₄(C₆H₅Cl) при низких температурах.

2. ЭКСПЕРИМЕНТ И ОБСУЖДЕНИЕ

Объектами исследования стали монокристаллические образцы, имеющие форму неправильного параллелепипеда с характерными размерами $2 \times 1 \times 0.1$ мм³. Сопротивление образцов измерялось стандартным четырехконтактным методом на переменном токе 37 Гц. Измерительный ток всегда направлялся перпендикулярно проводящим слоям, т.е. измерялось межслоевое сопротивление. Магнитное поле до 15 Тл создавалось сверхпроводящим магнитом. В экспериментах с внешним давлением использовалась стандартная камера типа «поршень-цилиндр» с поршнем диаметром 4 мм, обеспечивающая гидростатическое давление до 15 кбар. В качестве среды, передающей давление, использовалась кремний-органическая жидкость ГКЖ-94.

Рис. 1. Температурные зависимости межслоевого сопротивления в $(BETS)_4HgBr_4(C_6H_5Cl)$ при нормальном давлении (1) и давлении $P \sim 10$ кбар (2)

На рис. 1 (кривая 1) показана температурная зависимость межслоевого сопротивления в (BETS)₄HgBr₄(C₆H₅Cl) при нормальном давлении. При охлаждении сопротивление растет в большей части температурного интервала измерений. При этом его слабое падение в промежутке температур 200–100 К сменяется существенным монотонным ростом вплоть до гелиевых температур. Особенность поведения сопротивления в интервале 240–230 К связана с фазовым переходом первого рода, меняющим симметрию кристаллической решетки [4]. Такое поведение межслоевого сопротивления качественно и количественно хорошо согласуется с аналогичными результатами, полученными ранее [3,4].

На рис. 2 изображена полевая зависимость магнитосопротивления в (BETS)₄HgBr₄(C₆H₅Cl) при направлении магнитного поля, перпендикулярном проводящим слоям, при температуре $T \approx 1.45$ K. Величина магнитосопротивления незначительна, порядка нескольких процентов в максимальном поле, и имеет отрицательный знак, не свойственный нормальному металлическому состоянию. Начиная с H = 3 Тл, наблюдаются осцилляции ШдГ с двумя различными частотами: $F_1 \approx 40$ Тл и $F_2 \approx 210$ Тл (вставка к рис. 2). Зависимость частот от полярного угла θ между направлением поля и нормалью к проводящим слоям, $F_i(\theta) = F_i(0)/\cos\theta$, характерная для всех органических слоистых металлов, определяет цилиндрическую ПФ с осью вдоль нормали. Циклотронные массы, отвечающие частотам F_1 и F_2 , равны соответственно $m_1 \approx (0.3 \pm 0.1) m_0$ и

Рис. 2. Зависимость сопротивления от магнитного поля при нормальном давлении и направлении поля, перпендикулярном проводящим слоям; T = 1.45 К. На вставке: фурье-спектр осцилляций ШдГ

Рис. 3. Угловые зависимости магнитосопротивления в полярной плоскости при различных азимутальных углах $\varphi = 0$ (1), 48° (2), 108° (3). T = 1.55 K, H = 14 Tл

 $m_2 \approx (0.8 \pm 0.2) m_0$, где m_0 — масса свободного электрона. В работе [4] в импульсных полях до 55 Тл в спектре осцилляций ШдГ в (BETS)₄HgBr₄(C₆H₅Cl) наблюдается до восьми частот. Однако в полях до 15 Тл результаты работы [4] хорошо совпадают с настоящими результатами.

На рис. 3 представлены угловые зависимости магнитосопротивления в магнитном поле H = 14 Тл от полярного угла θ при различных азимутальных углах φ (угол в плоскости проводящих слоев), причем стартовый угол выбран произвольно. Кривая 1 соответствует координатным осям. Остальные кривые сдвинуты друг относительно друга на 0.3 Ом для наглядности. На этих кривых хорошо выражены осцилляции ШдГ. В интервале углов $\pm 40^{\circ}$ наиболее заметны осцилляции с частотой F_2 . Осцилляции с частотой F_1 лучше видны в интервале $\pm (50-70)^{\circ}$.

Качественный и количественный анализ приведенных результатов и сравнение их с зависимостью сопротивления от поля (см. рис. 2) показывают, что а) магнитосопротивление почти не зависит от азимутального угла; б) величина магнитосопротивления при изменении угла θ в полярной плоскости определяется, главным образом, проекцией поля на нормаль к проводящим слоям. Подобное поведение присуще слоистым металлам с некогерентным или слабонекогерентным межслоевым переносом [6,7]. С учетом постоянного роста сопротивления при понижении температуры в (BETS)₄HgBr₄(C₆H₅Cl) (см. кривую 1 на рис. 1) предпочтительным выглядит именно некогерентный режим переноса, при котором время перехода электрона на соседний слой, τ_h , существенно больше времени его рассеяния внутри металлического слоя, τ_c : $\tau_c \ll \tau_h$ [8,9]. В этом случае ПФ представляется в форме гладкого цилиндра, характеризующего систему со слабовзаимодействующими металлическими слоями. Косвенным свидетельством в пользу такого выбора является также отрицательный знак магнитосопротивления (см. рис. 2), не характерный для нормального металлического переноса. Если принять во внимание различную электронную структуру и, в частности, различные ПФ соседних катионных слоев, то полученный результат не является неожиданным. Такое устройство слоистой системы ограничивает возможность когерентного межслоевого транспорта, так как переход электрона с сохранением импульса на соседний слой сильно затруднен.

Выше на рис. 1 (кривая 2) представлена температурная зависимость межслоевого сопротивления в (BETS)₄HgBr₄(C₆H₅Cl) при гидростатическом давлении $P \sim 10$ кбар. Качественно поведение зависимости похоже на аналогичное при нормальном давлении — сопротивление растет с понижением температуры в широком интервале температур. При этом фазовый переход, меняющий кристаллическую структуру, сдвигается на 20–30 К в сторону высоких температур, а при $T \approx 30$ К наблюдаются максимум

Рис. 4. Зависимость сопротивления от магнитного поля при давлении $P \sim 10$ кбар и направлении поля, перпендикулярном проводящим слоям; T = 1.55 К. На вставках: a — осцилляции ШдГ в обратном поле и без неосциллирующей части; δ — фурье-спектр осцилляций из вставки a

и дальнейшее падение сопротивления с понижением температуры. По всей вероятности, при данной температуре происходит смена режима межслоевого переноса от некогерентного к слабонекогерентному, когда время рассеяния электрона в слое порядка времени перехода на соседний слой: $\tau_c \sim \tau_h$. Для этого типа транспорта характерна именно металлическая температурная зависимость сопротивления [8, 9].

Косвенным подтверждением этой версии служит положительный знак магнитосопротивления при низкой температуре (рис. 4), присущий металлическим системам, в том числе и межслоевому магнитосопротивлению в слоистых органических металлах [10]. Кривая на рис. 4 содержит осцилляции ШдГ (вставка a) с частотами $F_1 \approx 50$ Тл и $F_2 \approx 230$ Тл, незначительно отличающимися от аналогичных частот, наблюдавшихся при атмосферном давлении (вставка б). Соответствующие циклотронные массы при атмосферном и высоком давлениях также совпадают в пределах ошибки измерений. Таким образом, с учетом присутствия фазового перехода под давлением можно предположить, что электронная структура при низких температурах внутри катионных слоев практически сохранилась в условиях внешнего давления. Но в этом случае электронный перенос на соседний слой остается затрудненным, и возникает вопрос о причине смены режима переноса. Представляется, что, скорее всего, она связана с увеличением вероятности когерентного перехода электрона через слой (с пропуском соседнего) вследствие сближения проводящих слоев под действием внешнего давления. В этом случае время рассеяния в слое должно быть сравнимо со временем перескока через слой.

3. ЗАКЛЮЧЕНИЕ

В квазидвумерном органическом двухслойном металле θ -(BETS)₄HgBr₄(C₆H₅Cl) исследованы температурные зависимости межслоевого сопротивления при атмосферном давлении и при гидростатическом давлении $P \sim 10$ кбар. В тех же условиях изучено поведение магнитосопротивления при низких температурах в зависимости от величины поля и температуры. Кроме того, изучались угловые зависимости магнитосопротивления в полярных и азимутальной плоскостях при атмосферном давлении. Установлено, что

 межслоевой электронный перенос осуществляется при атмосферном давлении в режиме некогерентного транспорта;

 внешнее давление, по всей вероятности, почти не меняет электронной структуры катионных слоев;

3) давление P ~ 10 кбар приводит к изменению режима межслоевого транспорта от некогерентного к слабонекогерентному при низких температурах, скорее всего, за счет увеличения вероятности электронного перехода через слой под давлением.

Работа поддержана Программами Президиума РАН 1.1.1.9 и «Современные проблемы физики низких температур».

ЛИТЕРАТУРА

- 1. M. V. Kartsovnik, Chem. Rev. 104, 5737 (2004).
- M. V. Kartsovnik, in *The Physics of Organic Super*conductors and Conductors, ed. by A. Lebed, Springer, Berlin-Heidelberg (2008), p. 185.
- R. B. Liubovskii, S. I. Pesotskii, S. V. Konovalikhin et al., Synth. Met. 123, 149 (2001).
- D. Vignolles, A. Audouard, R. B. Lyubovskii et al., Sol. St. Sci. 9, 1144 (2007).

- R. Lyubovskaya, E. Zhilyaeva, G. Shilov et al., Eur. J. Inorg. Chem. 24, 3820 (2014).
- M. V. Kartsovnik, D. Andres, S. V. Simonov et al., Phys. Rev. Lett. 96, 166601 (2006).
- Р. Б. Любовский, С. И. Песоцкий, Е. И. Жиляева и др., ЖЭТФ 143, 1161 (2013).
- R. McKenzei and P. Moses, Phys. Rev. Lett. 81, 4492 (1998).
- P. Moses and R. H. McKenzie, Phys. Rev. B 60, 7998 (1999).
- 10. P. D. Grigoriev, M. V. Kartsovnik, and W. Biberacher, Phys. Rev. B 86, 165125 (2012).