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NONCLASSICAL PROPERTIES AND QUANTUM RESOURCESOF HIERARCHICAL PHOTONIC SUPERPOSITION STATEST. J. Volko� *Department of Chemistry, University of California94720, Berkeley, California, USAReeived April 24, 2015We motivate and introdue a lass of �hierarhial� quantum superposition states of N oupled quantumosillators. Unlike other well-known multimode photoni Shrödinger-at states suh as entangled oherentstates, the hierarhial superposition states are haraterized as two-branh superpositions of tensor produtsof single-mode Shrödinger-at states. In addition to analyzing the photon statistis and quasiprobability dis-tributions of prominent examples of these nonlassial states, we onsider their usefulness for high-preisionquantum metrology of nonlinear optial Hamiltonians and quantify their mode entanglement. We propose twomethods for generating hierarhial superpositions in N = 2 oupled mirowave avities, exploiting urrentlyexisting quantum optial tehnology for generating entanglement between spatially separated eletromagneti�eld modes.DOI: 10.7868/S004445101511005X1. INTRODUCTIONMaximally entangled quantum states oupy a dis-tinguished position in the theory of quantum in-formation. One has only to onsider the entralrole of Greenberger�Horne�Zeilinger (GHZ) states in(C 2 )
N [1℄ in many quantum algorithms and quan-tum teleportation protools [2℄ to be onvined oftheir importane. From a pratial perspetive, suhstates omprise the most valuable quantum resoure,in terms of both entanglement and usefulness for quan-tum metrology [3; 4℄. Unfortunately, in the ase of Ntwo-level quantum systems suh as spin-1/2 hains, themaximally entangled states are sensitive to loal errors(e. g., phase �ips) and an quikly lose all nonlassialresoures. However, beause of the ountably in�nitedimension of the Hilbert spae of a hain of quantumosillators (isomorphi to (`2(C ))
N ), one may hopeto engineer maximally entangled states of a subspaeisomorphi to (C 2 )
N that are robust under quantumevolutions orresponding to relevant soures of deo-herene.The entangled oherent states (see Ref. [5, 6℄ andthe referenes therein) are paradigmati examples ofentangled states in `2(C ) 
 `2(C ). However, only astrit subset of these are maximally entangled. Expliit*E-mail: adidasty�gmail.om

onditions for maximal entanglement of linear ombi-nations of produts of oherent states were found in [7℄and multimode entangled oherent states have beenstudied in the ontext of enoding ontinuous-variablequantum information [8�10℄. To extend the notion ofGHZ states to a separable Hilbert spae (i. e., a Hilbertspae with a ountable orthonormal basis) in a generalway, we �rst introdue the two-branh, N mode states1p2+2Re(zN ) �IN+U
N� j�i; z := h�jU j�i; (1)where j�i is a single-mode pure quantum state of theHilbert spae H and U is a partial isometry with j�iin its domain. When z = 0, the branhes j�i
N andU
N j�i
N are orthogonal in H
N and the resultingstate is a strit analog of a GHZ state. For example,superpositions of osillator Fok states proportional tojni
N + ei'jmi
N ;with ' 2 [0; 2�℄, fall into this lass and are interes-ting for their quantum optial properties. Suh su-perpositions represent the most obvious generalizationof GHZ states to the Hilbert spae of N osillators,(`2(C ))
N . The ase z 6= 0, although deviating fromthe strit notion of GHZ states due to nonorthogonal-ity of the branhes, ontains many important maro-sopiN -mode superpositions. The entangled oherentstates (having j�i = j�i and U = ei�ayaD(�), where� 2 [0; 2�℄ and D(�) is the osillator displaement ope-rator for �, � 2 C ) serve as well-studied examples.883 4*



T. J. Volko� ÆÝÒÔ, òîì 148, âûï. 5 (11), 2015However, the fous of this paper is on revealing ertainnew states of the z = 0 set. In partiular, we onsidertakingj�i = je1i := � I+ Vp2 + 2w� j�0i; j�0i 2 H;where V is a single-mode partial isometry ontainingj�0i in its domain and w = h�0jV j�0i 2 R. Then thestate je2i := � I� Vp2� 2w� j�0iis orthogonal to je1i. TakingU = ei�=N (je1ihe2j+ je2ihe1j)produes two-branh superpositions of the followingform, whih we refer to as hierarhial at states (HCS):jHCS�N i := 1p2  � (I+ V )j�0ip2 + 2w �
N ++ ei� � (I� V )j�0ip2� 2w �
N! : (2)The origin of the name �hierarhial at state� isself-evident: jHCS�N i is an equal-weight superpositionof two orthogonal branhes in H
N (i. e., an N -mode�at� state), while eah branh is a tensor produt of�kitten� superpositions in the single-mode Hilbert spaeH. This onstrution allows onsidering maximally en-tangled states in a (C 2 )
N subspae of (`2(C ))
N thatretain single-mode quantum oherene in the statesj�0i�V j�0i even after intermode deoherene proessesredue the superposition state jHCS�N i to an equal-probability statistial mixture of tensor produts.When H �= `2(C ), jHCS�N i is in a (omplex) two-di-mensional subspae of (`2(C ))
N . By appropriatehoies of V and j�0i, the branhes of jHCS�N i an takethe form of tensor produts of single-mode photoniShrödinger-at states suh as the even and odd ohe-rent states j �i / j�i � j��i [11℄ or superpositionsof squeezed states. For these photoni HCS states, itis lear that if the single-mode oherene time is su�-iently long (e. g., greater than the intermode oherenetime), a statistial mixture of N -mode Shrödinger-atstates remains even after the intermode oherene islost by some deohering proess.The photoni HCS state obtained by taking V == ei�aya to be the osillator �-phase shift, j�0i = j�i aoherent state of the quantum osillator with the am-plitude j�j, and � = 0 or � = � in (2) was introdued inRef. [12℄. We label these states by jHCS�N (�)i (the �+�symbolizing � = 0 and the ��� symbolizing � = �), andthey serve as the anonial examples of photoni HCS

in this work. Eah branh of jHCS�N (�)i is an N -foldtensor produt of either the even oherent state j +ior the odd oherent state j �i. If N is an odd naturalnumber, then the even (odd) branh is an eigenvetorof the photon parity operator expni�PNj=1 ayjajo withthe eigenvalue 1 (�1), and heneexp8<:i� NXj=1 ayjaj9=; jHCS�N (�)i = jHCS�N (�)i:If N is an even natural number, jHCS�N (�)i is invari-ant under suh a loal � rotation. Independent of N ,a photon parity measurement results in a projetion ofjHCS�N (�)i onto either the even or odd branh. Theentangled oherent statesjECS�N (�)i / j�i
N � j��i
Nare invariant under the bosoni algebra freely gener-ated by aiaj , i, j 2 f1; : : : ; Ng, and they are there-fore onsidered to be Barut�Girardello oherent statesof sp(N; C ) [13℄. The state jHCS�N (�)i is invari-ant under the algebra freely generated by the iden-tity operator and the two-photon annihilation opera-tors a2j , j = 1; : : : ; N . This algebrai property al-lows jHCS�N (�)i to be onsidered as superpositionsof sp(N; C ) Barut�Girardello oherent states. How-ever, while properties suh as quasiprobability densi-ties, photon statistis, and dissipative evolutions of theentangled oherent states have been thoroughly dou-mented [14, 15℄, a detailed analysis of the properties ofphotoni HCS states is laking.When jHCS�2 (�)i is shared between two spatiallyseparated parties, the state jHCS�2 (�)i serves as anentanglement resoure for teleportation of an arbi-trary superposition of oherent states of the form1j�i + 2j��i in the same way as the GHZ state(1=p2 )(j0i
N + j1i
N) serves as an entanglement re-soure for teleportation of an arbitrary qubit pure state.This follows from the fat that jHCS�2 (�)i are maxi-mally entangled states in the 4-dimensional sub-Hilbertspae spanned by fj(�1)j�i
j(�1)`�igj;`2f0;1g1). Thestates jHCS�N (�)i are also useful probes for high-pre-ision phase estimation of Hamiltonians of sl(2; C ) [19℄(see also Se. 3.1). These intriguing attributes moti-vate a more thorough desription and analysis of HCSstates.1) In fat, the states jHCS�2 (�)i exhibit the same amount(1 ebit) of entanglement entropy as jECS�2 (�)i [16, 17℄. A �Bellbasis� of maximally entangled states for this 4-dimensional sub-Hilbert spae is given by jHCS+2 (�)i, jHCS�2 (�)i, jECS�2 (�)i,and (ei�aya 
 I)jECS�2 (�)i [18℄.884



ÆÝÒÔ, òîì 148, âûï. 5 (11), 2015 Nonlassial properties : : :The remainder of this paper is strutured as fol-lows: in Se. 2, we indiate some nonlassial propertiesof jHCS�N (�)i, iting the nonlassial properties of theentangled oherent states for omparison; Se. 3 is de-voted to exploration of the quantum resoures, in par-tiular the metrologial usefulness and entanglemententropy, of jHCS�N (�)i; in Se. 4, we propose two meth-ods for generating jHCS+N (�)i using tehniques that areaessible by urrent quantum optial tehnology; inSe. 5, we demonstrate how the idea of hierarhiallyenoding ontinuous-variable quantum information anbe deepened with many levels of hierarhy. We do notattempt an exhaustive analysis of photoni hierarhialat states, but rather try to show the most salient prop-

erties of these states by onsidering basi examples.2. NONCLASSICAL PROPERTIES OF HCSHere, we note the basi photon statistis ofjHCS+N (�)i for arbitrary N , derive some of itsquasiprobability distributions for N = 2, and show aduality between Pauli matries and photon operationsin the subspae of `2(C ) spanned by the even and oddoherent states. Throughout this setion, we omparethe nonlassial properties of jHCS�N (�)i to those of theentangled oherent states, whih are more familiar. Weshow the inner produts of jECS�N (�)i and jHCS�N (�)iimmediately:hECS+N (�)jHCS+N (�)i = 1p1 + e�2N�2 8>>>><>>>>: �12 + 12e�2�2�N=2 +�12 � 12e�2�2�N=2 ; N even,�12 + 12e�2�2�N=2 ; N odd, (3)
hECS+N (�)jHCS�N (�)i = 1p1 + e�2N�2 8>>>><>>>>: �12 + 12e�2�2�N=2 ; N even,�12 + 12e�2�2�N=2 ��12 � 12e�2�2�N=2 ; N odd, (4)hECS�N (�)jHCS�N (�)i =8>><>>: 0; N even,� (1=2� (1=2)e�2�2)N=2p1� e�2N�2 ; N odd, (5)

where � 2 R. It is intriguing to note the � ! 1asymptoti form of these inner produts (the N ! 1asymptoti is always zero). For any odd N and forreasonably large �,hECS+N (�)jHCS�N (�)i � 0;while for any even N and any �,hECS�N (�)jHCS�N (�)i = 0identially. The total expeted photon number in allof these states is asymptotially N�2, i. e., jHCS�N (�)iand jECS�N (�)i di�er mainly in photon statistis andquantum orrelations, not in intensity. In partiular, ifPe (Po = I� Pe) is the projetion onto the even (odd)photon number subspae2) of (`2(C ))
N , it is lear thatPojECS+N (�)i = PejECS�N (�)i = 0while

PojHCS+N (�)i = PejHCS+N (�)i = 1p2 :Beause of its symmetry, jHCS�N (�)i has a simp-le expression as a superposition of tensor produts ofoherent states. We �rst onsider the diret produtZ2� : : :�Z2 (N times) with the group operation givenby addition modulo 2. This group is isomorphi to theAbelian group U with elementsNOj=1 exp(ikj�ayjaj); kj 2 f0; 1g;and the group operation being operator multipliation.Let U1 (U2) be the subgroup of elements orrespondingto k suh that the number of nonzero entries of k iseven (odd). Then we an write (again for � 2 R)2) Expliitly, Pe =Pn:knk2=0 mod 2 Pn, where Pn is the rank-one projetor onto the ray jn1i 
 : : :
 jnN i.885
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Fig. 1. Photon number distribution P (n;m) forjHCS+N=2(� = 3)i; n, m 2 f1; : : : ; 20g
jHCS�N (�)i = eN�2=22N+1=2 ��0�Xj=1;2�h�N=2 �2+(�1)j�1 sh�N=2 �2� Xu2Uj u1A�� j�i
N : (6)From the above expression, the expansion in the Fokstate basis an be made expliit by using the fat thatj�i = e�j�j2=2 1Xn=0 �npn! jni:The photon number distribution of jHCS+N (�)i forany � 2 C is given byP (n) = jhnjHCS+N (�)ij2 = e�N j�j22N+1 ������� Xj=0;1 1(1+(�1)je�2j�j2)N=2 NYk=1(1+(�1)nk+j)�� �nkpnk! �����2; (7)where jni := jn1i 
 : : : 
 jnN i for n 2 NN . It is learfrom the above expression that if not all entries of nare even or odd, then the photon number distribution

vanishes. For N = 2, this results in a hekerboardpattern of zero and nonzero probabilities on the lattieZ�0�Z�0 (Fig. 1). This feature stands in ontrast tothe distribution jhnjECS+N (�)ij2, whih is identiallyzero if and only if PNk=1 nk is odd. Our present fouson the photon statistis of jHCS+N (�)i is merely dueto the fat that they are the hierarhial at states ofmost immediate pratial use for ontinuous-variablequantum information proessing. Indeed, more om-plex photon statistis are furnished by hierarhial atstates formed, e. g., from the Z=4Z oherent states,whih generalize the even/odd oherent states by form-ing a C 4 subspae of `2(C ) having an orthonormal basisje0i = j�i+ j��i+ ji�i+ j�i�i2e�j�j2=2p2 h j�j2 + 2 os j�j2 ;je1i = j�i � j��i � iji�i+ ij�i�i2e�j�j2=2p2 sh j�j2 + 2 sin j�j2 ;je2i = j�i+ j��i � ji�i � j�i�i2e�j�j2=2p2 h j�j2 � 2 os j�j2 ;je3i = j�i � j��i+ iji�i � ij�i�i2e�j�j2=2p2 sh j�j2 � 2 sin j�j2 ; (8)
where hnjeji 6= 0 if and only if n � j mod 4.The variane of a single-mode quadraturex(�)j := 1p2(aje�i� + ayjei�)in jHCS�N (�)i is12 + j�j2(oth 2j�j2 + os(2Arg�� 2�)) (9)for all �. Beause this variane is greater than 1=2,jHCS�N (�)i is therefore not squeezed in any quadrature.The jHCS�N (�)i do not exhibit seond-order squeezing[20℄ (also referred to as amplitude squared squeezing)beause they are eigenvetors of a2j for all j = 1; : : : ; N .The single-mode Mandel QM parameter of jHCS�N (�)iis always negative, but exhibits a dip for j�j � 3=2 asshown in Fig. 2.We now turn to the quasiprobability distributionsand funtional representations of jHCS�2 (�)i with thefous being on the funtional form of the hierarhi-al oherenes. In addition, we use the expliit ex-pressions of the quasiprobability distributions to infernonlassial features of the states. Eah quasiproba-bility distribution for a quantum state � of (`2(C ))
Nis obtained by the Fourier transformation on CN ofa quantum harateristi funtion orresponding to apartiular ordering of bosoni operators [21℄. It is wellknown that negative values of the singular quasidis-tribution (i. e., the Sudarshan�Glauber funtion) for886
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Fig. 2. Mandel QM parameter for jHCS�N (�)i for j�j 22 [0; 3℄a given quantum state � indiate nonlassial photonstatistis, i. e., indiate that the photon number distri-bution is not Poissonian [22℄. In a similar spirit, theexistene of negative values of the Wigner funtion fora given state indiates non-Gaussian quadrature or-relations. The expliit form of the Wigner funtion ofjHCS+N (�)i was shown in Ref. [12℄, but the analytiexpression is only useful for tehnial purposes. Theimportant point is that the Wigner funtion of a pho-toni state has an interpretation as a ontinuous set ofinterferene experiments. This is lear from the de�ni-tion of the single-mode Wigner funtionW () = (2=�2)hD()ei�ayaD(�)i;it shows how a quantum state hanges when its o-herent-state omponents are displaed by � in phasespae, are then re�eted in phase spae, and are dis-plaed again opposite to �. Coherene betweenoherent-state omponents appears as fringes in theWigner funtion. Aordingly, the states jHCS�2 (�)iexhibit two soures of interferene: 1) from the ohe-rene in eah branh j �i
2, and 2) from the oherenebetween the branhes. These two soures of oher-ene are not immediately visible from the expressionfor jHCS�2 (�)i as an unequal superposition of tensorproduts of oherent states.The existene of zeros of the Q-funtion of a givenquantum state indiates that the singular quasidis-tribution for this state takes negative values and,hene, exhibits nonlassial features. The Q-funtionof jHCS+N (�)i, whih is a true probability distributionon CN , is given byQ(jHCS+N (�)i) = 1� j �
Nk=1j�ki; jHCS+N (�)i� j2:

For N = 2 and � 2 C , we haveQjHCS+2 (�)i(�1; �2) = �2 (Q+(�1)Q+(�2) ++ Q�(�1)Q�(�2)) + exp��(j�1j2 + j�2j2)	2� sh(2j�j2) �� (sh(2Re(�1�)) sh(2Re(�2�)) �� sin(2 Im(�1�)) sin(2 Im(�2�))) ; (10)where Q+(�)(z) is the Q-funtion of the even (odd)oherent state [14℄. The Q-funtion of jHCS+2 (�)i va-nishes if and only if eah of the terms vanishes. We take�1, �2 2 C suh that Re(�1�) = Re(�2�) = 0. In addi-tion, we require that �1 and �2 satisfy: 1) Im(�1�) == (2k + 1)�=2, where k 2 Z, and 2) Im(�2�) = m�,where m 2 Z. Under these onstraints, Q+(�1) == Q�(�2) = 0. For these values,sh(2Re(�1�)) sh(2Re(�2�))�� sin(2 Im(�1�)) sin(2 Im(�2�)) = 0;and hene the Q-funtion is zero at these points ofC � C .In addition to the quasiprobability distributions,the quadrature distribution, alulated as the squaredmodulus of the Shrödinger wavefuntion, is an espe-ially useful true probability distribution for systemsof osillators. However, the quadrature distribution isquite spei�; all that is needed is a representation ofthe pure state jHCS�2 (�)i in a funtional Hilbert spae.We hoose the Bargmann representation [23℄ beauserelevant quantities suh as the Shrödinger wavefun-tion and the singular quasidistribution of a pure statean be derived from the Bargmann representation bythe use of variants of the Segal�Bargmann transforma-tion. As an analyti funtion fjHCS�2 (�)i on C � C , thestate jHCS�2 (�)i is represented byfjHCS�2 (�)i(z; w) = p2e�j�j2 �� h(�(z + w)) � e�2j�j2 h(�(z � w))1� e�4j�j2 : (11)That fjHCS�2 (�)i(z; w) takes the form of a sum of un-equally weighted funtions is a onsequene of the fatthat jHCS�2 (�)i is an unequally weighted superpositionof tensor produts of oherent states.The subspae K �= C 2 of `2(C ) spanned by the evenand odd oherent states j �i has the property thatertain photoni operators arry out equivalent oper-ations as the Pauli matries in this subspae. Thisallows quantum operations of a two-level system to be887



T. J. Volko� ÆÝÒÔ, òîì 148, âûï. 5 (11), 2015interpreted as photoni operations ompressed to thissubspae. For example, keeping in mind the ation of�x = j +ih �j+ j �ih +jin K, we note thataj +i = �ptanh j�j2j �i = �ptanh j�j2�xj +i:Considering the Pauli matries as observables of aspin-1/2 partile, we �nd the following expressions interms of self-adjoint photoni observables:�x = e�j�j2psh(2j�j2)j�j PKx(Arg�)PK;�y = ej�j2psh(2j�j2)j�j PKx(�=2+Arg�)PK;�z = 12Re(�2)PK(ei�ayaa2 + ay2e�i�aya)PK; (12)where PK is the projetion on K. These expressionsfor Pauli matries show a duality between quadraturesand �magnetization� in the subspae K. For example,if j�j is su�iently large, we havePKx(Arg�)PK = p2j�j�x;i. e., the interation piture dynamis of a quantum os-illator (restrited to K) driven with unit amplitude isequivalent to a spin-1/2 partile with the magneti mo-ment p2j�j in a unit magneti �eld along the x axis.The Pauli matries in (12) do not have unique expres-sions in terms of produts of photoni operators andPK, beause we an rewrite PK as12j�j2PK(a2e�2iArg� + ay2e2iArg�)PK:Some of these alternative expressions an be instru-tive; for example, we an write�z = PK os(�aya)PK:A similar duality an be derived for su(4) observablesin terms of projetors in the subspae spanned bystates (8) and photoni operations.3. QUANTUM RESOURCES OF HCS3.1. Metrologial usefulnessWe begin this setion by realling the main problemof quantum metrology and how ertain quantum statesan be used for estimation of dynamial parametersat higher preision than any lassial states. Given a

smooth manifoldM , let quantum states be enoded bya di�erentiable map spei�ed by � 7! �� for � 2 M .The goal is to estimate the parameter � with greatestpossible preision by using an optimal quantum mea-surement and optimal lassial post-proessing of themeasurement results.In this setion, we are onerned with the speialase of estimation of a displaement parameter. In thisase, the parameter manifold is a line with a real oor-dinate x 2 R and the state�x := e�ixH�0eixHlies on a path parameterized by x and generated by theself-adjoint x-dependent operator H . If fM(dx)g is apositive operator-valued measure (we refer to fM(dx)gas a �quantum measurement� or, simply, �measure-ment� from now on), whih is an unbiased estimatorof x, i. e., x = ZR x0 tr(�xM(dx0));then the quantum Cramér�Rao theorem [24, 25℄ statesthat h(Æx̂M )2i � 1tr(�0L2) ; (13)where h(Æx̂M )2i := ZR (x0 � x)2 tr(�xM(dx0))is a general expression for the variane of the quantummeasurement and L = Ly is the symmetri logarithmiderivative operator de�ned by the equationd�dx = �i[H; �℄ = 12(L�+ �L):The quantity tr(�0L2) is alled the quantum Fisher in-formation of �0 and is onstant on the unitary pathgenerated by H [26℄. If �0 = j 0ih 0j is pure, thentr(�0L2) = 4(tr(�0H2)� tr(�0H)2):Hene, if an experimenter has unonstrained aess tomeasurements saturating inequality (13), then a quan-tum state with larger quantum Fisher information withrespet to H an be onsidered a more useful resourefor estimating the displaement parameter x. In thissetion, we fous on using ertain multimode purestates j 0i 2 H
N as probes for displaement metrol-ogy for paths generated by 1-loal Hamiltonians, i. e.,H of the form H =Xj=1H(j) 
 IN�1:888



ÆÝÒÔ, òîì 148, âûï. 5 (11), 2015 Nonlassial properties : : :Spei�ally, the metrologial problem at hand onsistsof: 1) preparation of N osillator modes in the probestate jECS+N (�)i or jHCS+N (�)i, 2) appliation of aglobal unitary operator 
Nj=1 exp(ixHj) with Hj = Hbeing an osillator Hamiltonian and x 2 R, and 3) es-timation of x by an optimal separable measurementon the N modes. It is important to note that deter-mination of the optimal separable measurement or-responding to the probe state and the Hamiltonian Hrequires methods of quantum estimation theory; in par-tiular, the optimal measurement does not neessarilyorrespond with traditional methods of osillator sig-nal detetion suh has homodyne detetion. In thissetion, we assume that the optimal measurement anbe performed for any H and we determine the set of Hfor whih jECS+N (�)i and jHCS+N (�)i allow a greaterpreision in the determination of x than the respetivetensor produt branh states j � �i
N and j �i
N .As an example of displaement estimation in a �nitedimensional Hilbert spae, we an onsider the prob-lem of estimation of a phase parameter � imprinted ona quantum state �� = e�i�H�0ei�H . We takeH = NXj=1 �(j)z 
 IN�1and take �0 to orrespond to the GHZ state j0i
N ++ j1i
N=p2. The quantum Fisher information of �0with respet to H is 4N2; in fat, this is the maximumpossible value of the quantum Fisher informationin (C 2 )
N with respet to 1-loal Hamiltonians ofunit operator norm [3℄. In ontrast, any produtstate has the maximal quantum Fisher information oforder N over the set of suh Hamiltonians. This fatsuggests an ordering of superposition states based ontheir maximal usefulness for quantum metrology asompared to the maximal usefulness of the individualpure states that omprise the superposition. Thefollowing de�nition serves to haraterize the multi-mode, equal-weight superposition states in a separableHilbert spae as �metrologially useful�; suh states areextensively more useful for displaement estimationof a prede�ned set of self-adjoint generators than theomponent branhes.De�nition 1. An equal-weight quantum superpo-sition of q linearly independent pure states,j!i / qXj=1 j ji 2 (`2(C ))
N ;is onsidered metrologially useful when the followingondition on the quantity NrF (j!i) is satis�ed:

NrF (j!i) := maxH2A1-loh!j(�H)2j!i1q qXj=1 maxH2A1-loh j j(�H)2j ji 22 O(ntot); (14)where h�j(�H)2j�i := h�jH2j�i � h�jH j�i2;ntot = h!j NXj=1 ayjaj 
 IN�1j!iis the expeted total photon number, A is an algebra ofobservables on `2(C ), and A1-lo is the linear subspaeof A
N in whih eah element is �1-loal,� i. e., has theform PNj=1 xj 
 IN�1 for xj 2 A.The set A1-lo should be suh that the denomina-tor in Eq. (14) is nonzero. The restrition to 1-lo-al observables in De�nition 1 allows using produtstates as a saling standard. Spei�ally, given H == PNj=1 xj 2 A1-lo (here, we have omitted the iden-tity operators for larity), and a produt state j i == j (1)i 
 � � � 
 j (N)i, it follows thath j(�H)2j i � Nmaxjh (j)j(�x(j))2j (j)i: (15)Hene, the variane of a measurement of a 1-loal ob-servable always sales linearly in the number of modeswhen the system is in a produt state. A pure state j!ihaving the above form is metrologially useful if thereexists H (having the 1-loal form above) suh thath!j(�H)2j!i 2 O(Nntotmaxj;k h (k)j j(�x(k))2j (k)j i):The quantity NrF was originally introdued as ameasure of marosopiity for quantum superpositionsin (C 2 )
N [27℄; in that ontext, A = su(2; C ) (repre-sented by the Pauli matries) and ntot is taken to beequal to the number of modes N . The notion of metro-logial usefulness in De�nition 1 refers to the greaterultimate preision ahievable in the quantum Cramér�Rao bound when the displaement parameter is en-oded in the equal-weight quantum superposition statej!i ompared to the ultimate preision ahievable whenthe displaement parameter is enoded in branhesfj migqm=1 omprising j!i. It should be noted thatwe an speak of a superposition state as being metro-logially useful only if the algebra A is spei�ed. Inaddition, there may be many ways to write j!i as anequal-weight superposition of pure states; in that ase,De�nition 1 learly refers to the metrologial useful-ness of j!i relative to a given deomposition of j!i into889



T. J. Volko� ÆÝÒÔ, òîì 148, âûï. 5 (11), 2015branhes. In realisti parameter estimation protools,the branh deomposition ould be imposed by the pre-ferred basis of an experiment.In the ase of a separable Hilbert spae H, the al-gebra A does not have to be represented in the vonNeumann algebra B(H). Many observables of interest,e. g., the quadrature operators and the photon numberoperator, are unbounded on H but appear in quantumoptial Hamiltonians of interest to quantum metrology.However, for most quantum optial states of interest,these unbounded operators have a �nite seond mo-ment [25℄ and therefore have a bounded variane inthese states. In partiular, if an unbounded, essentiallyself-adjoint operator x = xy satis�es h!jx2j!i <1 fora normalized superposition state j!i = Pj j ji, thenh j jx2j ji < 1 for all j. This feature an be used tointrodue a Lie algebra for whih the state ! is metro-logially useful [19℄. A is then formed by taking the1-loal sums of essentially self-adjoint elements of thisLie algebra (we have here assumed a representation onH). In order for the denominator of the expression forNrF to be well-de�ned, at least one branh j ji of j!imust not be an eigenvetor of all essentially self-adjointelements of the Lie algebra.A simple nontrivial example shows that jECS+N (�)iis metrologially useful when A1-lo is formed from ob-servables of the Lie algebra h3 = (spanfay; a; Ig; [�; �℄),represented as linear operators on `2(C ) in the usualway. Given � 2 C , the even and odd oherent statesj �i (whih oinide with jECS�N=1(�)i) exhibit anorder-j�j2 variane for measurements of the quadra-ture orresponding to the diretion Arg(�) and exhibitsqueezing in the variane of measurements of the on-jugate quadrature orresponding to Arg(�) + �=2 [28℄.Physially, this is beause the quantized eletri �eldis � phase-shifted (in expetation) between the j�i andj��i oherent states. Expliitly, for � 2 R and thequadratures x(�) as above,h +j(�x(0))2j +i = �2(1 + tanh�2) + 12while h +j(�x(�=2))2j +i = 12 � �2(1� tanh�2):Thus, if � is purely real, the � = 0 quadrature ex-hibits large �utuations, while the onjugate quadra-ture �utuates just below the vauum level. Sinethe only observables arising from h3 are the osillatorquadratures and the identity, it is lear that an observ-able PNj=1 zjayj + zjaj exists that exhibits variane ofthe order of N2�2maxj jzj j2 in jECS+N (�)i. On the

other hand, sine every quadrature x(�) exhibits vari-ane 1/2 in the oherent state j � �i, any 1-loal ob-servable PNj=1 zjayj + zjaj has a variane of the orderof N maxj jzj j2 in j ��i
N . Using De�nition 1, we seethat taking A1-lo to be omposed of observables fromh3 allows jECS�N (�)i to be onsidered metrologiallyuseful. In partiular, by taking zj = x 2 R, jECS�N (�)iare metrologially useful for estimation of global ampli-tude displaementsNNj=1Dj(x) of N -mode osillators.The estimation of arbitrary loal displaements in theomplex plane omprises a multiparameter (2N realparameters) estimation task [29℄. It is an interestingproblem whether a measure analogous to NrF an beused to identify Shrödinger-at states as a resoure forparameter estimation of more general quantum dynam-is. It should be noted that jECS�N (�)i is not metrolo-gially useful when A1-lo is omposed of observablesfrom the osillator Lie algebrah4 = (spanfaya; ay; a; Ig; [�; �℄)instead of h3. This is beause the 1-loal photon num-ber operatorPNj=1 ayjaj exhibits the extensive varianeN j�j2 in the oherent states j��i
N , and therefore theratio in De�nition 1 exhibits linear saling with N , thenumber of modes, and not the total number of photons.We now detail the argument that jHCS�N (�)i aremetrologially useful when the algebra A is the Lie al-gebra of observables of sl(2; C ). Algebraially, it is sim-pler to show this fat for a losely related hierarhialat state. By returning to (2) and taking j�i = j +iand U = ei�aya=2(j +ih �j+ j �ih +j);the following state is produed:j
(�)i = 1p2  � j�i+ j��ip2 + 2e�2j�j2�
N ++ � ji�i � j�i�ip2� 2e�2j�j2�
N! : (16)We onsider the 1-loal HamiltonianNXj=1(za(j)2 + zay(j)2)
 IN�1as would desribe two-photon parametri downonver-sion into N modes, eah with a lassial pumping am-plitude z 2 C . Beausea2j +i = �2j +i; a2ei�aya=2j �i = ��2ei�aya=2j �i;890



ÆÝÒÔ, òîì 148, âûï. 5 (11), 2015 Nonlassial properties : : :it is lear that for any statesj�1i; j�2i 2 spanCfj +i; ei�aya=2j �ig;the following Pauli matrix/two-photon quadrature du-ality holds:h�1j�z j�2i = h�1j 1�2 (a2 + ay2)j�2i; (17)where�z = j +ih +j � ei�aya=2j �ih �je�i�aya=2is the appropriate Pauli matrix in spanCfj +i,exp(i�aya=2)j �ig. From this, it is lear that thevariane of NXj=1(za(j)2 + zay(j)2)
 IN�1in j
(�)i should be of the order of N2jzj2j�j4. In fat,for � 2 R, the variane is4N2Re(z�2)2 + N2 (4Re(z2�4)� 8Re(z�2)2 ++ 4jzj2j�j2(tanh�2 + oth�2) + 2jzj2); (18)whih is of the order of N2jzj2j�j4 for Arg z == 2Arg�. In addition, the variane of PNj=1(za(j)2 ++ zay(j)2) 
 IN�1 in the produt states j +i
N or(exp(i�aya=2)j �i)
N is at most of the order ofN jzj2j�j2, as an easily be veri�ed. The �nal stepin �nding a minimal algebra A that allows j
(�)ito be metrologially useful is to append the element(1=2)aya+1=4 to the set fay2=2; a2=2g and hek thatthe 1-loal observable given by, e. g., PNj=1 ayiai doesnot exhibit �utuations in either of the branh statesj +i
N or (exp(i�aya=2)j �i)
N saling as j�j4. Ifthe 1-loal photon number operator were to exhibitsuh �utuations, then the ratio in the left-hand sideof Eq. (14) would lose the property of saling with thetotal expeted number of photons in j
(�)i. It is easyto verify that the 1-loal photon number operator ex-hibits variane of the order of N j�j2 in these produtstates, and hene j
(�)i is metrologially useful whenA = sl(2; C ) := �spanC �12aya+ 14 ; ay22 ; a22 � ; [�; �℄� :In partiular, when z 2 R, the alulation aboveshows that jHCS�N (�)i are metrologially useful for dis-plaement estimation, where the displaement parame-ter now orresponds to the global squeezing amplitudez 2 R. It is intriguing that while some superpositions

of the sp(N; C ) Barut�Girardello oherent states do ex-hibit squeezing, the jHCS+N (�)i state does not; in addi-tion, the produt states omprising eah of the branhesof jHCS+N (�)i exhibit negligible squeezing if j�j2 > 1.However, if squeezed states and their superpositionsare available, one may wonder if there exist other typesof hierarhial at states having NrF saling exponen-tially in a squeezing parameter when the observablesof A1-lo are taken from sl(2; C ). Indeed, it is knownthat squeezed states provide a higher preision in theestimation of a single-mode squeezing parameter thanoherent states do [30℄. The following hierarhial atstate, having branhes omposed of superpositions ofideal squeezed states, allows suh saling:1p2 0� (D(�) +D(��))S(w)p2 + 2exp(�2�2e2w) j0i!
N ++  (D(i�)�D(�i�))S(w)p2� 2exp(�2�2e2w) j0i!
N1A ; (19)where we assume that �;w 2 R>0 and takeS(w) := exp�12(wa2 � way2)�as the unitary squeezing operator. For suh � and w,the identity D(�)S(w) = S(w)D(�ew)holds and hene the above hierarhial at state anbe rewritten as S(w)
N j
(�ew)i. The NrF valueof S(w)
N j
(�ew)i exhibits the same saling as theNrF value for j
(�ew)i, i. e., of the order of N�2e2w,beause S(w) ats on sl(2; C ) by the adjoint ation.As a �nal remark, we point out that the oherentstates �j�i are minimum-unertainty states for theHeisenberg unertainty relation for observables of h3while the even/odd oherent states j �i are minimum-unertainty states for the generalized unertainty re-lation for observables of su(2; C ) [31℄. This is not asurprising oinidene beause the de�nition of metro-logial usefulness (De�nition 1) requires that the max-imum unertainty in the produt states omprising thebranhes of a state having form (1) be extensivelysmaller than the maximum unertainty in the multi-mode superposition state.Thus far, the disussion of De�nition 1 has beenmainly mathematial. It is useful to mention thatfrom a basi physial perspetive, the problem of deter-mining the preision of optimal estimation of a globalreal displaement parameter is equivalent to determing891



T. J. Volko� ÆÝÒÔ, òîì 148, âûï. 5 (11), 2015the energy�time unertainty in a given quantum state.Therefore, De�nition 1 an be reinterpreted from aphysial perspetive by stating that j!i is metrologi-ally useful with respet to Hamiltonians H 2 A1-loif its maximal deay rate (i. e., the minimal time tfor whih e�iHtj!i beomes distinguishable from j!i)is extensively greater than the maximal deay ratesof the branh states fj jigqj=1, i. e., if j!i is exten-sively more sensitive to evolution generated by H asompared to the branhes. In the partiular ase ofjHCS+N (�)i (jECS+N (�)i), we an say qualitatively thatits metrologial usefulness arises simply beause its in-termode quantum oherene auses the squeezing oper-ation (displaement operation) to hange it more dras-tially than the produt states j �i
N (j��i
N ) on-sidered independently.3.2. Entanglement entropyBeause of the orthogonality of the branhes, themode entanglement struture of jHCS�2 i is the same asthat of the GHZ states in (C 2 )
2. Hene, jHCS�2 i ex-hibits the maximal entanglement entropy in the (C 2 )
2subspae spanned by fjeii 
 jejigi;j=1;2 introdued inSe. 1. In partiular, jHCS�2 (�)i exhibits greater modeentanglement than the subset of entangled oherentstates that annot be expressed in form (2). However,the hierarhial photoni superpositions are not maxi-mally entangled states in `2(C )
`2 (C ). The dissipativedynamis of the entanglement entropy of entangled o-herent states was studied in Refs. [18, 32, 33℄.It is known that a nonlassial produt state ini-dent on a beam splitter does not neessarily generateentanglement between the output modes [34℄. In fat,a 50:50 beam splitter destroys the entanglement of atwo-mode squeezed state [35℄. It is easy to see that abeam splitter desribed by the unitary operationB(�) = exp� i�2 (ay1a2 + ay2a1)�ating on two input photoni modes maps jHCS+2 (�)iinto the state1p2 � 11� e�4j�j2 (j�ei�=2i 
 j�ei�=2i ++ j��ei�=2i 
 j��ei�=2i) �� 12 sh(2j�j2) (j�e�i�=2i 
 j��e�i�=2i ++ j��e�i�=2i 
 j�e�i�=2i)� : (20)

For moderately large j�j, the exponentially deayingterm beomes negligible and we are left with an entan-gled oherent state in the output modes of the beamsplitter. Hene, the beam splitter does not destroy theentanglement of jHCS+2 (�)i for any values of the trans-mission and re�etion amplitudes. The exat entan-glement entropy of B(�)jHCS+2 (�)i, alulated as thevon Neumann entropy of the redued density matrix, isshown in Fig. 3 for a range of real � and �. Exept forlow-power (� . 1) jHCS+2 (�)i states, the maximum en-tanglement entropy is maintained throughout the rangeof transmission amplitudes of the beam splitter.The quanti�ation of entanglement in terms of anentropi quantity naturally leads to questions about its�utuations. Entanglement �utuations an be inter-preted as the root variane of a measurement of the en-tanglement Hamiltonian [36℄: in terms of the redueddensity matrix �A of a pure state in HA 
 HB , it isgiven by the expression�SE :=qtr(�AH2E)� tr(�AHE)2;where HE := � log2 �A. We show the entanglement�utuation of B(�)jHCS+2 (�)i in Fig. 4.We now show that in the Bell basisfjHCS+2 (�)i; jHCS�2 (�)i; jECS�2 (�)i;(exp(i�aya)
 I)jECS�2 (�)ig;the hierarhial at states, in some sense, omprise themost stable entanglement resoure. We onsider eahmode oupled independently to a zero-temperaturebath of photons, eah bath having an absorption rate �,with the non-Hamiltonian part of the evolution givenby �0 = �2 2Xj=1[a; �(t)ay℄ + [a�; ay℄: (21)This is the ase of (independent) Lindbladian ampli-tude damping. For an initial state �(t = 0) given by anentangled oherent state, it follows from the well-knownsolution of the amplitude damping master equation [37℄that the t ! 1 asymptoti state is unentangled. Inontrast, jHCS�2 (�)i maintain a nearly maximal entan-glement entropy SE throughout the non-Hamiltonianevolution as long as j�j2 & 1, as seen in Fig. 5. The en-tanglement entropy for this state was alulated froman analyti expression, whih we omit. It should benoted that for j�j . 1, the entanglement entropy deayswith time, but is still substantial for t & ��1. The per-sistene of entanglement during the amplitude damp-ing an be simply seen by onsidering a limit model.By taking the low-power limit � ! 0, it is lear that892



ÆÝÒÔ, òîì 148, âûï. 5 (11), 2015 Nonlassial properties : : :
1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

3

2

1

0 0.5 1.0
1.5

2.0
2.5

3.0
3.5

θ
α

SE

Fig. 3. The entanglement entropy of U(�)jHCS+N=2(�)i, � 2 [0:2; 3:0℄, and � 2 [0:1; � � 0:1℄
1.4

3

2

1

0

3

θα

∆SE

1.2

1.0

0.8

0.6

0.4

0.2

2

1

0

Fig. 4. The entanglement entropy �utuations of U(�)jHCS+N=2(�)i, � 2 [0:2; 3:0℄ and � 2 [0:1; � � 0:1℄jHCS+2 (�)i exhibits an inner produt of magnitude 1with a state 12(j0i
N + j1i
N ); (22)whih is a superposition of the two-mode vauum andthe produt Fok state j1i 
 j1i. Under the amplitudedamping map de�ned in Eq. (21), state (22) evolves to12 �j0ih0j 
 j0ih0j+ e�2�t(j0ih1j 
 j0ih1j ++ j1ih0j 
 j1ih0j) + (e�2�tj1ih1j++ (1� e�2�t)j0ih0j)
 (e�2�tj1ih1j ++ (1� e�2�t)j0ih0j)	 : (23)

Taking the partial trae to form �1(t), we omputelimt!1� tr(�1(t) log2 �1(t)) = 1:The robustness of the entanglement entropy ofjHCS+2 (�)j under amplitude damping exhibited forlarge j�j is proved by onsidering the j�j ! 1 asymp-totis regime. An expliit alulation shows that forany �nite j�j, limt!1SE = 0;whereas limt!1 limj�j!1SE = 1:The inreased stability of the entanglement of hierar-hial at states to loal amplitude damping (relative to893
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 j0i2to produe the state / j�i1j��i2 � j��i1j�i2. Ap-plying the phase shift exp(i�ay2a2) produes the Bellstate (1=p2)(j +ij �i + j �ij +i). Applying �x == j +ih �j+j �ih +j to mode 2 produes jHCS+2 (�)i;alternatively, jHCS�2 (�)i is produed (up to a globalphase) onditional on the appliation of the annihila-
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 j0i2 
 j +i3 
 j0i4 ! 1p2 (j +i1 
 j +i3 ++ e�i�j �i1 
 j �i3�tion operator I
 a2 to the above Bell state. Alongthese lines, the method in Ref. [38℄ for preparing en-tangled oherent states by a oherent photon loss maybe modi�ed in a simple way to produe the family ofstates 1p2 �j +i
2 � e�i�j �i
2� : (24)The method is based on the observation that a oherentphoton loss an generate a photoni HCS from a prod-ut of single-mode Shrödinger-at states. For exam-ple, the above HCS state is equivalent (in the projetiveHilbert spae) to (a�be�i�)(j �ia
j +ib). The imple-mentation of the oherent photon loss via a linear quan-tum optial iruit is shown in Fig. 6. In detail, we ap-pend vauum modes to the tensor produt j �i
 j +ito form the initial state j �i1 
 j0i2 
 j +i3 
 j0i4:Uij(�) := exp�12�(ayiaj � ayjai)�894



ÆÝÒÔ, òîì 148, âûï. 5 (11), 2015 Nonlassial properties : : :is a 50:50 beam splitter with � � 1, i. e., the beamsplitter is highly transmissive for mode i. ApplyingU24(�=2) exp(i�ay2a2)U12(�)U34(�)to the initial state produesj� os �i1 
 j��ei�+1p2 sin �i2 
 j�ei��1p2 sin �i4 

 j� os �i3 + j� os �i1 
 j��ei� � 1p2 sin �i2 

 j�ei�+1p2 sin �i4 
 j�� os �i3�j�� os �i1 

 j�ei��1p2 sin �i2 
 j��ei�+1p2 sin �i4 
 j� os �i3�� j�� os �i1 
 j�ei� + 1p2 sin �i2 

 j��ei� � 1p2 sin �i4 
 j�� os �i3: (25)The oherent photon loss is now implemented by pho-todetetion on mode 2, modeled by appliation of theannihilation operator a2. In the �nal step, we trae overmodes 2 and 4. In the �! 0 limit, the �+� state in (24)is produed; if photodetetion is arried out on mode 4instead of mode 2, then the ��� state is produed. Forthe initial superpositions j �i with large j�j2, � mustbe onomitantly dereased to maintain high �delity ofthe output state to jHCS�2 (�)i. The derease in � ne-essarily inreases noise in the photodetetion proess.In addition, for large j�j2, it is vital to generate theinitial produt state j �i1 
 j +i3 with high �delity.The next method that we disuss readily satis�es thisrequirement.The experimental generation of single-mode pho-toni Shrödinger-at states j �i via dispersive intera-tion between the monohromati eletromagneti �eldand a superonduting two-level system [39℄ or a Ry-dberg atom [40℄ provides some lues toward feasiblemethods for preparation of photoni HCSs. To extendthese protools to the many-mode ase, one must ef-fetively entangle the �eld states of spatially separatedresonating avities. For example, it has been proposedto generate entangled oherent states by sequential ou-pling of a Rydberg atom to two mirowave avities [41℄.In general, proposals for reating entangled �eld statesinvolve oupling the �eld modes to easily ontrollable,low-dimensional quantum systems.A simple sheme for generating jHCS+2 (�)i from a

tensor produt of even oherent states j +i 
 j +i isas follows:j +i 
 j +i H
I���! 1p2(j +i+ j �i)

 j +i CNOT����! jHCS+2 (�)i; (26)where H := (1=p2 )(�x + �z) is the Hadamard gatein the subspae K spanned by the orthonormal ba-sis of even/odd oherent states and CNOT := j +i ��h +j
I+j �ih �j
�x is the onditional �x operationon the seond �eld mode. To implement the Hadamardoperation, it is su�ient to generate the superpositionH j +i = 1p2 (j +i+ j �i) == p1 + e�2�2 +p1� e�2�22p1� e�4�2 j�i++ p1 + e�2�2 �p1� e�2�22p1� e�4�2 j��i: (27)Arbitrary superpositions of photoni oherent statesj � �i an be generated by a dispersive oupling be-tween a oherent mirowave �eld j�i and a transmonqubit if the transmon qubit an be prepared in an ar-bitrary pure state in C 2 [39℄. In addition, it has beenproposed to generate parametrially tuning states [42℄.It is worth noting that H j +i is an eigenvetor of theoperator j�ih�j � j��ih��j, whih is proportional tothe observable orresponding to the measurement thatoptimally detets j�i or j��i (in the sense of quantumbinary distinguishability problem with equal a prioriprobabilities and Bayes' ost riterion [43℄) with maxi-mal probability of suess. The pure statesH j �i havebeen studied for their role in optimal detetion of o-herent states j � �i (the �binary phase shift key�) [44℄.The CNOT gate in the sheme (26) is more di�ultto engineer than the Hadamard gate beause it requiresnot only a large intramode oherene time for the evenand odd oherent states but also a large intermode o-herene between two mirowave avities. However, iftwo transmon qubits an be prepared in a maximallyentangled (i. e., GHZ) state in (C 2 )
2 and indepen-dently oupled to spatially separated photoni modesof mirowave avities via a dispersive interation, thisCNOT gate an be implemented. We now provide thedetails for fatoring the unitary operator orrespondingto the CNOT gate into easily implementable unitaryoperations on the �eld/qubit and qubit/qubit subsys-tems.We �rst note that we an fator the CNOT gate on895
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ei�ayaFig. 7. Quantum iruit diagram for the transformationHj +i1 
Hj +i2 
 jgia1 
 jgia1 ! jHCS+2 (�)i1;2K 
 K into the following produt of loal Hadamardgates and the onditional �z gate:CNOT = (I
H)(j +ih +j 

 I+ j �ih �j 
 �z)(I
H): (28)We have already desribed the proedure for applying aHadamard gate to the �eld via the loal oupling of the�eld mode and transmon qubit; hene, we take the ini-tial state to be H j +i1
H j +i2
jgia1
jgia1 (wherewe now expliitly inlude the �eld mode labels 1, 2 andthe transmon qubit mode labels a1, a2) and show howto implement the onditional �z gate. Let an orthonor-mal basis for a transmon qubit Hilbert spae be takenas fjgi; jeig. A quantum iruit diagram showing ourmethod for indiretly performing the CNOT gate onthe initial produt state is shown in Fig. 7. In this ir-uit, the �rst �eld/qubit operation is a � rotation ofthe qubit a1 onditioned on the parity of �eld mode 1and is labeled in Fig. 7 by the operation with the Psupersript. Expliitly, this unitary operation is givenby j +i1h +j1 
 I+ j �i1h �j1 
 �x: (29)A similar onditional transformation has been ahievedexperimentally in Ref. [39℄. This transformation shouldbe followed by a CNOT gate between the qubit modesa1 and a2, as shown; we assume that this gate is aes-sible with high �delity by preise ontrol of the qubit�qubit state. At this point, the full normalized state isgiven by12 ((j +i1 
 j +i2+j +i1 
 j �i2)
 jgia1 
 jgia2 ++ (j �i1 
 j +i2 + j �i1 
 j �i2) 

jeia1 
 jeia2) : (30)The next step is a � rotation of �eld 2 onditionedon the state of the qubit a2. This operation has beenimplemented in the experiment reported in Ref. [39℄.

We reall from Se. 3 that the � phase rotation op-erator ats like �z in the subspae K. Applying theCNOT gate between qubits a1 and a2 again, followedby the parity-onditioned � qubit rotation, gives thedesired CNOT gate in K 
 K. Finally, applying theloal Hadamard operator I
 H produes the outputstate jHCS+2 (�)i 
 jgia1 
 jgia2 .The above method for generating jHCS+2 (�)i is notthe most e�ient possible. It would be favorable toutilize a single qubit or few-level mode that an be se-quentially entangled with both �elds [45℄.5. MORE EXOTIC HIERARCHICALSUPERPOSITIONSThe notion of hierarhial at states an be ex-tended to deeper levels of the hierarhy. The prini-pal motivation for an analysis of these states omesfrom the theory of quantum error orretion, whihuses enoded states to strengthen quantum informa-tion against unwanted deoherene. In Refs. [46, 47℄, alass of �onatenated� GHZ states of the formjC-GHZ+M;N i := 1p2(jGHZN i
M + jGHZN i
M )were introdued as entangled states that are relativelystable with respet to loal noise ompared to thefull GHZ state jGHZ+NM i. An analog of the C-GHZstates in (C 2 )
MN an be onstruted from an HCS in`2(C )
MN by formingjC-HCS�M;N i :=:= 1p2 �jHCS+N i
M � jHCS�N i
M� : (31)This state an retain oherene on the sale ofN modeseven after global oherene on the sale of all MNmodes has been lost. The C-HCS states are expetedto be useful as enoded photoni states for ontinuous-variable quantum error orretion shemes. Of ourse,the entangled oherent states an be onatenated in asimilar way:jC-ECS�M;N (�)i := 1p2 �� �jECS+N (�)i
M � jECS�N (�)i
M � : (32)It also follows from the basi theory of quantumbinary distinguishability that the optimal projetion-valued measurement for distinguishing j�i
N fromj��i
N has elements896
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N must subsequently be lost. In a higher-orderhierarhial at state, these �shells� of oherene de-grade aording to the strengths of loal and nonlo-al interations. It has been suggested to generatejC-GHZ+M;N i in spin-1/2 hains by appliation of the2-loal Mølmer�Sorensen unitary gate to the NM -mo-de GHZ state (1=p2 )(j0i
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