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The concept of an acoustical analog of the optical laser has been developed recently in both theoretical and
experimental works. We here discuss a model of a coherent phonon generator with a direct signature of the
quantum properties of sound vibrations. The considered setup is made of a laser-driven quantum dot embedded
in an acoustical nanocavity. The system dynamics is solved for a single phonon mode in the steady-state and
in the strong quantum dot —phonon coupling regime beyond the secular approximation. We demonstrate that
the phonon statistics exhibits quantum features, i.e., is sub-Poissonian.
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1. INTRODUCTION

Sub-Poissonian statistics of vibrational states is a
pure quantum propriety of an oscillating system. The
domain of this statistics starts at the limit of a classi-
cal coherent state having a Poisson-distributed quanta
and may end with a pure Fock state at the other
limit. Studies on the quanta statistics have already re-
vealed many pure quantum features for different phys-
ical systems and remarkable results were achieved in
a large spectrum of photonic quantum electrodynam-
ics (QED) applications [1, 2] and in the physics of the
Bose-Einstein condensate (BEC) [3, 4]. More recently,
successful experiments on cooling and detection of me-
chanical systems in the near-ground-state domain [5-7]
enhanced interest in the research of similar features in
the acoustic domain, due to bosonic quantification of
sound vibrations.

Earlier experiments on laser generation of coher-
ent phonons in different bulk materials [8-10] were suc-
ceeded by new optomechanical and electromechanical
setups in phonon QED, achieving important experi-
mental results in an acoustical analog of the optical
laser by using piezoelectrically excited electromechan-
ical resonators [11] and laser-driven compound micro-
cavities [12] or trapped ions [13]. In the meantime,
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theoretical models propose improvements in the back-
ground theory of the experiments like the PT-symmet-
ry approach [14] and two-cavity optomechanics [15],
as well as new possible setups using vibrating mem-
branes [15, 16], quantum dots embedded in semicon-
ductor lattices [17-19], and BEC under the action of
a magnetic cantilever [20]. Moreover, quantum fea-
tures like sub-Poissonian distributed phonon fields have
been already predicted in optomechanical setups based
on vibrating mirrors [21, 22| and in single-electron
transistors [23] as well as phonon antibunching [19],
squeezing [21, 24], and a negative Wigner function of
phonon states [25]. In addition to increasing perfor-
mance of optomechanical devices [26], reports on the
state-of-the-art acoustical cavities [27-29] show good
phonon trapping in bulk materials with high cavity
quality factors, thus leading to the concept of an acous-
tical analog of photon cavity QED (cQED).

In this article, we study the model of a coherent
phonon generator in a setup consisting of a qubit em-
bedded in an acoustical cavity involving strong quan-
tum dot (QD)-phonon-cavity coupling regime. The
qubit, i.e., a two-level QD, is driven by an intense
laser field and acts as a phonon source. Under the
action of laser light, the electron jumps from the QD
valence band to the conductance band, leaving a hole in
the valence band. The created exciton (electron-hole)
represents the QD’s excited state and interacts with
the acoustic vibrations, thus creating or annihilating
phonons in the cavity. We demonstrate that in analo-
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gy with recent experiments in photon cQED [30], the
strong qubit-resonator coupling may reveal additional
quantum phenomena in the phonon cQED domain. In
particular, we show that the steady-state phonon field
generated in this regime obeys a sub-Poissonian phonon
statistics.

This paper is organized as follows. In Sec. 2, a
detailed description of the model is given; after fixing
our conventions, we focus on simplifying the system
Hamiltonian in order to arrive at an easily solvable
master equation for the reduced density operator of
the QD—phonon system. In Sec. 3, we present a gen-
eral overview of the model results and we further dis-
cuss the important aspects of the study. A summary is
given in Sec. 4.

2. THEORETICAL FRAMEWORK

A two-level laser-pumped semiconductor QD is em-
bedded in an acoustical nanocavity (see also Refs. [17,
18]). The QD transition frequency between its ground
state |g) and the excited state |e) is denoted by wyq.
The excited QD may spontaneously emit a photon,
with the corresponding decay rate v (Fig. 1). In a
more realistic case, we introduce the dephasing loss
rate through ~.. The single-mode cavity phonons of
the frequency wpp, are described by the anihilation (b)
and creation (b') operators. The system Hamiltonian
is

H = hwgaSs + hwppb™ +
+hQ [(ST exp(—iwrt)+H.c.] + hgSTS— (bt +b), (1)

where the QD operators defined as ST = |e){g|, S~ =
= lg)el, and S. = (le)el — |g)(gl) /2 obey the stan-

.

Fig.1. The schematic of the investigated model: a

two-level QD is fixed in a multilayered structure form-

ing the acoustical nanocavity. The QD is pumped near

resonance with a coherent laser source of the frequency

wr,. The emitter may spontaneously emit a photon at

a decay rate +; the cavity phonon damping rate is de-
noted by x (see also Ref. [29])

dard commutation relations for the SU(2) algebra. The
first two terms respectively correspond to the unper-
turbed QD and to the free single-mode phonon Hamil-
tonians. The third term corresponds to the QD-laser
interaction within the rotating wave and dipole appro-
ximations, whereas wy, is the laser frequency. The last
term describes the QD—phonon-cavity interaction with
g being the coupling constant.

In what follows, we describe the Hamiltonian in a
frame rotating with the laser frequency wy and apply
the dressed-state transformation:

|[4+) = sinf|g) + cosBle),

|—) = cosf|g) — sinb|e), @)

where 26 = arctan (2Q/A) and A = wyq —wy, is the de-
tuning of the laser from the QD transition frequency.
The dressed-state system Hamiltonian then becomes

H = hQR. + liw,nb'b + hig(bt + b) x
sin (26)
2

X {sin2 OR__+cos> AR, — (R++R_)} . (3)

where O = \/Q2 + (A/2)2. The new QD operators
RT =|+){(-I, R =|-)(+,
R++ = |+><+|7 R__= |_><_|, Rz = R++—R__

satisfy the commutation relations [R*, RT] = £R. and
[RT,R,] = £2RT. Again, we perform a unitary trans-
formation of the system Hamiltonian,

U(t) = exp [i(QR. + wpnd'b)t]
and represent it as follows:

H = Hgo + Hfasty

in (2
Hopw = _hgsm; 0) y
x {b'R™ exp [i(wpn — 2] + H.c.},

H — ha(sin? 2 (4)
fast = hg(sin"@R__ + cos®0R, ) X

sin (26) "
2
x {b'R* exp [i(wpn + 2Q)t] + H.c.}.

x {bt exp [iwpnt] + H.c.} — hg

Instead of adopting the standard secular approximation
[31, 32], we keep the fast rotating terms in the QD—pho-
non-cavity interaction Hamiltonian. Their main contri-
bution is evaluated as [33, 34]

. i
Hfij;g = _ﬁHfast(t) /dtl Hipasu(t') =

= Ho — hAR, + hBb'bR.  (5)
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with

A= g (cos (26)  sin®(20) )
T2 Wph 4(wph + QQ)
and
, sin?(26)

T 4wopn +29)°

Here, Hy, is a constant that can be dropped because
it does not contribute to the system dynamics. We
note that the coupling regimes are related not only to
the QD—phonon-cavity coupling constant g but also to
the contribution coming from fast rotating terms, i.e.,
A and f3, proportional to g2>. Consequently, for low
QD—phonon coupling strengths ¢, the contribution of
fast rotating terms can be neglected, i.e., {A, 3} = 0.
For strong QD-phonon coupling regimes, the secular
approximation is no longer justified and the contribu-
tion of H;g’;t plays a role that we consider below. Thus,

the final Hamiltonian H = H g, + H;ff is

ast

ﬁ:

H = h(wpn — 2Q)b'b — BAR. + hBbTbR. —

sin (26)
2

— hg (b'R™+ R™b). (6)

To solve the QD—phonon system dynamics, we use
the density matrix formalism for the reduced density
operator p:

. i

p=—3H, pl + Leap + Lonp, (7)

where the Liouville superoperators L,q and £, respec-
tively describe the QD and phonon dissipative effects.
In the bare-state representation, the QD dissipation
processes are expressed by the spontaneous emission
term [31, 32, 35]

Lyap = _7[S+7 S7p] = 7e[S=, S.p] + H.c.

In the dressed-state basis and within the secular ap-
proximation (i.e., for 20 > «), the same processes are
described by three terms [36] determined by the QD
dressed-state decay rates:

1
vy =y cost B + e sin? (26),
. 4 1 .9
y— =sin® 6+ Ve sin (20),
1
Yo = Zh sin” (26) + 7. cos” (26)].
Therefore,

Lyap = —+[RY,R™p] —v-[R™,R*p] -
— Y[Rz, R:p] + Hee.  (8)

The phonons from the multilayered acoustical cavity
are allowed to interact with the environmental thermal
reservoir. In the rotating wave approximation, this pro-
cess is described by two terms respectively correspond-
ing to the cavity damping and pumping effects at a rate
proportional to k = wp,/Q determined by the cavity
quality factor @ [31]:

Lonp = —k(1L+n)[bT,bp] — kn[b,bTp] + Hee.  (9)

Here, n is the mean thermal phonon number corre-
sponding to the frequency wp, and the environmental
temperature T'.

Once the master equation is determined by
Eqs. (6)-(9), it is solved by projecting the density
operator first in the QD basis and then in the phonon
field basis [37]. The projection in the QD dressed-state
basis leads after some rearrangements to a system
of six coupled differential equations involving the
variables

1) (2)

P =Py ey P = Py — P
p® =blpy —p b, pW =blp +p_yb,  (10)
P =py bt —bp 4, Pl =pp b +bp

where p; ; = (i|p|j), {¢,J € |+),|—)} are the QD den-
sity matrix elements. Finally, the projection in the
phonon Fock state basis {|n)} gives a set of infinite
differential equations, namely,

P = igsmé_%) (Pr(f) - P7§5>) —2r(14n) x
x (nP) = (n+1)PLY, ) -
267 ((n+ )PPV —nPY, ), (11)
. (2) — sin(29) (3) (5) _
Pn 19—2 (Pn + Pn )
=204 — )P = 2(74 +7- )P —
— 2k(1 + ) (nP,?) —(n+ 1)P,§2+)1) -
207 (n+ )PP —nPP, ), (12)
. in(2
PO — ignsmé ) (P,gl)—P,§2)—P,§1_)1—P,§2_)1) —
—i(B(2n—1) - 8) P{Y —
— (14 + 7= + 40P -
—s(1+) ((2n—1) PO —2(n+1) P, +2P0) ) -

— ki ((2n +1)P® — 2nP7S?L)1) . (13)
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Fig.2. (a) The second-order phonon—phonon correlation function ¢ (0) (curves 1 and 2) and the mean phonon number in
the cavity (n) (curves 3 and 4) as functions of the QD—laser detuning A normalized by the Rabi frequency 2Q beyond the
secular approximation (solid lines) and within the secular approximation (dashed lines). Here, n = 0.04, 22/ = 25, and
k/y="5-10"%. (b) ¢ (0) as a function of the normalized damping rate /~ for thermal baths at different temperatures
and for 2Q/ = 25 and A/2Q = —0.7. Here, from top to bottom, 7 = 0.64, 0.16, 0.08, 0.04, 0.01. (¢) ¢‘*(0) (3D surface)
and (n) (density plot) as functions of /v and 22/~. Here, i = 0.04 and A/2Q = —0.7. The plot regions corresponding
to ¢ (0) > 1 and ¢®(0) < 1 are represented in different mesh styles. Other parameters are: ./ = 0.1, g/~v = 15, and
wph [y = 35

P = —i (3(2n — 1) - ) P - PO = —i (B(2n+1)-8) P~ (ys-+7—-+410) PO -
= (s +7- +40) P - — k(1 +n) (n+ DPO — 2 +1)P, ) -

_ T _ (4) _ (4) (6)) _

R (4) _ (4)
Kl ((Qn +1)P, 2nPn71) o (14) Here, P = (n|p®ny and § = wyy, — 20 + 2A.
In the next section, we describe the cavity phonon
dynamics in a steady state via a second-order phonon—
phonon correlation function and the mean phonon

PG = —ig(n + l)sin(229) % number.
) (P’gl) +RY =Pl P’(”)l) B 3. RESULTS AND DISCUSSION
—i(B@n+1)=9) PéG) a The mean phonon number in the cavity mode is
— (v + 7= +4%) PP — k(1 +n) x expressed as
X ((Zn +1)PP) —2(n + 1)351)1) — .
— ki ((2n +3)P%) — 2”3@1 _ 2p7g3)) ., (15) (n) = (b'D) = %np,gl). (17)
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The nanocavity second-order phonon—phonon correla-
tion function is defined as usual [38],

(2) (18)

System of equations (11)—(16) and the infinite series in
expressions (17)—(18) must be truncated at a particu-
lar value n = Nye such that the variables of interest
remain unchanged if Ny, is further increased [39].

In what follows, we study the system in the stea-
dy-state regime, P() 0 for i = 1,...,6. The se-
cond-order correlation function given by Eq. (18) and
the mean phonon number in Eq. (17) are used to de-
scribe the phonon field behavior in the acoustical cavi-
ty mode [38]. Once truncated, the system of coupled
equations (11)—(16) is solved by setting the model pa-
rameters {7, Ye, g, Wph, K, 7, 2} and A.

A general overview of the steady-state system be-
havior in the strong-coupling regime or within the secu-
lar approximation, i.e., when {A, 3 = 0}, is presented
in Fig. 2. The phonon field statistics is described by
a second-order correlation function ¢(*(0) such that
g (0) = 1 describes the Poissonian phonon distribu-
tion and ¢® (0) < 1 a sub-Poissonian phonon statistics.
We observe that moderate laser—-QD coupling strengths
Q as well as lower temperatures give rise to a more
prominent sub-Poissonian phonon statistics. Further-
more, beyond the secular approximation, the phonon
statistics exhibits quantum features, i.e., g®(0) < 1
(cf. the corresponding curves in Fig. 2a) and the ef-
fect is more pronounced for stronger QD—phonon cou-
pling strengths. Figure 2b shows the second-order pho-
non—phonon correlation function beyond the secular
approximation as a function of x/v. Here, again, we
have a quantum phonon effect, i.e., a sub-Poissonian
phonon statistics around > 7. Thus, the contribution
to the system dynamics of the fast rotating terms H ;{:’;t
evaluated by Eq. (5) are essential for a sub-Poissonian
quantum feature (see Fig. 2). In Fig. 3, we compare
our result within and beyond the secular approxima-
tion. The second-order correlation function estimated
in both cases converges for higher and smaller cavity
damping rates. However, for lower values of /7, quan-
tum features are proper only beyond the secular ap-
proximation (see the inset in Fig. 3). Furthermore, the
mean phonon number decreases in this particular case
although it is quite high comparing to the x > v situ-
ation.
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Fig.3. The second-order phonon—phonon correlation
function ¢(®(0) (curves 1 and 2) and the mean phonon
number in the cavity mode (n) (curves 3 and 4)
as functions of the cavity damping rate x normal-
ized by the spontaneous emission rate 7. The solid
curves are beyond the secular approximation whereas
the dashed ones are within the secular approxima-
tion. Here, 2Q/v = 25, A/(2Q) = —0.7, i = 0.04,
~Ye/y = 0.1, g/v = 15, and wpy /v = 35. The solid
curve 2 is identical to the curves 5 in Fig. 2b,c. The
inset represents a closer look at the behavior of the
second-order correlation functions in the regions around
107* < k/y <1072

4. SUMMARY

In summary, we have investigated the phonon
quantum statistics in an acoustical nanocavity. A
laser-pumped two-level quantum dot is embedded
in the cavity contributing to the phonon quantum
dynamics. ~ We have demonstrated that stronger
QD—phonon-cavity coupling regimes lead to quantum
features of the cavity phonon field in the steady state.
This QD-—cavity interaction regime requires going
beyond the secular approximation. Ignoring this fact
would lead to an erroneous estimation of the phonon
statistics for some parameter domains.
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Grant No. 13.820.05.07/GF.
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