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NONCLASSICAL PROPERTIES AND QUANTUM RESOURCESOF HIERARCHICAL PHOTONIC SUPERPOSITION STATEST. J. Volko� *Department of Chemistry, University of California94720, Berkeley, California, USARe
eived April 24, 2015We motivate and introdu
e a 
lass of �hierar
hi
al� quantum superposition states of N 
oupled quantumos
illators. Unlike other well-known multimode photoni
 S
hrödinger-
at states su
h as entangled 
oherentstates, the hierar
hi
al superposition states are 
hara
terized as two-bran
h superpositions of tensor produ
tsof single-mode S
hrödinger-
at states. In addition to analyzing the photon statisti
s and quasiprobability dis-tributions of prominent examples of these non
lassi
al states, we 
onsider their usefulness for high-pre
isionquantum metrology of nonlinear opti
al Hamiltonians and quantify their mode entanglement. We propose twomethods for generating hierar
hi
al superpositions in N = 2 
oupled mi
rowave 
avities, exploiting 
urrentlyexisting quantum opti
al te
hnology for generating entanglement between spatially separated ele
tromagneti
�eld modes.DOI: 10.7868/S004445101511005X1. INTRODUCTIONMaximally entangled quantum states o

upy a dis-tinguished position in the theory of quantum in-formation. One has only to 
onsider the 
entralrole of Greenberger�Horne�Zeilinger (GHZ) states in(C 2 )
N [1℄ in many quantum algorithms and quan-tum teleportation proto
ols [2℄ to be 
onvin
ed oftheir importan
e. From a pra
ti
al perspe
tive, su
hstates 
omprise the most valuable quantum resour
e,in terms of both entanglement and usefulness for quan-tum metrology [3; 4℄. Unfortunately, in the 
ase of Ntwo-level quantum systems su
h as spin-1/2 
hains, themaximally entangled states are sensitive to lo
al errors(e. g., phase �ips) and 
an qui
kly lose all non
lassi
alresour
es. However, be
ause of the 
ountably in�nitedimension of the Hilbert spa
e of a 
hain of quantumos
illators (isomorphi
 to (`2(C ))
N ), one may hopeto engineer maximally entangled states of a subspa
eisomorphi
 to (C 2 )
N that are robust under quantumevolutions 
orresponding to relevant sour
es of de
o-heren
e.The entangled 
oherent states (see Ref. [5, 6℄ andthe referen
es therein) are paradigmati
 examples ofentangled states in `2(C ) 
 `2(C ). However, only astri
t subset of these are maximally entangled. Expli
it*E-mail: adidasty�gmail.
om


onditions for maximal entanglement of linear 
ombi-nations of produ
ts of 
oherent states were found in [7℄and multimode entangled 
oherent states have beenstudied in the 
ontext of en
oding 
ontinuous-variablequantum information [8�10℄. To extend the notion ofGHZ states to a separable Hilbert spa
e (i. e., a Hilbertspa
e with a 
ountable orthonormal basis) in a generalway, we �rst introdu
e the two-bran
h, N mode states1p2+2Re(zN ) �IN+U
N� j�i; z := h�jU j�i; (1)where j�i is a single-mode pure quantum state of theHilbert spa
e H and U is a partial isometry with j�iin its domain. When z = 0, the bran
hes j�i
N andU
N j�i
N are orthogonal in H
N and the resultingstate is a stri
t analog of a GHZ state. For example,superpositions of os
illator Fo
k states proportional tojni
N + ei'jmi
N ;with ' 2 [0; 2�℄, fall into this 
lass and are interes-ting for their quantum opti
al properties. Su
h su-perpositions represent the most obvious generalizationof GHZ states to the Hilbert spa
e of N os
illators,(`2(C ))
N . The 
ase z 6= 0, although deviating fromthe stri
t notion of GHZ states due to nonorthogonal-ity of the bran
hes, 
ontains many important ma
ro-s
opi
N -mode superpositions. The entangled 
oherentstates (having j�i = j�i and U = ei�ayaD(�), where� 2 [0; 2�℄ and D(�) is the os
illator displa
ement ope-rator for �, � 2 C ) serve as well-studied examples.883 4*



T. J. Volko� ÆÝÒÔ, òîì 148, âûï. 5 (11), 2015However, the fo
us of this paper is on revealing 
ertainnew states of the z = 0 set. In parti
ular, we 
onsidertakingj�i = je1i := � I+ Vp2 + 2w� j�0i; j�0i 2 H;where V is a single-mode partial isometry 
ontainingj�0i in its domain and w = h�0jV j�0i 2 R. Then thestate je2i := � I� Vp2� 2w� j�0iis orthogonal to je1i. TakingU = ei�=N (je1ihe2j+ je2ihe1j)produ
es two-bran
h superpositions of the followingform, whi
h we refer to as hierar
hi
al 
at states (HCS):jHCS�N i := 1p2  � (I+ V )j�0ip2 + 2w �
N ++ ei� � (I� V )j�0ip2� 2w �
N! : (2)The origin of the name �hierar
hi
al 
at state� isself-evident: jHCS�N i is an equal-weight superpositionof two orthogonal bran
hes in H
N (i. e., an N -mode�
at� state), while ea
h bran
h is a tensor produ
t of�kitten� superpositions in the single-mode Hilbert spa
eH. This 
onstru
tion allows 
onsidering maximally en-tangled states in a (C 2 )
N subspa
e of (`2(C ))
N thatretain single-mode quantum 
oheren
e in the statesj�0i�V j�0i even after intermode de
oheren
e pro
essesredu
e the superposition state jHCS�N i to an equal-probability statisti
al mixture of tensor produ
ts.When H �= `2(C ), jHCS�N i is in a (
omplex) two-di-mensional subspa
e of (`2(C ))
N . By appropriate
hoi
es of V and j�0i, the bran
hes of jHCS�N i 
an takethe form of tensor produ
ts of single-mode photoni
S
hrödinger-
at states su
h as the even and odd 
ohe-rent states j �i / j�i � j��i [11℄ or superpositionsof squeezed states. For these photoni
 HCS states, itis 
lear that if the single-mode 
oheren
e time is su�-
iently long (e. g., greater than the intermode 
oheren
etime), a statisti
al mixture of N -mode S
hrödinger-
atstates remains even after the intermode 
oheren
e islost by some de
ohering pro
ess.The photoni
 HCS state obtained by taking V == ei�aya to be the os
illator �-phase shift, j�0i = j�i a
oherent state of the quantum os
illator with the am-plitude j�j, and � = 0 or � = � in (2) was introdu
ed inRef. [12℄. We label these states by jHCS�N (�)i (the �+�symbolizing � = 0 and the ��� symbolizing � = �), andthey serve as the 
anoni
al examples of photoni
 HCS

in this work. Ea
h bran
h of jHCS�N (�)i is an N -foldtensor produ
t of either the even 
oherent state j +ior the odd 
oherent state j �i. If N is an odd naturalnumber, then the even (odd) bran
h is an eigenve
torof the photon parity operator expni�PNj=1 ayjajo withthe eigenvalue 1 (�1), and hen
eexp8<:i� NXj=1 ayjaj9=; jHCS�N (�)i = jHCS�N (�)i:If N is an even natural number, jHCS�N (�)i is invari-ant under su
h a lo
al � rotation. Independent of N ,a photon parity measurement results in a proje
tion ofjHCS�N (�)i onto either the even or odd bran
h. Theentangled 
oherent statesjECS�N (�)i / j�i
N � j��i
Nare invariant under the bosoni
 algebra freely gener-ated by aiaj , i, j 2 f1; : : : ; Ng, and they are there-fore 
onsidered to be Barut�Girardello 
oherent statesof sp(N; C ) [13℄. The state jHCS�N (�)i is invari-ant under the algebra freely generated by the iden-tity operator and the two-photon annihilation opera-tors a2j , j = 1; : : : ; N . This algebrai
 property al-lows jHCS�N (�)i to be 
onsidered as superpositionsof sp(N; C ) Barut�Girardello 
oherent states. How-ever, while properties su
h as quasiprobability densi-ties, photon statisti
s, and dissipative evolutions of theentangled 
oherent states have been thoroughly do
u-mented [14, 15℄, a detailed analysis of the properties ofphotoni
 HCS states is la
king.When jHCS�2 (�)i is shared between two spatiallyseparated parties, the state jHCS�2 (�)i serves as anentanglement resour
e for teleportation of an arbi-trary superposition of 
oherent states of the form
1j�i + 
2j��i in the same way as the GHZ state(1=p2 )(j0i
N + j1i
N) serves as an entanglement re-sour
e for teleportation of an arbitrary qubit pure state.This follows from the fa
t that jHCS�2 (�)i are maxi-mally entangled states in the 4-dimensional sub-Hilbertspa
e spanned by fj(�1)j�i
j(�1)`�igj;`2f0;1g1). Thestates jHCS�N (�)i are also useful probes for high-pre-
ision phase estimation of Hamiltonians of sl(2; C ) [19℄(see also Se
. 3.1). These intriguing attributes moti-vate a more thorough des
ription and analysis of HCSstates.1) In fa
t, the states jHCS�2 (�)i exhibit the same amount(1 ebit) of entanglement entropy as jECS�2 (�)i [16, 17℄. A �Bellbasis� of maximally entangled states for this 4-dimensional sub-Hilbert spa
e is given by jHCS+2 (�)i, jHCS�2 (�)i, jECS�2 (�)i,and (ei�aya 
 I)jECS�2 (�)i [18℄.884
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lassi
al properties : : :The remainder of this paper is stru
tured as fol-lows: in Se
. 2, we indi
ate some non
lassi
al propertiesof jHCS�N (�)i, 
iting the non
lassi
al properties of theentangled 
oherent states for 
omparison; Se
. 3 is de-voted to exploration of the quantum resour
es, in par-ti
ular the metrologi
al usefulness and entanglemententropy, of jHCS�N (�)i; in Se
. 4, we propose two meth-ods for generating jHCS+N (�)i using te
hniques that area

essible by 
urrent quantum opti
al te
hnology; inSe
. 5, we demonstrate how the idea of hierar
hi
allyen
oding 
ontinuous-variable quantum information 
anbe deepened with many levels of hierar
hy. We do notattempt an exhaustive analysis of photoni
 hierarhi
al
at states, but rather try to show the most salient prop-

erties of these states by 
onsidering basi
 examples.2. NONCLASSICAL PROPERTIES OF HCSHere, we note the basi
 photon statisti
s ofjHCS+N (�)i for arbitrary N , derive some of itsquasiprobability distributions for N = 2, and show aduality between Pauli matri
es and photon operationsin the subspa
e of `2(C ) spanned by the even and odd
oherent states. Throughout this se
tion, we 
omparethe non
lassi
al properties of jHCS�N (�)i to those of theentangled 
oherent states, whi
h are more familiar. Weshow the inner produ
ts of jECS�N (�)i and jHCS�N (�)iimmediately:hECS+N (�)jHCS+N (�)i = 1p1 + e�2N�2 8>>>><>>>>: �12 + 12e�2�2�N=2 +�12 � 12e�2�2�N=2 ; N even,�12 + 12e�2�2�N=2 ; N odd, (3)
hECS+N (�)jHCS�N (�)i = 1p1 + e�2N�2 8>>>><>>>>: �12 + 12e�2�2�N=2 ; N even,�12 + 12e�2�2�N=2 ��12 � 12e�2�2�N=2 ; N odd, (4)hECS�N (�)jHCS�N (�)i =8>><>>: 0; N even,� (1=2� (1=2)e�2�2)N=2p1� e�2N�2 ; N odd, (5)

where � 2 R. It is intriguing to note the � ! 1asymptoti
 form of these inner produ
ts (the N ! 1asymptoti
 is always zero). For any odd N and forreasonably large �,hECS+N (�)jHCS�N (�)i � 0;while for any even N and any �,hECS�N (�)jHCS�N (�)i = 0identi
ally. The total expe
ted photon number in allof these states is asymptoti
ally N�2, i. e., jHCS�N (�)iand jECS�N (�)i di�er mainly in photon statisti
s andquantum 
orrelations, not in intensity. In parti
ular, ifPe (Po = I� Pe) is the proje
tion onto the even (odd)photon number subspa
e2) of (`2(C ))
N , it is 
lear thatPojECS+N (�)i = PejECS�N (�)i = 0while

PojHCS+N (�)i = PejHCS+N (�)i = 1p2 :Be
ause of its symmetry, jHCS�N (�)i has a simp-le expression as a superposition of tensor produ
ts of
oherent states. We �rst 
onsider the dire
t produ
tZ2� : : :�Z2 (N times) with the group operation givenby addition modulo 2. This group is isomorphi
 to theAbelian group U with elementsNOj=1 exp(ikj�ayjaj); kj 2 f0; 1g;and the group operation being operator multipli
ation.Let U1 (U2) be the subgroup of elements 
orrespondingto k su
h that the number of nonzero entries of k iseven (odd). Then we 
an write (again for � 2 R)2) Expli
itly, Pe =Pn:knk2=0 mod 2 Pn, where Pn is the rank-one proje
tor onto the ray jn1i 
 : : :
 jnN i.885
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Fig. 1. Photon number distribution P (n;m) forjHCS+N=2(� = 3)i; n, m 2 f1; : : : ; 20g
jHCS�N (�)i = eN�2=22N+1=2 ��0�Xj=1;2�
h�N=2 �2+(�1)j�1 sh�N=2 �2� Xu2Uj u1A�� j�i
N : (6)From the above expression, the expansion in the Fo
kstate basis 
an be made expli
it by using the fa
t thatj�i = e�j�j2=2 1Xn=0 �npn! jni:The photon number distribution of jHCS+N (�)i forany � 2 C is given byP (n) = jhnjHCS+N (�)ij2 = e�N j�j22N+1 ������� Xj=0;1 1(1+(�1)je�2j�j2)N=2 NYk=1(1+(�1)nk+j)�� �nkpnk! �����2; (7)where jni := jn1i 
 : : : 
 jnN i for n 2 NN . It is 
learfrom the above expression that if not all entries of nare even or odd, then the photon number distribution

vanishes. For N = 2, this results in a 
he
kerboardpattern of zero and nonzero probabilities on the latti
eZ�0�Z�0 (Fig. 1). This feature stands in 
ontrast tothe distribution jhnjECS+N (�)ij2, whi
h is identi
allyzero if and only if PNk=1 nk is odd. Our present fo
uson the photon statisti
s of jHCS+N (�)i is merely dueto the fa
t that they are the hierar
hi
al 
at states ofmost immediate pra
ti
al use for 
ontinuous-variablequantum information pro
essing. Indeed, more 
om-plex photon statisti
s are furnished by hierar
hi
al 
atstates formed, e. g., from the Z=4Z 
oherent states,whi
h generalize the even/odd 
oherent states by form-ing a C 4 subspa
e of `2(C ) having an orthonormal basisje0i = j�i+ j��i+ ji�i+ j�i�i2e�j�j2=2p2 
h j�j2 + 2 
os j�j2 ;je1i = j�i � j��i � iji�i+ ij�i�i2e�j�j2=2p2 sh j�j2 + 2 sin j�j2 ;je2i = j�i+ j��i � ji�i � j�i�i2e�j�j2=2p2 
h j�j2 � 2 
os j�j2 ;je3i = j�i � j��i+ iji�i � ij�i�i2e�j�j2=2p2 sh j�j2 � 2 sin j�j2 ; (8)
where hnjeji 6= 0 if and only if n � j mod 4.The varian
e of a single-mode quadraturex(�)j := 1p2(aje�i� + ayjei�)in jHCS�N (�)i is12 + j�j2(
oth 2j�j2 + 
os(2Arg�� 2�)) (9)for all �. Be
ause this varian
e is greater than 1=2,jHCS�N (�)i is therefore not squeezed in any quadrature.The jHCS�N (�)i do not exhibit se
ond-order squeezing[20℄ (also referred to as amplitude squared squeezing)be
ause they are eigenve
tors of a2j for all j = 1; : : : ; N .The single-mode Mandel QM parameter of jHCS�N (�)iis always negative, but exhibits a dip for j�j � 3=2 asshown in Fig. 2.We now turn to the quasiprobability distributionsand fun
tional representations of jHCS�2 (�)i with thefo
us being on the fun
tional form of the hierar
hi-
al 
oheren
es. In addition, we use the expli
it ex-pressions of the quasiprobability distributions to infernon
lassi
al features of the states. Ea
h quasiproba-bility distribution for a quantum state � of (`2(C ))
Nis obtained by the Fourier transformation on CN ofa quantum 
hara
teristi
 fun
tion 
orresponding to aparti
ular ordering of bosoni
 operators [21℄. It is wellknown that negative values of the singular quasidis-tribution (i. e., the Sudarshan�Glauber fun
tion) for886
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Fig. 2. Mandel QM parameter for jHCS�N (�)i for j�j 22 [0; 3℄a given quantum state � indi
ate non
lassi
al photonstatisti
s, i. e., indi
ate that the photon number distri-bution is not Poissonian [22℄. In a similar spirit, theexisten
e of negative values of the Wigner fun
tion fora given state indi
ates non-Gaussian quadrature 
or-relations. The expli
it form of the Wigner fun
tion ofjHCS+N (�)i was shown in Ref. [12℄, but the analyti
expression is only useful for te
hni
al purposes. Theimportant point is that the Wigner fun
tion of a pho-toni
 state has an interpretation as a 
ontinuous set ofinterferen
e experiments. This is 
lear from the de�ni-tion of the single-mode Wigner fun
tionW (
) = (2=�2)hD(
)ei�ayaD(�
)i;it shows how a quantum state 
hanges when its 
o-herent-state 
omponents are displa
ed by �
 in phasespa
e, are then re�e
ted in phase spa
e, and are dis-pla
ed again opposite to �
. Coheren
e between
oherent-state 
omponents appears as fringes in theWigner fun
tion. A

ordingly, the states jHCS�2 (�)iexhibit two sour
es of interferen
e: 1) from the 
ohe-ren
e in ea
h bran
h j �i
2, and 2) from the 
oheren
ebetween the bran
hes. These two sour
es of 
oher-en
e are not immediately visible from the expressionfor jHCS�2 (�)i as an unequal superposition of tensorprodu
ts of 
oherent states.The existen
e of zeros of the Q-fun
tion of a givenquantum state indi
ates that the singular quasidis-tribution for this state takes negative values and,hen
e, exhibits non
lassi
al features. The Q-fun
tionof jHCS+N (�)i, whi
h is a true probability distributionon CN , is given byQ(jHCS+N (�)i) = 1� j �
Nk=1j�ki; jHCS+N (�)i� j2:

For N = 2 and � 2 C , we haveQjHCS+2 (�)i(�1; �2) = �2 (Q+(�1)Q+(�2) ++ Q�(�1)Q�(�2)) + exp��(j�1j2 + j�2j2)	2� sh(2j�j2) �� (sh(2Re(�1�)) sh(2Re(�2�)) �� sin(2 Im(�1�)) sin(2 Im(�2�))) ; (10)where Q+(�)(z) is the Q-fun
tion of the even (odd)
oherent state [14℄. The Q-fun
tion of jHCS+2 (�)i va-nishes if and only if ea
h of the terms vanishes. We take�1, �2 2 C su
h that Re(�1�) = Re(�2�) = 0. In addi-tion, we require that �1 and �2 satisfy: 1) Im(�1�) == (2k + 1)�=2, where k 2 Z, and 2) Im(�2�) = m�,where m 2 Z. Under these 
onstraints, Q+(�1) == Q�(�2) = 0. For these values,sh(2Re(�1�)) sh(2Re(�2�))�� sin(2 Im(�1�)) sin(2 Im(�2�)) = 0;and hen
e the Q-fun
tion is zero at these points ofC � C .In addition to the quasiprobability distributions,the quadrature distribution, 
al
ulated as the squaredmodulus of the S
hrödinger wavefun
tion, is an espe-
ially useful true probability distribution for systemsof os
illators. However, the quadrature distribution isquite spe
i�
; all that is needed is a representation ofthe pure state jHCS�2 (�)i in a fun
tional Hilbert spa
e.We 
hoose the Bargmann representation [23℄ be
auserelevant quantities su
h as the S
hrödinger wavefun
-tion and the singular quasidistribution of a pure state
an be derived from the Bargmann representation bythe use of variants of the Segal�Bargmann transforma-tion. As an analyti
 fun
tion fjHCS�2 (�)i on C � C , thestate jHCS�2 (�)i is represented byfjHCS�2 (�)i(z; w) = p2e�j�j2 �� 
h(�(z + w)) � e�2j�j2 
h(�(z � w))1� e�4j�j2 : (11)That fjHCS�2 (�)i(z; w) takes the form of a sum of un-equally weighted fun
tions is a 
onsequen
e of the fa
tthat jHCS�2 (�)i is an unequally weighted superpositionof tensor produ
ts of 
oherent states.The subspa
e K �= C 2 of `2(C ) spanned by the evenand odd 
oherent states j �i has the property that
ertain photoni
 operators 
arry out equivalent oper-ations as the Pauli matri
es in this subspa
e. Thisallows quantum operations of a two-level system to be887



T. J. Volko� ÆÝÒÔ, òîì 148, âûï. 5 (11), 2015interpreted as photoni
 operations 
ompressed to thissubspa
e. For example, keeping in mind the a
tion of�x = j +ih �j+ j �ih +jin K, we note thataj +i = �ptanh j�j2j �i = �ptanh j�j2�xj +i:Considering the Pauli matri
es as observables of aspin-1/2 parti
le, we �nd the following expressions interms of self-adjoint photoni
 observables:�x = e�j�j2psh(2j�j2)j�j PKx(Arg�)PK;�y = ej�j2psh(2j�j2)j�j PKx(�=2+Arg�)PK;�z = 12Re(�2)PK(ei�ayaa2 + ay2e�i�aya)PK; (12)where PK is the proje
tion on K. These expressionsfor Pauli matri
es show a duality between quadraturesand �magnetization� in the subspa
e K. For example,if j�j is su�
iently large, we havePKx(Arg�)PK = p2j�j�x;i. e., the intera
tion pi
ture dynami
s of a quantum os-
illator (restri
ted to K) driven with unit amplitude isequivalent to a spin-1/2 parti
le with the magneti
 mo-ment p2j�j in a unit magneti
 �eld along the x axis.The Pauli matri
es in (12) do not have unique expres-sions in terms of produ
ts of photoni
 operators andPK, be
ause we 
an rewrite PK as12j�j2PK(a2e�2iArg� + ay2e2iArg�)PK:Some of these alternative expressions 
an be instru
-tive; for example, we 
an write�z = PK 
os(�aya)PK:A similar duality 
an be derived for su(4) observablesin terms of proje
tors in the subspa
e spanned bystates (8) and photoni
 operations.3. QUANTUM RESOURCES OF HCS3.1. Metrologi
al usefulnessWe begin this se
tion by re
alling the main problemof quantum metrology and how 
ertain quantum states
an be used for estimation of dynami
al parametersat higher pre
ision than any 
lassi
al states. Given a

smooth manifoldM , let quantum states be en
oded bya di�erentiable map spe
i�ed by � 7! �� for � 2 M .The goal is to estimate the parameter � with greatestpossible pre
ision by using an optimal quantum mea-surement and optimal 
lassi
al post-pro
essing of themeasurement results.In this se
tion, we are 
on
erned with the spe
ial
ase of estimation of a displa
ement parameter. In this
ase, the parameter manifold is a line with a real 
oor-dinate x 2 R and the state�x := e�ixH�0eixHlies on a path parameterized by x and generated by theself-adjoint x-dependent operator H . If fM(dx)g is apositive operator-valued measure (we refer to fM(dx)gas a �quantum measurement� or, simply, �measure-ment� from now on), whi
h is an unbiased estimatorof x, i. e., x = ZR x0 tr(�xM(dx0));then the quantum Cramér�Rao theorem [24, 25℄ statesthat h(Æx̂M )2i � 1tr(�0L2) ; (13)where h(Æx̂M )2i := ZR (x0 � x)2 tr(�xM(dx0))is a general expression for the varian
e of the quantummeasurement and L = Ly is the symmetri
 logarithmi
derivative operator de�ned by the equationd�dx = �i[H; �℄ = 12(L�+ �L):The quantity tr(�0L2) is 
alled the quantum Fisher in-formation of �0 and is 
onstant on the unitary pathgenerated by H [26℄. If �0 = j 0ih 0j is pure, thentr(�0L2) = 4(tr(�0H2)� tr(�0H)2):Hen
e, if an experimenter has un
onstrained a

ess tomeasurements saturating inequality (13), then a quan-tum state with larger quantum Fisher information withrespe
t to H 
an be 
onsidered a more useful resour
efor estimating the displa
ement parameter x. In thisse
tion, we fo
us on using 
ertain multimode purestates j 0i 2 H
N as probes for displa
ement metrol-ogy for paths generated by 1-lo
al Hamiltonians, i. e.,H of the form H =Xj=1H(j) 
 IN�1:888
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lassi
al properties : : :Spe
i�
ally, the metrologi
al problem at hand 
onsistsof: 1) preparation of N os
illator modes in the probestate jECS+N (�)i or jHCS+N (�)i, 2) appli
ation of aglobal unitary operator 
Nj=1 exp(ixHj) with Hj = Hbeing an os
illator Hamiltonian and x 2 R, and 3) es-timation of x by an optimal separable measurementon the N modes. It is important to note that deter-mination of the optimal separable measurement 
or-responding to the probe state and the Hamiltonian Hrequires methods of quantum estimation theory; in par-ti
ular, the optimal measurement does not ne
essarily
orrespond with traditional methods of os
illator sig-nal dete
tion su
h has homodyne dete
tion. In thisse
tion, we assume that the optimal measurement 
anbe performed for any H and we determine the set of Hfor whi
h jECS+N (�)i and jHCS+N (�)i allow a greaterpre
ision in the determination of x than the respe
tivetensor produ
t bran
h states j � �i
N and j �i
N .As an example of displa
ement estimation in a �nitedimensional Hilbert spa
e, we 
an 
onsider the prob-lem of estimation of a phase parameter � imprinted ona quantum state �� = e�i�H�0ei�H . We takeH = NXj=1 �(j)z 
 IN�1and take �0 to 
orrespond to the GHZ state j0i
N ++ j1i
N=p2. The quantum Fisher information of �0with respe
t to H is 4N2; in fa
t, this is the maximumpossible value of the quantum Fisher informationin (C 2 )
N with respe
t to 1-lo
al Hamiltonians ofunit operator norm [3℄. In 
ontrast, any produ
tstate has the maximal quantum Fisher information oforder N over the set of su
h Hamiltonians. This fa
tsuggests an ordering of superposition states based ontheir maximal usefulness for quantum metrology as
ompared to the maximal usefulness of the individualpure states that 
omprise the superposition. Thefollowing de�nition serves to 
hara
terize the multi-mode, equal-weight superposition states in a separableHilbert spa
e as �metrologi
ally useful�; su
h states areextensively more useful for displa
ement estimationof a prede�ned set of self-adjoint generators than the
omponent bran
hes.De�nition 1. An equal-weight quantum superpo-sition of q linearly independent pure states,j!i / qXj=1 j ji 2 (`2(C ))
N ;is 
onsidered metrologi
ally useful when the following
ondition on the quantity NrF (j!i) is satis�ed:

NrF (j!i) := maxH2A1-lo
h!j(�H)2j!i1q qXj=1 maxH2A1-lo
h j j(�H)2j ji 22 O(ntot); (14)where h�j(�H)2j�i := h�jH2j�i � h�jH j�i2;ntot = h!j NXj=1 ayjaj 
 IN�1j!iis the expe
ted total photon number, A is an algebra ofobservables on `2(C ), and A1-lo
 is the linear subspa
eof A
N in whi
h ea
h element is �1-lo
al,� i. e., has theform PNj=1 xj 
 IN�1 for xj 2 A.The set A1-lo
 should be su
h that the denomina-tor in Eq. (14) is nonzero. The restri
tion to 1-lo-
al observables in De�nition 1 allows using produ
tstates as a s
aling standard. Spe
i�
ally, given H == PNj=1 xj 2 A1-lo
 (here, we have omitted the iden-tity operators for 
larity), and a produ
t state j i == j (1)i 
 � � � 
 j (N)i, it follows thath j(�H)2j i � Nmaxjh (j)j(�x(j))2j (j)i: (15)Hen
e, the varian
e of a measurement of a 1-lo
al ob-servable always s
ales linearly in the number of modeswhen the system is in a produ
t state. A pure state j!ihaving the above form is metrologi
ally useful if thereexists H (having the 1-lo
al form above) su
h thath!j(�H)2j!i 2 O(Nntotmaxj;k h (k)j j(�x(k))2j (k)j i):The quantity NrF was originally introdu
ed as ameasure of ma
ros
opi
ity for quantum superpositionsin (C 2 )
N [27℄; in that 
ontext, A = su(2; C ) (repre-sented by the Pauli matri
es) and ntot is taken to beequal to the number of modes N . The notion of metro-logi
al usefulness in De�nition 1 refers to the greaterultimate pre
ision a
hievable in the quantum Cramér�Rao bound when the displa
ement parameter is en-
oded in the equal-weight quantum superposition statej!i 
ompared to the ultimate pre
ision a
hievable whenthe displa
ement parameter is en
oded in bran
hesfj migqm=1 
omprising j!i. It should be noted thatwe 
an speak of a superposition state as being metro-logi
ally useful only if the algebra A is spe
i�ed. Inaddition, there may be many ways to write j!i as anequal-weight superposition of pure states; in that 
ase,De�nition 1 
learly refers to the metrologi
al useful-ness of j!i relative to a given de
omposition of j!i into889
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hes. In realisti
 parameter estimation proto
ols,the bran
h de
omposition 
ould be imposed by the pre-ferred basis of an experiment.In the 
ase of a separable Hilbert spa
e H, the al-gebra A does not have to be represented in the vonNeumann algebra B(H). Many observables of interest,e. g., the quadrature operators and the photon numberoperator, are unbounded on H but appear in quantumopti
al Hamiltonians of interest to quantum metrology.However, for most quantum opti
al states of interest,these unbounded operators have a �nite se
ond mo-ment [25℄ and therefore have a bounded varian
e inthese states. In parti
ular, if an unbounded, essentiallyself-adjoint operator x = xy satis�es h!jx2j!i <1 fora normalized superposition state j!i = Pj j ji, thenh j jx2j ji < 1 for all j. This feature 
an be used tointrodu
e a Lie algebra for whi
h the state ! is metro-logi
ally useful [19℄. A is then formed by taking the1-lo
al sums of essentially self-adjoint elements of thisLie algebra (we have here assumed a representation onH). In order for the denominator of the expression forNrF to be well-de�ned, at least one bran
h j ji of j!imust not be an eigenve
tor of all essentially self-adjointelements of the Lie algebra.A simple nontrivial example shows that jECS+N (�)iis metrologi
ally useful when A1-lo
 is formed from ob-servables of the Lie algebra h3 = (spanfay; a; Ig; [�; �℄),represented as linear operators on `2(C ) in the usualway. Given � 2 C , the even and odd 
oherent statesj �i (whi
h 
oin
ide with jECS�N=1(�)i) exhibit anorder-j�j2 varian
e for measurements of the quadra-ture 
orresponding to the dire
tion Arg(�) and exhibitsqueezing in the varian
e of measurements of the 
on-jugate quadrature 
orresponding to Arg(�) + �=2 [28℄.Physi
ally, this is be
ause the quantized ele
tri
 �eldis � phase-shifted (in expe
tation) between the j�i andj��i 
oherent states. Expli
itly, for � 2 R and thequadratures x(�) as above,h +j(�x(0))2j +i = �2(1 + tanh�2) + 12while h +j(�x(�=2))2j +i = 12 � �2(1� tanh�2):Thus, if � is purely real, the � = 0 quadrature ex-hibits large �u
tuations, while the 
onjugate quadra-ture �u
tuates just below the va
uum level. Sin
ethe only observables arising from h3 are the os
illatorquadratures and the identity, it is 
lear that an observ-able PNj=1 zjayj + zjaj exists that exhibits varian
e ofthe order of N2�2maxj jzj j2 in jECS+N (�)i. On the

other hand, sin
e every quadrature x(�) exhibits vari-an
e 1/2 in the 
oherent state j � �i, any 1-lo
al ob-servable PNj=1 zjayj + zjaj has a varian
e of the orderof N maxj jzj j2 in j ��i
N . Using De�nition 1, we seethat taking A1-lo
 to be 
omposed of observables fromh3 allows jECS�N (�)i to be 
onsidered metrologi
allyuseful. In parti
ular, by taking zj = x 2 R, jECS�N (�)iare metrologi
ally useful for estimation of global ampli-tude displa
ementsNNj=1Dj(x) of N -mode os
illators.The estimation of arbitrary lo
al displa
ements in the
omplex plane 
omprises a multiparameter (2N realparameters) estimation task [29℄. It is an interestingproblem whether a measure analogous to NrF 
an beused to identify S
hrödinger-
at states as a resour
e forparameter estimation of more general quantum dynam-i
s. It should be noted that jECS�N (�)i is not metrolo-gi
ally useful when A1-lo
 is 
omposed of observablesfrom the os
illator Lie algebrah4 = (spanfaya; ay; a; Ig; [�; �℄)instead of h3. This is be
ause the 1-lo
al photon num-ber operatorPNj=1 ayjaj exhibits the extensive varian
eN j�j2 in the 
oherent states j��i
N , and therefore theratio in De�nition 1 exhibits linear s
aling with N , thenumber of modes, and not the total number of photons.We now detail the argument that jHCS�N (�)i aremetrologi
ally useful when the algebra A is the Lie al-gebra of observables of sl(2; C ). Algebrai
ally, it is sim-pler to show this fa
t for a 
losely related hierar
hi
al
at state. By returning to (2) and taking j�i = j +iand U = ei�aya=2(j +ih �j+ j �ih +j);the following state is produ
ed:j
(�)i = 1p2  � j�i+ j��ip2 + 2e�2j�j2�
N ++ � ji�i � j�i�ip2� 2e�2j�j2�
N! : (16)We 
onsider the 1-lo
al HamiltonianNXj=1(za(j)2 + zay(j)2)
 IN�1as would des
ribe two-photon parametri
 down
onver-sion into N modes, ea
h with a 
lassi
al pumping am-plitude z 2 C . Be
ausea2j +i = �2j +i; a2ei�aya=2j �i = ��2ei�aya=2j �i;890
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lassi
al properties : : :it is 
lear that for any statesj�1i; j�2i 2 spanCfj +i; ei�aya=2j �ig;the following Pauli matrix/two-photon quadrature du-ality holds:h�1j�z j�2i = h�1j 1�2 (a2 + ay2)j�2i; (17)where�z = j +ih +j � ei�aya=2j �ih �je�i�aya=2is the appropriate Pauli matrix in spanCfj +i,exp(i�aya=2)j �ig. From this, it is 
lear that thevarian
e of NXj=1(za(j)2 + zay(j)2)
 IN�1in j
(�)i should be of the order of N2jzj2j�j4. In fa
t,for � 2 R, the varian
e is4N2Re(z�2)2 + N2 (4Re(z2�4)� 8Re(z�2)2 ++ 4jzj2j�j2(tanh�2 + 
oth�2) + 2jzj2); (18)whi
h is of the order of N2jzj2j�j4 for Arg z == 2Arg�. In addition, the varian
e of PNj=1(za(j)2 ++ zay(j)2) 
 IN�1 in the produ
t states j +i
N or(exp(i�aya=2)j �i)
N is at most of the order ofN jzj2j�j2, as 
an easily be veri�ed. The �nal stepin �nding a minimal algebra A that allows j
(�)ito be metrologi
ally useful is to append the element(1=2)aya+1=4 to the set fay2=2; a2=2g and 
he
k thatthe 1-lo
al observable given by, e. g., PNj=1 ayiai doesnot exhibit �u
tuations in either of the bran
h statesj +i
N or (exp(i�aya=2)j �i)
N s
aling as j�j4. Ifthe 1-lo
al photon number operator were to exhibitsu
h �u
tuations, then the ratio in the left-hand sideof Eq. (14) would lose the property of s
aling with thetotal expe
ted number of photons in j
(�)i. It is easyto verify that the 1-lo
al photon number operator ex-hibits varian
e of the order of N j�j2 in these produ
tstates, and hen
e j
(�)i is metrologi
ally useful whenA = sl(2; C ) := �spanC �12aya+ 14 ; ay22 ; a22 � ; [�; �℄� :In parti
ular, when z 2 R, the 
al
ulation aboveshows that jHCS�N (�)i are metrologi
ally useful for dis-pla
ement estimation, where the displa
ement parame-ter now 
orresponds to the global squeezing amplitudez 2 R. It is intriguing that while some superpositions

of the sp(N; C ) Barut�Girardello 
oherent states do ex-hibit squeezing, the jHCS+N (�)i state does not; in addi-tion, the produ
t states 
omprising ea
h of the bran
hesof jHCS+N (�)i exhibit negligible squeezing if j�j2 > 1.However, if squeezed states and their superpositionsare available, one may wonder if there exist other typesof hierar
hi
al 
at states having NrF s
aling exponen-tially in a squeezing parameter when the observablesof A1-lo
 are taken from sl(2; C ). Indeed, it is knownthat squeezed states provide a higher pre
ision in theestimation of a single-mode squeezing parameter than
oherent states do [30℄. The following hierar
hi
al 
atstate, having bran
hes 
omposed of superpositions ofideal squeezed states, allows su
h s
aling:1p2 0� (D(�) +D(��))S(w)p2 + 2exp(�2�2e2w) j0i!
N ++  (D(i�)�D(�i�))S(w)p2� 2exp(�2�2e2w) j0i!
N1A ; (19)where we assume that �;w 2 R>0 and takeS(w) := exp�12(wa2 � way2)�as the unitary squeezing operator. For su
h � and w,the identity D(�)S(w) = S(w)D(�ew)holds and hen
e the above hierar
hi
al 
at state 
anbe rewritten as S(w)
N j
(�ew)i. The NrF valueof S(w)
N j
(�ew)i exhibits the same s
aling as theNrF value for j
(�ew)i, i. e., of the order of N�2e2w,be
ause S(w) a
ts on sl(2; C ) by the adjoint a
tion.As a �nal remark, we point out that the 
oherentstates �j�i are minimum-un
ertainty states for theHeisenberg un
ertainty relation for observables of h3while the even/odd 
oherent states j �i are minimum-un
ertainty states for the generalized un
ertainty re-lation for observables of su(2; C ) [31℄. This is not asurprising 
oin
iden
e be
ause the de�nition of metro-logi
al usefulness (De�nition 1) requires that the max-imum un
ertainty in the produ
t states 
omprising thebran
hes of a state having form (1) be extensivelysmaller than the maximum un
ertainty in the multi-mode superposition state.Thus far, the dis
ussion of De�nition 1 has beenmainly mathemati
al. It is useful to mention thatfrom a basi
 physi
al perspe
tive, the problem of deter-mining the pre
ision of optimal estimation of a globalreal displa
ement parameter is equivalent to determing891
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ertainty in a given quantum state.Therefore, De�nition 1 
an be reinterpreted from aphysi
al perspe
tive by stating that j!i is metrologi-
ally useful with respe
t to Hamiltonians H 2 A1-lo
if its maximal de
ay rate (i. e., the minimal time tfor whi
h e�iHtj!i be
omes distinguishable from j!i)is extensively greater than the maximal de
ay ratesof the bran
h states fj jigqj=1, i. e., if j!i is exten-sively more sensitive to evolution generated by H as
ompared to the bran
hes. In the parti
ular 
ase ofjHCS+N (�)i (jECS+N (�)i), we 
an say qualitatively thatits metrologi
al usefulness arises simply be
ause its in-termode quantum 
oheren
e 
auses the squeezing oper-ation (displa
ement operation) to 
hange it more dras-ti
ally than the produ
t states j �i
N (j��i
N ) 
on-sidered independently.3.2. Entanglement entropyBe
ause of the orthogonality of the bran
hes, themode entanglement stru
ture of jHCS�2 i is the same asthat of the GHZ states in (C 2 )
2. Hen
e, jHCS�2 i ex-hibits the maximal entanglement entropy in the (C 2 )
2subspa
e spanned by fjeii 
 jejigi;j=1;2 introdu
ed inSe
. 1. In parti
ular, jHCS�2 (�)i exhibits greater modeentanglement than the subset of entangled 
oherentstates that 
annot be expressed in form (2). However,the hierar
hi
al photoni
 superpositions are not maxi-mally entangled states in `2(C )
`2 (C ). The dissipativedynami
s of the entanglement entropy of entangled 
o-herent states was studied in Refs. [18, 32, 33℄.It is known that a non
lassi
al produ
t state in
i-dent on a beam splitter does not ne
essarily generateentanglement between the output modes [34℄. In fa
t,a 50:50 beam splitter destroys the entanglement of atwo-mode squeezed state [35℄. It is easy to see that abeam splitter des
ribed by the unitary operationB(�) = exp� i�2 (ay1a2 + ay2a1)�a
ting on two input photoni
 modes maps jHCS+2 (�)iinto the state1p2 � 11� e�4j�j2 (j�ei�=2i 
 j�ei�=2i ++ j��ei�=2i 
 j��ei�=2i) �� 12 sh(2j�j2) (j�e�i�=2i 
 j��e�i�=2i ++ j��e�i�=2i 
 j�e�i�=2i)� : (20)

For moderately large j�j, the exponentially de
ayingterm be
omes negligible and we are left with an entan-gled 
oherent state in the output modes of the beamsplitter. Hen
e, the beam splitter does not destroy theentanglement of jHCS+2 (�)i for any values of the trans-mission and re�e
tion amplitudes. The exa
t entan-glement entropy of B(�)jHCS+2 (�)i, 
al
ul
ated as thevon Neumann entropy of the redu
ed density matrix, isshown in Fig. 3 for a range of real � and �. Ex
ept forlow-power (� . 1) jHCS+2 (�)i states, the maximum en-tanglement entropy is maintained throughout the rangeof transmission amplitudes of the beam splitter.The quanti�
ation of entanglement in terms of anentropi
 quantity naturally leads to questions about its�u
tuations. Entanglement �u
tuations 
an be inter-preted as the root varian
e of a measurement of the en-tanglement Hamiltonian [36℄: in terms of the redu
eddensity matrix �A of a pure state in HA 
 HB , it isgiven by the expression�SE :=qtr(�AH2E)� tr(�AHE)2;where HE := � log2 �A. We show the entanglement�u
tuation of B(�)jHCS+2 (�)i in Fig. 4.We now show that in the Bell basisfjHCS+2 (�)i; jHCS�2 (�)i; jECS�2 (�)i;(exp(i�aya)
 I)jECS�2 (�)ig;the hierar
hi
al 
at states, in some sense, 
omprise themost stable entanglement resour
e. We 
onsider ea
hmode 
oupled independently to a zero-temperaturebath of photons, ea
h bath having an absorption rate �,with the non-Hamiltonian part of the evolution givenby �0 = �2 2Xj=1[a; �(t)ay℄ + [a�; ay℄: (21)This is the 
ase of (independent) Lindbladian ampli-tude damping. For an initial state �(t = 0) given by anentangled 
oherent state, it follows from the well-knownsolution of the amplitude damping master equation [37℄that the t ! 1 asymptoti
 state is unentangled. In
ontrast, jHCS�2 (�)i maintain a nearly maximal entan-glement entropy SE throughout the non-Hamiltonianevolution as long as j�j2 & 1, as seen in Fig. 5. The en-tanglement entropy for this state was 
al
ulated froman analyti
 expression, whi
h we omit. It should benoted that for j�j . 1, the entanglement entropy de
ayswith time, but is still substantial for t & ��1. The per-sisten
e of entanglement during the amplitude damp-ing 
an be simply seen by 
onsidering a limit model.By taking the low-power limit � ! 0, it is 
lear that892
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Fig. 4. The entanglement entropy �u
tuations of U(�)jHCS+N=2(�)i, � 2 [0:2; 3:0℄ and � 2 [0:1; � � 0:1℄jHCS+2 (�)i exhibits an inner produ
t of magnitude 1with a state 12(j0i
N + j1i
N ); (22)whi
h is a superposition of the two-mode va
uum andthe produ
t Fo
k state j1i 
 j1i. Under the amplitudedamping map de�ned in Eq. (21), state (22) evolves to12 �j0ih0j 
 j0ih0j+ e�2�t(j0ih1j 
 j0ih1j ++ j1ih0j 
 j1ih0j) + (e�2�tj1ih1j++ (1� e�2�t)j0ih0j)
 (e�2�tj1ih1j ++ (1� e�2�t)j0ih0j)	 : (23)

Taking the partial tra
e to form �1(t), we 
omputelimt!1� tr(�1(t) log2 �1(t)) = 1:The robustness of the entanglement entropy ofjHCS+2 (�)j under amplitude damping exhibited forlarge j�j is proved by 
onsidering the j�j ! 1 asymp-toti
s regime. An expli
it 
al
ulation shows that forany �nite j�j, limt!1SE = 0;whereas limt!1 limj�j!1SE = 1:The in
reased stability of the entanglement of hierar-
hi
al 
at states to lo
al amplitude damping (relative to893
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oherent states) makesthese states desirable targets for quantum opti
al stateengineering and opti
al quantum 
ommuni
ation.4. GENERATION OF jHCS+2 (�)iIn this se
tion, we limit ourselves to proposals forexperimental generation of the two-mode hierar
hi
alsuperposition state jHCS+2 (�)i be
ause the main di�-
ulties are already present in this 
ase. For all of theproposals we des
ribe, a generalization to N > 2 re-quires the experimenter to over
ome a linear (with N)in
rease in errors asso
iated with imperfe
t implemen-tation of the required unitary operations, in addition tothe usual problem of de
oheren
e due to photon losses.If an experimenter has a

ess to arbitrary unitaryoperations in the C 2 sub-Hilbert spa
e spanned by j��iover a range of amplitudes �, then jHCS+2 (�)i 
an bereadily generated. Spe
i�
ally, one applies the ��=2�(or �50:50�) beam splitterU12(�=2) = exp�12 �2 (ay1a2 � ay2a1)�to the produ
t state / (jp2�i1 � j�p2�i1) 
 j0i2to produ
e the state / j�i1j��i2 � j��i1j�i2. Ap-plying the phase shift exp(i�ay2a2) produ
es the Bellstate (1=p2)(j +ij �i + j �ij +i). Applying �x == j +ih �j+j �ih +j to mode 2 produ
es jHCS+2 (�)i;alternatively, jHCS�2 (�)i is produ
ed (up to a globalphase) 
onditional on the appli
ation of the annihila-
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U(ǫ)

U(ǫ)

U(
1

2
)

αeiθa†a

Fig. 6. Quantum 
ir
uit diagram for the transformationj �i1 
 j0i2 
 j +i3 
 j0i4 ! 1p2 (j +i1 
 j +i3 ++ e�i�j �i1 
 j �i3�tion operator I
 a2 to the above Bell state. Alongthese lines, the method in Ref. [38℄ for preparing en-tangled 
oherent states by a 
oherent photon loss maybe modi�ed in a simple way to produ
e the family ofstates 1p2 �j +i
2 � e�i�j �i
2� : (24)The method is based on the observation that a 
oherentphoton loss 
an generate a photoni
 HCS from a prod-u
t of single-mode S
hrödinger-
at states. For exam-ple, the above HCS state is equivalent (in the proje
tiveHilbert spa
e) to (a�be�i�)(j �ia
j +ib). The imple-mentation of the 
oherent photon loss via a linear quan-tum opti
al 
ir
uit is shown in Fig. 6. In detail, we ap-pend va
uum modes to the tensor produ
t j �i
 j +ito form the initial state j �i1 
 j0i2 
 j +i3 
 j0i4:Uij(�) := exp�12�(ayiaj � ayjai)�894
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al properties : : :is a 50:50 beam splitter with � � 1, i. e., the beamsplitter is highly transmissive for mode i. ApplyingU24(�=2) exp(i�ay2a2)U12(�)U34(�)to the initial state produ
esj� 
os �i1 
 j��ei�+1p2 sin �i2 
 j�ei��1p2 sin �i4 

 j� 
os �i3 + j� 
os �i1 
 j��ei� � 1p2 sin �i2 

 j�ei�+1p2 sin �i4 
 j�� 
os �i3�j�� 
os �i1 

 j�ei��1p2 sin �i2 
 j��ei�+1p2 sin �i4 
 j� 
os �i3�� j�� 
os �i1 
 j�ei� + 1p2 sin �i2 

 j��ei� � 1p2 sin �i4 
 j�� 
os �i3: (25)The 
oherent photon loss is now implemented by pho-todete
tion on mode 2, modeled by appli
ation of theannihilation operator a2. In the �nal step, we tra
e overmodes 2 and 4. In the �! 0 limit, the �+� state in (24)is produ
ed; if photodete
tion is 
arried out on mode 4instead of mode 2, then the ��� state is produ
ed. Forthe initial superpositions j �i with large j�j2, � mustbe 
on
omitantly de
reased to maintain high �delity ofthe output state to jHCS�2 (�)i. The de
rease in � ne
-essarily in
reases noise in the photodete
tion pro
ess.In addition, for large j�j2, it is vital to generate theinitial produ
t state j �i1 
 j +i3 with high �delity.The next method that we dis
uss readily satis�es thisrequirement.The experimental generation of single-mode pho-toni
 S
hrödinger-
at states j �i via dispersive intera
-tion between the mono
hromati
 ele
tromagneti
 �eldand a super
ondu
ting two-level system [39℄ or a Ry-dberg atom [40℄ provides some 
lues toward feasiblemethods for preparation of photoni
 HCSs. To extendthese proto
ols to the many-mode 
ase, one must ef-fe
tively entangle the �eld states of spatially separatedresonating 
avities. For example, it has been proposedto generate entangled 
oherent states by sequential 
ou-pling of a Rydberg atom to two mi
rowave 
avities [41℄.In general, proposals for 
reating entangled �eld statesinvolve 
oupling the �eld modes to easily 
ontrollable,low-dimensional quantum systems.A simple s
heme for generating jHCS+2 (�)i from a

tensor produ
t of even 
oherent states j +i 
 j +i isas follows:j +i 
 j +i H
I���! 1p2(j +i+ j �i)

 j +i CNOT����! jHCS+2 (�)i; (26)where H := (1=p2 )(�x + �z) is the Hadamard gatein the subspa
e K spanned by the orthonormal ba-sis of even/odd 
oherent states and CNOT := j +i ��h +j
I+j �ih �j
�x is the 
onditional �x operationon the se
ond �eld mode. To implement the Hadamardoperation, it is su�
ient to generate the superpositionH j +i = 1p2 (j +i+ j �i) == p1 + e�2�2 +p1� e�2�22p1� e�4�2 j�i++ p1 + e�2�2 �p1� e�2�22p1� e�4�2 j��i: (27)Arbitrary superpositions of photoni
 
oherent statesj � �i 
an be generated by a dispersive 
oupling be-tween a 
oherent mi
rowave �eld j�i and a transmonqubit if the transmon qubit 
an be prepared in an ar-bitrary pure state in C 2 [39℄. In addition, it has beenproposed to generate parametri
ally tuning states [42℄.It is worth noting that H j +i is an eigenve
tor of theoperator j�ih�j � j��ih��j, whi
h is proportional tothe observable 
orresponding to the measurement thatoptimally dete
ts j�i or j��i (in the sense of quantumbinary distinguishability problem with equal a prioriprobabilities and Bayes' 
ost 
riterion [43℄) with maxi-mal probability of su

ess. The pure statesH j �i havebeen studied for their role in optimal dete
tion of 
o-herent states j � �i (the �binary phase shift key�) [44℄.The CNOT gate in the s
heme (26) is more di�
ultto engineer than the Hadamard gate be
ause it requiresnot only a large intramode 
oheren
e time for the evenand odd 
oherent states but also a large intermode 
o-heren
e between two mi
rowave 
avities. However, iftwo transmon qubits 
an be prepared in a maximallyentangled (i. e., GHZ) state in (C 2 )
2 and indepen-dently 
oupled to spatially separated photoni
 modesof mi
rowave 
avities via a dispersive intera
tion, thisCNOT gate 
an be implemented. We now provide thedetails for fa
toring the unitary operator 
orrespondingto the CNOT gate into easily implementable unitaryoperations on the �eld/qubit and qubit/qubit subsys-tems.We �rst note that we 
an fa
tor the CNOT gate on895
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PP

ei�ayaFig. 7. Quantum 
ir
uit diagram for the transformationHj +i1 
Hj +i2 
 jgia1 
 jgia1 ! jHCS+2 (�)i1;2K 
 K into the following produ
t of lo
al Hadamardgates and the 
onditional �z gate:CNOT = (I
H)(j +ih +j 

 I+ j �ih �j 
 �z)(I
H): (28)We have already des
ribed the pro
edure for applying aHadamard gate to the �eld via the lo
al 
oupling of the�eld mode and transmon qubit; hen
e, we take the ini-tial state to be H j +i1
H j +i2
jgia1
jgia1 (wherewe now expli
itly in
lude the �eld mode labels 1, 2 andthe transmon qubit mode labels a1, a2) and show howto implement the 
onditional �z gate. Let an orthonor-mal basis for a transmon qubit Hilbert spa
e be takenas fjgi; jeig. A quantum 
ir
uit diagram showing ourmethod for indire
tly performing the CNOT gate onthe initial produ
t state is shown in Fig. 7. In this 
ir-
uit, the �rst �eld/qubit operation is a � rotation ofthe qubit a1 
onditioned on the parity of �eld mode 1and is labeled in Fig. 7 by the operation with the Psupers
ript. Expli
itly, this unitary operation is givenby j +i1h +j1 
 I+ j �i1h �j1 
 �x: (29)A similar 
onditional transformation has been a
hievedexperimentally in Ref. [39℄. This transformation shouldbe followed by a CNOT gate between the qubit modesa1 and a2, as shown; we assume that this gate is a

es-sible with high �delity by pre
ise 
ontrol of the qubit�qubit state. At this point, the full normalized state isgiven by12 ((j +i1 
 j +i2+j +i1 
 j �i2)
 jgia1 
 jgia2 ++ (j �i1 
 j +i2 + j �i1 
 j �i2) 

jeia1 
 jeia2) : (30)The next step is a � rotation of �eld 2 
onditionedon the state of the qubit a2. This operation has beenimplemented in the experiment reported in Ref. [39℄.

We re
all from Se
. 3 that the � phase rotation op-erator a
ts like �z in the subspa
e K. Applying theCNOT gate between qubits a1 and a2 again, followedby the parity-
onditioned � qubit rotation, gives thedesired CNOT gate in K 
 K. Finally, applying thelo
al Hadamard operator I
 H produ
es the outputstate jHCS+2 (�)i 
 jgia1 
 jgia2 .The above method for generating jHCS+2 (�)i is notthe most e�
ient possible. It would be favorable toutilize a single qubit or few-level mode that 
an be se-quentially entangled with both �elds [45℄.5. MORE EXOTIC HIERARCHICALSUPERPOSITIONSThe notion of hierar
hi
al 
at states 
an be ex-tended to deeper levels of the hierar
hy. The prin
i-pal motivation for an analysis of these states 
omesfrom the theory of quantum error 
orre
tion, whi
huses en
oded states to strengthen quantum informa-tion against unwanted de
oheren
e. In Refs. [46, 47℄, a
lass of �
on
atenated� GHZ states of the formjC-GHZ+M;N i := 1p2(jGHZN i
M + jGHZN i
M )were introdu
ed as entangled states that are relativelystable with respe
t to lo
al noise 
ompared to thefull GHZ state jGHZ+NM i. An analog of the C-GHZstates in (C 2 )
MN 
an be 
onstru
ted from an HCS in`2(C )
MN by formingjC-HCS�M;N i :=:= 1p2 �jHCS+N i
M � jHCS�N i
M� : (31)This state 
an retain 
oheren
e on the s
ale ofN modeseven after global 
oheren
e on the s
ale of all MNmodes has been lost. The C-HCS states are expe
tedto be useful as en
oded photoni
 states for 
ontinuous-variable quantum error 
orre
tion s
hemes. Of 
ourse,the entangled 
oherent states 
an be 
on
atenated in asimilar way:jC-ECS�M;N (�)i := 1p2 �� �jECS+N (�)i
M � jECS�N (�)i
M � : (32)It also follows from the basi
 theory of quantumbinary distinguishability that the optimal proje
tion-valued measurement for distinguishing j�i
N fromj��i
N has elements896
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lassi
al properties : : :fjC-ECS+1;N (�)ihC-ECS+1;N (�)j;jC-ECS�1;N (�)ihC-ECS�1;N (�)jg:The C-HCS and C-ECS states are robust quan-tum resour
es in the sense that if 
oheren
e is lostamong the M blo
ks of N single-mode systems, a sta-tisti
al mixture of N -mode entangled states remains.To lose all entanglement, the intermode 
oheren
e inH
N must subsequently be lost. In a higher-orderhierar
hi
al 
at state, these �shells� of 
oheren
e de-grade a

ording to the strengths of lo
al and nonlo-
al intera
tions. It has been suggested to generatejC-GHZ+M;N i in spin-1/2 
hains by appli
ation of the2-lo
al Mølmer�Sorensen unitary gate to the NM -mo-de GHZ state (1=p2 )(j0i
MN + j1i
MN ) [47℄. E�-
ient preparation of hierar
hi
ally en
oded entangledstates in (`2(C ))
NM represents a great 
hallenge for
ontinuous-variable quantum information pro
essing.The author a
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