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We motivate and introduce a class of “hierarchical” quantum superposition states of N coupled quantum

oscillators.

Unlike other well-known multimode photonic Schrédinger-cat states such as entangled coherent

states, the hierarchical superposition states are characterized as two-branch superpositions of tensor products
of single-mode Schrédinger-cat states. In addition to analyzing the photon statistics and quasiprobability dis-
tributions of prominent examples of these nonclassical states, we consider their usefulness for high-precision
quantum metrology of nonlinear optical Hamiltonians and quantify their mode entanglement. We propose two
methods for generating hierarchical superpositions in N = 2 coupled microwave cavities, exploiting currently
existing quantum optical technology for generating entanglement between spatially separated electromagnetic

field modes.
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1. INTRODUCTION

Maximally entangled quantum states occupy a dis-
tinguished position in the theory of quantum in-
formation. One has only to consider the central
role of Greenberger—Horne—Zeilinger (GHZ) states in
(C)®N [1] in many quantum algorithms and quan-
tum teleportation protocols [2] to be convinced of
their importance. From a practical perspective, such
states comprise the most valuable quantum resource,
in terms of both entanglement and usefulness for quan-
tum metrology [3,4]. Unfortunately, in the case of N
two-level quantum systems such as spin-1/2 chains, the
maximally entangled states are sensitive to local errors
(e.g., phase flips) and can quickly lose all nonclassical
resources. However, because of the countably infinite
dimension of the Hilbert space of a chain of quantum
oscillators (isomorphic to (¢2(C))®N), one may hope
to engineer maximally entangled states of a subspace
isomorphic to (C?)®V that are robust under quantum
evolutions corresponding to relevant sources of deco-
herence.

The entangled coherent states (see Ref. [5, 6] and
the references therein) are paradigmatic examples of
entangled states in (*(C) @ (*>(C). However, only a
strict subset of these are maximally entangled. Explicit
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conditions for maximal entanglement of linear combi-
nations of products of coherent states were found in [7]
and multimode entangled coherent states have been
studied in the context of encoding continuous-variable
quantum information [8-10]. To extend the notion of
GHZ states to a separable Hilbert space (i. e., a Hilbert
space with a countable orthonormal basis) in a general
way, we first introduce the two-branch, N mode states
1 @N —

s U0, 2= i,
where |¢) is a single-mode pure quantum state of the
Hilbert space H and U is a partial isometry with |¢)
in its domain. When z = 0, the branches |¢)®" and
U®N|¢)@N are orthogonal in H®N and the resulting
state is a strict analog of a GHZ state. For example,
superpositions of oscillator Fock states proportional to

)N + e |m) O,
with ¢ € [0,27], fall into this class and are interes-
ting for their quantum optical properties. Such su-
perpositions represent the most obvious generalization
of GHZ states to the Hilbert space of N oscillators,
(2(C))®N. The case z # 0, although deviating from
the strict notion of GHZ states due to nonorthogonal-
ity of the branches, contains many important macro-
scopic N-mode superpositions. The entangled coherent
states (having |¢) = |a) and U = ei®@'aD(B), where
0 € [0,27] and D(/3) is the oscillator displacement ope-
rator for a, B € C) serve as well-studied examples.
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However, the focus of this paper is on revealing certain
new states of the z = 0 set. In particular, we consider
taking

I+Vv

9 =lex) = (= ) 16, 16 €

where V' is a single-mode partial isometry containing
|¢') in its domain and w = (¢'|V]¢') € R. Then the
state

S I-V .
is orthogonal to |e;). Taking
U = &N (ler)(ea] + Je2) (en])

produces two-branch superpositions of the following
form, which we refer to as hierarchical cat states (HCS):

L (@MY
HESK) =75 (( )

+ e” (7%1_)2|?)®N> )

The origin of the name “hierarchical cat state” is
self-evident: |HCS%) is an equal-weight superposition
of two orthogonal branches in H®Y (i.e., an N-mode
“cat” state), while each branch is a tensor product of
“kitten” superpositions in the single-mode Hilbert space
‘H. This construction allows considering maximally en-
tangled states in a (C2)®Y subspace of (¢2(C))®" that
retain single-mode quantum coherence in the states
|¢") £V |¢') even after intermode decoherence processes
reduce the superposition state |HCS§V> to an equal-
probability statistical mixture of tensor products.

When H = (?(C), [HCS%) is in a (complex) two-di-
mensional subspace of (£2(C))®N. By appropriate
choices of V and |¢'), the branches of |[HCS%) can take
the form of tensor products of single-mode photonic
Schrédinger-cat states such as the even and odd cohe-
rent states |1) o |a) £ |—a) [11] or superpositions
of squeezed states. For these photonic HCS states, it
is clear that if the single-mode coherence time is suffi-
ciently long (e. g., greater than the intermode coherence
time), a statistical mixture of N-mode Schridinger-cat
states remains even after the intermode coherence is
lost by some decohering process.

The photonic HCS state obtained by taking V' =
= eima'e {5 be the oscillator m-phase shift, |¢") = |a) a
coherent state of the quantum oscillator with the am-
plitude |a], and @ = 0 or # = 7 in (2) was introduced in
Ref. [12]. We label these states by [HCSE () (the “4”
symbolizing § = 0 and the “—" symbolizing § = 7), and
they serve as the canonical examples of photonic HCS

in this work. Each branch of |[HCSE (a)) is an N-fold
tensor product of either the even coherent state |i)4)
or the odd coherent state |¢)_). If N is an odd natural
number, then the even (odd) branch is an eigenvector

of the photon parity operator exp {iﬂ' Zj\le a;r.aj} with

the eigenvalue 1 (—1), and hence

N
exp i Y ala; 3 JHCSS () = [HCST(a)).

j=1

If N is an even natural number, |[HCS () is invari-
ant under such a local w rotation. Independent of N,
a photon parity measurement results in a projection of
|[HCSZ (a)) onto either the even or odd branch. The
entangled coherent states

[ECSR () o< [a) Y & | =)@

are invariant under the bosonic algebra freely gener-
ated by a;aj, i, j € {1,...,N}, and they are there-
fore considered to be Barut—Girardello coherent states
of sp(N,C) [13]. The state |[HCSE(a)) is invari-
ant under the algebra freely generated by the iden-
tity operator and the two-photon annihilation opera-
tors a?, j = 1,...,N. This algebraic property al-
lows |HCS%(a)) to be considered as superpositions
of sp(N,C) Barut-Girardello coherent states. How-
ever, while properties such as quasiprobability densi-
ties, photon statistics, and dissipative evolutions of the
entangled coherent states have been thoroughly docu-
mented [14, 15], a detailed analysis of the properties of
photonic HCS states is lacking.

When |HCSS (a)) is shared between two spatially
separated parties, the state |[HCSF (a)) serves as an
entanglement resource for teleportation of an arbi-
trary superposition of coherent states of the form
cila) + ca]—a) in the same way as the GHZ state
(1/v/2)(J0)2N + [1)®N) serves as an entanglement re-
source for teleportation of an arbitrary qubit pure state.
This follows from the fact that [HCSF (a)) are maxi-
mally entangled states in the 4-dimensional sub-Hilbert
space spanned by {|(=1)7a)®@|(—=1)a)}; ref0,13". The
states |[HCS7 (a)) are also useful probes for high-pre-
cision phase estimation of Hamiltonians of s[(2, C) [19]
(see also Sec. 3.1). These intriguing attributes moti-
vate a more thorough description and analysis of HCS
states.

1) In fact, the states |HCSQi(a)> exhibit the same amount
(1 ebit) of entanglement entropy as [ECS; (a)) [16, 17]. A “Bell
basis” of maximally entangled states for this 4-dimensional sub-
Hilbert space is given by [HCST(a)), |HCS, (a)), [ECS, (a)),
and (7@ @ I)|ECS; () [18].
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Nonclassical properties ...

The remainder of this paper is structured as fol-
lows: in Sec. 2, we indicate some nonclassical properties
of [HCSE (a)), citing the nonclassical properties of the
entangled coherent states for comparison; Sec. 3 is de-
voted to exploration of the quantum resources, in par-
ticular the metrological usefulness and entanglement
entropy, of |HCS§(Q)>; in Sec. 4, we propose two meth-
ods for generating [HCSY (a)) using techniques that are
accessible by current quantum optical technology; in
Sec. 5, we demonstrate how the idea of hierarchically
encoding continuous-variable quantum information can
be deepened with many levels of hierarchy. We do not
attempt an exhaustive analysis of photonic hierarhical
cat states, but rather try to show the most salient prop-

1

2

(ECSR (a)[HCSK (@) = ﬁ (1
§E

4 (1

1 2

(ECSR (a)[HCSK (o) = Nieweirs (1
L \2

0,
(ECS¥ () HCS R (a)) =

(1/2 = (1/2)e20")N/?

erties of these states by considering basic examples.

2. NONCLASSICAL PROPERTIES OF HCS

Here, we note the basic photon statistics of
|[HCSY (@) for arbitrary N, derive some of its
quasiprobability distributions for N = 2, and show a
duality between Pauli matrices and photon operations
in the subspace of /2(C) spanned by the even and odd
coherent states. Throughout this section, we compare
the nonclassical properties of [HCSE (a)) to those of the
entangled coherent states, which are more familiar. We
show the inner products of |[ECST (a)) and [HCST (a))
immediately:

N/2 N/2
1 1
e‘2a2> + (5 — 56_25“2) , N even,
s @
e 2 ) , N odd,
A\ N2
e 2 ) , N even,
A\ N2 11 N/2 (4)
e 2@ ) — (5 — 56_26“ ) , N odd,
N even,

+

/1 — e2Na?

where a € R. It is intriguing to note the @ — oo
asymptotic form of these inner products (the N — oo
asymptotic is always zero). For any odd N and for
reasonably large «,

(ECSR (o) [HCSR (o)) ~ 0,

while for any even N and any «,
(ECS 3 (a)[HCS 5 () = 0

identically. The total expected photon number in all
of these states is asymptotically Na?2, i.e., |HCS§(Q)>
and |ECSZ ()) differ mainly in photon statistics and
quantum correlations, not in intensity. In particular, if
P. (P, =1— P,) is the projection onto the even (odd)
photon number subspace® of (¢2(C))®N, it is clear that

P,|ECS% (a)) = P.JECSy(a)) =0

while

, N odd,

1

P,|HCS (o)) = P.[HCSy () = 7

Because of its symmetry, [HCSE () has a simp-
le expression as a superposition of tensor products of
coherent states. We first consider the direct product
ZiaX ...X Lo (N times) with the group operation given
by addition modulo 2. This group is isomorphic to the
Abelian group U with elements

N
®exp(ikj7ra}aj), k; € {0,1},

Jj=1

and the group operation being operator multiplication.
Let 4 (4l) be the subgroup of elements corresponding
to k such that the number of nonzero entries of k is
even (odd). Then we can write (again for a € R)

2) Explicitly, P. = > n||n||2=0 mod 2 P’n, Where Py is the rank-one projector onto the ray [n1) ®...® [nn).
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Fig. 1. Photon number distribution P(n,m) for
[HCSE_,(a=3)); n, m € {1,...,20}
Na?/2
+ e
X Z (ch*N/2 a2+ (=1)/F g™ N/2 a2) Z u| x
j=1.2 el
x )@ (6)

From the above expression, the expansion in the Fock
state basis can be made explicit by using the fact that

— o lof?/2 E o
a)y=e ny.
|ar) Z /—!| )

The photon number distribution of [HCSY; (a)) for
any « € C is given by
eiNla‘z
oN+1
1 N
X . (14+(=1)™ ) x
& ey

=1

P(n) = [(n[HCSY (o) * = X

Nk
x o=l @
nk'
where |n) := |ny) @ ... @ |ny) for n € NV. Tt is clear

from the above expression that if not all entries of n
are even or odd, then the photon number distribution

vanishes. For N = 2, this results in a checkerboard
pattern of zero and nonzero probabilities on the lattice
Zi>o % L>o (Fig. 1). This feature stands in contrast to
the distribution |(n|ECS} («))|?, which is identically

zero if and only if ZkN:1 ng is odd. Our present focus

.. on the photon statistics of |HCS}(a)) is merely due

to the fact that they are the hierarchical cat states of

“... most immediate practical use for continuous-variable

quantum information processing. Indeed, more com-

plex photon statistics are furnished by hierarchical cat

states formed, e.g., from the Z /47 coherent states,

which generalize the even/odd coherent states by form-

ing a C* subspace of /2(C) having an orthonormal basis

|a) +|—a) + |ia) + |—ia)

ep) = ,
le0? 2e~1a?/2, /2 ch]al? + 2 cos |af?
o) = |a) — |—a) —iia) + i|—ia)
! 2e—1al?/2, /2sh [a? + 2sin]al?’
: . (8)
|62> — |a> + |_a> — |Za> — |—ZCM>
2e—1al?/2, /2 ch]a]?> — 2 cos [a]?
a) — |—a) +ifia) — i|—ia
oy = o) = l=a) + i) if—ia)

B 2e=1al?/2, /2sh a2 — 2sin]al?’
where (n|e;) # 0 if and only if n = j mod 4.

The variance of a single-mode quadrature

RON

1
V)
in |HCSE (a)) is

—if ot if
(aje”" +aje™)

(9)

for all #. Because this variance is greater than 1/2,
|[HCS () is therefore not squeezed in any quadrature.
The |HCSE (@) do not exhibit second-order squeezing
[20] (also referred to as amplitude squared squeezing)
because they are eigenvectors of a? forallj=1,... N.
The single-mode Mandel Q; parameter of [HCST (a))
is always negative, but exhibits a dip for |a] ~ 3/2 as
shown in Fig. 2.

We now turn to the quasiprobability distributions
and functional representations of |HCS3 (a)) with the
focus being on the functional form of the hierarchi-
cal coherences. In addition, we use the explicit ex-
pressions of the quasiprobability distributions to infer
nonclassical features of the states. Each quasiproba-
bility distribution for a quantum state p of (£2(C))®N
is obtained by the Fourier transformation on CV of
a quantum characteristic function corresponding to a
particular ordering of bosonic operators [21]. It is well
known that negative values of the singular quasidis-
tribution (i.e., the Sudarshan-Glauber function) for

1 .
3 + |a*(coth 2|a|? + cos(2Arg o — 26))
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Nonclassical properties ...

Fig.2. Mandel Qs parameter for [HCSE (a)) for |a| €
€1[0,3]

a given quantum state p indicate nonclassical photon
statistics, i.e., indicate that the photon number distri-
bution is not Poissonian [22]. In a similar spirit, the
existence of negative values of the Wigner function for
a given state indicates non-Gaussian quadrature cor-
relations. The explicit form of the Wigner function of
|[HCSY (@) was shown in Ref. [12], but the analytic
expression is only useful for technical purposes. The
important point is that the Wigner function of a pho-
tonic state has an interpretation as a continuous set of
interference experiments. This is clear from the defini-
tion of the single-mode Wigner function

W(3) = (2/7%)(D(7)e™ *D(—));

it shows how a quantum state changes when its co-
herent-state components are displaced by —v in phase
space, are then reflected in phase space, and are dis-
placed again opposite to —y. Coherence between
coherent-state components appears as fringes in the
Wigner function. Accordingly, the states |HCSE(a))
exhibit two sources of interference: 1) from the cohe-
rence in each branch |1+ )®?, and 2) from the coherence
between the branches. These two sources of coher-
ence are not immediately visible from the expression
for [HCST (a)) as an unequal superposition of tensor
products of coherent states.

The existence of zeros of the @Q-function of a given
quantum state indicates that the singular quasidis-
tribution for this state takes negative values and,
hence, exhibits nonclassical features. The @Q-function
of [HCS} (), which is a true probability distribution
on CV, is given by

L (@, 8), [HCSE (@) 1

™

QHCSR ()

887

For N =2 and « € C, we have

Qjuics (o (B B2) = 5 (Q+(B)Q(52) +

exp {—(161* +15) }
+ Q_(p1)Q-(B2)) + 27 sh(2[a?2) x

x (sh(2Re(B1a)) sh(2Re(B2a)) —
— sin(2Im(B; ) sin(2Im(f20))) ,

(10)

where Q4 (-)(z) is the Q-function of the even (odd)
coherent state [14]. The Q-function of |[HCSS (a)) va-
nishes if and only if each of the terms vanishes. We take
B1, B2 € C such that Re(fra) = Re(fza) = 0. In addi-
tion, we require that 5, and o satisfy: 1) Im(f1a) =
= (2k + 1)7/2, where k € Z, and 2) Im(f2a)) = m,
where m € Z. Under these constraints, Q(81) =
= @Q_(f2) = 0. For these values,

sh(2Re(B1a)) sh(2Re(f200)) —
—sin(2 Im(f1 o)) sin(2 Im(S2ax)) = 0,

and hence the @Q-function is zero at these points of
CxC

In addition to the quasiprobability distributions,
the quadrature distribution, calculated as the squared
modulus of the Schrédinger wavefunction, is an espe-
cially useful true probability distribution for systems
of oscillators. However, the quadrature distribution is
quite specific; all that is needed is a representation of
the pure state |[HCSS ()) in a functional Hilbert space.
We choose the Bargmann representation [23] because
relevant quantities such as the Schrodinger wavefunc-
tion and the singular quasidistribution of a pure state
can be derived from the Bargmann representation by
the use of variants of the Segal-Bargmann transforma-
tion. As an analytic function f‘HCSZi(a» on C x C, the

state [HCSZ (a)) is represented by

fmcs @y (2:0) = V2770

L ch(a(z+w) ¥ "’727‘2\ ch(a(z — w))
1 —e—4lal? '

(11)

That f\Hcsg(a»(sz) takes the form of a sum of un-
equally weighted functions is a consequence of the fact
that [HCST (a)) is an unequally weighted superposition
of tensor products of coherent states.

The subspace K = C? of (?(C) spanned by the even
and odd coherent states |¢1) has the property that
certain photonic operators carry out equivalent oper-
ations as the Pauli matrices in this subspace. This
allows quantum operations of a two-level system to be
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interpreted as photonic operations compressed to this
subspace. For example, keeping in mind the action of

or = [ ) (-] + [V ) (P4 ]
in K, we note that
althy) = ar/tanh |a?[_) = ay/tanh |a|?0, |14 ).

Considering the Pauli matrices as observables of a
spin-1/2 particle, we find the following expressions in

terms of self-adjoint photonic observables:
Oy = s |Zl|l(2|a|2)P’Cx(Arga)Plc,
o, = el \/sh@laf?) W Pealn/>+Ama) p (12)
@7 2 Rel(a2) PK(eiwaTaCF + aweiimm)PKa

where Py is the projection on K. These expressions
for Pauli matrices show a duality between quadratures
and “magnetization” in the subspace K. For example,
if || is sufficiently large, we have

P]Cl‘(Arg Q)PK = \/§|a|az,

i.e., the interaction picture dynamics of a quantum os-
cillator (restricted to ) driven with unit amplitude is
equivalent to a spin-1/2 particle with the magnetic mo-
ment v/2|a| in a unit magnetic field along the z axis.
The Pauli matrices in (12) do not have unique expres-
sions in terms of products of photonic operators and
Px, because we can rewrite Px as

1

2|a|2 P’C(aQe—QiArga + aT262iArga)P’C.

Some of these alternative expressions can be instruc-
tive; for example, we can write

o, = P cos(ﬂ'aTa)P;g.

A similar duality can be derived for su(4) observables
in terms of projectors in the subspace spanned by
states (8) and photonic operations.

3. QUANTUM RESOURCES OF HCS

3.1. Metrological usefulness

We begin this section by recalling the main problem
of quantum metrology and how certain quantum states
can be used for estimation of dynamical parameters
at higher precision than any classical states. Given a
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smooth manifold M, let quantum states be encoded by
a differentiable map specified by A — py for A € M.
The goal is to estimate the parameter A with greatest
possible precision by using an optimal quantum mea-
surement and optimal classical post-processing of the
measurement results.

In this section, we are concerned with the special
case of estimation of a displacement parameter. In this
case, the parameter manifold is a line with a real coor-
dinate x € R and the state

—izH iz H

pe =€~ poe

lies on a path parameterized by x and generated by the
self-adjoint z-dependent operator H. If {M(dz)} is a
positive operator-valued measure (we refer to { M (dx)}
as a ‘‘quantum measurement” or, simply, “measure-
ment” from now on), which is an unbiased estimator
of x,i.e.,

r= /x'tr(pmM(da/:')),
R
then the quantum Cramér—Rao theorem [24, 25] states
that
1

((62Mm)%) > (pol?)’

(13)
where

(@iu) = [ (0 = 2wl M)

R

is a general expression for the variance of the quantum
measurement and I, = L is the symmetric logarithmic
derivative operator defined by the equation

dp .

=
The quantity tr(pgL?) is called the quantum Fisher in-
formation of py and is constant on the unitary path
generated by H [26]. If po = |¢o)(¢o] is pure, then

[H,p] = %(L/Hpb)-

tr(poL?) = (tr(poH) — tr(poH)?).

Hence, if an experimenter has unconstrained access to
measurements saturating inequality (13), then a quan-
tum state with larger quantum Fisher information with
respect to H can be considered a more useful resource
for estimating the displacement parameter x. In this
section, we focus on using certain multimode pure
states [¢p) € HEN as probes for displacement metrol-
ogy for paths generated by 1-local Hamiltonians, i.e.,
H of the form

H=Y HY oIy .

j=1
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Specifically, the metrological problem at hand consists
of: 1) preparation of N oscillator modes in the probe
state [ECS{(a)) or [HCS}(«)), 2) application of a
global unitary operator ®§V:1 exp(izH;) with H; = H
being an oscillator Hamiltonian and = € R, and 3) es-
timation of x by an optimal separable measurement
on the N modes. It is important to note that deter-
mination of the optimal separable measurement cor-
responding to the probe state and the Hamiltonian H
requires methods of quantum estimation theory; in par-
ticular, the optimal measurement does not necessarily
correspond with traditional methods of oscillator sig-
nal detection such has homodyne detection. In this
section, we assume that the optimal measurement can
be performed for any H and we determine the set of H
for which |ECSY (a)) and [HCS} («)) allow a greater
precision in the determination of x than the respective
tensor product branch states | £ a)®V and |4 )@V,

Ag an example of displacement estimation in a finite
dimensional Hilbert space, we can consider the prob-
lem of estimation of a phase parameter # imprinted on
a quantum state pg = e poe®H . We take

H= Zazj) @In-_1

j=1

and take py to correspond to the GHZ state |0)©N +
+ |1)®N /{/2. The quantum Fisher information of pg
with respect to H is 4N?2; in fact, this is the maximum
possible value of the quantum Fisher information
in (C?)®N with respect to 1-local Hamiltonians of
unit operator norm [3]. In contrast, any product
state has the maximal quantum Fisher information of
order N over the set of such Hamiltonians. This fact
suggests an ordering of superposition states based on
their maximal usefulness for quantum metrology as
compared to the maximal usefulness of the individual
pure states that comprise the superposition. The
following definition serves to characterize the multi-
mode, equal-weight superposition states in a separable
Hilbert space as “metrologically useful”; such states are
extensively more useful for displacement estimation
of a predefined set of self-adjoint generators than the
component branches.

Definition 1. An equal-weight quantum superpo-
sition of ¢ linearly independent pure states,

[ oc D ls) € (@),

is considered metrologically useful when the following
condition on the quantity N"F(|w)) is satisfied:

889

MaXHed,y,, (W(AH)?|w)

1 & 5
Ejﬂ Hé{lﬁ{(loc(iﬂﬂ(AH) ;)

N (|w)) :=

€ O(ntot)7 (14)

where

CIAH)?|) = CIH?|) = ([H])?,

N
Nior = (W] Za}aj @ Tn_1|w)
j=1
is the expected total photon number, A is an algebra of
observables on (2(C), and A, is the linear subspace
of A®N in which each element is “I1-local,” i. e., has the
form Zj\jzl x; @ In_y for ; € A

The set Ai-;o should be such that the denomina-
tor in Eq. (14) is nonzero. The restriction to 1-lo-
cal observables in Definition 1 allows using product
states as a scaling standard. Specifically, given H =
= Ejvzl zj € Ai_joc (here, we have omitted the iden-
tity operators for clarity), and a product state |¢)) =
=Wy @@ M) it follows that

(WI(AH)?[¢) < Nmax; (0D|(AeD)?|pD). (15)

Hence, the variance of a measurement of a 1-local ob-
servable always scales linearly in the number of modes
when the system is in a product state. A pure state |w)
having the above form is metrologically useful if there
exists H (having the 1-local form above) such that

(@ (AH)’|w) € O(Nngor max( 7] (Aa )2 [uf")).

The quantity N"F was originally introduced as a
measure of macroscopicity for quantum superpositions
in (C2)®N [27]; in that context, A = su(2,C) (repre-
sented by the Pauli matrices) and ny,; is taken to be
equal to the number of modes N. The notion of metro-
logical usefulness in Definition 1 refers to the greater
ultimate precision achievable in the quantum Cramér—
Rao bound when the displacement parameter is en-
coded in the equal-weight quantum superposition state
|w) compared to the ultimate precision achievable when
the displacement parameter is encoded in branches
{|m)}E _, comprising |w). It should be noted that
we can speak of a superposition state as being metro-
logically useful only if the algebra A is specified. In
addition, there may be many ways to write |w) as an
equal-weight superposition of pure states; in that case,
Definition 1 clearly refers to the metrological useful-
ness of |w) relative to a given decomposition of |w) into
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branches. In realistic parameter estimation protocols,
the branch decomposition could be imposed by the pre-
ferred basis of an experiment.

In the case of a separable Hilbert space H, the al-
gebra A does not have to be represented in the von
Neumann algebra B(H). Many observables of interest,
e.g., the quadrature operators and the photon number
operator, are unbounded on H but appear in quantum
optical Hamiltonians of interest to quantum metrology.
However, for most quantum optical states of interest,
these unbounded operators have a finite second mo-
ment [25] and therefore have a bounded variance in
these states. In particular, if an unbounded, essentially
self-adjoint, operator z = z satisfies (w|2?|w) < oo for
a normalized superposition state |w) = 3_;[¢;), then
(¥j|2?[h;) < oo for all j. This feature can be used to
introduce a Lie algebra for which the state w is metro-
logically useful [19]. A is then formed by taking the
1-local sums of essentially self-adjoint elements of this
Lie algebra (we have here assumed a representation on
H). In order for the denominator of the expression for
N"F to be well-defined, at least one branch |¢);) of |w)
must not be an eigenvector of all essentially self-adjoint
elements of the Lie algebra.

A simple nontrivial example shows that [ECS} (a))
is metrologically useful when A;-j,. is formed from ob-
servables of the Lie algebra bz = (span{af,a,1},[-,]),
represented as linear operators on (2(C) in the usual
way. Given a € C, the even and odd coherent states
lth+) (which coincide with |[ECSE_, (@))) exhibit an
order-|a|? variance for measurements of the quadra-
ture corresponding to the direction Arg(a) and exhibit
squeezing in the variance of measurements of the con-
jugate quadrature corresponding to Arg(a) + w/2 [28].
Physically, this is because the quantized electric field
is 7 phase-shifted (in expectation) between the |a) and
|—a) coherent states. Explicitly, for & € R and the
quadratures z(9) as above,

(¢+|(Ax(°))2|zp+> =a?(1 4 tanha?) + %
while
(4} (Aa(™/D)2,) = £ — (1 — tanh ?).

Thus, if « is purely real, the # = 0 quadrature ex-
hibits large fluctuations, while the conjugate quadra-
ture fluctuates just below the vacuum level. Since
the only observables arising from h3 are the oscillator
quadratures and the identity, it is clear that an observ-
able ZN zja;r. + Z;a; exists that exhibits variance of

j=1
the order of N2a?max; |z;|? in [ECS{(a)). On the

other hand, since every quadrature z(?) exhibits vari-
ance 1/2 in the coherent state | + a), any 1-local ob-
servable Zjvzl zja;f- + Zja; has a variance of the order
of N max; |zj|? in | £ a)®V. Using Definition 1, we see
that taking Aj-;0. to be composed of observables from
bz allows [ECSE(a)) to be considered metrologically
useful. In particular, by taking z; = = € R, |[ECSE (a))
are metrologically useful for estimation of global ampli-
tude displacements ®;V:1 D;(z) of N-mode oscillators.
The estimation of arbitrary local displacements in the
complex plane comprises a multiparameter (2N real
parameters) estimation task [29]. Tt is an interesting
problem whether a measure analogous to N"F can be
used to identify Schrodinger-cat states as a resource for
parameter estimation of more general quantum dynam-
ics.

It should be noted that [ECSZ ()) is not metrolo-
gically useful when A;_j,. is composed of observables
from the oscillator Lie algebra

h, = (span{aTa, aT,a,]I}, )]

instead of h3. This is because the 1-local photon num-
ber operator E;\;l a;f-aj exhibits the extensive variance
Nla|? in the coherent states |+a)®”, and therefore the
ratio in Definition 1 exhibits linear scaling with N, the
number of modes, and not the total number of photons.

We now detail the argument that [HCSZ(a)) are
metrologically useful when the algebra A is the Lie al-
gebra of observables of s5[(2, C). Algebraically, it is sim-
pler to show this fact for a closely related hierarchical
cat state. By returning to (2) and taking |¢) = |¢4)
and

U = e 2 (jg ) (| + [ ) (W),

the following state is produced:

1 a) + |—a eN
o) =5 ( (S5 )
V2 \\V2 + 2¢—2lel
lia) — |—ia) \“N
<\/27— = - (16)
We consider the 1-local Hamiltonian

N
Z(Ea(jﬂ + zaﬂj)Z) ® ]IN—l
j=1

as would describe two-photon parametric downconver-
sion into N modes, each with a classical pumping am-
plitude z € C. Because

@?iy) = alyy), ey ) =~y ),
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it is clear that for any states

1), [€2) € spanc {[v4), €™ /2 ),

the following Pauli matrix/two-photon quadrature du-
ality holds:

Loy 12
= (&1l (@ +a")[e),

(&ilo:|62) (17)

where

7s = [os) (g] = e (el

is the appropriate Pauli matrix in spanc{|¢4),
exp(irata/2)|w_)}. From this, it is clear that the
variance of

N
Z za3)2+za J)2)®]IN 1
j=1

in |Q(a)) should be of the order of N2|z|?|a|*. In fact,
for a € R, the variance is
4N%Re(za® (4 Re(Z%a*) —

)2+ 8Re(za?)? +

+ 4|22 |a)? (tanha + cotha?) +2|z%), (18)

which is of the order of N?|z|?|a|* for Argz
= 2Arga. In addition, the variance of Z;V:l(?a(jﬂ +
+ 2a’9)?) @ Iy_; in the product states |4 )®N or
(exp(imata/2)|_))®N is at most of the order of
N|z]*|a|?, as can easily be verified. The final step
in finding a minimal algebra A that allows |Q(«a))
to be metrologically useful is to append the element
(1/2)ata + 1/4 to the set {at?/2,a?/2} and check that
the 1-local observable given by, e.g., Z a ;0; does
not exhibit fluctuations in either of the branch states
|04 )2N or (exp(irata/2)[y_))®N scaling as |af*.

the 1-local photon number operator were to exhibit
such fluctuations, then the ratio in the left-hand side
of Eq. (14) would lose the property of scaling with the
total expected number of photons in |Q(«)). Tt is easy
to verify that the 1-local photon number operator ex-
hibits variance of the order of N|a|? in these product
states, and hence |Q2(«)) is metrologically useful when

)

In particular, when z € R, the calculation above
shows that [HCS% (@) are metrologically useful for dis-
placement estimation, where the displacement parame-
ter now corresponds to the global squeezing amplitude
z € R Tt is intriguing that while some superpositions

1 1 af? a2
—a'a+ -,

A=s(2,0) = (Spanc{ e
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of the sp(N, C) Barut—Girardello coherent states do ex-
hibit squeezing, the |[HCS}; (a)) state does not; in addi-
tion, the product states comprising each of the branches
of [HCSY () exhibit negligible squeezing if |a|? > 1.

However, if squeezed states and their superpositions
are available, one may wonder if there exist other types
of hierarchical cat states having N"F" scaling exponen-
tially in a squeezing parameter when the observables
of Ai-1pc are taken from s((2,C). Indeed, it is known
that squeezed states provide a higher precision in the
estimation of a single-mode squeezing parameter than
coherent states do [30]. The following hierarchical cat
state, having branches composed of superpositions of
ideal squeezed states, allows such scaling:

N
( o)
QN
+< |0>> , (19)

where we assume that o, w € Ry and take

1
V2

(D(@) + D(=a))S(w)
V/2 + 2exp(—2a2e2v)

(D(ia)) — D(—iar))S(w)
V/2 — 2exp(—2a2e2v)

S(w) := exp {%(mﬂ _ wam)}

as the unitary squeezing operator. For such o and w,
the identity

D(a)S(w)

S(w)D(ae™)

holds and hence the above hierarchical cat state can
be rewritten as S(w)®V|Q(ae®)). The N™F value
of S(w)®N|Q(ae®)) exhibits the same scaling as the
NTF value for |Q(ae®)), i.e., of the order of Na2e??,
because S(w) acts on s{(2,C) by the adjoint action.
As a final remark, we point out that the coherent
states +|a) are minimum-uncertainty states for the
Heisenberg uncertainty relation for observables of hs
while the even/odd coherent states [t ) are minimum-
uncertainty states for the generalized uncertainty re-
lation for observables of su(2,C) [31]. This is not a
surprising coincidence because the definition of metro-
logical usefulness (Definition 1) requires that the max-
imum uncertainty in the product states comprising the
branches of a state having form (1) be extensively
smaller than the maximum uncertainty in the multi-
mode superposition state.

Thus far, the discussion of Definition 1 has been
mainly mathematical. It is useful to mention that
from a basic physical perspective, the problem of deter-
mining the precision of optimal estimation of a global
real displacement parameter is equivalent to determing
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the energy—-time uncertainty in a given quantum state.
Therefore, Definition 1 can be reinterpreted from a
physical perspective by stating that |w) is metrologi-
cally useful with respect to Hamiltonians H € Aj-jo¢
if its maximal decay rate (i.e., the minimal time ¢
for which e~#*|w) becomes distinguishable from |w))
is extensively greater than the maximal decay rates
of the branch states {[¢;)}7_, i.e., if |w) is exten-
sively more sensitive to evolutlon generated by H as
compared to the branches. In the particular case of
[HCST (@) (JECSE (), we can say qualitatively that
its metrological usefulness arises simply because its in-
termode quantum coherence causes the squeezing oper-
ation (displacement operation) to change it more dras-
tically than the product states |[+)®N (] £a)®Y) con-
sidered independently.

3.2. Entanglement entropy

Because of the orthogonality of the branches, the
mode entanglement structure of [HCST) is the same as
that of the GHZ states in (C?)®2. Hence, |HCSY) ex-
hibits the maximal entanglement entropy in the (C?)®?
subspace spanned by {|e;) @ |e;j)}i j=1,2 introduced in
Sec. 1. In particular, [HCSS (a)) exhibits greater mode
entanglement than the subset of entangled coherent
states that cannot be expressed in form (2). However,
the hierarchical photonic superpositions are not maxi-
mally entangled states in £2(C)@¢?(C). The dissipative
dynamics of the entanglement entropy of entangled co-
herent states was studied in Refs. [18, 32, 33].

It is known that a nonclassical product state inci-
dent on a beam splitter does not necessarily generate
entanglement between the output modes [34]. In fact,
a 50:50 beam splitter destroys the entanglement of a
two-mode squeezed state [35]. It is easy to see that a
beam splitter described by the unitary operation

0
B(#) = exp {%(a{az + a;al)}

acting on two input photonic modes maps |[HCSS (a))
into the state

1 1 . )
L (1= e Slac”) +
+ |_aei0/2> ® |_aei0/2>) _
1 —i —i
~ saapy 00 e e +

+ |—ae™?/?) @ |ae™/2)) (20)

).
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For moderately large |a|, the exponentially decaying
term becomes negligible and we are left with an entan-
gled coherent state in the output modes of the beam
splitter. Hence, the beam splitter does not destroy the
entanglement of [HCSF (a)) for any values of the trans-
mission and reflection amplitudes. The exact entan-
glement entropy of B()|HCSF (a)), calculcated as the
von Neumann entropy of the reduced density matrix, is
shown in Fig. 3 for a range of real @ and 6. Except for
low-power (a < 1) |[HCSS («)) states, the maximum en-
tanglement entropy is maintained throughout the range
of transmission amplitudes of the beam splitter.

The quantification of entanglement in terms of an
entropic quantity naturally leads to questions about its
fluctuations. Entanglement fluctuations can be inter-
preted as the root variance of a measurement of the en-
tanglement Hamiltonian [36]: in terms of the reduced
density matrix py of a pure state in Hy ® Hp, it is
given by the expression

ASg = \/tr(pAH%) —tr(paHg)?,

where Hp := —log, pa. We show the entanglement
fluctuation of B(#)[HCS] (a)) in Fig. 4.
We now show that in the Bell basis

{[HCSS (a)), [HCS; (a)), [ECS; (),
(exp(ima’a) @ T)|ECS; (a))},

the hierarchical cat states, in some sense, comprise the
most stable entanglement resource. We consider each
mode coupled independently to a zero-temperature
bath of photons, each bath having an absorption rate I,
with the non-Hamiltonian part of the evolution given
by

t)a'] + ap, a

atl. (21)

l\DI’1

2
j=1

This is the case of (independent) Lindbladian ampli-
tude damping. For an initial state p(¢t = 0) given by an
entangled coherent state, it follows from the well-known
solution of the amplitude damping master equation [37]
that the t — oo asymptotic state is unentangled. In
contrast, [HCSS («)) maintain a nearly maximal entan-
glement entropy Sg throughout the non-Hamiltonian
evolution as long as |a|*> > 1, as seen in Fig. 5. The en-
tanglement entropy for this state was calculated from
an analytic expression, which we omit. It should be
noted that for |a| < 1, the entanglement entropy decays
with time, but is still substantial for ¢ > T'"1. The per-
sistence of entanglement during the amplitude damp-
ing can be simply seen by considering a limit model.
By taking the low-power limit o — 0, it is clear that
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Fig.4. The entanglement entropy fluctuations of U(#)|HCS},_,(a)), € [0.2,3.0] and # € [0.1, 7 — 0.1]

|[HCS3 (a)) exhibits an inner product of magnitude 1
with a state

S00°Y + ey, (22)

which is a superposition of the two-mode vacuum and
the product Fock state |1) @ |1). Under the amplitude
damping map defined in Eq. (21), state (22) evolves to

5 {10)0] @ 0)(0] + €T (0)1] © 0)(1] +
000/ © [1)(0]) + (1)1 +
(1= Tl0)0]) @ (1)1 +
F - T00)} . (23)

Taking the partial trace to form p;(t), we compute
JHm —tr(p () logy p (1)) = 1.

The robustness of the entanglement entropy of
|[HCSS (a)| under amplitude damping exhibited for
large |a] is proved by considering the |a| — oo asymp-
totics regime. An explicit calculation shows that for
any finite |a/, lim S =0,
t—00
whereas

lim lim Sg=1.
t—00 |a| =00

The increased stability of the entanglement of hierar-
chical cat states to local amplitude damping (relative to
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1.0

0

Fig.5. The entanglement entropy of the image of |[HCS%_,()) under independent amplitude damping for T' = 0.1,
a €[1,2.5], and t € [0, 9]

the entanglement of entangled coherent states) makes
these states desirable targets for quantum optical state
engineering and optical quantum communication.

4. GENERATION OF [HCS} (o))

In this section, we limit ourselves to proposals for
experimental generation of the two-mode hierarchical
superposition state [HCSS (a)) because the main diffi-
culties are already present in this case. For all of the
proposals we describe, a generalization to N > 2 re-
quires the experimenter to overcome a linear (with N)
increase in errors associated with imperfect implemen-
tation of the required unitary operations, in addition to
the usual problem of decoherence due to photon losses.

If an experimenter has access to arbitrary unitary
operations in the C? sub-Hilbert space spanned by |+a)
over a range of amplitudes «a, then |HCSY (a)) can be
readily generated. Specifically, one applies the “7/2”
(or “50:50”) beam splitter

)

to the product state o< (|v2a)1 — [=v2a)1) @ 0)2
to produce the state o< |a)i|—a)y — |—a)1]|a)2. Ap-
plying the phase shift exp(iﬂagag) produces the Bell
state (1/v/2)([64)[9) + [¢ 1)), Applying o, =
— |4} (o~ |+ |t} (1 | t0 mode 2 produces [HCSF ());
alternatively, [HCS, («)) is produced (up to a global
phase) conditional on the application of the annihila-

17
— —(aJ{ag — a;al

U12(7T/2) = exp{2 D)
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[P—)1 — "
‘0>2_ _eiGaTa_ U(l)
|0)s — 2

Ule

[9+)3 — ©

Fig.6. Quantum circuit diagram for the transformation
[Y-)1 @10)2 @ [t4)3 @ |0)a — =5 ([4)1 @ [h4)s +
+e o) @ |y )a)

tion operator T ® as to the above Bell state. Along
these lines, the method in Ref. [38] for preparing en-
tangled coherent states by a coherent photon loss may
be modified in a simple way to produce the family of
states

1

V2
The method is based on the observation that a coherent
photon loss can generate a photonic HCS from a prod-
uct of single-mode Schrédinger-cat states. For exam-
ple, the above HCS state is equivalent (in the projective
Hilbert space) to (a—be ™) (J1)_)a@|tp+)s). The imple-
mentation of the coherent photon loss via a linear quan-
tum optical circuit is shown in Fig. 6. In detail, we ap-
pend vacuum modes to the tensor product [¢_) @ [1)4)
to form the initial state [t)_)1 @ |0)2 @ [¢04)3 @ |0)4:

)

(I) 7 £ e™lp)®?) . (24)

1
—e(ala; — a}ai

Uie) = exp (2
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is a 50:50 beam splitter with ¢ < 1, i.e., the beam
splitter is highly transmissive for mode 7. Applying

U24 (71'/2) exp(iqﬁa;ag)UlQ(e)UM (6)

to the initial state produces

e+ e?—1

QCOSE)] @ |—a——=—5ine)y @ |a—=—-sine)s @

acose)y @ | =0t sine)y o [a = sine)s

e’ —1

@ |acose€)s + |acose); @ |—a7 sine)y @

e+l
@ | 7 sine€)y @ |[—acose)z—|—acose); @
e’ —1 e +1

@ | sin€e)s @ |—a sin€)s @ |acos ez —

V2
6i¢

V2

sine)s @ |—acose)s.

V2

—|—acose); @ |a

sin €)y ®

el — 1

V2

@ |—a (25)

The coherent photon loss is now implemented by pho-
todetection on mode 2, modeled by application of the
annihilation operator as. In the final step, we trace over
modes 2 and 4. In the e — 0 limit, the “+” state in (24)
is produced; if photodetection is carried out on mode 4
instead of mode 2, then the “—" state is produced. For
the initial superpositions |)1) with large |a|?, € must
be concomitantly decreased to maintain high fidelity of
the output state to [HCSFE ()). The decrease in € nec-
essarily increases noise in the photodetection process.
In addition, for large |a|?, it is vital to generate the
initial product state |¢_); @ |[¢4)s with high fidelity.
The next method that we discuss readily satisfies this
requirement.

The experimental generation of single-mode pho-
tonic Schrodinger-cat states ¢4 ) via dispersive interac-
tion between the monochromatic electromagnetic field
and a superconducting two-level system [39] or a Ry-
dberg atom [40] provides some clues toward feasible
methods for preparation of photonic HCSs. To extend
these protocols to the many-mode case, one must ef-
fectively entangle the field states of spatially separated
resonating cavities. For example, it has been proposed
to generate entangled coherent states by sequential cou-
pling of a Rydberg atom to two microwave cavities [41].
In general, proposals for creating entangled field states
involve coupling the field modes to easily controllable,
low-dimensional quantum systems.

A simple scheme for generating [HCS] («)) from a

895

tensor product of even coherent states |¢1) @ |11 is
as follows:

1
V2
CNOT

@ [y) ——

) © [yy) 25

(lo) + 1)) @

[HCS3 (@), (26)
where H := (1/v/2)(0, + 0.) is the Hadamard gate
in the subspace IC spanned by the orthonormal ba-
sis of even/odd coherent states and CNOT := |¢p4) x
X (P |@I+]1p_) (¢_|®0, is the conditional o, operation
on the second field mode. To implement the Hadamard
operation, it is sufficient to generate the superposition

Hl) = % (ls) + ) =
i
Y
V14 e 207 — /1 — g—2a?
W=y

Arbitrary superpositions of photonic coherent states
| £ «) can be generated by a dispersive coupling be-
tween a coherent microwave field |a) and a transmon
qubit if the transmon qubit can be prepared in an ar-
bitrary pure state in C*> [39]. In addition, it has been
proposed to generate parametrically tuning states [42].
It is worth noting that H|¢4) is an eigenvector of the
operator |a)(a| — |—a)(—al, which is proportional to
the observable corresponding to the measurement that
optimally detects |a) or |[—a) (in the sense of quantum
binary distinguishability problem with equal a prior:
probabilities and Bayes’ cost criterion [43]) with maxi-
mal probability of success. The pure states H|¢4) have
been studied for their role in optimal detection of co-
herent states | & ) (the “binary phase shift key”) [44].

The CNOT gate in the scheme (26) is more difficult
to engineer than the Hadamard gate because it requires
not only a large intramode coherence time for the even
and odd coherent states but also a large intermode co-
herence between two microwave cavities. However, if

o) +

|—a). (27)

two transmon qubits can be prepared in a maximally
entangled (i.e., GHZ) state in (C2)®? and indepen-
dently coupled to spatially separated photonic modes
of microwave cavities via a dispersive interaction, this
CNOT gate can be implemented. We now provide the
details for factoring the unitary operator corresponding
to the CNOT gate into easily implementable unitary
operations on the field/qubit and qubit/qubit subsys-
tems.

We first note that we can factor the CNOT gate on
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P P
Hlypih o0 °
| 1
[9)a1 o o
|g>a2 C) T /—)
Hl|py)2 eimala

Fig. 7. Quantum circuit diagram for the transformation
Hlp4)1 @ H|Y4)2 @ [9)a; @ |g)ay — [HCSF ()12

K @ K into the following product of local Hadamard
gates and the conditional o, gate:

CNOT = (I & H)(|4) (4] ©

oI+ Yy |@o)(I® H). (28)
We have already described the procedure for applying a
Hadamard gate to the field via the local coupling of the
field mode and transmon qubit; hence, we take the ini-
tial state to be H |4 )1 @ H|t1 )2 @19)a, @19)a, (Where
we now explicitly include the field mode labels 1, 2 and
the transmon qubit mode labels a1, az) and show how
to implement the conditional o, gate. Let an orthonor-
mal basis for a transmon qubit Hilbert space be taken
as {|g),]e)}. A quantum circuit diagram showing our
method for indirectly performing the CNOT gate on
the initial product state is shown in Fig. 7. In this cir-
cuit, the first field/qubit operation is a 7 rotation of
the qubit a1 conditioned on the parity of field mode 1
and is labeled in Fig. 7 by the operation with the P
superscript. Explicitly, this unitary operation is given
by

)1 (Wl @T+ [ )1 (Y- |1 @ 0w (29)

A similar conditional transformation has been achieved
experimentally in Ref. [39]. This transformation should
be followed by a CNOT gate between the qubit modes
a1 and ay, as shown; we assume that this gate is acces-
sible with high fidelity by precise control of the qubit—
qubit state. At this point, the full normalized state is
given by

(1401 @ [ )a+[4)1 @ [-)2) @ [g)ay @ [9)ar +

+ ([Y-h @ [Wg)2 + )1 @ [P-)2) ®
®|e>a1 ® |e>a2) -

DO | =

(30)

The next step is a 7 rotation of field 2 conditioned
on the state of the qubit as. This operation has been
implemented in the experiment reported in Ref. [39].
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We recall from Sec. 3 that the 7 phase rotation op-
erator acts like o, in the subspace K. Applying the
CNOT gate between qubits a; and as again, followed
by the parity-conditioned 7 qubit rotation, gives the
desired CNOT gate in K ® K. Finally, applying the
local Hadamard operator I @ H produces the output
state [HOSS (a)) © [9)a, © [9)as-

The above method for generating |[HCS3 («)) is not
the most efficient possible. It would be favorable to
utilize a single qubit or few-level mode that can be se-
quentially entangled with both fields [45].

5. MORE EXOTIC HIERARCHICAL
SUPERPOSITIONS

The notion of hierarchical cat states can be ex-
tended to deeper levels of the hierarchy. The princi-
pal motivation for an analysis of these states comes
from the theory of quantum error correction, which
uses encoded states to strengthen quantum informa-
tion against unwanted decoherence. In Refs. [46, 47], a
class of “concatenated” GHZ states of the form

1
V2

were introduced as entangled states that are relatively
stable with respect to local noise compared to the
full GHZ state |GHZ},,). An analog of the C-GHZ
states in (C2)®MN can be constructed from an HCS in
(2(C)®MN by forming

|C-GHZ3; y) (|GHZN)OM + |GHZN)OM)

|C-HCST, y) =
1
V2
This state can retain coherence on the scale of N modes
even after global coherence on the scale of all M N
modes has been lost. The C-HCS states are expected
to be useful as encoded photonic states for continuous-
variable quantum error correction schemes. Of course,

the entangled coherent states can be concatenated in a
similar way:

= — (JHCSH)®M + [HCSR)®M) . (31)

|C-ECS3; y(a)) =

Sl

x ([ECS§ ()M + [ECSy (@))®M) . (32)

It also follows from the basic theory of quantum
binary distinguishability that the optimal projection-
valued measurement for distinguishing |a)®V from
|—a)®N has elements
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{|C-ECS] y ())(C-ECS{ y ()],
|C-ECS] () (C-ECST y(a)[}.

The C-HCS and C-ECS states are robust quan-
tum resources in the sense that if coherence is lost
among the M blocks of N single-mode systems, a sta-
tistical mixture of N-mode entangled states remains.
To lose all entanglement, the intermode coherence in
HON must subsequently be lost. In a higher-order
hierarchical cat state, these “shells” of coherence de-
grade according to the strengths of local and nonlo-
cal interactions. It has been suggested to generate
|C-GHZ}, y) in spin-1/2 chains by application of the
2-local Mglmer—Sorensen unitary gate to the N M-mo-
de GHZ state (1/v/2)(|0)2MN 4 |1)®MN) [47]. Effi-
cient preparation of hierarchically encoded entangled
states in (£2(C))®VM represents a great challenge for
continuous-variable quantum information processing.
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REFERENCES

1. D. Greenberger, M. Horne, and A. Zeilinger, in Bell’s
Theorem, Quantum Theory, and Conceptions of the
Universe, Kluwer, Dordrecht (1989), p. 69.

M. Nielsen and I. Chuang, Quantum Computation and
Quantum Information, Cambridge Univ. Press, Cam-
bridge (2000).

P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer,
W. Wieczorek, H. Weinfurter, L. Pezzé, and A. Smerzi,
Phys. Rev. A 85, 022321 (2012).

G. Téth, Phys. Rev. A 85, 022322 (2012).

V. Dodonov and V. Man’ko, Theory of Nonclassical
States of Light, Taylor & Francis (2003).

6. B. Sanders, J. Phys. A: Math. Theor. 45, 244002
(2012).

7. G. Najarbashi and Y. Maleki, Int. J. Theor. Phys. 50,
2601 (2011).

8. P. Munhoz, F. L. Semiao, A. Vidiella-Barranco, and
J. Roversi, Phys. Lett. A 372, 3580 (2008).

9. T. Ralph, A. Gilchrist, G. Milburn, W. Munro, and
S. Glancy, Phys. Rev. A 68, 042319 (2003).

10. A. Gilchrist, K. Nemoto, W. Munro, T. Ralph, S. Glan-

cy, S. Braunstein, and G. Milburn, J. Opt. B: Quantum
Semiclass. Opt. 6, S828 (2004).

5 ZKOT®, Bem. 5 (11)

897

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

V. Dodonov, I. Malkin, and V. Man’ko, Physica 72,
597 (1974).

T. Volkoff and K. Whaley, Phys. Rev. A 91, 012122
(2014).

D. Trifonov, J. Phys. A: Math. Gen. 31, 5673 (1998).

N. Ansari and V. Man’ko, Phys. Rev. A 50, 1942
(1994).

V. Dodonov and L. de Souza, J. Russ. Laser Res. 28,
453 (2007).

S. van Enk and O. Hirota, Phys. Rev. A 64, 022313
(2001).

X. Wang, J. Phys. A: Math. Gen. 35, 165 (2002).

H. Jeong, M. Kim, and J. Lee, Phys. Rev. A 64, 052308
(2001).

T. Volkoff and K. Whaley, Phys. Rev. A 90, 062122
(2014).

V. Buzek, J. Mod. Opt. 37, 303 (1990).
K. Cahill and R. Glauber, Phys. Rev. 177, 1882 (1969).

L. Mandel and E. Wolf, Optical Coherence and
Quantum Optics, Cambridge Univ. Press, Cambridge
(1995).

V. Bargmann, Comm. Pure Appl. Math. 14, 187
(1961).

C. W. Helstrom, Quantum Detection and Estimation
Theory, Acad. Press, New York (1976).

A. Holevo, Probabilistic and Statistical Aspects of
Quantum Theory, North-Holland, Amsterdam (1982).

M. Paris, Int. J. Quant. Inf. 7, 125 (2009).
F. Frowis and W. Diir, New J. Phys. 14, 093039 (2012).

V. Buzek and P. Knight, in Progress in optics XXXIV,
Elsevier (1995), p. 1.

M. Genoni, M. Paris, G. Adesso, H. Nha, P. Knight,
and M. Kim, Phys. Rev. A 87, 012107 (2013).

G. Chiribella, G. D’Ariano, and M. Sacchi, Phys. Rev.
A 73, 062103 (2006).

C. Brif, Ann. Phys. (N.Y.) 251, 180 (1996).

F. Lastra, G. Romero, C. Lopez, N. Zagury, and J. Re-
tamal, Opt. Comm. 283, 3825 (2010).

H. Jeong and M. Kim, arXiv:0111015v2.

M. S. Kim, W. Son, V. Buzek, and P. L. Knight, Phys.
Rev. A 65, 032323 (2002).



T. J. Volkoff MKOT®, Tom 148, Bom. 5 (11), 2015
35. G. Agarwal, Quantum Optics, Cambridge Univ. Press, 41. P. Milman, A. Auffeves, F. Yamaguchi, M. Brune,
Cambridge (2013). J. M. Raimond, and S. Haroche, Eur. Phys. J. D 32,
233 (2005).
36. E. Feld’'man and M. Yurishchev, JETP Lett. 90, 70
(2009). 42. V. Albert, S. Krastanov, C. Shen, R.-B. Liu, R. Scho-
elkopf, M. Mirrahimi, M. Devoret, and L. Jiang, arXiv:
37. S. Barnett and P. Radmore, Methods in Theoreti- 1503.00194v2.
cal Quantum Optics, Oxford Univ. Press, New York 43. A. Holevo, Quantum Systems, Channels, Information,
(1997). De Gruyter, Berlin (2012).
38. A. Ourjoumtsev, F. Ferreyrol, R. Tualle-Brouri, and 44. M. Sasaki, T. Usuda, O. Hirota, and A. Holevo, Phys.
P. Grangier, Nature Phys. 5, 189 (2009). Rev. A 53, 1273 (1996).
39. B. Vlastakis, G. Kirchmair, Z. Leghtas, S. Nigg, 45. Q-P. Su, C-P. Yang, and S-B. Zheng, Sci. Rep. 4,
L. Frunzio, S. Girvin, M. Mirrahimi, M. Devoret, and 3898 (2014).
R. Schoelkopf, Science 342, 607 (2013). 46. F. Frowis and W. Diir, Phys. Rev. Lett. 106, 110402
(2011).
40. S. Deléglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Bru-

ne, J.-M. Raimond, and S. Haroche, Nature 455, 510
(2008).

898

47.

F. Frowis and W. Diir, Phys. Rev. Lett. 85, 052329
(2012).



