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Magnetic properties, such as magnetizations, internal energy, specific heat, entropy, Helmholtz free energy, and
phase diagrams of the spin-3/2 Blume-Capel model on a hexagonal Ising nanowire with core—shell structure
are studied by using the effective-field theory with correlations. The hysteresis behaviors of the system are also
investigated and the effects of Hamiltonian parameters on hysteresis behaviors are discussed in detail. The
obtained results are compared with some theoretical results and a qualitatively good agreement is found.
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1. INTRODUCTION

The Blume—Capel model is a spin-1 Ising model
with a bilinear (J) and a single-ion (D) potential that
was originally proposed by Blume [1] and Capel [2] in-
dependently to study magnetic systems. The spin-3/2
Ising system was first introduced in [3], as long ago
as 1972, to explain magnetic and crystallographic
phase transitions in some rare-earth compounds such
as DyVOy [4,5], and then extended to describe tricri-
tical properties in ternary fluid mixtures (ethanol-wa-
ter—carbon—dioxide) [6]. Among various spin Ising sys-
tems, the spin-3/2 Ising system has gained much at-
tention in the last years, and although the model was
introduced about 40 years ago, its equilibrium be-
haviors are still actively investigated, with different
effects being considered. Many methods have been
used in discussing the equilibrium properties of the
spin-3/2 Ising system, such as the effective field theo-
ry with corrections (EFT) [7-10], the cluster variation
method [11], Monte Carlo (MC) simulation [12,13],
renormalization group technique [14], and mean-field
theory (MFT) [15-17], and so on.

On the other hand, it is well known that splen-
did and enormous achievements in the technologies
and experimental techniques have recently enabled
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the production of nanostructures such as nanotubes,
nanowires, nanocubes, nanorods, etc. Theoretically,
magnetic properties of magnetic behaviors of the spin-
1/2 or spin-1 nanostructure Ising system have been in-
vestigated successfully by adopting a core—shell struc-
ture of the Ising systems. They have been investigated
by means of various techniques such as MFT, EFT with
correlations, MC simulations, etc. (see [18-29] and the
references therein). Moreover, some dynamic magnetic
properties of nanostructure Ising systems have been in-
vestigated for spin-1/2 or spin-1 [30-33].

Despite these studies, the equilibrium properties of
the nanostructure Ising systems have not been investi-
gated equally thoroughly for higher-spin models; there
has been only one investigation, to our knowledge, of
the equilibrium properties of the nanostructures with a
higher spin. In this study [34], hysteresis and com-
pensation behaviors of the spin-3/2 cylindrical Ising
nanotube system are studied in the framework of the
EFT with correlations. The effects of the Hamilto-
nian parameters are investigated on the magnetic and
thermodynamic quantities, such as the total magneti-
zation, hysteresis curves, and compensation behaviors
of the system. Hence, further effort should be invested
into studying the equilibrium properties of higher-spin
nanostructures. The purpose of this paper is to in-
vestigate magnetic properties (magnetizations, internal
energy, specific heat, entropy, and Helmholtz free en-
ergy) and phase diagrams of the spin-3/2 Blume—Ca-
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pel model on a hexagonal Ising nanowire (HIN) with
a core—shell structure by using the EFT with correla-
tions. We also mention that the EFT method, without
introducing mathematical complexity, can incorporate
some effects of spin—spin correlations through the use of
the Van der Waerden identities and provide results that
are quite superior to those obtained using the MFT.
Therefore, the magnetic behavior of different Ising sys-
tems has been studied (see [35-38] and the references
therein) via the EFT with correlation in recent years.
Moreover, the theory is used to investigate main phys-
ical characteristics of one-dimensional objects [39]. In
this study, the effects of the next-nearest-neighbor ex-
change interaction on the magnetic properties were in-
vestigated in the one-dimensional Ising system by using
the EFT with correlation.

The outline of this paper is as follows. In Sec. 2,
the EFT formalism is presented briefly. The detailed
numerical results and discussions are given in Sec. 3.
Finally, Sec. 4 is devoted to a summary and conclu-
sion.

2. FORMALISM

The Hamiltonian of the spin-3/2 HIN system, in-
cluding nearest-neighbor interactions and the crystal
field, is given by

H=-Js» SiSi=Jc Y SmSa—J1 > SiSm—
(im)

(i) (mn)
-D (Z s§+25;> ~h (Z Si+25m> (1)

where each S; can take the values £3/2 and +1/2
and (...) detones summation over all pairs of nearest-
neighbor sites. The exchange interaction parameters
Js, Jo, and J; are respective interactions between two
nearest-neighbor magnetic atoms in the shell, in the
core, and between the shell and core (see Fig. 1). D
stands for the single-ion anisotropy and h is the exter-
nal magnetic field.

The problem is to evaluate the means (S;), (Sp),
(S2), (SZ), (S3), and (S3,). The starting point for
statistics of the present spin system is the exact rela-
tion due to Callen [40]:

(Skjm) = <H {A(a) + B(@)Sijm+s +
5

+ C(@)SEjmys + D(@)SF s} > Fi.(2)|a=0, (2)
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Fig.1. Schematic representation of a hexagonal Ising

nanowire. The respective grey (blue) and black (red)

spheres indicate magnetic atoms at the surface shell
and core. (Color online see arXiv:1406.6537)

where o = J,V (J, = J1, Jo, or Jg) and § denotes the
nearest-neighbor sites of the central site i (or a site j,
m); V = 0/0x is a differential operator. Expression (2)
is also exact and is valid for any lattice. As discussed
in Refs. [41-46], for the evaluation of mean values, we
can use the exact Ising spin identities and the differen-
tial operator technique introduced in [47] and in [48],
which is a more advanced method dealing with Ising
systems than the MFT, because it includes more cor-
relations. In the framework of the EFT with correla-
tions, it is easy to find the magnetizations Mg and M¢,
the quadruple moments ¢s and g¢, and the octupolar
moments rg and r¢ from coupled equations for the cy-
lindrical spin-3/2 HIN system depicted in Fig. 1:

Ms = (i) = [ao + a1 (Si) + a2(S2) + a(5%)]" x
X [bo+b1(Sm)+b2(S2,)+b3(S2)] Fi(z+h)| (3a)

z=0"

Me = (Sin) = [cote1(Sm)+ea(S2)+es(S3)]7 x
X [bo+bi(Si)+bo(S2)+0a(SD] Fia+h)| . (3b)
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gs = (52) = [a0 + a1(S;) + a2(S?) + a5(SH)]" x Fy(z+h) =+ x

X [bo+ba(Sm) +b(Sin) 405 (S)] Folwt b,y (4a) O ch[35(c-+h)/2] + ch [3(e-+1)/2] expl~25D)

) 2ch[33(x+h)/2] +2 ch[B(x+h) /2] exp(—25D)’
ge = (Sp,) = [co + c1(Sm) + 2(Sh,) + e3(S2)]” % e Pl )(7b)

X [bo+by(S:)+ba(SD)+ba (SP)]° Fala+h)| . (4b)

=0’

R@+M:%x
rs = (S?) = [ao + ar(S) + as(S7) + as(SH] " 27 sh[34(x+h) /2] + sh [B(a-+h) /2] exp(—23D)
% [bo+b1(Sim)+b2(S7,) +b3(Sp)] Fa(z+h)| o, (52) “ T BA(r+h) /2 +4ch [B(r+ 1) /2 exp(—25D)
(7c)
ro =(Spy,) = [CO‘|‘01<Sm>‘|‘c2<5£¢>+03<53n>]2 X Here, 3 = 1/kgT, T is the absolute temperature, kp
o [bg-l-bl(S’i)+b2(53>+b3<5f)]6 F3(l'+h)‘ . (5h) is the Boltzmann constant, and kg = 1.0 throughout
¢=0 the paper. Equations (3)—(5) are also exact and are
where a;, b;, and c¢; are the Van der Waerden coeffi- valid for any lattice. If we try to exactly treat all the
cients given by spin—spin correlations for that equation, the problem
1 1 3 rapidly becomes intractable. A first obvious attempt
d =3 <9 ch (§J5V> —ch <_‘]Sv>> ' to deal with it is to ignore the correlations; the decou-
1 1 pling approximation is given by
=1 <27Sh (2J5V> Sh( JSV)) o (SiSi ... Sum) ~ (S (Su) - (S}, (a)
=1 <—ch (%JSV> teh ( JSV)) (S - Sr) % S} (S} - (Smn). (8D)
1 1 with i #id' # ... Zi"and m #m' # ... # m" intro-
as = 15 < 3sh <§J5V) + sh ( JSV)> duced within the EFT with correlations. In fact, the
approximation corresponds essentially to the Zernike
1 1 approximation [49] in the bulk problem, and has been
bo = 3 (9 ch <§ Ji V) —ch < Ji V)) successfully applied to a great number of magnetic sys-
1 1 tems including surface problems [50, 51].
by = B <27 sh (§J1V> —sh( )) Using the definitions of the magnetizations in
Eqs. (3a) and (3b), we can determine the total mag-
by = % (_ ch (%LV) +ch ( )) netization My of each site from Fig. 2a as
1
by = % <—3sh (%m) +sh ( v)) Mr = 7(6Ms + Mo). ©)
We also mention that we do not examine the thermal
1 1 behaviors of ¢s, qc, rs, and re because our Hamilto-
Co = 3 (9 ch <§ JCV> —ch ( JCV>> nian does not contain the biquadratic exchange inter-
1 1 action parameter, as can be seen in Eq. (1). However,
=15 (27 sh (5 JCV) —sh < V)) we need Egs. (3a) and (3b) to determine the behaviors
(6¢) of Mg and Mc.
_ 1 (_ (l ) < )) The internal ener er site of the system can be
(&) ch JoV') +ch JoV 8y P M
2 2 calculated as
=L (3o (Liev) von (2w v__1
a=p \ 7P gteY) T e ) ) 5 = —5 (Ue) + (Us) = D ((ac) + (as)) -
The functions Fy(z), Fx(x), and F3(x) in Eqs. (3)-(5) —h({me) + (ms)), (10)
are given as
1 where
Fi(z+h) = 2 Uc = ai [Co + 1 (Sm) + CQ(Sm>2 + 63<5m>3]2 X
3sh[38(x+h)/2] +sh[B(x + h)/2]exp(—26D) .
ch[38(z+h)/2] + ch [3(z + h) /2] exp(—26D) ’ x [bo + b1 (Si) + b2(S:)? + b3(S)°]" x

(7a) x Fy(x + h)|m (11a)

=0’
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Fig.2. Thermal variations of the magnetizations.
(a) J1 = 1.0, Jo = 1.0, Js = 1.0, and D = 1.0.
(b) J1 = —1.0, Jo = 1.0, Js = 1.0, and D = 1.0.
(Color online see arXiv:1406.6537)
4
Us = W [ao + ay <Sz> + a2(5i>2 + a3<Si)3] X
X [bo + b1(Sm) + b2(Sm)? + b3(Sim)?] x
x Fy(z + h)|x:0. (11b)

The specific heat of the system can be obtained from

‘}le Ie]a“()]
Ch - < ) .
h

The Helmholtz free energy of the system can be defined
as

oUu

T (12)

F=U-TS, (13)

which, according to the third law of thermodynamics,
can be written in the form

699

T
F:U—T/ng’. (14)
T
0

The second term in the right-hand side of Eq. (14) is
the entropy of the system according to the second law
of thermodynamics.

3. NUMERICAL RESULTS AND DISCUSSIONS

In this section, our attention is focused on the study
of the magnetic properties, the phase diagrams, and
hysteresis behavior of a spin-3/2 HIN system with a
core—shell structure.

3.1. Magnetic properties
3.1.1. Magnetizations

In Fig. 2, we investigated the thermal behavior of
the total (M), core (M¢), and shell (Mg) magneti-
zations in both ferromagnetic (J; > 0) and antiferro-
magnetic (J; < 0) cases. This study leads us to char-
acterizing the transitions and obtaining the transition
points. For ferromagnetic and antiferromagnetic cases,
a few explanatory examples are plotted in Fig. 2 to
illustrate the calculation of the critical points as well
as variation of magnetizations. Figure 2a is obtained
for J1 = 1.0, Jo = 1.0, J¢ = 1.0, and D = 1.0. In
Fig. 2a, the magnetizations Mz, Mg, and M decrease
continuously with an increasing in the values of temper-
ature below the critical temperature, and they vanish
at Tc = 7.85; hence, a second-order phase transition
occurs. The transition is from the ferromagnetic-3/2
(F3/2) phase to the P phase. Figure 2b is obtained for
Ji -1.0, Jo = 1.0, J¢ = 1.0, and D = 1.0. In
Fig. 2b, the magnetizations M7 and Mg decrease and
M increases continuously with an increasing in the
values of temperature below the critical temperature,
and they vanish at T = 7.85; hence, a second-order
phase transition occurs. The transition is from the
antiferromagnetic-3/2 (AF3/) phase to the P phase.

3.1.2. Internal energy, specific heat, entropy, and
Helmholtz free energy

Figures 3a-d show the thermal behaviors of the in-
ternal energy, specific heat, entropy, and Helmoltz free
energy of the spin-3/2 HIN system: Fig. 3 is obtained
for J; = 1.0, Jo = 1.0, Js = 1.0, and D = 1.0. Fig-
ure 3a shows the behavior of the internal energies. It
expresses the continuity of the curvature at the critical
temperature T = 7.85. The specific heat curves of the
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Fig.4. The phase diagrams in the (D, T') plane of the

spin-3/2 HIN system. Dashed and solid lines represent

the respective first- and second-order phase transitions.

(a) J1 = 1.0, Jo = 1.0, and Js = 1.0. (b) J1 = —1.0,
Jo=1.0,and Js = 1.0

system exhibit a second-order transition at T = 7.85
and rapidly decrease with increasing the temperature,

_2'50 5 4 6 S as seen in Fig. 3b. Figure 3¢ illustrates the entropy
T of the spin-3/2 HIN system. As is known, entropy is

not important at low temperatures and the ground-sta-

Fig.3. ForJ; =1.0, Jo = 1.0, Js =1.0,and D = 1.0 te energy corresponds to the free energy of the sys-
values, Figs. 3a—d respectively show thermal behaviors tem. But, along with a temperature increase, in order
of the internal energy, specific heat, entropy, and Hel- to minimize its free energy the system tends to maxi-
moltz free energy of the spin-3/2 HIN system. (Color mize its entropy. In this way, entropy becomes impor-

online see arXiv:1406.6537) tant. Finally, the Helmoltz free energy of the spin-3/2

HIN system is presented in Fig. 3d. It is evident from
Eq. (13) that the free energy equals the internal en-
ergy at zero temperature. Free energies (total, core,
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Fig.5. Hysteresis behaviors of the spin-3/2 HIN sys-

tem for .J1 = 0.5, Jo = 1.0, Js = 1.0, and D = 0.5

and for various values of temperatures T = 2.0, 3.0,
5.0, 6.3. (Color online see arXiv:1406.6537)

and shell free energies) show a smooth decrease with
increasing the temperature.

3.2. Phase diagrams

The phase diagrams of the spin-3/2 HIN system are
presented in the (D,T) plane for both ferromagnetic
and antiferromagnetic cases in Fig. 4. The solid and
dashed lines represent the second- and first-order phase
transitions. The system illustrates a special point, the
double critical end point (B). Figure 4a is calculated for
the ferromagnetic case (J; > 0) and J; = 1.0, Jo = 1.0,
Jg = 1.0, and D = 1.0. The system shows ferromagne-
tic-3/2 (F3/2), ferromagnetic-1/2 (Fy/5), and paramag-
netic (P) fundamental phases as well as the B special
point. For the very low values of D and T', the Fy /, fun-
damental phase occurs in the system; for the low values
of D and high values of the T', the P fundamental phase
occurs in the system; for very low values of D and T,
the F3/, fundamental phase occurs in the system. The
Fi/2 and F3/, fundamental phases are separated from
the paramagnetic phase by the B special point. The
phase boundary is a second-order phase line except the
boundary between the F3/5 and F;/, phases, which is
a first-order line. A first-order phase transition line oc-
curs for low D values. Figure 40 is similar to Fig. 4a but
differs from it: (i) the phase diagram is calculated for
Ji = —1.0, Jo = 1.0, Js = 1.0, and D = 1.0. (ii) The
AF3/5 and AF;/; fundamental phases appear instead
of the F3/5 and F /, fundamental phases.
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Fig.6. The same as in Fig. 5, but for J; = 1.0, Jo =
=1.0,Js =1.0,T = 2.0 (a), 0.5 (b), and D = 0, —1,
—2, —3. (Fig. 6a color online see arXiv:1406.6537)

3.3. Hysteresis behaviors

In this subsection, we examine the effects of the
temperature and crystal field on the hysteresis beha-
viors of a spin-3/2 HIN system.

3.3.1. The effects of temperature on the hysteresis
behaviors

We illustrate the dependence of hysteresis loops of
a spin-3/2 HIN system on the temperature (T = 2.0,
3.0, 5.0, and 6.3) for J; = 0.5, Jo = 1.0, Jg¢ = 1.0,
and D = 0.5 in Fig. 5. We see from this figure that
the magnetization curves are symmetric for both posi-
tive and negative values of the external magnetic field.
Moreover, for the temperature above the critical tem-
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Fig.7. The same as in Fig. 5, but for T =2.0, D=0
for Jo = 1.0, Js = 1.0, and J1 = 0.05 (a), 0.2 (b),
1t 4 0.3 (¢), 1.2 (d), 1.8 (€)
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h
perature T = 6.15, we can see that the hysteresis loops 3.3.2. The effects of single-ion anisotropy on the
disappear. Similar hysteresis loop behaviors have been hysteresis behaviors

observed in the random-field Ising model [52]. Further-
more, with increasing the temperature, the hysteresis
loops decrease, and these results are consistent with
some theoretical studies [53-55].

Figure 6 shows the influence of the single-ion
anisotropy on hysteresis. Figure 6a is plotted for J; =
= 1.0, Jo = 1.0, J¢ = 1.0, and T = 2.0 fixed values,
and D =0, —1, —2, and —3 single-ion anisotropy val-
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ues. We can see that with the decrease in the single-ion
anisotropy, the hysteresis loop area narrows and the
system exhibits only one hysteresis loop. These facts
are clearly seen in Fig. 6, and the results are consistent
with some theoretical models [46-48]. On the other
hand, Fig. 6b is calculated for J; = 1.0, Jo = 1.0,
Js = 1.0, and T = 0.5 fixed values, and D = 0,
—1, —2, and —3 single-ion anisotropy values. We can
see that with the decrease in the single-ion anisotropy,
the hysteresis loop area narrows. With the decrease
in single-ion anisotropy, at D = —3.0, one hysteresis
loop turns into a double hysteresis loops. Theoretically,
similar result have been observed a spin-3/2 cylindrical
Ising nanotube system [32].

3.3.3. The effect of core/shell interfacial coupling
on the hysteresis

We present the core/shell interfacial coupling de-
pendence of the hysteresis loops of a spin-3/2 HIN sys-
tem at T = 2.0, D = 0 for Jg = 1.0, Jo = 1.0,
and J; = 0.05, 0.2, 0.3, 1.2, and 1.8 in Fig. 7. The
hysteresis consists of double loops in Figs. 7a and 7b.
Theoretically, similar result have been observed for a
spin-3/2 cylindrical Ising nanotube system [34]. On
the other hand, we can see that when the core/shell in-
terfacial coupling constant is large, the system always
shows one loop, seen in Figs. Tc—e. We can see that
as the core/shell interfacial coupling increases, the hys-
teresis behavior changes and the hysteresis loop area
increases. This fact is clearly seen from Figs. Ta—e. We
also obtained the hysteresis loops for the antiferromag-
netic case in Fig. 8, for T = 2.0, D = 0, Jo = 1.0,
Js =1.0,and J; = —0.05, —0.2, —0.3, —1.2, and —1.8.
Figure 8a displays triple hysteresis loops for r = —0.05.
As r decreases, the triple hysteresis loops first turn into
double loops, then into a single hysteresis loop as seen
in Figs. 8a—e. Theoretically, similar result have been
observed for a spin-3/2 cylindrical Ising nanotube sys-
tem [34].

4. SUMMARY AND CONCLUSION

By utilizing the effective field theory with cor-
relations, we studied magnetic properties such as
magnetizations, internal energy, specific heat, entro-
py, Helmholtz free energy, and phase diagrams of a
spin-3/2 Blume-Capel model on a HIN with a co-
re—shell structure. The effects of the Hamiltonian pa-
rameters on hysteresis behaviors are investigated in de-
tail. The obtained results are compared with some

theoretical results and a qualitatively good agreement
is found.

We compared the results with the results of the
one-dimensional Blume—Capel model calculation [56]
and found that the one-dimensional Blume-Capel
model exhibits only a second-order phase transition.
On the other hand, the spin-3/2 HIN system exhibits
both first- and second-order phase transitions. More-
over, the comparison of results with the magnetic prop-
erties of the spin-3/2 Blume—Capel model on a HIN
with a core-shell structure and the magnetic prop-
erties of the one-dimensional spin-1/2 Ising system
with a core-shell structure [39] can be summarized
as follows. (1) The spin-1/2 Ising system only ex-
hibits a second-order phase transition and does not
exhibit a first-order phase transition, but the spin-
3/2 HIN system shows both first- and second-order
phase transitions. (2) The spin-1/2 Ising system ex-
hibits two loops, but the spin-3/2 one shows there
loops. (3) The spin-3/2 HIN system displays fer-
romagnetic-1/2, ferromagnetic-3/2, antiferromagnetic-
1/2, antiferromagnetic-3/2, and paramagnetic funda-
mental phases, but the spin-1/2 Ising system exhibits
only ferromagnetic, antiferromagnetic, and paramag-
netic fundamental phases. Therefore, we can conclude
that the spin-3/2 HIN system gives richer and more in-
teresting magnetic properties than the spin-1/2 Ising
system does.

Finally, we hope that our detailed theoretical inves-
tigations may stimulate further studies of the magnetic
properties of nanoparticles systems, and it will also mo-
tivate researchers to investigate the behaviors in real
nanostructured materials.
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