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STABILITY OF THE LEPTON BAG MODEL BASEDON THE KERR�NEWMAN SOLUTIONA. Burinskii *Nu
lear Safety Institute, Russian A
ademy of S
ien
es115191, Mos
ow, RussiaRe
eived May 19, 2015We show that the lepton bag model 
onsidered in our previous paper [10℄, generating the external gravi-tational and ele
tromagneti
 �elds of the Kerr�Newman (KN) solution, is supersymmetri
 and represents aBPS-saturated soliton interpolating between the internal va
uum state and the external KN solution. Weobtain Bogomolnyi equations for this phase transition and show that the Bogomolnyi bound determines allimportant features of this bag model, in
luding its stable shape. In parti
ular, for the stationary KN solution,the BPS bound provides stability of the ellipsoidal form of the bag and the formation of the ring�string stru
tureat its border, while for the periodi
 ele
tromagneti
 ex
itations of the KN solution, the BPS bound 
ontrols thedeformation of the surfa
e of the bag, reprodu
ing the known �exibility of bag models.DOI: 10.7868/S00444510151101031. INTRODUCTION AND OVERVIEWIt has been dis
ussed sin
e long ago that bla
kholes may be 
onne
ted with elementary parti
les.However, the spin/mass ratio of elementary parti
lesis extremely large, and the 
orresponding bla
k holeloses the horizons, turning into an ultra-extreme (over-
harged and over-rotating) Kerr�Newman (KN) solu-tion with a naked singular ring, whi
h forms a topo-logi
al defe
t of spa
e�time. As usual, emergen
e of asingularity is a hint for a generalization of the theory,and the Kerr singular ring 
reated the problem of thesour
e of the KN solution. This problem proved to bevery 
ompli
ated, and this year we 
an mark the 50thanniversary of its dis
ussions. Earlier attempts to builda sour
e of the KN solution where dis
ussed by Israelin [1℄, and Israel referred to the paper by Newman andJanis [2℄, wherein the nontriviality of this problem was�rst indi
ated. Carter obtained in [3℄ that the KN so-lution has the gyromagneti
 ratio g = 2, 
orrespondingto that of the Dira
 ele
tron, and starting from thisfa
t, Israel [1℄ suggested a 
lassi
al model of the ele
-tron based on a rotating disk-like sour
e of the KNsolution, en
losed by the Kerr singular ring.The 
onsistent regular model of the KN sour
e wassuggested by López, who built the KN sour
e as a*E-mail: bur�ibrae.a
.ru

rotating va
uum bubble, 
overing the Kerr singularring. At the same time, many properties of the KNsour
e indi
ated its 
lose relationships to string mo-dels [4�7℄, and a resolution of this duality was 
omingfrom the disk-like soliton model [8℄, in whi
h the va-
uum internal state of the López bubble sour
e wasrepla
ed by a super
ondu
ting false va
uum formedby the Higgs me
hanism of symmetry breaking. Thering�string emerged in this model as a narrow tube ofthe ele
tromagneti
 (EM) potential 
on
entrated at thesharp boundary of the disk-like sour
e, similar to thewell-known Nielsen�Olesen vortex string model in theLandau�Ginzburg theory [9℄.Re
ently, this model was generalized to a gravitat-ing bag model [10℄, for whi
h one of the known featuresis the �exibility and ability to 
reate string-like stru
-tures 1).A prin
ipal pe
uliarity of the model 
onsideredin [10℄ was the requirement to retain the externalgravitational EM �eld of the KN solution, whi
h isknown [3, 13℄ to have the gyromagneti
 ratio g = 2,
orresponding to that of the Dira
 ele
tron. Su
h abag 
an be 
onsidered as a semi
lassi
al model forsome parti
les of the ele
troweak se
tor of the Stan-1) Extended parti
le-like soliton models based on the Higgsme
hanism of symmetry breaking, su
h as Q-balls, skirmions,bags, and vortex strings, are widely dis
ussed now. Flexibilityof the bag models is used, in parti
ular, for the �ux-tube stringmodels [11, 12℄.937



A. Burinskii ÆÝÒÔ, òîì 148, âûï. 5 (11), 2015dard Model, su
h as the ele
tron or the muon, sin
ethe external gravitational and EM �eld of these par-ti
les 
orresponds to the KN solution with very goodpre
ision.In this paper, we show that this bag model is super-symmetri
 and represents a BPS-saturated soliton in-terpolating between a supersymmetri
 pseudo-va
uumstate inside the bag and the external �eld of the exa
tKN solution. We obtain that all the important featuresof this soliton 
onsidered in [10℄ follow unambiguouslyfrom the Bogomolnyi equations 
orresponding to theBPS-saturated solution.1.1. Sour
e of the KN solution as a spinningsolitonThe Kerr�S
hild form of the KN metri
 is [13℄g�� = ��� + 2Hk�k� ; (1)where ��� is the metri
 of an auxiliary Minkowskispa
e2) M4, H = mr � e2=2r2 + a2 
os2 � (2)is a s
alar fun
tion, r and � are ellipsoidal 
oordinates,and k� is the null ve
tor �eld, k�k� = 0, forming theprin
ipal null 
ongruen
e (PNC) K, a vortex polariza-tion of the Kerr spa
e�time. The surfa
e r = 0 repre-sents a disk-like �door� from the negative sheet r < 0to the positive one r > 0. A smooth extension of thesolution from the retarded to advan
ed sheet (togetherwith a smooth extension of the Kerr PNC) o

urs viathe disk r = 0 spanned by the Kerr singular ring r = 0,
os � = 0 (see Fig. 1) and 
reates another PNC on thenegative sheet. The null ve
tor �elds k��(x) turns outto be di�erent on these sheets, and two di�erent null
ongruen
es K� 
reate two di�erent metri
sg��� = ��� + 2Hk�� k��on the same Minkowski ba
kground.The mysterious two-sheeted stru
ture of the Kerrgeometry motivated the sear
h for various models forthe sour
e of the KN solution avoiding the negativesheet. A relevant �regularization� of this spa
e wassuggested by López [14℄, who ex
ised a singular regiontogether with the negative sheet and repla
ed it by aregular 
ore with a �at internal metri
 ��� . The result-ing va
uum bubble should be mat
hed with the exter-2) We use the signature (�+++).
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xyFig. 1. Null dire
tions of the Kerr 
ongruen
e k� are fo-
used on the Kerr singular ring, forming a two-sheetedspa
e of the advan
ed and retarded �eldsnal KN solution along the boundary r = R; determinedby the 
ondition H jr=R(r) = 0; (3)whi
h in a

ordan
e with (1) and (2) leads toR = re = e22m: (4)Sin
e r is Kerr's oblate radial 
oordinate (see Fig. 2),the bubble sour
e takes an ellipsoidal form and 
oversthe Kerr singular region, forming a �at spa
e insidethe disk of the radius r
 � a = ~=m
 and thi
kness re,with the degree of �atness re=r
 � e2 = � � 137�1
orresponding to the �ne stru
ture 
onstant.Developing this model led in [8℄ to a soliton modelwith a domain-wall phase transition, in whi
h gravity
ontrols the external 
lassi
al spa
e�time, while quan-tum theory forms a supersymmetri
 pseudo-va
uumstate inside the bubble. The 
on�i
t between quan-tum theory and gravity is resolved by the prin
iple ofthe separation of their zones of in�uen
e:PI: spa
e�time should be �at inside the 
ore,PII: the exterior should be the exa
t KN solution,PIII: the boundary between regions PI and PII isdetermined by López 
ondition (4).In [8, 15℄, a mysterious e�e
tiveness of this prin
i-ples was mentioned, whi
h uniquely de�nes the form ofthis soliton and two its pe
uliarities:(A) the Higgs �eld is os
illating with the frequen
y! = 2m, and therefore belongs a type of os
illons,(B) angular momentum is quantized, J = n=2,n = 1; 2; 3; : : :938
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oordinates 
over thespa
e�time twi
e, for r > 0 and r < 0In this paper, we show that the KN bubble sour
eforms a BPS-saturated soliton, and both pe
uliarities(A) and (B) are uniquely determined by the Bogomol-nyi equations, whi
h also determine the shape of thesoliton and therefore its dynami
s and stability.Starting in Se
. 2 from the des
ription of our ap-proa
h used in previous paper [10℄, we derive the Bo-gomolnyi equations adapted to spe
i�
 Kerr's 
oordi-nates in Se
. 3, and integrate them by redu
ing theproblem to two dimensions (t; r), time and the Kerrradial 
oordinate.In Se
. 4, we generalize the stationary KN bag tothe bag model �exible to deformations and obtain thatthese deformations are also 
ontrolled by the Bogomol-nyi bound. Considering stringy deformations of thebag 
aused by EM ex
itations of the KN solution, weshow that traveling waves may 
reate deformations thatbreak smoothness of the solution and 
reate a travelingsingular pole 
onne
ted with a traveling 
ir
ular wave.We 
on
lude in Se
. 5.2. GRAVITATING BAG MODEL AND THESUPERSYMMETRIC SCHEME OF PHASETRANSITIONThe bubble sour
e formed by the López boundarywas generalized to a soliton [8℄, and then to a gravi-tating bag model [10, 16℄. The 
on
ept of a bag modelassumes in
orporating the fermioni
 se
tor, in whi
hthe Dira
 equation a
quires mass through a Yukawa
oupling to the Higgs �eld [11, 12℄. As a 
onsequen
e,the mass turns out to be a variable fun
tion of the

spa
e�time distribution of the Higgs 
ondensate. Theboundary of the bag is modeled by a domain wall inter-polating between the external KN solution and the �atinternal pseudo-va
uum state, and the phase transitionbetween these states is 
ontrolled by the Higgs me
ha-nism of symmetry breaking, whi
h is used in many soli-ton models as well as in the well-known Nielsen�Olesenmodel [9℄, whi
h is in fa
t the Landau�Ginzburg (LG)�eld model for the vortex string in a super
ondu
tingmedia.As it was shown in [10℄, the typi
al quarti
 poten-tial �, V (j�j) = g(��� � �2)2; � = hj�ji; (5)used for the Higgs �eld in all these models, is not suit-able for the sour
e of the KN solution be
ause the exter-nal Higgs �eld distorts the external KN solution, turn-ing the EM �eld into a short-range one.Contrary to the standard bag model forming a 
av-ity in the Higgs 
ondensate [11℄, 
ondition PII requiresthe Higgs 
ondensate to be en
losed inside the bag.This 
annot be done with potential (5), and a more
omplex s
heme of a phase transition was used in [10℄,whi
h 
ontained three 
hiral �elds �(i), i = 1; 2; 3. Infa
t, it is a supersymmetri
 generalization of the LGmodel [17℄.One of the �elds, say �(1), was identi�ed as theHiggs �eld �. Hen
e the new notation(�; Z;�) � (�1;�2;�3) (6)was used.Due to 
ondition PI, the bag is to be pla
ed inthe �at region, and the domain wall phase transitionmay be 
onsidered with the �at ba
kground metri
,g�� = ��� . Therefore, the domain-wall boundary ofthe bag and the bag as a whole are not dragged byrotation. Be
ause of that, the 
hiral part of the Hamil-tonian is simpli�ed toH(
h) = T 0(
h)0 == 12 3Xi=1 " 3X�=0 jD(i)� �ij2 + j�iW j2# ; (7)where the 
ovariant derivativesD(i)� � �� + ieAi�are �at. As in [18℄, the potential V is determined bythe superpotentialV (r) =Xi j�iW j2: (8)939



A. Burinskii ÆÝÒÔ, òîì 148, âûï. 5 (11), 2015It was shown in [10℄ that the superpotentialW (�i; ��i) = Z ����� �2�+ (Z + �)��� (9)suggested by Morris [19℄, where � and � are real 
on-stants, provides the ne
essary 
on
entration of theHiggs �eld inside the bag, and from the supersymme-try 
ondition �iW = 0, two va
uum states were deter-mined:(I) internal: r < R � Æ,V (r) = 0; j�j = � = 
onst; Z = ��;� = 0; Win = ��2; (10)(II) external: r > R+ Æ,V (r) = 0; � = 0; Z = 0;� = �; Wext = 0; (11)(III) the transition zone R � Æ < r < R + Æ, whereva
ua (I) and (II) are separated by a positive spike ofthe potential V .The prin
ipal result obtained here is that the po-sition of the domain wall boundary satisfying require-ments PI�PIII is uniquely determined by the Bogomol-nyi bound, and therefore these requirements determinestability of the bag, leading to a supersymmetri
 andBPS-saturated sour
e of the KN solution.As was dis
ussed in [10℄ (and earlier in [8℄), insidethe bag and in the transition zone (III), the spa
e is �at,the �elds �2 and �3 are 
onstant, and only the 
om-plex Higgs �eld �(x) = j�(x)jei�(x), intera
ting withthe ve
tor potential of the KN solution A� penetratinginside has a nontrivial dynami
s. As a result, the �eldmodel in this zone redu
es to the Abelian �eld modelin �at spa
e�time, whi
h has only one 
hiral �eld �and 
oin
ides with the model for the vortex string usedby Nielsen�Olesen [9℄. The 
orresponding Lagrangianleads to the equations����� = ���V; (12)����A� = I� = ej�j2(�;� + eA�); (13)whi
h are 
onsistent with the va
uum states in zones(I) and (II).Equation (13), whi
h is indeed Eq. (2.4) of theNielsen�Olesen model [9℄, indi
ates that the 
urrentmust not penetrate inside the bag beyond a thin sur-fa
e layer. Setting I� = 0 inside the bag, we obtain����A� = 0 and �;� + eA� = 0; (14)
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xFig. 3. The Kerr surfa
e � = 
onst. The Kerr 
ongru-en
e is dragged by rotation even in the zero-mass limit.In the equatorial plane, the 
ongruen
e is tangent tothe Kerr singular ring, and the ve
tor potential formsa 
losed Wilson loop wrapped around the boundary ofthe spheroidal bagwhi
h shows that the gradient of the phase of the Higgs�eld �;� must 
ompensate the penetrating ve
tor po-tential A� of the KN �eld. We emphasize that althoughthe KN gravitational �eld vanishes near the boundaryof the bag, its strong e�e
t on the EM �eld is main-tained. Sin
e the KN ve
tor potentialA� = �Re er + ia 
os �k� (15)is aligned to dire
tions of the Kerr 
ongruen
e k�, itmust be dragged by the Kerr singular ring even in the�at limit (see Fig. 3).The boundary of the bag at r = R = e2=2m regu-larizes ve
tor potential (15), and it takes the maximalvalue in the equatorial plane 
os � = 0:A(max)� = �2me k�: (16)There are only the longitudinal and the timelike
omponents of the ve
tor potential in the stationaryKN solution. Sin
e k0 = 1, the timelike 
omponenttakes the maximal value A0 = �2m=e, whi
h in a

or-dan
e with (14) should be 
ompensated by the phase ofthe Higgs �eld �;0, whi
h leads to the important result(A): os
illations of the Higgs �eld with the frequen
y! = 2m.At the same time, the longitudinal part of the ve
torpotential A� forms a 
losed loop along the boundary940
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ordan
ewith (14) it should also be 
ompensated by the 
hangein the phase of the Higgs �eld �;�. In [8℄, using theKerr relation J = ma; we obtained the se
ond remark-able 
onsequen
e (B): angular momentum is quantized,J = n=2, n = 1; 2; 3; : : :We now 
onsider these result as a 
onsequen
e of thesupersymmetry of the bag model. We use the re
ipedes
ribed in [20, 21℄ for a similar problem for a pla-nar domain wall with one 
hiral �eld and redu
e theproblem to solvable �rst-order Bogomolnyi equations,in parti
ular implying (A) and (B).3. SOURCE OF THE KN SOLUTION AS ABPS-SATURATED SOLITONThe full Lagrangian 
orresponding to the bosoni
part of the N=1 supersymmetri
 model with three 
hi-ral �elds �(i) = f�; Z;�g, i = 1; 2; 3; has the form [18℄L = �14F��F�� �� 12Xi (D(i)� �(i))(D(i)��(i))� � V: (17)As we mentioned earlier, the part of the Lagrangianrelated to the �eld �(i) = �(1) � � is the same as inthe Nielsen�Olesen model.The 
orresponding stress�energy tensor de
omposesinto a pure EM part T (em)�� and 
ontributions from the
hiral �elds T (
h)�� :T (tot)�� = T (em)�� +Xi (D(i)� �i)(D(i)� �i)�� 12g�� "Xi (D(i)� �i)(D(i)��i) + V # : (18)The �atness of the metri
 inside the bubble and inthe vi
inity of the domain wall boundary leads to thedisappearan
e of dragging of the 
hiral �elds, and sim-ilarly to previous treatment, we 
an use the 
hiral partof the Hamiltonian in form (7).The domain-wall boundary of the bag and the bagas a whole do not rotate. Nevertheless, the in�uen
eof gravity is saved in the shape of the bag and also asa drag e�e
t a
ting of the KN EM �eld, whi
h retains
orrelation with a twisted Kerr 
ongruen
e even in the�at-spa
e limit. We have to take it into a

ount, andit is advisable to use the Kerr 
oordinate systemx+ iy = (r + ia)ei� sin �;z = r 
os �; t = �� r; (19)

whi
h is adapted to the shape of the bag, and whereKN ve
tor potential (15) takes the simple form ([13℄,Eq. (7.7))A�dx� = �Re� er + ia 
os ���� (dr � dt� a sin2 � d�): (20)As we have seen, the 
omponents A� and At havevery spe
i�
 behavior, and are 
ompensated by thephase of the os
illating Higgs �eld�(x) � �1(x) = j�1(r)jei�(t;�); (21)whi
h is equivalent to the equationsD(1)t �1 = 0; D(1)� �1 = 0; (22)whi
h are analogs of (13), and lead to respe
tive 
onse-quen
es (A) and (B). As a result, these terms drop outfrom expression (7), and all the remainder 
hiral �eldsdepend only on the Kerr radial 
oordinate r:�2 = �2(r); �3 = �3(r): (23)The sumP3�=0 jD(i)� �ij2 in (7) redu
es to a single term,H(
h) = T 0(
h)0 = 12 3Xi=1 [jD(i)r �ij2 + j�iW j2℄; (24)where the 
oordinate r parameterizes the oblate sur-fa
e of the bag and, similarly to parallel surfa
es of theplanar domain walls, the surfa
es r and r + dr 
an beregarded as �lo
ally parallel� to ea
h other (see Figs. 4and 5).Following [20, 21℄, we now use a �tri
k�, by introdu
-ing the angles �i, whi
h allow us to rewrite expression(24) in the equivalent formH(
h�r) = 3Xi=1 12 ����D(i)r �i � ei�i � �W� ��i ����2 ++Re exp(�i�i)� �W� ��iD(i)r �i; (25)where the phases �i should be independent of r andbe 
hosen so as to ensure the vanishing of the squareterms, i. e., D(i)r �i = exp(i�i)� �W� ��i : (26)The fun
tions W and Z are real, and without lossof generality we 
an also set a real �3, whi
h allows usto take �2 = �3 = 0. For the Higgs �eld, representedby the fun
tion941
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Domain wall a = 10; R = 1 Singular ring
DW surfa
es R = 0:9 and R = 1Disk r = 0
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Fig. 4. Axial se
tion of the spheroidal domain-wall(DW) phase transitionDW line R = 1
Singular ring8:5 8:6 8:7 8:8 8:9 9:0 9:1 9:2 9:3 9:4 9:5x
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Fig. 5. Enlarged fragment of the disk boundary, thering�string zone� � �1 = j�jei�(t;�);we have �1��1 = e2i�(t;�);and from (26) and (21) we obtain�1 = 2�(t; �): (27)In this 
ase, D(1)r � = e2i�(t;�)D(i)r ��;and (25) takes the form

H(
h�r) = 3Xi=1 12 �����r�i � �W��i ����2 ++Re��W��i� �r�i; (28)where the repla
ement of the 
ovariant derivatives D(1)rwith the partial �r is valid due to the 
on
rete form ofsuperpotential (9).A minimum of the energy density H(
h�r) isa
hieved forD(i)r �i = �W��i ; D(i)r ��i = � �W� ��i ; (29)whi
h are the Bogomolnyi equations 
orresponding tothe saturated Bogomolnyi bound. Expression (28)turns into a full di�erential,H(
h�r) = Re��W��i� �r�i = �W�r : (30)We 
an now obtain the mass�energy of the bag to-gether with its domain-wall boundaryMbag �M
h = Z dx3p�g T 0(
h)0 : (31)For the Kerr 
oordinate system,p�g = (r2 + a2 
os2 �) sin �: (32)Axial symmetry allows us to integrate over �, leadingtoMbag = 2� Z dr d�(r2 + a2 
os2 �) sin �T 0(
h)0 : (33)Using (30), we obtainMbag = 2� Z d�(r2 + a2 
os2 �) sin ��rW dr: (34)Taking into a

ount that superpotential W (r) is 
on-stant inside and outside the sour
e,Wint = ��2; Wext = 0; (35)we have �rW = 0 inside and outside the bag and, by
rossing the bag boundary, we obtain the di�eren
e�W =W (R+ Æ)�W (R � Æ) = ���2:After integration over r 2 [0; R℄ and then overX = 
os �, we obtainMbag = 2��W 1Z�1 dX(R2 + a2X2) == 4��R2 + 13a2��W: (36)942
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ussed in [10℄, taking the bag model 
on
ept,we should also a

ept the dynami
al point of view thatthe bags are to be soft and deformed, a
quiring ex
i-tations similar to ex
itations of the dual string mod-els [12, 22, 23℄. By deformations, the bags may formstringy stru
tures. Generally 
onsidered are the radialand rotational ex
itations, forming open strings or �uxtubes. The old Dira
 model of an �extensible� spheri-
al ele
tron [24℄ may also be 
onsidered as a prototypeof the bag model with spheri
ally symmetri
 deforma-tions � radial ex
itations.The bag-like sour
e of the KN solution without ro-tation, a = 0, represents the Dira
 model of a spheri
al�extensible� ele
tron, whi
h has the 
lassi
al ele
tronradius R = re = e2=2m at rest. The KN rotating disk-like bag (see Fig. 1 in [10℄) may be 
onsidered as theDira
 bag stret
hed by rotation to a disk of the Comp-ton radius, a = ~=2m
, whi
h 
orresponds to the zoneof va
uum polarization of a �dressed� ele
tron.It has been obtained long ago that the Kerr geom-etry is 
losely related to strings [7℄. In parti
ular, inour old work [4, 5℄, the Kerr singular ring was asso
i-ated with a 
losed ring�string that may 
arry travelingwaves like a waveguide3). In the soliton bag model,the Kerr singularity disappears, but this role is playedby the sharp boundary of the disk-like bag. Like theKerr singular ring [4℄, it 
an serve as 
arrier of travelingwaves. It was shown in [6℄ that the �eld stru
ture ofthis string is similar to the stru
ture of the fundamentalstring, obtained by Sen as a solitoni
 string-like solu-tion of low energy string theory [26℄. As it was shownin [4, 5℄ and re
ently in [27℄, the EM and spinor ex
i-tations of the KN solution are 
on
entrated near theKerr ring, forming string-like traveling waves. For thestationary KN solution, the EM �eld forms a frozenwave [4℄, lo
ated along the boundary of the disk-likesour
e. Lo
ally, this frozen string is a typi
al plane-fronted EM wave with null invariants,E �H = 0; E2 = H2; (37)and with the Poynting ve
torS = 14�E�Hdire
ted along the tangent to the Kerr singular ring,k �S > 0. In the regularized KN solution, the Kerr sin-gular ring is regularized, a
quiring a 
ut-o� parameter3) Another, 
omplex string appears in the 
omplex stru
tureof the Kerr geometry [7, 25℄.

a bBag boundary Naked singular point
Bag boundarySingular ring Singular ring

y v = 

Fig. 6. Regularization of the KN EM �eld. A se
tion ofthe disk-like bag in the equatorial plane. The distan
efrom positions of the boundary of the bag from theposition of the (former) singular ring a
ts as a 
ut-o�parameter R. a) Axially symmetri
 KN solution gives a
onstant 
ut-o� R = re. b ) The boundary of the bagis deformed by a traveling wave, 
reating a 
ir
ulatingsingular point of tangen
y (zitterbewegung)R, whi
h for the axially symmetri
 KN solution is the
onstant R = re, Eq. (4) (see Fig. 6a).Sin
e the null ve
tor of the Kerr 
ongruen
e k� istangent to the Kerr singular ring, and sin
e R � a,the ring�string at the boundary is almost light-like,and its stru
ture is very 
lose to the known pp-wavestrings [28�30℄. However, for an external observer, thelight-like 
losed string should shrink to a point due toLorentz 
ontra
tion, [27℄. The extended KN string,positioned along the boundary of the bag, 
annot be
losed, [31℄, sin
e the end points of the string world-sheet x�(�; t) and x�(� + 2�; t) must not 
oin
ide4).There are two ways to make a 
onsistent extendedstring stru
ture:1) to 
onsider this string as an open one and to
omplete it to a 
onsistent sum 
omprising the left andright modes,2) to form an orientifold string, whi
h means thatthe open string is built from a 
losed one by foldingits worldsheet [31℄: the interval � 2 [0; 2�℄ is repre-sented as a half-interval �+ 2 [0; �℄, doubled by thereversed half-interval �� 2 [�; 2�℄, with x�(��; t) == x�(2� � ��; t).4) Otherwise the worldsheet be
omes a worldline. We are fa
edhere with an odd pe
uliarity of the Kerr spinning parti
le, wherethe 
hiral �elds form an extended bag, while the asso
iated EM�eld forms a light-like string that looks like a point for an externalobserver.943
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Fig. 7. The 
ir
ular left mode formed by a travelingwave along the KN string is 
ompleted by the time-likeright mode formed by the frozen traveling wave of thestationary KH solution qHere, we follow the �rst way, and 
onsider theabove �frozen� solution as a right mode of an ex
itation.We 
omplete it by the left 
ounterpart, whi
h we �ndamong other admissible ex
itations. All exa
t solutionsfor the EM �eld on the Kerr ba
kground were obtainedin [13℄, and they are de�ned by an analyti
 fun
tionA =  (Y; �)=P 2, where Y = ei� tan(�=2) is a 
omplexproje
tive angular variable, � = t�r�ia 
os� is a 
om-plex retarded-time parameter, and P = 2�1=2(1+Y �Y )for the Kerr geometry at rest. The ve
tor potential isdetermined by the fun
tion  as follows [13℄:A�dx� = �Re�  r + ia 
os �� e3 + �d �Y ;� = 2 Z (1 + Y �Y )�2 dY: (38)The simplest fun
tion  = �e yields the stationaryKN solution with fun
tion (2). It 
orresponds to thefrozen 
ir
ular EM wave dis
ussed above (see Fig. 7).This 
ir
ular traveling mode is lo
ally plane wave �pro-pagates� along the Kerr singular ring. By regulariza-tion, the EM �eld a
quires the 
onstant 
ut-o� param-eter R = re (see Fig. 6a).Along with many other possible stringy waves, aninteresting e�e
t is manifested by the lowest wave so-lutions5)  = e�1 + 1Y ei!�� : (39)It is easy to �nd the ba
k rea
tion of this ex
itation.The boundary of the disk is very 
lose to the position5) Remarkable features of this 
ombination were dis
ussedin [4℄.

of the Kerr singular ring, and regularization of the sta-tionary KN sour
e in fa
t represents a 
onstant 
ut-o�parameter R = re, Eq. (4), for the Kerr singularity.The EM traveling waves deform the bag surfa
e, andthe boundary of the deformed bag 
an be determinedfrom the 
ondition H = 0, Eq. (3).Like the stationary KN solution, the fun
tion  a
tson the metri
 through the fun
tion H , whi
h in thegeneral 
ase has the formH = mr � j j2=2r2 + a2 
os2 � ; (40)and the 
ondition H = 0 determines the boundary ofdisk R = j j2=2m, whi
h a
ts as the 
ut-o� parame-ter for EM �eld. The 
orresponding deformations ofthe bag boundary are shown in Fig. 6b. We see thatsolution (39) takes the form = e(1 + e�i(��!t));in the equatorial plane 
os � = 0 and the 
ut-o� param-eter R = j j22m = e2m (1 + 
os(�� !t))depends on �� !t. The vanishing of R at � = !t 
re-ates a singular pole, whi
h 
ir
ulates along the ring�string together with the traveling wave of the ex
ita-tion, reprodu
ing light-like zitterbewegung of the Dira
ele
tron. This pole may be interpreted as a single endpoint of the ring�string: either as a point-like bare ele
-tron or as a light-like quark, if it is also present in theasso
iated fermioni
 se
tor.5. CONCLUSIONThe mysterious problem of the sour
e of two-shee-ted Kerr geometry leads to a gravitating soliton-bubblemodel, whi
h has to retain the external long-rangegravitational and EM �eld of the KN solution. Therequirement of 
onsisten
y with gravity leads to a su-persymmetri
 �eld model of a phase transition in whi
hthe Higgs 
ondensate forms a supersymmetri
 
ore ofa spinning parti
le-like solution. The resulting model
onsidered in [10℄ has mu
h in 
ommon with the fa-mous MIT and SLAC bag models, as well as with thebasi
 
on
ept of the Standard Model, where the ini-tially massless leptons (left and right) a
quire a massinside the bag from the Higgs me
hanism of symmetrybreaking.In the present extension of [10℄, we showed thatthe KN bag model forms a BPS-saturated solution ofthe Bogomolnyi equations, and therefore the stationary944
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on�guration determined by the KNparameters: 
harge, spin, and the rotation parametera = J=m, while the mass is related to the parametersof the domain-wall bubble en
oded in the superpoten-tial W .Similar to the other bag models, the KN bag ispliant to deformations. The spinning bag takes theshape of a thin disk, whose sharp boundary representsa ring�string, whi
h 
an support traveling waves. Thedomain-wall boundary of the disk is determined by theBPS bound, whi
h 
oin
ides with the López boundarydetermined by prin
iples PI�PIII. For the stationaryKN solution, this 
orresponds to the bag of an oblateellipsoidal form taking the Compton zone of a dressedele
tron. The boundary of the disk is 
ompleted by a�frozen� light-like ring�string of the Compton radius.Sin
e the tangent dire
tion to this string is light-likewith great pre
ision, it shrinks by the Lorentz 
ontra
-tion, and its spa
e�time extension 
annot be �seen� byan external observer [27; 32℄6).On the other hand, we showed that the ring�stringtraveling waves lead to deformations of the bagsurfa
e, and the lowest EM ex
itation of the KNsolution breaks the regularization of the KN solution,
reating a singular pole that reprodu
es the knownzitterbewegung, 
ir
ulating with speed of light alongthe ring�string together with traveling wave. Thebag model a
quires an additional point-like elementthat may be interpreted as an analog of the bareele
tron, while the model as a whole turns into a singlebag�string�quark system, whi
h should be asso
iatedwith a dressed ele
tron.The author would like to thank P. Kondratenkoand Yu. Obukhov and all 
olleagues of the Theoreti
alPhysi
s Laboratory, NSI RAS, for the useful dis
ussion.The author also thanks V. Doku
haev,V. Rubakov, andother members of the Theoreti
al Division, INR RAS,for the invitation to a seminar talk and the useful dis-
ussion. The author thanks J. Morris for reading a ver-sion of this paper, a very useful 
onversation, and 
or-re
ting some signs. The results of this work were alsore
ently delivered at the International Conferen
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