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NUCLEON QCD SUM RULES IN THE INSTANTON MEDIUMM. G. Ryskin, E. G. Drukarev *, V. A. SadovnikovaNational Resear
h Center �Kur
hatov Institute�,Konstantinov Petersburg Nu
lear Physi
s Institute188300, Gat
hina, Leningrad Region, RussiaRe
eived April 2, 2015We try to �nd grounds for the standard nu
leon QCD sum rules, based on a more detailed des
ription of theQCD va
uum. We 
al
ulate the polarization operator of the nu
leon 
urrent in the instanton medium. Themedium (QCD va
uum) is assumed to be a 
omposition of the small-size instantons and some long-wave gluon�u
tuations. We solve the 
orresponding QCD sum rule equations and demonstrate that there is a solution withthe value of the nu
leon mass 
lose to the physi
al one if the fra
tion of the small-size instantons 
ontributionis ws � 2=3.DOI: 10.7868/S00444510150900591. INTRODUCTIONThe idea of the QCD sum rule approa
h is to ex-press the 
hara
teristi
s of the observed hadrons interms of va
uum expe
tation values of the QCD op-erators often referred to as 
ondensates. This idea wassuggested in [1℄ for the 
al
ulation of the 
hara
teristi
sof mesons. Later, it was used for nu
leons [2℄. It su
-
eeded in des
ribing the nu
leon mass, the anomalousmagneti
 moment, the axial 
oupling 
onstant, et
. [3℄.The QCD sum rule approa
h is based on the dis-persion relation for the fun
tion des
ribing propaga-tion of the system that 
arries the quantum numbersof a hadron. This fun
tion is usually referred to asthe �polarization operator� �(q), with q being the four-momentum of the system. The dispersion relation (inwhi
h we do not take 
are of subtra
tions)�(q2) = 1� Z dk2 Im�(k2)k2 � q2 (1)is analyzed at large and negative values of q2. Dueto the asymptoti
 freedom of QCD, the polarizationoperator 
an be 
al
ulated in this domain. Opera-tor produ
t expansion (OPE) [4℄ enables to representthe polarization operator for a power series in q�2 asq2 ! �1. The 
oe�
ients of the expansion are theQCD 
ondensates, su
h as the s
alar quark 
ondensateh0j�q(0)q(0)j0i, the gluon 
ondensate h0jGa��Ga�� j0i,*E-mail: drukarev�thd.pnpi.spb.ru

et
. The nonperturbative physi
s is 
ontained in these
ondensates. A typi
al value of a 
ondensate with thedimension d = n is h0jOnj0i � (�250 MeV)n. Hen
e,we expe
t the series �(q) =Pnh0jOnj0i=(q2)n to 
on-verge at �q2 � 1 GeV2.The left-hand side of Eq. (1) is 
al
ulated as an OPEseries. The imaginary part in the right-hand side de-s
ribes physi
al states with the baryon quantum num-ber and 
harge equal to unity. These are the proton,des
ribed by the pole of Im�(k2), the 
uts 
orrespond-ing to systems 
ontaining a proton and pions, and soon. The right-hand side of Eq. (1) is usually approxi-mated by the �pole + 
ontinuum� model [1, 2℄, in whi
hthe lowest-lying pole is written exa
tly, while the higherstates are des
ribed by the 
ontinuum. The main aimis to obtain the value of the nu
leon mass.The polarization operator 
an be written as�(q2) = i Z d4x ei(q�x)h0jT [j(x)�j(0)℄j0i; (2)where j(x) a lo
al operator with the proton quantumnumbers, often referred to as the �
urrent�. It is a
omposition of quark operators. Therefore, the in-tegrand in Eq. (2) 
ontains the nonlo
al expe
tationvalues h0j�q(0)q(x)j0i. The nonlo
al 
ondensates havebeen 
onsidered previously (see [5℄ and the referen
estherein), mainly in the studies of pion wave fun
tions.We note that the produ
t �q(0)q(x) is not gauge in-variant. This expression makes sense if we de�ne q(x)as the expansion near the point x = 0, i. e.,470
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leon QCD sum rules in the instanton mediumq(x) = �1 + x�D� + x�x�2 D�D� + : : :� q(0); (3)with D� standing for 
ovariant derivatives. TheFo
k�S
hwinger (�xed-point) gauge x�A�(x) = 0,where A�(x) is the gluon �eld, is usually employed.This allows repla
ement the 
ovariant derivatives byordinary ones. Thus, the 
ondensate h0j�q(0)q(x)j0i 
anbe expressed as a Taylor series 
ontaining a set of new
ondensates, su
h as h0j�q(0)�2q(0)j0i.In this approa
h, the QCD 
ondensates are 
onside-red as phenomenologi
al parameters. Extra
ting theirvalues from experimental data, supported by 
ertaintheoreti
al ideas, does not always lead to unique 
on-
lusions.The Borel transform is usually applied, whi
h 
on-verts fun
tions of q2 into fun
tions of the Borel massM2. We also note that the Borel transform removesdivergent 
ontributions 
aused by the behavior of theintegrand on the right-hand side of Eq. (2) as x ! 0.An important assumption is that there is an interval ofthe values of M2 where the two sides of the sum ruleshave a good overlap, also approximating the true fun
-tions. This interval is in the range of 1 GeV2. Thus,one a
tually tries to expand the OPE from the high-momentum region to the region of jq2j � 1 GeV2.To 
al
ulate the polarization operator de�ned byEq. (2), we must 
larify the form of the 
urrent j(x).It is not unique. We 
an writej(t; x) = j1(x) + tj2(x); (4)with j1(x) = (uTa (x)Cdb(x))
5u
(x)"ab
;j2(x) = (uTa (x)C
5db(x))u
(x)"ab
;while t is an arbitrary 
oe�
ient. Following [6℄, we usethe 
urrent determined by Eq. (4) with t = �1, whi
h
an be written (up to a fa
tor of 1=2) asj(x) = (uTa (x)C
�ub(x))
5
�d
(x)"ab
: (5)This 
urrent is often used in the QCD sum rules 
al
u-lations. One of the strong points of the 
hoi
e is that itmakes the domination of the lowest pole over the higherstates on the right-hand side of the sum rules more pro-noun
ed. We use only this 
urrent in the present paper.Any model of the QCD va
uum should explain theorigin and the values of QCD 
ondensates. A 
urrentlypopular standpoint (see, e. g., [7℄) is that the QCD va-
uum is �lled with strong gluon �elds (instantons). Thevalues of the QCD 
ondensates are determined by the

spa
e-time stru
ture of the instantons. Hen
e, the in-stantons provide a more detailed des
ription of the va-
uum than the QCD 
ondensates do.We try to write the QCD sum rules in terms of theinstanton va
uum parameters. Our aim is not to re-pla
e the OPE approa
h but to study a possible role ofa more detailed stru
ture of the QCD va
uum.The instanton medium is 
hara
terized by a distri-bution of the instantons over their sizes �, to be denotedby n(�), and by the distan
es R between instantons,whi
h also have a 
ertain distribution. The distribu-tion n(�) is known to peak at � � 0:33 fm [7℄. Asummary of a number of latti
e 
al
ulations of the dis-tribution is presented in [8℄. A detailed analysis of thedistribution over sizes is given in [9℄. As regards thedistan
e between the instantons, the 
onventional as-sumption is that the average separation is R � 1 fm[7℄. We use the simplest model that reprodu
es theessential physi
s of the pro
ess. We assume that theQCD va
uum 
onsists of �small-size� instantons with�s � 0:33 fm (we vary this value in what follows) andsome long-wave gluon �eld �u
tuations 
hara
terizedby a s
ale �` � 1 GeV�1. Thus, the quarks 
omposingthe polarization operator move in a superposition ofthe �elds of small-size instantons and some long-wave�u
tuations.We treat the quarks in the �eld of small instantonsfollowing the approa
h developed in [10, 11℄. In thisapproa
h, the light quarks move in the self-
onsistent�eld of intera
ting small-size instantons. They are de-s
ribed by the propagator (in the Eu
ledian metri
)Sab(p) = p̂+ im(p)p2 +m2(p)Æab; (6)with the e�e
tive dynami
al mass m(p) found in[10, 11℄. We note that the value R = 1 fm allows re-produ
ing the value of the gluon 
ondensate in su
han instanton va
uum model. This instanton�instantonseparation R = 1 fm is mu
h larger than the inverseBorel mass 1=M � 0:2 fm. Hen
e, the size of the systemdes
ribed by polarization operator (2) is mu
h smallerthan R and 
an a

ommodate only one (�nearest�) in-stanton. We re
all that this is a part of a self-
onsistentsystem of intera
ting instantons. This leads to several
onsequen
es. We 
an write the quark propagator inthe �nearest-instanton approximation� (NIA) asSab(p) = SZ + SNZ ; SZ(p) = im(p)p2 Æab;SNZ(p) = p̂p2 Æab; (7)471
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ontribution. The sum ofall nonzero-mode 
ontributions SNZ is approximatedby the free propagator of a massless quark. We notethat in the NIA, we in
lude only the terms that areproportional to the instanton density.In this approa
h, one of the nonvanishing 
ontribu-tions 
omes from the 
on�gurations where all quarksare des
ribed by the propagators SNZ . Another 
ontri-bution 
omes from the 
on�guration where the u quarksare des
ribed by SNZ , i. e., do not feel the instantons,while the d quark is des
ribed by the propagator SZ .The other 
on�gurations do not 
ontribute to the po-larization operator be
ause two u quarks 
annot be in azero mode of the same instanton. The 
on�guration inwhi
h u and d quarks are in zero modes 
orrespond tothe SU(2) version of the instanton-indu
ed 't Hooft in-tera
tion [12℄. For 
urrent (5), this 
on�guration doesnot 
ontribute be
ause it 
ontains the tra
e of an oddnumber (three) of 
 matri
es, whi
h vanishes.Comparing the stru
tures of 
hirality-
onservingand 
hirality-�ipping 
omponents of the polarizationoperator in the 
ondensate and small-size nearest in-stanton �languages�, we see that they di�er. In both�languages�, the 
hirality-
onserving stru
ture 
ontainsthe loop of three free quarks. But there is no su
h thingas a four-quark 
ondensate in the �nearest instanton ap-proximation�1). In the nu
leon QCD sum rules, M2 isof the order of 1 GeV2, and hen
e � = M2�2s � 1. Onthe other hand, the quark 
ondensate 
reated by thesmall-size instantons 
an be represented by the generalrelationh0j�q(0)q(0)j0is = i Z d4p(2�)4 TrS(p) == �4N
 Z d4p(2�)4 m(p)p2 (8)(the subs
ript s means the small-size instantons, andN
 is the number of 
olors), 
reating a bridge betweenthe instanton and 
ondensate languages. In the limit� � 1, the two languages provide the same result, andthe 
ontribution is proportional to the quark 
onden-sate h0j�q(0)q(0)j0i. In the instanton pi
ture at � � 1,the 
ontribution 
an be viewed as 
oming from the non-lo
al s
alar 
ondensate h0j�q(0)q(x)j0is. The nonlo
al
ondensate is not a new subje
t, it was used previously,for example, in the pion QCD sum rules in [5℄.1) Going beyond the terms that are linear in the instantondensity, we would obtain a 
on�guration with two u quarks inthe instanton �eld. In the limit M2�2s ! 1, the 
ontribution
orresponds to the fa
torized four-quark 
ondensate in the OPElanguage (see below).

The radiative 
orre
tions to the 
hirality-
onservingstru
ture that 
ontain the terms �s lnM2 (the leadinglogarithmi
 approximation, LLA) are the same as inthe OPE 
ase. The same refers to LLA 
orre
tions tothe 
hirality-�ipping stru
ture, be
ause they originatefrom the u quark loop and are determined by large mo-menta of the virtual gluons, whi
h strongly ex
eed themomentum 
arried by the 
urrent.We demonstrate that the QCD sum rules 
on-stru
ted in su
h a way do not have a physi
al solu-tion. Therefore, we must assume that the small instan-tons 
reate only part of the s
alar 
ondensate. At �rstglan
e, this 
ontradi
ts the results in [10; 11℄, wherethe small instantons reprodu
ed the 
onventional valueof h0j�q(0)q(0)j0i. But in these papers, the instantondensity, whi
h is proportional to 1=R4, is tied to thegluon 
ondensate, whi
h is known with large un
er-tainties (up to a fa
tor of 2) [13℄. This leaves someroom for other 
ontributions to the quark s
alar 
on-densate. Here we assume that the small-size instan-tons provide a fra
tion ws of the total s
alar 
on-densate. Our model assumption is that the rest part(1 � ws)h0j�q(0)q(0)j0i is due to intera
tions at a large
orrelation length �l � 1 GeV�1. It 
an be approxi-mated by a lo
al 
ondensate. Thus the 
hirality �ipping
omponent of the polarization operator is determinedby terms that des
ribe intera
tions of the d quark withthe nearest small-size instanton and by a lo
al 
onden-sate. We write the expe
tation value ash0j�q(0)q(x)j0i = h0j�q(0)q(x)j0is+h0j�q(0)q(0)j0i`;h0j�q(0)q(x)j0is;` = h0j�q(0)q(x)j0iws;`; (9)ws + w` = 1;where we do not a

ount for nonlo
alities of the se-
ond term. This realizes the old idea [14; 15℄ that thelarge-size instanton 
ontributions are in
luded in 
on-densates, while the small-size instantons provide non-perturbative 
ontributions written expli
itly. As a spe-
ial 
ase, the 
ondensate h0j�q(0)q(0)j0i` 
an be treatedas due to the long-size instantons with �`M � 1.The polarization operator now obtains a 
ontribu-tion from a 
on�guration in whi
h one of the u quarksmoves in the zero mode of a small-size instanton, whilethe se
ond quark is des
ribed by a lo
al s
alar 
on-densate. In the limit � � 1, the leading term of theexpansion in powers of 1=� is equal to that given bythe standard total 
ondensate of the OPE approa
h.For M2 of the order of 1 GeV2, we have �2sM2 � 1,and the 
onvergen
e of the OPE series is obs
ure. Forthe 
hirality-�ipping sum rule, the fun
tion of M2 onthe left-hand side 
an be viewed as 
oming from the472
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leon QCD sum rules in the instanton mediumnonlo
ality of the s
alar quark 
ondensate. The 
on-tribution of the four-quark 
ondensate presented in theinstanton pi
ture then makes a mu
h smaller 
ontri-bution be
ause one instanton 
an produ
e only one �qqpair of a �xed �avor. On the other hand, some of the
ondensates that 
ontribute to the OPE sum rules arenot a

ounted for in our model, where all the nonzeromode 
ontribution is approximated by (in
luded in) thefree quark propagator SNZ .We 
al
ulate the polarization operator �(q) in theinstanton va
uum in the NIA and analyze the 
orre-sponding sum rules. We demonstrate that the sumrules have a solution with the value of the nu
leon massnot far from the physi
al one for all ws < 0:6�0.7. Atws � 2=3, the value of the nu
leon mass is mN �� 1 GeV. Comparing with the sum rules in terms of
ondensates, we �nd that the 
onsisten
y between theleft- and right-hand sides of the sum rules is improved.At the 
onventional values of the quark 
ondensateh0j�q(0)q(0)j0i � (�250 MeV)3, the value of the thresh-old does not 
hange mu
h, while that of the nu
leonresidue be
omes noti
eably smaller. At larger valuesof ws, the sum rules have only an unphysi
al solutionwith the 
ontribution of the 
ontinuum mu
h ex
eedingthat of the nu
leon pole. In Se
. 2, we re
all the mainfeatures of the nu
leon sum rules in terms of 
onden-sates. In Se
. 3, we 
al
ulate the polarization operatorin the instanton va
uum. In Se
. 4, we solve the sumrule equations. We dis
uss the results in Se
. 5.2. QCD SUM RULES IN TERMS OFCONDENSATESIn the 
ase of a nu
leon (we 
onsider the proton),the polarization operator takes the form�(q) = q̂�q(q2) + I�I (q2); (10)where q is the four-momentum of the system, q̂ = q�
�,and I is the unit matrix. The �rst and the se
ond termson the right-hand side respe
tively 
orrespond to the
hirality-
onserving and the 
hirality-�ipping 
ontribu-tions. The dispersion relations are�i(q2) = 1� Z dk2 Im�i(k2)k2 � q2 ; i = q; I: (11)As noted above, we do not take 
are of the subtra
tions.We present the results of the 
al
ulation of the po-larization operator de�ned by Eq. (2) with the 
urrentdetermined by (5). The left-hand side of Eq. (11) 
anbe written as

�q OPE(q2) =Xn=0An(q2);�I OPE(q2) =Xn=3Bn(q2); (12)where the lower index n is the dimension of the
orresponding QCD 
ondensate (A0 stands for thethree-quark loop). The most important terms for n � 8were obtained earlier [2, 3℄. For the 
hirality-
onservingstru
ture, they areA0 = �Q4 lnQ264�4 ; A4 = �b lnQ2128�4 ;A6 = 124�4 a2Q2 ; A8 = � 16�4 m20a2Q4 ; (13)where Q2 = �q2 > 0, while a and b are the s
alarand gluon 
ondensates multiplied by 
ertain numeri
alfa
tors a = �(2�)2h0j�qqj0i;b = (2�)2h0j�s� Ga��Ga�� j0i; (14)andm20 � h0j�q���G��qj0ih0j�qqj0i ; G�� = �s� Xh Gh���h2 : (15)We dis
uss the value of m20 in Se
. 5. For the 
hirali-ty-�ipping stru
ture, we �ndB3 = aQ2 lnQ216�4 ; B5 = 0: (16)The leading 
ontribution to the 
hirality-
onservingstru
ture A0 is the loop 
ontaining three free quarks.The leading 
ontribution to the 
hirality-odd stru
-ture B3 is proportional to the s
alar quark 
ondensate.Here, the free u quarks form a loop, while the d quarksare ex
hanged with the va
uum 
ondensate, see Fig. 1.We note the last equality B5 = 0, however. Thereare indeed two 
ontributions of dimension d = 5,and we 
an therefore write B5 = Ba5 + Bb5. Theterm Ba5 
omes from the Taylor expansion of the pro-du
t �d(0)d(x) and is proportional to the 
ondensateh0j �d(0)D2d(0)j0i. In this 
ase, the u quarks are de-s
ribed by free propagators that are diagonal in 
olorvariables. But the produ
t of the operators da� �db�Gh��make a 
ontribution to the d quark propagator, pro-portional to the produ
th0j�qG�����qj0i����hab=2:The 
ontribution to the polarization operatorBb5 is thusproportional to the 
ondensate h0j�qG�����qj0i, and the473
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Fig. 1. The set of diagrams for the lowest OPE terms ofthe nu
leon sum rules. Wavy lines are for the nu
leon
urrent, solid lines stand for the quarks, and dashedlines denote the gluons. The 
ir
les stand for the quarkand gluon 
ondensatespropagator of one of the u quarks of the polarizationoperator should in
lude intera
tion with this gluon �eld(and 
annot be treated as a free one). Due to the equa-tion of motion�D2 � 12���G��� q = m2qq;where mq is the 
urrent mass of the quark, we �nd thath0j �d(0)D2d(0)j0i = 12 h0j�q���G��qj0i (17)for the massless quark. Thus, the 
ontributions Ba5 andBb5 
an be expressed in terms of the same 
ondensate.Dire
t 
al
ulation [16℄ demonstrates that Ba5 +Bb5 = 0.We note that this 
an
elation o

urs only for 
urrent(5). If we use 
urrent (4) with t 6= �1, then B5 6= 0.Usually, sum rules for the operatorsP i(M2) = 32�4B�i OPE(q2);where B is the Borel transform operator, are a
tually
onsidered. The fa
tor 32�4 is introdu
ed in order todeal with the values of the order of unity (in GeV units).After the Borel transform, we write (12) asPq(M2) =Xn=0A0n(M2);P i(M2) =Xn=3B0n(M2);A0n(M2) = 32�4BAn(q2);B0n(M2) = 32�4BBn(q2): (18)

We here present the most important terms:A00(M2) =M6; A04(M2) = bM24 ;A06 = 43a2; B03(M2) = 2aM4: (19)The Borel-transformed sum rules (11) 
an now be writ-ten as P i(M2) = F ip(M2) + F i
(M2); (20)where the two terms on the right-hand side are the
ontributions to the right-hand side of the Borel-trans-formed Eq. (11) made by the nu
leon pole with themass mN and by the 
ontinuum:F ip(M2) = �i�2 exp��m2NM2� ;F i
(M2) = 1ZW 2 dk2 exp�� k2M2��[B�1(k2)℄: (21)Here, �2 is the residue at the nu
leon pole (multipliedby 32�4), W 2 is the 
ontinuum threshold, and �q = 1,�I = mN .The 
onventional form of the sum rules isLq(M2;W 2) = Rq(M2); (22)and LI(M2;W 2) = RI(M2); (23)where Li and Ri are the respe
tive Borel transforms ofthe left- and right-hand sides of Eqs. (11):Rq(M2) = �2 exp��m2NM2� ;RI(M2) = mN�2 exp��m2NM2� ; (24)with �2 = 32�4�2N . The 
ontribution of the 
ontinuumis moved to the left-hand sides of Eqs. (22) and (23),whi
h 
an be written asLq =Xn=0 ~An(M2;W 2);LI =Xn=3 ~Bn(M2;W 2); (25)(see Eq. (18)). Here,~A0 = M6E2(
)L(M2) ; ~A4 = bM2E0(
)4L(M2) ;~A6 = 43a2L; ~B3 = 2aM4E1(
); 
 = W 2M2 ; (26)474
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leon QCD sum rules in the instanton mediumwithE0(
) = 1� e�
 ; E1(
) = 1� (1 + 
)e�
 ;E2(
) = 1� (1 + 
 + 
2=2)e�
: (27)The fa
tor L(M2) = � lnM2=�2ln�2=�2 �4=9 (28)in
ludes the most important radiative 
orre
tions ofthe order �s lnQ2 (LLA). These 
ontributions weresummed to all orders of (�s lnQ2)n. In Eq. (28), � == �QCD is the QCD s
ale, while � is the normalizationpoint, its standard 
hoi
e being � = 0:5 GeV.The position of the nu
leon pole mN , its residue �2,and the 
ontinuum threshold W 2 are the unknownsof sum rule equations (22) and (23). The nu
leonsum rule equations (22) and (23) are usually solvedat M2 � 1 GeV2, namely,0:8 GeV2 �M2 � 1:4 GeV2: (29)The range of M2 where the sum rules hold is usuallyreferred to as the �duality interval�.After the in
lusion of several 
ondensates of higherdimensions and of the lowest-order radiative 
orre
tionsbeyond the leading logarithmi
 approximation [17℄, thesum rules yield the solution (for �QCD = 230 MeV)mN = 928 MeV, �2 = 2:36 GeV6, W 2 = 2:13 GeV2.3. QCD SUM RULES IN THE INSTANTONVACUUM3.1. Instanton representation and the OPEapproximationWe re
all that a typi
al value of the 
ondensate ofdimension d = n is h0jOnj0i � 
n with 
 = 250 MeV.Be
ause we have 
2M2 � 1 at M � 1 GeV, we 
ouldexpe
t the 
onvergen
e of the OPE. In the instantonlanguage, we have �2sM2 � 1 and 
annot expe
t the
onvergen
e of the series in powers of 1=M2.Therefore, the stru
ture of the left-hand sides ofthe sum rules di�ers from that in the 
ondensate rep-resentation. The leading 
ontribution A0 to the 
hira-lity-
onserving operator �q remains un
hanged. Howe-ver, as long as we 
onsider only the nearest small-sizeinstanton, there is no 
ontribution of two zero-mode uquarks (this 
ontribution plays the role of a four-quark
ondensate in the �
ondensate language�), be
ause onlyone u quark 
an be pla
ed in the zero mode of the �eldof an instanton.

In the 
hirality-�ipping stru
ture �I , we des
ribethe d quark by the propagator SZ given by Eq. (7). TheBorel-transformed 
ontribution B�I(M2) depends onthe parameter �2sM2 � 1 and 
annot be represented asa 1=M2 series. In the 
ondensate language, this meansthat it in
ludes a nonlo
al s
alar quark 
ondensate.We note that our form for the propagator SNZmeans that we did not in
lude some of 
ontributionsthat were present in the 
ondensate pi
ture. In theterms A4 and Bb5, the propagator of one of the u quarksshould in
lude the in�uen
e of the gluon �eld. There-fore, its propagator is not diagonal in 
olor indi
es,while both SZ and SNZ are.We now assume that in the NIA, the small-size in-stantons 
reate only a part ws < 1 of the s
alar 
on-densate. The 
ontribution of the remaining part of the
ondensate (1�ws)a to the 
hirality-�ipping stru
tureis expressed by the term B03 given by Eq. (19) witha repla
ed by a`. In the 
hirality-�ipping stru
ture,one of the u quarks is in the zero mode of the nearestsmall-size instanton, while the other is des
ribed by alo
al 
ondensate. The latter provides the fa
tor a` inthe 
ontribution to the polarization operator, and theformer provides a fa
tor 
ontaining a nonlo
al s
alar
ondensate. We note that we do not use the fa
toriza-tion hypothesis here.Considering only the small-size instantons, we donot have an analogue of the OPE four-quark 
onden-sates be
ause two u quarks 
annot be in the zero-modeof the same instanton. We �nd su
h an analogue ingoing beyond the NIA.3.2. Cal
ulation of the polarization operatorInstead of the 
ondensate h0j�q(0)q(0)j0i, we use theparameter a de�ned by Eq. (14). We also introdu
eas = aws and a` = aw` = a(1 � ws). With thesevariables, Eq. (8) with N
 = 3 takes the formas = 6 1Z0 dp pm(p); as = �(2�)2h0j�qqj0is: (30)As we have noted, the leading 
ontribution A0 tothe Q̂ stru
ture remains un
hanged. The 
ontributionto the 
hirality-�ipping stru
ture is now�I1(q2) = 2a(1� ws)Q2 lnQ2 + Ys; (31)where the two terms are the respe
tive 
ontributions oflarge-size and small-size instantons. The last one 
anbe written as Ys = 32�4Xs, withXs = 12 Z d4p(2�)4 
�m(p)p2 
�T��(Q� p); (32)475
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�G0(x)
�G0(x): (34)Here, G0(x) = � 12�2 x̂x4 (35)is the Fourier transform of the propagator SNZ deter-mined by Eq. (30). We note that the quark in thezero mode now 
arries a nonzero momentum p. In the
ondensate language, it 
arries the momentum p = 0.Negle
ting the momentum p in the fa
tor T��(Q � p)on the right-hand side of Eq. (32), we would obtainXs = 3Q2 lnQ28�4 1Z0 dp pm(p) = B3(Q2); (36)with B3(Q2) de�ned by Eq. (16) and with a repla
edby as. Thus, in the limit Q2 !1, we obtain the lowestOPE term. We 
an view the 
al
ulation of the 
ontri-bution given by Eq. (32) as the in
lusion of nonlo
alityin the s
alar quark 
ondensate.The four-quark 
ontribution 
an emerge only if oneof the �uu pairs 
omes from small-size instantons, whilethe other originates from large-size �u
tuation. Follo-wing the previous dis
ussion, we 
an write the 
ontri-bution to the polarization operator asA6 = 4aws(1�ws)�2 Z d4p(2�)4 m(p)p2 Q̂�p̂(Q�p)2 : (37)The lower index 6 here shows that negle
ting p in thelast fa
tor on the right-hand side, we would obtain thefa
torized OPE term ~A6 determined by Eq. (19) times2ws(1� ws). The set of diagrams in
luded in the sumrules is shown in Fig. 2.It is instru
tive to tra
e how the 
ontributions tothe spin-
onserving part of the polarization operator
hange if we go beyond the NIA. In the loop 
orre-sponding to A0 the quark propagators then have theirmasses squared in denominators, and the 
ontributionof A0 diminishes. Two u quarks 
an now be des
ribedby the 
hirality-�ipping parts of their propagators. The
orresponding 
ontribution of the small-size instantonsis A06 = 12 � 8 Z d4p(2�)4 m(p)p2 �� Z d4p0(2�)4 m(p0)p02 Q̂� p̂� p̂0(Q� p� p0)2 : (38)


 d
a buud uududu uduFig. 2. The set of diagrams for the quarks in the �eld ofinstantons. Dark and dashed blobs on the quark linesstand for small-size and large-size instantonsIn the limit Q2 ! 1, we negle
t p and p0 in the lastfa
tor in the integrand, 
oming to the fa
torized formof the OPE 
ontribution.To obtain results in analyti
 form, we parameteri-ze the dynami
al quark mass 
aused by the small-sizeinstantons as m(p) = A(p2 + �2)3 ; (39)with A and � being the �tting parameters. The powerin the denominator insures the proper behaviorm(p) �� p�6 as p!1 [10℄. Now Eq. (30) 
an be written asas = 3A2�4 : (40)Cal
ulating the tensor T�� , we writeXs = 3�2 Z d4p(2�)4 �� Ap2(p2 + �2)3 (Q� p)2 ln (Q� p)2: (41)Further details of the 
al
ulation are presented inthe Appendix. We �nd the Borel transformed 
ontri-bution B0(M2) = 2a`M4 + 2asM4F (�);F (�) = 13 �2(1�e��)� +e��(1��)+�2E(�)� ;� = �2=M2; (42)where E(�) = 1Z� dte�tt : (43)In the literature, our fun
tion E is usually denoted byE1. We avoid this notation be
ause in the QCD sum476
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Fig. 3. a) The fun
tion F (�) de�ned by Eq. (42). b ) Dependen
e of the fun
tions F (�2=M2) for �2 = 1:26 GeV2,
orresponding to the size �s = 0:33 fmrule publi
ations, the notation E1 has another meaning(see Eq. (27)).Combining Eq. (40) with the relation m(0) = A=�6
oming from Eq. (39), we �nd that �2 = 2as=3m(0).It was demonstrated in [10, 11℄ that as � R�2��1,while m(0) � R�2�. Thus, �2 depends only on �, and�2 = 1:26 GeV2 at � = 0:33 fm. In duality interval (29),0:9 � � � 1:6. The fun
tion F (�) is plotted in Fig. 3a.The dependen
e of F on M2 for �2 = 1:26 GeV2 isshown in Fig. 3b. As expe
ted, we �nd B = B03 in thelimit M2 !1 (see Eq. (19)).A similar 
al
ulation yieldsA06 = 83a2ws(1� ws)1� e��� : (44)3.3. Parameterization of the nonlo
al s
alar
ondensateIt is reasonable to try to establish a 
onne
tion withthe OPE approa
h. We write Eq. (42) asB03(M2) = 2M4a(M2); (45)where a(M2) = a�1� ws + wsF � �2M2�� ; (46)

with F de�ned by Eq. (42). We have a(M2) ! a forM2 !1. We now de�neK(M2) = a(M2)a ; (47)and try to parameterize the fun
tion K(M2) in the du-ality interval by a power series in 1=M2:K(M2) = 1 + NXn=1 CnM2n : (48)If the se
ond term on the right-hand side 
an be ap-proximated by one or two terms, su
h a representation
an be related to the parameterization of the expe
ta-tion value h0j�q(0)q(x)j0i by a polynomial in x2. We 
anwrite the polarization operator �I as�I(q2) = 2�4 Z d4xx6 f(x2)eiqx; (49)with f(x2) = h0j�q(0)q(x)j0i. Assuming that f(x) 
anbe parameterized asf(x) = f(0)(1 + 
1x2 + 
2x4) (50)(we re
all that we are in a Eu
lidean metri
), we �ndB03(M2) = 2M4f(0)�1� 8
1M2 + 32
2M4 � ; (51)477
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Fig. 4. Approximation of the fun
tion K(M2) de�nedby Eq. (47) (solid line) by the series on the right-handside of Eq. (48) with parameters determined by Eq. (52)(dotted line)and hen
e C1 = 8
1; C2 = 32
2 (52)in (48). We note that the right-hand side of Eq. (50)
annot be treated as the lowest terms of the Taylorexpansion. The terms x2n with n � 3 yield integralsthat are divergent on the upper limit and 
annot beeliminated by the Borel transformation.For the medium 
onsisting solely of small-size in-stantons, i. e., for ws = 1, keeping the �rst three termsin (48), we �nd that C1 = �1:23 GeV2 and C2 == 0:54 GeV4, and hen
e 
1 = �0:15 GeV2 and 
2 == 0:017 GeV4 in the duality interval 0:8 GeV2 �M2 �� 1:4 GeV2 determined by Eq. (29). The a

ura
y ofthe parameterization is illustrated by Fig. 4. In the in-terval 0:8 GeV2 � M2 � 2:0 GeV2, we �nd a slightlydi�erent set of values: C1 = �1:38 GeV2 and C2 == 0:68 GeV4, 
orresponding to 
1 = �0:17 GeV2 and
2 = 0:021 GeV4. Thus we 
an assume that paramete-rization (50) with 
1 � �0:2 GeV2 and 
2 � 0:02 GeV4
an be used for the Borel masses in the GeV region.This point was dis
ussed in more detail in [18℄.

4. SOLUTION OF THE SUM RULEEQUATIONSWe return to the Minkowski metri
 and analyzeEqs. (22) and (23) withLq = ~A0(M2;W 2) + ~A6(M2);LI = ~B(M2;W 2); (53)where ~A0(M2;W 2) is given by Eq. (26), ~A6 = A06 ispresented in Eq. (44), and~B(M2;W 2) = 2a`M4E2(
) ++ 2asM4�(M2;W 2); (54)�(M2;W 2) = 13 � 2� (1� e��) + e��(1� �) �� e�
(1� � + 
) + �2(E(�) � E(
))� :The fun
tions Ei(i = 0; 1; 2) are determined byEq. (27).4.1. The absen
e of a solution at ws = 1We 
an immediately guess that there is no solutionfor ws = 1. Indeed, if the values mN , �2, and W 2
ompose a solution, we should obtain�(M2) � LI (M2;W 2)Lq(M2;W 2) � 
onst = mN : (55)Be
ause the 
ontribution of the 
ontinuum should notbe too large, we should expe
tLI (M2)Lq(M2) � 
onst � mN ; (56)where we set Li(M2) = Li(M2;W 2 !1). For ws = 1,Eq. (56) takes the form�(M2) = 2aF (�2=M2)M2 : (57)Using the dependen
e of the fun
tion F on M2 for�2 = 1:26 GeV2 presented in Fig. 3b, we 
an seethat the values of � range between 2a � 0:36=GeV2 and2a � 0:27=GeV2 in the interval (29) of variation of M2.For the distan
e R = 1 fm between small-size instan-tons, a = 0:59 GeV3 [10, 11℄. Hen
e, mN � 0:35 GeV.The unrealisti
 value of the nu
leon mass obtainedin su
h a way is not the main problem, however. Wetry to �nd the value of �2 using Eq. (21). We ob-tain M6 exp(m2N=M2) = �2. But the left-hand side of478
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Fig. 5. Dependen
e of the solution of the sum rule equations on the value of ws at �s = 0:33 fm for the nu
leon mass m(a), �2 (b ), and W 2 (
). The solid, dashed, dotted, and dashed-dotted lines are for the respe
tive s
alar 
ondensate valuesa = 0:58, 0:67, 0:80, and 0:96 GeV3this equality 
hanges by a fa
tor of 6 in duality inter-val (29). Therefore, the equality 
an be satis�ed only ifthe 
ontribution of the 
ontinuum, whi
h was moved tothe left-hand side, as dis
ussed around Eqs. (22)�(25),
hanges the left-hand side strongly. Hen
e, we 
ome toan unphysi
al solution of the sum rules [19℄. As we seebelow, a more detailed analysis 
on�rms this 
on
lu-sion.We note that at ws = 1, the right-hand sides of thesum rules for both 
hirality-�ipping and 
hirality-
on-serving stru
tures su�ered large 
hanges 
omparing tothe standard OPE sum rules. The most important
hange in the former 
ase is the in
lusion of the nonlo-
ality of the s
alar 
ondensate. In the latter 
ase, thereis no four-quark 
ondensate, whi
h played an importantrole in the OPE 
ase.4.2. Dependen
e of solutions on the fra
tion ofsmall-size instantonsThe fun
tions Lq and LI depend expli
itly on thes
alar 
ondensate a, on its fra
tion 
aused by the in-stantons of the small size as = aws, and on the para-meter �2. On the other hand, the medium of small in-stantons is determined by their average size �s and thedistan
e between the instantons R(ws). It was foundin [10, 11℄ thath0j�q(0)q(0)j0is = CR2(ws)� s; (58)where C = 25:0 and R is the distan
e between small-si-ze instantons. Hen
e, we 
an study the dependen
e ofthe solution of the sum rule equations on the fra
tion of

small-size instantons ws for several values of the s
alar
ondensate a = �(2�)2h0j�q(0)q(0)j0iand for di�erent sizes of small instantons �s.We note that at �s = 0:33 fm and R(1) = 1 fm, thes
alar 
ondensate a = 0:58 GeV3 (at the 
onventionalnormalization point � = 0:5 GeV) [10, 11℄. This en-ables us to �nd the dependen
e on ws at any values ofa and �s.The results for �s = 0:33 fm are presented in Tab-le 1 and in Fig. 5. We 
an see that at several reasonablevalues of the quark 
ondensate, the sum rules have aphysi
al solution for ws not ex
eeding a 
ertain valuew0. At ws = w0 � 0:67, the solutions jump to unphy-si
al ones with a smaller value of the nu
leon mass andthe dominant 
ontribution of the 
ontinuum [19℄. Atws about 0:6, the nu
leon mass is 
lose to the physi
alvalue.In Table 1 and in Fig. 5, we present the results forfour values of the s
alar 
ondensate a 
orresponding to�s = 0:33 fm and the distan
es between the small in-stantons R = 1:3, 1.2, 1.1, and 1.0 fm at ws = 0:6. Thedistan
es R = 1:3 fm and R = 1:2 fm 
orrespond to thevalues a = 0:58 GeV3 and a = 0:67 GeV3, i. e., to thevalues of the s
alar 
ondensate h0j�q(0)q(0)j0i equal to(�244 MeV)3 and (�257 MeV)3, 
lose to the 
onven-tional values. The distan
es R = 1:1 fm and R = 1:0 fm
orrespond to a = 0:80 GeV3 and a = 0:96 GeV3,i. e., to somewhat larger values of h0j�q(0)q(0)j0i equalto (�273 MeV)3 and a less realisti
 (�290 MeV)3. The
onsisten
y of the left- and right-hand sides of the sumrules is illustrated in Fig. 6.479



M. G. Ryskin, E. G. Drukarev, V. A. Sadovnikova ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015Table 1. Solutions of the sum rule equations for � = 0:33 fma, GeV3 ws mN , GeV �2, GeV6 W 2, GeV2 �2N0.96 0.30 1.45 8.7 6.6 3.7(�2)0.60 1.15 2.8 2.9 4.0(�2)0.66 1.05 1.9 2.3 3.9(�2)0.67 0.82 0.86 1.4 2.1(�2)0.80 0.30 1.40 6.2 4.9 1.7(�2)0.60 1.10 2.0 2.6 2.3(�2)0.67 0.99 1.2 2.0 2.2(�2)0.68 0.80 0.60 1.3 1.2(�2)0.67 0.30 1.33 4.3 4.0 8.3(�3)0.60 1.05 1.4 2.2 1.4(�2)0.67 0.95 0.83 1.7 1.3(�2)0.68 0.77 0.41 1.1 5.9(�3)0.57 0.30 1.27 3.0 3.4 4.2(�2)0.60 1.00 0.95 1.9 8.9(�3)0.67 0.90 0.57 1.5 8.3(�3)0.68 0.75 0.30 1.0 3.0(�3)As noted above, the pole-to-
ontinuum ratiori(M2) = Fpi (M2)=F
i (M2); i = q; I; (59)of the two 
ontributions to the right-hand side ofEq. (20) 
hara
terizes the validity of the �pole + 
ontin-uum� model for the spe
trum of the polarization opera-tor in Eqs. (20) and (21). For larger values of ri(M2),the model is justi�ed better. The values of the ratio arepresented in Table 2 for �s = 0:33 fm and ws = 0:60.We take two 
ases for illustration. For a = 0:58 GeV3,the solution ismN = 1:01 GeV; �2 = 1:2 GeV6;W 2 = 2:0 GeV2: (60)The pole-to-
ontinuum ratio de
reases with the valueof M2 (see Table 2). Although the sum rule equa-tions 
an be solved with good a

ura
y in the broadinterval of values of the Borel mass (see Table 3), thepole-to-
ontinuum ratio be
omes una

eptably smallfor M2 > 1:4 GeV2. In this 
ase, we therefore stay inthe traditional duality interval determined by Eq. (29).For the 
ondensate a = 0:96 GeV3, 
orrespondingto R(0:6) = 1 fm, the solution ismN = 1:15 GeV; �2 = 2:8 GeV6;W 2 = 2:9 GeV2: (61)

Here, the sum rule equations 
an also be solved withgood a

ura
y in a large interval of values of the Borelmass (see Table 3). We 
an see that both rq and rIde
rease as M2 in
reases. In this 
ase, the pole-to-
ontinuum ratio is mu
h larger than it was for smallervalues of the 
ondensate. Hen
e, the interval of the val-ues of M2 where the sum rule equations 
an be solvedbe
omes larger.We also �x the value R = 1:3 fm and tra
e thedependen
e of the solutions on �s. In Table 4, wepresent the results for � = 0:25 fm (a = 0:76 GeV3and h0j�q(0)q(0)j0i = (�268 MeV)3) and �s = 0:40 fm(a = 0:48 GeV3 and h0j�q(0)q(0)j0i = (�230 MeV)3).They are shown in Fig. 7. The situation is similar tothe pre
eding 
ase when we 
hanged R. However, at�s = 0:40 fm, the jump to the unphysi
al solution o
-
urs at a larger value ws � 0:75.For ws = 0:65, the fun
tion K(M2) determined byEq. (47) is approximated by the series on the right-handside of Eq. (48) with the parametersC1 = �0:80 GeV2; C2 = 0:35 GeV4; (62)when
e 
1 = �0:10 GeV2 and 
2 = 0:011 GeV4.480
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Fig. 6. Consisten
y of the left- and right-hand sides(LHS, RHS) of the sum rules for a = 0:58 GeV3,ws = 0:60. The solid and dashed lines respe
tivelyshow the ratios of the right- to the left-hand sides forthe sum rules for 
hirality-
onserving and 
hirality-�ip-ping equationsTable 2. Pole-to-
ontinuum ratio r(M2) for solutionsof the sum rules at � = 0:33 fm for a = 0:58 GeV3and a = 0:96 GeV3; ws = 0:60a, GeV3 M2, GeV2 rq(M2) rI(M2)0.58 0.8 1.25 1.841.0 0.69 1.081.2 0.43 0.721.4 0.29 0.520.96 0.8 4.69 5.851.0 2.30 2.991.2 1.34 1.821.4 0.86 1.235. SUMMARYWe 
al
ulated the polarization operator of the nu-
leon 
urrent in the instanton medium that we assumedto be a 
omposition of the small-size instantons andsome large-size gluon �eld �u
tuations with the 
orre-lation length �` � 1 GeV�1. The instantons of large

size � � (1 GeV)�1 manifest themselves in terms ofthe lo
al s
alar quark 
ondensate. The quark propa-gator in the �eld of small-size instantons 
ontains thezero mode 
hirality-�ipping part proportional to the ef-fe
tive quark mass m(p) and a nonzero-mode part ap-proximated by the propagator of a free massless quark[10, 11℄. The zero-mode part 
an be expressed in termsof the nonlo
al s
alar 
ondensate.We solved the sum rule equations and tra
ed thedependen
e of the solution on the fra
tion of small-sizeinstantons ws. We demonstrated that at ws � 0:6�0.7,the sum rules have a solution with a reasonable valueof the nu
leon mass. At ws � 2=3, the value of thenu
leon mass is very 
lose to the physi
al one. The nu-meri
al values vary slightly with variation of the a
tualvalues of the size of small instantons and of the distan
ebetween them. Finally at the values of the s
alar 
on-densate 
lose to the 
onventional value (�250 MeV)3,mN � 1 GeV; �2 � 1 GeV6; W 2 � 2 GeV2: (63)At larger values of ws, the sum rules have only an un-physi
al solution with a strong domination of the 
on-tinuum 
ontribution over that of the nu
leon pole andwith a small value of the nu
leon mass.Solution (63) was found for �s = 0:33 fm, with R == 1:2�1.3 fm. It is also valid for R � 1:3 fm with�s � 0:25�0.40 fm. We note that in [10; 11℄, the valueof R is tied to that of the gluon 
ondensate, whi
h isknown with a large un
ertainty [13℄, and R = 1:2 fmis not unrealisti
. Also (see [9℄), we 
an tie the gluon
ondensate to the total instanton density. For the 
on-ventional valueh0j�s� Ga��Ga�� j0i 132�2 = (200 MeV)4and the distan
e between small-size instantonsR = 1:2 fm, the densities of small-size and large-sizeinstantons are approximately the same.At larger values of the quark 
ondensate, the valuesof the nu
leon residue and of the 
ontinuum thresholdin
rease, rea
hing the values �2 � 3 GeV6 and W 2 �� 3 GeV2 at h0j�q(0)q(0)j0i = (�290 MeV)3.Compared to the sum rules in the 
ondensate repre-sentation, we in
luded the nonlo
ality of the s
alar 
on-densate. Also, the instanton representation strongly di-minished the role of the 
ontribution 
orresponding tothe four-quark 
ondensate in the 
ondensate language.The 
onsisten
y between the left- and right-handsides of the sum rules appeared to be mu
h better thanin the sum rules in terms of lo
al 
ondensates, wherethe value of ��2 per point� was of the order 10�1 [17℄assuming 10% error bars. The mean relative di�eren
e4 ÆÝÒÔ, âûï. 3 (9) 481
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Fig. 7. Dependen
e of the solution of the sum rule equations on the value of ws at R � 1:3 fm for the nu
leon mass m (a),�2 (b ), and W 2 (
). The solid, dashed, and dotted 
urves are for the respe
tive values of the s
alar 
ondensate a = 0:58,0:48, and 0:77 GeV3Table 3. Solutions of the sum rule equations in various intervals of the values of the Borel mass. The parameter valuesare the same as in Table 2a; GeV3 M2; GeV2 mN ; GeV �2; GeV6 W 2; GeV2 �2N0.58 0.8�1.4 1.01 0.98 1.96 9.3(�3)0.8�1.6 1.02 1.01 1.99 1.2(�2)0.8�1.8 1.03 1.04 2.01 1.5(�2)0.96 0.8�1.4 1.15 2.83 2.93 4.0(�2)0.8�1.6 1.17 3.03 3.02 5.1(�2)0.8�1.8 1.19 3.20 3.08 6.0(�2)between the left- and right-hand sides is about 3%. Atlarger values of the s
alar 
ondensate, the dominationof the 
ontribution of the pole over that of the 
on-tinuum be
omes more pronoun
ed. Also, the dualityinterval be
omes larger than that de�ned by Eq. (29)due to the shift of the upper limit.We demonstrated that the 
ontribution of the non-lo
ality of the s
alar 
ondensate 
an be approximatedby two additional terms of the 1=M2 series. This 
or-responds to approximating the dependen
e of the non-lo
al quark 
ondensate f(x2) = h0j�q(x)q(0)j0i on x2 bya polynomial of the se
ond order. At x2 = 1 GeV�2(with the Eu
lidean metri
), we found f(x2) � f(0) == tf(0) with t = �0:14 for ws = 1 and t = �0:09for ws = 0:65. More 
ompli
ated 
al
ulations in theframework of the instanton liquid model [20℄ yieldedt � �0:1 for x2 = 1 GeV�2. The parameter m20 de-�ned by Eq. (15) determines the lowest-order term ofthe Taylor series of the 
ondensate f(x2). Its valuewas estimated in the nu
leon QCD sum rule analysis

as providing the best �t of the two sides of the sumrules. The result in [16℄ is m20 � 0:8 GeV2, leadingto t � 0:2, while the value m20 � 0:2 GeV2 yieldingt � �0:05 was obtained in [21℄.We note that these are to large extent the prelimi-nary results. Representing the 
ontinuous distributionof instanton sizes as a superposition of small-size in-stantons and of some large-size gluon �eld �u
tuations,we negle
ted their possible intera
tions. Another pointis the interpretation of the 
ondensate (1�ws)h0j�qqj0i
aused by the intera
tions at the large s
ale. A moregeneral analysis should be 
arried out. The last butnot the least, we plan to in
lude intera
tions betweenthe quarks 
omposing the polarization operator, i. e.,to take the radiative 
orre
tions into a

ount. Theyare the same as in the 
ondensate representation forthe stru
ture �q. However, additional work is requiredto �nd these 
orre
tions for the 
hirality-�ipping stru
-ture �I . Hen
e, a more general analysis is required;the 
orresponding results will be published elsewhere.482
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leon QCD sum rules in the instanton mediumTable 4. Solutions of the sum rule equations for R � 1:3 fma; GeV3 ws mN , GeV �2; GeV6 W 2; GeV2 �2N0.77 0.60 1.09 1.52 2.31 3.8(�3)0.70 0.88 0.55 1.38 1.5(�3)0.48 0.50 1.06 1.20 2.21 7.8(�3)0.60 0.98 0.82 1.87 1.1(�2)We thank A. E. Dorokhov, N. I. Ko
helev, and es-pe
ially V. Yu. Petrov for the stimulating dis
ussions.APPENDIXTo 
al
ulate the integral on the right-hand side ofEq. (41), we writeln (Q� p)2 = � 1Z0 dy(Q� p)2 + y : (A.1)Here and below, we omit polynomials in Q2 be
ausethey are eliminated by the Borel transformation. Nowwe 
an writeXs = � 3i�2 Z d4p(2�)4 Ap2(p2 + �2)3 �� 1Z0 dy y(Q� p)2 + y : (A.2)We 
an verify that1p2(p2 + �2)3 = 3 1Z0 dx x2(p2 + �2x)4 ; (A.3)when
e Xs = �3 1Z0 dx x2	(�2x); (A.4)where 	(�2) = 3A�2 1Z0 dy y�(�2; y);�(�2; y) = Z d4p(2�)4 1(p2 + �2)4 1(Q� p)2 + y : (A.5)

Integrating over the angular variables, we �nd�(�2; y) = 148�2 1Z0 dt(1�t)3(ty+�2(1�t)+t(1�t)Q2)3 == 1Z0 dt(1� t)3t3(y + �)3 ; � = Q2(1� t) + �2(1� t)t3 : (A.6)Integrating over y, we obtain	(�2) = A32�4 1Z1 du�1� 1u�2 uQ2 + �2u: (A.7)The divergen
e at the upper limit is not important,be
ause this 
ontribution is eliminated by the Boreltransformation. Returning to Eq. (A.4), we 
an writeit asXs = 3A32�4 1Z0 dx x2 1Z1 du���1� 1u�2 uQ2 + �2ux: (A.8)We 
an now integrate easily, with the resultXs = 3A32�4 �Q4�6 ln Q2 + �2Q2 ++ �3Q2�4 + 3�2 + 1Q2� ln Q2 + �2�2 � : (A.9)After the Borel transformation, we arrive at Eq. (42).We note that the Borel transform of the right-hand sideof Eq. (A.8) is given by 
ompa
t expressionBXs = 3A32�4 1Z0 dx x2 1Z1 duu�1� 1u�2 �� exp���2xuM2 � : (A.10)483 4*
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