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An exact analytic solution is found for the steady-state distribution function of fast electrons with an arbitrary
initial spectrum irradiating a planar low-Z plasma with an arbitrary density distribution. The solution is applied
to study the heating of a material by fast electrons of different spectra such as a monoenergetic spectrum, a
step-like distribution in a given energy range, and a Maxwellian spectrum, which is inherent to laser-produced
fast electrons. The heating of shock- and fast-ignited precompressed inertial confinement fusion (ICF) targets as
well as the heating of a target designed to generate a Gbar shock wave for EOS experiments by laser-produced
fast electrons with a Maxwellian spectrum is investigated. A relation is established between the energies of
two groups of Maxwellian fast electrons, which are responsible for generation of a shock wave and heating the
upstream material (preheating). The minimum energy of the fast and shock igniting beams as well as of the
beam for a Gbar shock wave generation increases with the spectral width of the electron distribution.
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1. INTRODUCTION

Interaction of an intense beam of charged particles
with plasma is an essential part of the modern high-
energy-density physics. The development of the kinetic
theory of such interaction is important primarily for the
studies of a powerful laser pulse interaction with mat-
ter and the equation of state (EOS) of matter under
extreme conditions. Generation of fast electrons and
ions is one of the most interesting and important phe-
nomena of the intense laser radiation interaction with
matter. Generation of fast electrons is due to different
mechanisms associated with the resonant absorption of
laser radiation at the critical-density plasma [1], the
Brunel effect [2], the ponderomotive force [3], and the
development of various plasma instabilities [4]. Acce-
leration of fast ions occurs both directly, as a result of
the ponderomotive pressure of laser radiation, and in-
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directly, in a self-consistent field of fast electrons. Spea-
king about laser-accelerated fast electrons, we note that
the characteristic fast electron energy for all the gener-
ation mechanisms is comparable with the average en-
ergy of electron oscillations in a laser field. This last
energy is proportional to the coupling parameter I\?
(where I and )\ are respectively the intensity and the
wavelength of radiation). In the current experiments
using petawatt lasers, the average fast electron energy
exceeds 1 MeV and the efficiency of laser energy con-
version into fast electrons is about 30 % (see, e.g., re-
views [5,6]). The spectrum of the laser-accelerated fast
electrons is usually close to the Maxwellian distribu-
tion.

The transfer of a fraction of the absorbed laser
energy in a dense region of a laser-irradiated target
(with a density higher than the critical plasma den-
sity) by fast electrons can play a much greater role
than the heating due to an electron thermal conduc-
tivity wave. The energy transfer by fast electrons
plays a dominant role if the coupling parameter ex-
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ceeds 1-10 PW-um? /em? |7, 8], while the energy trans-
fer by electron thermal conductivity is strongly inhib-
ited. Heating the precompressed plasma to a ther-
monuclear temperature by laser-produced fast elec-
trons is one of the promising methods of the fast igni-
tion concept [9, 10] in inertial confinement fusion (ICF).
Generation of a powerful shock wave due to the transfer
of the absorbed laser energy by fast electrons is a key el-
ement in another promising method of ICF target igni-
tion, the shock ignition [11,12]. It has been shown [13]
that the shock wave with a pressure of 0.4—2 Gbar can
be generated when a solid target is irradiated by a fast
electron beam with an energy of 30-100 keV, corre-
sponding to the laser pulse intensity 10-100 PW /cm?.
Such a shock wave exists in the time interval of 0.3—1 ns
and it is able to provide the shock ignition of an ICF
target. Besides, the application of shock wave gener-
ation in a solid by a fast electron beam opens a pos-
sibility to step out from the current level of ablation
pressure of 100 Mbar to a new level of several hundred
Mbar or even Gbar in laboratory EOS studies.

In this context, an important question is the role of
the initial spectrum of fast electrons. In the fast igni-
tion of a compressed ICF target, the fast electron spec-
trum determines the spatial distribution of the plasma
temperature in the ignition region and consequently
the heated mass. In the shock ignition, the fast elec-
tron spectrum determines the position of the ablation
front and preheating of the material ahead of the shock-
wave. The conventional approach in the high-pressure
hydrodynamics of laser-produced plasma is tradition-
ally limited to the values of coupling parameter I\
below 0.1 PW-um? /cm? [14,15] in order to avoid the
fast electron preheating. This was a baseline argument
for using a short-wavelength laser radiation, in parti-
cular, the radiation of the third harmonic of Nd-lasers
(A =0.353 pum) in ICF.

The experiments in [16] on the irradiation of
spherical targets by long wavelength radiation of
a COs-laser (A 10.6 pm) with the intensity
I =0.01-0.1 PW/cm? (with the coupling parameter
about 10-100 PW-um? /cm?) and accompanying the-
oretical studies carried out in the early 1980s were of
great importance for understanding the role of fast elec-
trons. The influence of the laser-produced fast electron
preheating on the reduction of target compression [17]
as well as the positive role of energy transfer by fast
electrons in increasing the ablation pressure [18] were
reported. The matching conditions that relate the shell
thickness of the ICF target and the laser pulse param-
eters have been proposed [19]. They define the con-
ditions under which the fast electron preheating of a
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compressed thermonuclear fuel can be suppressed with
a significant contribution of the fast electron energy
transfer to the ablation pressure formation. Such a
matching is a basis for the modern concept of shock ig-
nition. Both numerical simulations and analytic mod-
els are used for studying laser-produced fast electron
transport in the targets of various geometries. Such
models have been constructed in [18,20] based on an
analytic solution of the kinetic equation in spherical ge-
ometry for fast electrons having a monoenergetic spect-
rum. A model of stopping of fast electrons with a Max-
wellian spectrum in a planar plasma layer based on an
analytic approximation of the results of numerical cal-
culations was developed in [21].

The theory of fast electron kinetics is developed in
this paper for an arbitrary electron spectrum in pla-
nar geometry. An exact analytic solution of a stea-
dy-state relativistic kinetic equation for the distribu-
tion function of fast electrons is found and used to de-
velop the model of heating a plain target. An analytic
solution for the spatial distribution of the fast electron
energy deposited in a plasma and hence for the spatial
distribution of the temperature in the heated region
is obtained. The heating of a shock- and fast-ignited
precompressed ICF targets by laser-produced fast elec-
trons is investigated. A criterion for the generation of
a shock wave is obtained in the case of a decreasing
temperature (pressure) profile of matter heated by fast
electrons of a Maxwellian spectrum, which is the most
common for laser-accelerated particles. By using such
a criterion, the fractions of fast electron energy spent
for ablation of the target material and preheating the
material ahead of the shock front are found. The laser
pulse parameters are derived that allow generating a
shock wave for laboratory investigation of the EOS of
materials on the Gbar level of pressure. The tempera-
ture profile in the ignition region of a fast-ignited ICF
target is found and the minimal energy of the fast elec-
tron beam with a Maxwellian spectrum needed for ig-
nition is calculated.

The results of the studies are presented as follows.
In Sec. 2, a solution of the relativistic kinetic equation
for fast electrons with an arbitrary spectrum is pre-
sented. In Sec. 3, in the particular cases of nonrelativis-
tic and ultra-relativistic fast electrons, analytic solu-
tions for the distribution function and the deposited en-
ergy spatial distribution are presented for several types
of the initial spectrum, including the Maxwellian one.
Section 4 is devoted to the applications related to the
fast electron heating of shock- and fast-ignited ICF tar-
gets as well as to the Gbar shock wave generation for
EOS studies.
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2. EXACT SOLUTION OF THE
STEADY-STATE KINETIC EQUATION FOR
STOPPING FAST ELECTRONS HAVING AN

ARBITRARY INITIAL SPECTRUM

We consider a dense semi-space plasma of low-Z
materials, such as DT and light materials of an ICF
target ablator such as plastic or beryllium heated by a
fast electron bunch with an arbitrary energy distribu-
tion. We are interested in a sufficiently long bunch with
a duration of several tens of ps and more, consisting of
electrons with the average energy larger than several
keV. Under these conditions, the time of fast electron
slowing down is a fraction of a ps and the angle of scat-
tering is less than 10°. That allows studying the prob-
lem in the steady-state approximation and considering
the stopping of fast electron along a straight trajectory,
taking a small correction for scattering by reducing the
fast electron range into account.

The statement of the steady-state kinetic problem
for the distribution function of relativistic electrons in-
cident on a planar semi-space boundary (z = 0) along
the normal and decelerating there, consists of the ki-
netic equation (see, e.g., [20])

p Of  99f _
Y 8x+ op =0

(1)
together with the boundary condition

fla=o = 1S (p), (2)

where f is the distribution function of fast electrons in
the phase space, with the momentum p and the spatial
coordinate x; np and S(p) are the density and spec-
trum of fast electrons on the boundary of the heated

semi-space;
1/2
V= <1 + ) ;

c is the speed of light, m. is the electron rest mass, and
g = dp/dt is the fast electron stopping rate, which is
described by the expressions

2

2.2
m2c

2

5y dmet Zm,
9= —900?7 Jo= ——F

Ay InA,

(3)
e and m,, are the electron charge and the proton mass;
7 and A are the ion charge and atomic number; p is
the plasma mass density, and In A is the Coulomb lo-
garithm.

The equation implies the equality of the kinetic
energy introduced in the semi-space by a fast electron
and the energy deposited there:
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/an(p)EdpE /m,S(p)mec2 X

i )1/2—1] dp:/Wdac, (4)

<1 + L
m2c

where W is the specific heating rate, that is, the

fast-electron energy deposited in a unit volume of the

semi-space per unit time,

dE r m2c+4p?\ /2
we [ 1S a= 100 [5 (M) g, 5

FE is the kinetic energy of the fast electron,

X

E = (p*c® + 771304)1/2 —mec® = mec?(y —1),
and
dE p dp
dt

Introducing the new variables

yme dt’

mz/pdx and

2!

P . (6)
p= / 375 dp
2 /2
p’ Mmego (]. + m202>
we rewrite Eq. (1) as
dF
where
2 2.2
+
F = 1717277171?06; and f =m + -

Then the solution for the fast electron distribution
function satisfying boundary condition (2) is

p2 pIZ +mgc2

)
pl2 p2 _I_mgCZ

f=mS®) (8)
where the momentum p’ that the fast electron has on
the boundary of the semi-space at the coordinate x = 0,
and the momentum p that the same fast electron has
at the semi-space point with the current coordinate x

(p < p') are determined by

/

x D 3
p
/pdx = / NEYE dp. 9)
0 P mego <1 + mpzc2)

Performing the integration in (9) yields an exact ex-
pression for the stopping range u of the fast electron,
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where its momentum decreases from p’ to p, in the ge-
neral relativistic case

_ @) () =1
e ll 7(p) (7(1)’) - 1) ] oW

where g is the total stopping range of the fast elect-
ron decelerated from an arbitrary momentum p = p' to
p=20
mict [y(p') 1]
g9 )
Expression (11) is exact, in contrast to Refs. [10, 13, 22],
where approximate expressions were used to determine
the total range of a fast electron for both nonrelativistic
and relativistic cases. From (10), we obtain an explicit
expression that connects the values of p’ and p via the
mass m corresponding to the distance crossed by a fast
electron:

(11)

mo =

mecC 1/272 1/2
P = 5 {{(a+2)+((a+2)2—4) /] —4} , (12)
where
b -1 mgo _
a =
v(p) mict
2 N\ 1/2 2
<1+ %2) 1
_ m2e . mgo a3)
= 2 1/2 m3ch
(1 ! m)
and .
m = dz. 14
P
0

Expressions (8), (12), and (13) analytically determine
the distribution function of fast electrons in a nonuni-
form plasma semi-space with an arbitrary spectrum at
the boundary.

The specific heating rate W, according to (5), can
be calculated using solution (8) as

E
WE/ftfj_tdp: p(x)gony "

2
m2c

Here, the values p’ and p are related by (12) with (13)
and (14) taken into account. The specific heating rate
determines the growth rate of the plasma temperature

T, in the semi-space region heated by fast electrons
(assuming the electron—ion relaxation, we suppose that
T. =T, =T,)
dT, w
il SRAE (16)
dt Cvp

where

(Z+ kg

A(ya + 1)m;

is the specific heat, kp is the Boltzmann constant, 7, is
the adiabatic exponent, and m; is the mass of plasma

Cy =

ions.

3. HEATING OF PLASMA BY FAST
ELECTRONS WITH DIFFERENT INITIAL
ENERGY DISTRIBUTIONS

We consider the heating a plasma semi-space by a
stream of fast electrons with different initial spectra,
namely, a monoenergetic, a step-like, and a Maxwellian
one. The last spectrum is the most relevant to la-
ser-produced fast electrons. We discuss results for
both nonrelativistic and ultra-relativistic fast electrons,
which are described by simple expressions. The results
for the ultra-relativistic case are obtained under the ap-
proximation that the fast electrons transfer practically
all of their energy, but remain relativistic. Besides, for
simplicity in the ultra-relativistic case, the electron rest
energy is neglected. Also, to simplify the presentation,
we consider a homogeneous plasma.

According to (3), the stopping power of nonrela-
tivistic fast electrons is given by

_ _9p dE _ pg (17)
p2’ dt me’
where p = m,v and p = (2Em,)"/?. Accordingly, the
stopping length of a nonrelativistic fast electron that
decelerates from the initial momentum pg to the final
momentum p = 0 is obtained from the general expres-
sion (11) as
N
dgopome
In the case of ultra-relativistic fast electrons, these val-
ues are equal to

(18)

gop ~ dE
=_ = = 19
e a0 (19)
3
Ao = (mec) Po. (20)
goponie

where p = E/c.
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3.1. Monoenergetic spectrum

For the initial spectrum of fast electrons
S(p") =" —po),

the distribution functions for nonrelativistic and ultra-
relativistic fast electrons are respectively given by

2\ /4
<p4+p3)\—> —po] X
0

4 —1/2
Po z
1+ =) —
(p) /\0]

f(z,v) =nyo Kp+po)%> —po] :

Performing the integration in accordance with (5), we
obtain the following expressions for specific heating
in the respective cases of nonrelativistic and ultra-
relativistic fast electrons:

2\ 12
W:ﬂ<1——> L 0<2< Do;

flz,v) =nyd

X

and

2)\0 )\0
(21)
3
_ Po
%o =" 2m?2
and
Wzg\_o, 0<z<Xo; qo=mnppoc, (22)
0

where ¢p is the energy flux of fast electrons at the
boundary and the stopping lengths of nonrelativistic
and ultra-relativistic fast electron are given by expres-
sions (18) and (20).

The energy transmitted to the plasma layer of a
thickness x per unit time — the layer heating power —
in the respective cases of nonrelativistic and ultra-

relativistic fast electrons is
1/2
1- (1 - Ai) ] ,
° (23)

OSxS)‘Ua

q= /W(x')dm' =qo
0

1+ (1- Jc//\mm)l/2

and
x
q=do~y—

o (24)

3.2. Step-like spectrum

For the initial spectrum of fast electrons in the form
(Ap)ila Pmin S pl S Pmazx,
0, P < Pmins P’ > Pmaz,

where Ap = pmaz — Pmin, the respective distribution
functions for nonrelativistic and ultra-relativistic fast
electrons are

—1/2
Ny T
(z,p) Ap o) (25)
where
p4
A = Amin=2 < A < Amaz—2, 26
0) = o ») (26)
Y p;lnin — pfnam
min 4gopme max 4gopme )
and
Ny
S 2
where
Amin —x < A(p) S )‘mam x, (28)
mec)3p
Ap) = LD
Gopme
_ (meC)SPmm _ (mec)Spmax
)\min - = )\max - - -
Gopme Gopme

Then the specific heating rate and the energy transmit-
ted to the boundary layer per unit time by a nonrela-
tivistic fast electron stream with a step-like spectrum
are

A 1/2
In < maz > [
qo { Amm

12 ZK3T®, Bem. 3 (9)

1+ (1 - x/)‘mzn)l/Z

T 1/2
1+ (1_ > ) )‘minSxSAmaza
)\max

j|}7 OSxSAmnu
(29)
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_ do
q(x) B Amaz - Amm x
r - 1/2 1/2

/\maa: 1- 1_)\ - mzn 1- 1_ +

)\mam 1/2 ]- + (1 B x/)‘maI)l/2
1 0 <z < Amin,
+xn{</\mzn> 1+(1_‘r/)‘mzn1/2 =r=
x o (30)

()\mam - )\mzn) - )\mam <]- - 2\ ) +
A 1/2 T 1/2

—I—xln{(%) 1+<1—)\ > ]}7 Amin <2 < Apaz,

1/2

where the energy flux carried by the fast electron
stream is given by

np
8m?2

e

qo = (pmaz + pmzn) (p%nam +p$nzn) .

For an ultra-relativistic fast electron stream with a
step-like spectrum, we obtain

2(JOAmtlz
W .7 e
(x) /\?naz - /\?nzn
)\min
1- \ ) 0 S € S Amirn
X s (31)
X
1- ) Amm S xr S )\mamv
)\max
q(x) _ 2q0/\max
/\?naz - /\?nzn
)\min
1_/\ €z, OSxS/\mznv
X m“; (32)
l‘ + min
m7 Amin £ < Amazs

where the flux of energy carried by the fast electron
stream is given by

an2

D) (pmaz + pmzn) .

o = —5—

3.3. Maxwellian spectrum

For the 1D Maxwellian spectrum of nonrelativistic
fast electrons

2

" —
S(p) - 7r1/2ph

where p;, = (2kTm.)"/* is the momentum correspond-
ing to the temperature of fast electrons T}, the distri-

bution function is
9 1/2
P =iy P [‘ ) ]
4 —-1/2
1+< ) ] . (33)

In expression (33), the stopping length A, is introduced
for a nonrelativistic fast electron beam with the “ther-
mal” momentum py,:

4
p xr
_4_|__

xr

) A

p

__ph

B 490pme ‘
According to (5), (17), and (33), the specific heating is
determined by the integral

[eol-(++3) "]

2\ 12
(u -I-—) udu, (35)
An

where u = p/p, and the flux of energy carried by a
Maxwellian nonrelativistic fast electron stream is

An (34)

90

W) = 1

3
_ NPy
O = S (36)
The approximate calculation gives
do T 1z
R — —|2—
W (z) , exp[ ( )\h> ] (37)
and then
1/2
x
q(x)wqg{l— 1+ (2—) ] X
An
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For a 1D Maxwellian spectrum of ultra-relativistic
fast electrons

1 P’
S(®') =p;, exp (——) :
Ph
the distribution function is
np P x

z,p) = —exp|—(—+— ]|, 39
f@.p) Ph p[ <ph Ah)] (39)
where p, = Tp,/c. Then the specific heating and

transmitted energy by ultra-relativistic Maxwellian fast
electron are

W(z) = L exp (-f—}) (40)

and
q(r) = qo {1 — exp (—%)] : (41)

Here, the flux of energy carried by an ultra-relativistic
Maxwellian fast electron stream is

do = nbph02 (42)
and 5
\, = (meo)'nn )
gopimme

The spatial distributions of the specific heating
rate W(z) in a semi-space for nonrelativistic and
ultra-relativistic fast electron streams with the above-
considered spectra are presented in Fig. 1. The spatial
coordinate z is /Ao, /Amaz, and x/\, in the respec-
tive cases of monoenergetic, step-like, and Maxwellian
spectra. The function W(z) is normalized to the re-
spective values qo /Ao, ¢o/Amaz, and go/Ap, for monoen-
ergetic, step-like, and Maxwellian spectra. The depen-
dences of the heating power ¢(z) on the plasma thick-
ness for nonrelativistic and ultra-relativistic fast elec-
tron streams with the above spectra are presented in
Fig. 2. The plasma thickness is normalized to the re-
spective values Ag, Apaz, and Ay, for monoenergetic,
step-like, and Maxwellian spectra. The function ¢(z) is
normalized to the value ¢y. For the step-like spectrum,
the ratio pmin = 0.8Pmaez was chosen that corresponds
to the energy dispersion of 21 % for nonrelativistic fast
electrons and 11 % for ultra-relativistic fast electrons.
The dependence of specific heating for a monoenergetic
spectrum of fast electrons (see curves 1 in Fig. 1) di-
rectly reflects the dependence of the stopping power on
the distance traveled by a fast electron which, accord-
ing to (17), is a divergent function for nonrelativistic
fast electrons,

dE Ey

dr — 2X(1— /X)) /2

W, arb. units

1.5

1.0

0.5

0 3
z
W, arb. units
].5 T T

1.0

0.5

Fig.1. Spatial distributions of the specific heating rate
W (z) in a planar semi-space in the cases of (a) a non-
relativistic and (b) an ultra-relativistic fast electron
stream with a monoenergetic spectrum (curve 1), a
step-like spectrum at 0.8pmaz < p < Pmaz (curve 2),
and a Maxwellian spectrum (curve 3). The spatial co-
ordinate z is ©/X\o, ©/Amaz, and x/\y, in the respec-
tive cases of monoenergetic, step-like, and Maxwellian
spectra. The function W (z) is normalized to the re-
spective values qo/\o, q0/Amaz, and qo/An

and, according to (19), is a constant for ultra-
relativistic fast electrons.

Hence, the specific heating for a nonrelativistic mo-
noenergetic fast electron stream diverges at the coor-
dinate equal to the stopping length of the fast elec-
tron with an initial energy Ej (see curve 1 in Fig. la).
The electron energy spread leads to a redistribution
of specific heating due to decreasing the stopping
with increasing the nonrelativistic fast electron energy.
The solutions for a step-like spectrum (see expression

12%
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q, arb. units
1.0 | i

0.8 L 9 4

0.6 - 4

0.4 t+ 4

0.2 + 4

q, arb. units

1.0 L 1

0.8 t+ 3 4

0.6 - 4

0.4t 4

0.2 t 4

Fig.2. The dependence of the heating power ¢(z) on
the thickness of a planar layer in the cases of (a) a
nonrelativistic and (o) an ultra-relativistic fast electron
stream with a monoenergetic spectrum (curve 1), a
step-like spectrum at 0.8pmazr < p < Pma= (curve 2),
and a Maxwellian spectrum (curve 3). The layer thick-
ness is normalized to the respective values Ao, Amaz,
and \j, in the cases of monoenergetic, step-like, and
Maxwellian spectra. The function ¢(z) is normalized
to qo

(18) and curve 2 in Fig. 1a) and, especially, for the
Maxwellian spectrum (see expression (37) and curve
3 in Fig. la) clearly show this fact. We note that the
distribution of specific heating of a fast electron stream
with a step-like spectrum has a maximum in the nonrel-
ativistic case and a kink in the ultra-relativistic case at
the coordinate equal to the stopping length of fast elec-
trons with the minimal initial momentum, © = A\in,
and then specific heating monotonically decreases to

0 at the coordinate equal to the stopping length of
fast electrons with the maximal momentum, x = \,4z.
The specific heating distribution for a Maxwellian fast
electron stream is a monotonically decreasing function
of the coordinate.

4. PLASMA HEATING AND SHOCK WAVE
GENERATION DRIVEN BY
LASER-PRODUCED FAST ELECTRONS

Here, we consider applications of the theory of colli-
sional electron transport to the fast ignition and shock
wave excitation by a fast electron stream. We consider
a Maxwellian spectrum of the heating beam, which is
relevant to laser-accelerated fast electrons. A solution
for an arbitrary fast-electron temperature can be con-
structed as an interpolation of the solutions for the spe-
cific energy deposition in the nonrelativistic and ultra-
relativistic cases.

We approximate the fast electron flux at the bound-

ary ¢o and the fast electron stopping length \j, as
_ Qo(nr)

= "7 A, =
qo 110’ h

)‘h nr
e (44)
1+ 59

where qo(n,) and Ap(n,) are the energy flow and stop-
ping length of nonrelativistic fast electrons,

(2>1/2 np(KTp)*2
do(nr) = | = — 1/9

1/2
" me (45)
me(kTh)2
An(nr) = ————,
gop
and >
2 KTy,
== . 4
(71' mec2> (46)

According (37) and (40) the following interpolations
can then be obtained for the temperature and the spe-
cific deposited energy distributions in a heated layer:
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In the extreme cases T < mc? and T > mc?, solutions
(44)—(48) correspond to the respective nonrelativistic
and ultra-relativistic cases.

The lowest value of the energy of a fast electron
beam corresponds to the heating of a given mass of the
DT plasma with the areal density satisfying the igni-
tion criterion pz;; = 0.6 g/cm? at the thermonuclear
temperature provided by a monoenergetic beam. Es-
timates for a beam with a Maxwellian spectrum that
are available in the literature are based on the aver-
aged stopping length. In the case of an electron beam,
this approach leads to the igniting beam energy over-
estimated by a factor of 1.56 in comparison with the
monoenergetic beam [23].

To improve this estimate, we consider the solution
of the kinetic equation obtained above. The areal den-
sity of the DT plasma p = pz;; = 0.6 g/cm? corre-
sponds to the stopping range of a relativistic electron
with the energy about 0.8 MeV [10,22]. Hence, to de-
scribe the heating of a target by fast electrons, it is
necessary to use solution (47), (48) with the parameter
0 equal to 1. According to (48), the minimum beam en-
ergy required for heating the plasma with a given areal
density pz;, corresponds to the relation x;4/Ap = 1.
Then the ratio of the igniting beam energies with the
Maxwellian (# = 1) and a monoenergetic spectra, ac-
cording to (48), is

QMazw — 2
Qmono 2 — [(1+\/§)e—\/§ +6_1

Therefore, the Maxwellian spectrum leads to the two-
fold excess of the igniting beam energy in comparison
with the case of a monoenergetic beam.

We now consider the effect of the Maxwellian spec-
trum on the characteristics of a shock wave driven by
a fast electron stream. In [13,24], an analytic model of
a shock wave generation was proposed, where a planar
target was heated by a stream of monoenergetic fast
electrons. The model is based on a self-similar solu-
tion [25] for an isothermal expansion of a given mass
of substance determined by the fast electron stopping
range. The parameters that determine the shock wave
pressure and the time of the pressure formation (load-
ing time) are the fast electron stopping range u and
the velocity of rarefaction wave in the heated material
D. The velocity D for a semi-infinite target with a
density p depends on the intensity of the fast electron
flux absorbing in the target region with a mass equal
to the fast electron range m = u and the initial target

density [13, 24]:
1/3
n=(%)

1.9.

q

P (49)
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The scale of ablation pressure is proportional to the
product pD?:

P =0.86p'3¢*/3. (50)
The loading time is approximately the time of rarefac-
tion wave propagation through the heated region:

1

(51)

Relations (50), (51) were applied in [13, 24] to shock
wave generation with a third harmonic of the Nd-laser
pulse with the intensity of 1 PW/cm? incident on a
planar DT target precompressed to a density of about
10 g/em3. With a monoenergetic spectrum assumed
for nonrelativistic laser-produced fast electrons, it was
shown that the fast electron heating under these condi-
tions leads to the generation of a shock wave with the
pressure of 700 Mbar during the time of approximately
10 ps. Such a pressure satisfies the shock ignition re-
quirements, according to which the igniting pressure
should exceed 300 Mbar during the time of 200-300 ps
[26,27]. The analytic model results are in good agree-
ment with the numerical simulations performed by a
hydrokinetic code [13, 24].

Currently, the use of an intense laser pulse is the
most effective method for generating powerful shock
waves with a pressure of 100 Mbar, which is used in
laboratory EOS experiments (see, e. g., review [28]). A
beam of laser-accelerated charged particles, in addition
to a high-energy density flux, can heat a material with
an initial solid density. This is in a contrast with the
laser radiation, which is absorbed in the region of the
critical plasma density. A higher density in the energy
deposition zone makes it possible to achieve a much
higher pressure of a shock wave driven by the beams of
laser-accelerated electrons or ions in comparison with
the laser beam itself. This may be true in spite of a rela-
tively low conversion efficiency of the laser pulse energy
into the energy of fast charged particles. Of greatest
interest is the use of a laser-accelerated fast electron
beam, for which such a conversion efficiency, as men-
tioned in the Introduction, is substantially higher than
for the fast ion beam. It may reach 20-30 %, according
to the experimental data.

According to (50), at the monoenergetic fast elec-
tron intensity 10 PW /cm?, the shock wave pressure, for
example, in aluminum can be about 1.2 Gbar, which
is more than an order of magnitude greater than the
pressure achieved in the current EOS experiments. The
scale of laser pulse energy corresponding to a Gbar
shock wave generation for EOS experiments is about
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10 kJ. This energy value is determined, in particular,
by the specific requirements of the shock-wave EOS
experiment, which consist in the fact that the shock
wave should remain plane and stationary during the
measurement period. These requirements impose the
constraints on the minimum values of the laser pulse
duration and beam radius, which at least should be re-
spectively greater than the loading time and the thick-
ness of the target layer heated by the fast electron
beam. We assume that the beam of fast electrons
with an intensity of 10 PW/cm? is generated by the
third harmonic of Nd-laser radiation with an intensity
of 100 PW/cm?, which corresponds to the conversion
efficiency of the laser energy into the energy of fast elec-
trons of 10 %. According to the scaling in Ref. [29], the
average energy of fast electrons in this case is about
25 keV. To calculate the fast electron stopping length,
which is a key parameter of the problem, we use the
approximation dependences in Refs. [22,24]. These
data are based on quantum-statistical calculations of
the Coulomb logarithm in describing the interaction of
fast electrons with electrons and ions of dense plasma,
obtained in Refs. [30-32]. In particular, these calcula-
tions include the effects of reducing the Debye screen-
ing radius in strongly coupled plasmas, which lead to
logarithmic corrections in increasing the fast electron
stopping length. In the considered conditions of Giga-
bar shock wave generation, when fast electrons heat the
plasma with a density of several g/cm® up to the tem-
perature of several hundred eV, the plasma coupling
parameter, which is the ratio of the average values of
the potential energy of the plasma electron interaction
and its kinetic energy, T' ~ 5(Ap)'/3/Z'/3T (with the
density and temperature measured in g/cm? and €V)
is only 0.01-0.03. Therefore, the coupling plasma cor-
rection to the fast-electron stopping length is negligible
in this case. When fast electrons heat the plasma with
a density of several hundred g/cm?, such a correction
can reach 10 % and more. According to Refs. [22,24],
the stopping length of an electron of such an energy in
aluminum is about 10 pum. Expression (51) gives the
loading time equal to about 45 ps. Then the minimum
values of the pulse duration and the beam radius should
be chosen equal to 200 ps and 100 ym. At the intensity
of 100 PW /cm?, the laser pulse energy for generation
of a Gbar shock wave satisfying the EOS experiment
requirements is about 6 kJ. Using a beam of relativistic
electrons corresponding to the target irradiation by a
laser pulse with an intensity exceeding 10'® W /cm? can
provide a pressure even greater than 10 Gbar. However,
taking the requirements of the shock-wave EOS exper-
iment into account, the laser pulse energy in this case

must be at least 100 kJ.

In the case of a monoenergetic electron beam, all its
energy is spent on the formation of the ablation pres-
sure and excitation of a shock wave, while in the case of
a Maxwellian spectrum, only a fraction of that energy
can be spent on ablation. High-energy electrons with
a Maxwellian spectrum transfer their energy to the re-
gion ahead of the shock wave front, thereby producing a
heating of the material prior to its compression. A rela-
tion between the energies of the two spectral groups of
fast electrons responsible for the shock wave generation
and preheating processes is the key element for under-
standing the Maxwellian spectrum effect on the shock
wave characteristics. The general relation between the
energies of these groups of electrons is deduced from the
shock wave generation requirement: wug,, > cs, where
Usqy 18 the piston (downstream) plasma velocity and ¢
is the upstream sound velocity. With the shock wave
assumed to be strong, such a criterion determines the
coordinate of an ablation boundary z, as

Tq

/W1/2dx > (o + )22, W2,

0

(52)

Substituting solution (37) in expression (52) and
integrating, we obtain the equation for the ablation co-
ordinate in the case of nonrelativistic Maxwellian fast
electrons

1
expo > 5 (v + 1) PG+ & +1, (53)

(ta 1/2
§a = A :

For v, = 5/3 the requirement in (53) is satisfied at
&, > 1.4 and, therefore, at x, > 4X\,. Thus, accord-
ing to (17), the nonrelativistic fast electrons with a
Maxwellian spectrum with energies £ < E, = 2T}
are responsible for the generation of a shock wave, in-
cluding evaporation of the target material and creation
of ablation pressure. The fast electrons with energies
E > 2T}, are responsible for preheating the material
upstream the shock wave front. According to (38), we
have

where

4(7a)
do
that is, approximately, 78 % of the fast electron stream
energy is spent for ablation and 22 % for preheating.
Substituting solution (40) in expression (52) and
integrating, we obtain the following equation that de-
termines the ablation coordinate in the case of ultra-
relativistic Maxwellian fast electrons:

~ 0.78, (54)

exp&, > (v +1)126 + 1, (55)
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where
Tq

ga = 2)\h.

With v, = 5/3, requirement (55) is satisfied for
&, > 0.9 and therefore for z, > 1.8\,. Thus, accord-
ing to (19), the ultra-relativistic fast electrons with a
Maxwellian spectrum with energies £ < E, = 1.8T}
contribute to the generation of a shock wave, includ-
ing evaporation of the target material and creation
of ablation pressure. The fast electrons with energies
E > 1.8T}, contribute to the preheat of a material up-
stream the shock wave front. According to (41), we
have

(56)

q(za)
do

Therefore, in comparison with nonrelativistic fast elec-
trons, the ultra-relativistic fast electrons spend a
larger part of their energy for the excitation of shock
waves and a smaller part for preheating (84 % and
16 % respectively). Hence, at the same intensities of
Maxwellian and monoenergetic beams, the shock wave
pressure driven by a Maxwellian beam is smaller than
the one driven by a monoenergetic beam. That is due
to the reduction in the energy spent on heating the
material in the ablation region. According to (51), the
pressure amplitude decreases as
) ) 2/3

y

By itself, the pressure drop is insignificant. Accord-
ing to (54) and (57), the pressure decreases by 1.2
times in the case of nonrelativistic electrons and by
1.1 times in the case of ultra-relativistic electrons. The
Maxwellan spectrum effect is much stronger on a spa-
tial and temporal characteristics of the shock wave. As
shown above, the thickness of the ablation region x,
in the case of a Maxwellian beam increases by 4 times
in the nonrelativistic case and 1.8 times in the ultra-
relativistic case in comparison with a monoenergetic
beam. Moreover, according to (51), the loading time

increases as
1/3
(q )) '

Thus, the loading time in the case of a Maxwellian
beam increases by 4.3 times in the case of nonrela-
tivistic electrons and by 1.9 times in the case of ultra-
relativistic electrons in comparison with the case of a
monoenergetic beam. These results are in good agree-
ment with numerical calculations [33,34] of igniting
shock waves driven by a beam of nonrelativistic fast
electrons with a Maxwellian spectrum.

~ 0.84.

(57)

q(za
qo

PMazw

Pmono

th(Mamw) _ Ta(Mazw)

qo
(Ta

th(mono) Ta(mono)
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The effect of the Maxwellian energy distribution is
essential. For the igniting shock wave, the effect of in-
creasing the thickness of the ablation region is the most
important. It requires a modification of the shock-
ignited target design such that the areal density of the
precompressed target should be larger by a factor of 4
than the target designed for a monoenergetic igniting
beam.

In the case of Gigabar wave generation for EOS
studies, both the effects of increasing the ablation re-
gion thickness and the loading time are important. For
the considered example of a Gigabar shock wave, the
Maxwellian spectrum leads to increasing the ablation
region thickness and loading time to 40 ym and 80 ps.
As aresult, choosing the laser pulse duration and beam
radius to be equal to 300 ps and 200 yum requires in-
creasing the laser pulse energy from 6 up to 24 kJ in
order to generate a shock wave with a pressure of about
1 Gbar for EOS experiments.

5. CONCLUSION

An exact solution of a stationary relativistic kinetic
equation for the distribution function of fast electrons
with an arbitrary initial spectrum allows finding a sim-
ple analytic form of the spatial distribution of the spe-
cific energy deposited by a high-energy electron stream
in a plane semi-space plasma with an arbitrary density
distribution. Broadening the fast electron spectrum
leads to increasing the range of energy deposition and
to a spatial redistribution of specific heating.

The fast electron spectrum determines the require-
ments to the energy of fast igniting and shock wave
generating beams. The Maxwellian spectrum, which is
most appropriate for laser-driven fast electrons, leads
to the necessity of a two-fold increase in the relativistic
electron beam energy, which is required for fast igni-
tion of an ICF target, in comparison with the case of
a monoenergetic beam. The parameters of the shock
wave driven by a fast electron stream depend on the
fast electron spectrum. Broadening the fast electron
spectrum leads to decreasing the ablation pressure and
increasing the ablation region thickness as well as the
time of ablation pressure formation in comparison with
the case of the monoenergetic spectrum. The energy of
nonrelativistic fast electrons with the Maxwellian spec-
trum is separated into two fractions, one of which, ap-
proximately 78 % of the total energy, is spent to the
shock wave excitation and the rest fraction of 22 % of
total energy is spent for preheating the material ahead
of shock front. It leads to a not so large decrease in
the ablation pressure by a factor of 1.2, but to a sig-
nificant increase in the time of shock wave generation
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by a factor 4.3. The most important consequence of
the Maxwellian spectrum of fast electrons for the de-
sign of a shock ignition target is the increase in the fast
electron energy deposition range in comparison with a
monoenergetic beam. The design of the target must
provide such a regime of target precompression that
the peripheral part of precompressed material should
have a mass larger by a factor of 4 than the range of
fast electrons with the energy equal to the temperature
of the Maxwellian distribution.

The most important consequence of the Maxwellian
fast electron spectrum for the characteristics of Gbar
shock waves designed for EOS experiments deals with
both the effects of increase in the fast electron energy
deposition range and the time of ablation pressure for-
mation in comparison with the case of a monoenergetic
beam. The laser pulse energy needed to generate such
a wave in the case of a Maxwellian spectrum beam
increases by 4 times in comparison with the case of a
monoenergetic beam, from 6 up to 24 kJ.

The work was RFBR
Ne 14-02-00010).
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