ZKIT®, 2015, rom 148, Boim. 3 (9), crp. 470-484

© 2015

NUCLEON QCD SUM RULES IN THE INSTANTON MEDIUM

M. G. Ryskin, E. G. Drukarev, V. A. Sadovnikova

National Research Center “ Kurchatov Institute’,
Konstantinov Petersburg Nuclear Physics Institute
188300, Gatchina, Leningrad Region, Russia

Received April 2, 2015

We try to find grounds for the standard nucleon QCD sum rules, based on a more detailed description of the
QCD vacuum. We calculate the polarization operator of the nucleon current in the instanton medium. The
medium (QCD vacuum) is assumed to be a composition of the small-size instantons and some long-wave gluon
fluctuations. We solve the corresponding QCD sum rule equations and demonstrate that there is a solution with
the value of the nucleon mass close to the physical one if the fraction of the small-size instantons contribution

is ws &~ 2/3.
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1. INTRODUCTION

The idea of the QCD sum rule approach is to ex-
press the characteristics of the observed hadrons in
terms of vacuum expectation values of the QCD op-
erators often referred to as condensates. This idea was
suggested in [1] for the calculation of the characteristics
of mesons. Later, it was used for nucleons [2]. It suc-
ceeded in describing the nucleon mass, the anomalous
magnetic moment, the axial coupling constant, etc. [3].

The QCD sum rule approach is based on the dis-
persion relation for the function describing propaga-
tion of the system that carries the quantum numbers
of a hadron. This function is usually referred to as
the “polarization operator” II(¢), with ¢ being the four-
momentum of the system. The dispersion relation (in
which we do not take care of subtractions)

Im I1(k?)

(¢%) = 1 / dk?
™

is analyzed at large and negative values of ¢>. Due
to the asymptotic freedom of QCD, the polarization
operator can be calculated in this domain. Opera-
tor product expansion (OPE) [4] enables to represent
the polarization operator for a power series in ¢~ 2 as
¢> — —oo. The coefficients of the expansion are the
QCD condensates, such as the scalar quark condensate

(017(0)¢(0)[0), the gluon condensate (0|G**"GY,|0),
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etc. The nonperturbative physics is contained in these
condensates. A typical value of a condensate with the
dimension d = n is (0/0,|0) ~ (£250 MeV)". Hence,
we expect the series II(q) = >, (0]0,,[0)/(¢*)™ to con-
verge at —¢ ~ 1 GeV?.

The left-hand side of Eq. (1) is calculated as an OPE
series. The imaginary part in the right-hand side de-
scribes physical states with the baryon quantum num-
ber and charge equal to unity. These are the proton,
described by the pole of Im II(k?), the cuts correspond-
ing to systems containing a proton and pions, and so
on. The right-hand side of Eq. (1) is usually approxi-
mated by the “pole + continuum” model [1, 2], in which
the lowest-lying pole is written exactly, while the higher
states are described by the continuum. The main aim
is to obtain the value of the nucleon mass.

The polarization operator can be written as

() = i / e @D OTG@FON0),  (2)

where j(z) a local operator with the proton quantum
numbers, often referred to as the “current”. It is a
composition of quark operators. Therefore, the in-
tegrand in Eq. (2) contains the nonlocal expectation
values (0]|g(0)¢g(2)|0). The nonlocal condensates have
been considered previously (see [5] and the references
therein), mainly in the studies of pion wave functions.

We note that the product g(0)q(z) is not gauge in-
variant. This expression makes sense if we define ¢(x)
as the expansion near the point z =0, i.e.,
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x”;" DDy + .. ) «0),  (3)

o) = (14200, +

with D# standing for covariant derivatives. The
Fock—Schwinger (fixed-point) gauge z,A"(z) 0,
where A#(x) is the gluon field, is usually employed.
This allows replacement the covariant derivatives by
ordinary ones. Thus, the condensate (0|7(0)q(«)|0) can
be expressed as a Taylor series containing a set of new
condensates, such as (0|7(0)9%¢(0)]0).

In this approach, the QCD condensates are conside-
red as phenomenological parameters. Extracting their
values from experimental data, supported by certain
theoretical ideas, does not always lead to unique con-
clusions.

The Borel transform is usually applied, which con-
verts functions of ¢ into functions of the Borel mass
M?. We also note that the Borel transform removes
divergent contributions caused by the behavior of the
integrand on the right-hand side of Eq. (2) as  — 0.
An important assumption is that there is an interval of
the values of M? where the two sides of the sum rules

have a good overlap, also approximating the true func-
tions. This interval is in the range of 1 GeV?. Thus,
one actually tries to expand the OPE from the high-
momentum region to the region of |¢?| ~ 1 GeV?>.

To calculate the polarization operator defined by
Eq. (2), we must clarify the form of the current j(z).
It is not unique. We can write

it x) = ji(x) + tja(), (4)

with

ji1(x) = (ul (2)Cdy(2))y5uc(z)e™,

Ja(@) = (ug (2)Crsdy (@) uc ()",

while ¢ is an arbitrary coefficient. Following [6], we use
the current determined by Eq. (4) with ¢ = —1, which
can be written (up to a factor of 1/2) as

(ug ()Crpup (@) 57" de (). (5)

This current is often used in the QCD sum rules calcu-
lations. One of the strong points of the choice is that it
makes the domination of the lowest pole over the higher
states on the right-hand side of the sum rules more pro-
nounced. We use only this current in the present paper.

Any model of the QCD vacuum should explain the
origin and the values of QCD condensates. A currently
popular standpoint (see, e.g., [7]) is that the QCD va-
cuum is filled with strong gluon fields (instantons). The
values of the QCD condensates are determined by the

j(x)
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space-time structure of the instantons. Hence, the in-
stantons provide a more detailed description of the va-
cuum than the QCD condensates do.

We try to write the QCD sum rules in terms of the
instanton vacuum parameters. Our aim is not to re-
place the OPE approach but to study a possible role of
a more detailed structure of the QCD vacuum.

The instanton medium is characterized by a distri-
bution of the instantons over their sizes p, to be denoted
by n(p), and by the distances R between instantons,
which also have a certain distribution. The distribu-
tion n(p) is known to peak at p ~ 0.33 fm [7]. A
summary of a number of lattice calculations of the dis-
tribution is presented in [8]. A detailed analysis of the
distribution over sizes is given in [9]. As regards the
distance between the instantons, the conventional as-
sumption is that the average separation is R ~ 1 fm
[7]. We use the simplest model that reproduces the
essential physics of the process. We assume that the
QCD vacuum consists of “small-size” instantons with
ps &~ 0.33 fm (we vary this value in what follows) and
some long-wave gluon field fluctuations characterized
by a scale pg > 1 GeV 1. Thus, the quarks composing
the polarization operator move in a superposition of
the fields of small-size instantons and some long-wave
fluctuations.

We treat the quarks in the field of small instantons
following the approach developed in [10, 11]. In this
approach, the light quarks move in the self-consistent,
field of interacting small-size instantons. They are de-
scribed by the propagator (in the Eucledian metric)

_ p+im(p)
San(p) = p? +m?(p)

(6)

ab

with the effective dynamical mass m(p) found in
[10, 11]. We note that the value R = 1 fm allows re-
producing the value of the gluon condensate in such
an instanton vacuum model. This instanton-instanton
separation R = 1 fm is much larger than the inverse
Borel mass 1/M = 0.2 fm. Hence, the size of the system
described by polarization operator (2) is much smaller
than R and can accommodate only one (“nearest”) in-
stanton. We recall that this is a part of a self-consistent,
system of interacting instantons. This leads to several
consequences. We can write the quark propagator in
the “nearest-instanton approximation” (NIA) as

im(p)
p2

Sar(p) = Sz +Snz, Sz(p) = dabs

A~

5 (7)
Snz(p) = E(Sabv



M. G. Ryskin, E. G. Drukarev, V. A. Sadovnikova

XIT®, Tom 148, Ben. 3 (9), 2015

where Sz is the zero-mode contribution. The sum of
all nonzero-mode contributions Syz is approximated
by the free propagator of a massless quark. We note
that in the NIA, we include only the terms that are
proportional to the instanton density.

In this approach, one of the nonvanishing contribu-
tions comes from the configurations where all quarks
are described by the propagators Syz. Another contri-
bution comes from the configuration where the u quarks
are described by Snz, i.e., do not feel the instantons,
while the d quark is described by the propagator Sz.
The other configurations do not contribute to the po-
larization operator because two u quarks cannot be in a
zero mode of the same instanton. The configuration in
which v and d quarks are in zero modes correspond to
the SU(2) version of the instanton-induced 't Hooft in-
teraction [12]. For current (5), this configuration does
not contribute because it contains the trace of an odd
number (three) of 4 matrices, which vanishes.

Comparing the structures of chirality-conserving
and chirality-flipping components of the polarization
operator in the condensate and small-size nearest in-
stanton “languages”, we see that they differ. In both
“languages”, the chirality-conserving structure contains
the loop of three free quarks. But there is no such thing
as a four-quark condensate in the “nearest instanton ap-
proximation”. In the nucleon QCD sum rules, M? is
of the order of 1 GeV?, and hence 7 = M?p? ~ 1. On
the other hand, the quark condensate created by the
small-size instantons can be represented by the general
relation

d*p

(@2n)t

TrS(p) =

4Nc/

(the subscript s means the small-size instantons, and
N, is the number of colors), creating a bridge between
the instanton and condensate languages. In the limit
7> 1, the two languages provide the same result, and
the contribution is proportional to the quark conden-
sate (0/g(0)¢(0)]0). In the instanton picture at 7 ~ 1,
the contribution can be viewed as coming from the non-
local scalar condensate (0|7(0)¢(2)|0)s. The nonlocal
condensate is not a new subject, it was used previously,
for example, in the pion QCD sum rules in [5].

(01a(0)q(0)[0), = i /

m(p)
p2

- e

¢ (®)

1) Going beyond the terms that are linear in the instanton
density, we would obtain a configuration with two u quarks in
the instanton field. In the limit M2p2 — oo, the contribution
corresponds to the factorized four-quark condensate in the OPE
language (see below).
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The radiative corrections to the chirality-conserving
structure that contain the terms aIn M? (the leading
logarithmic approximation, LLA) are the same as in
the OPE case. The same refers to LLA corrections to
the chirality-flipping structure, because they originate
from the u quark loop and are determined by large mo-
menta of the virtual gluons, which strongly exceed the
momentum carried by the current.

We demonstrate that the QCD sum rules con-
structed in such a way do not have a physical solu-
tion. Therefore, we must assume that the small instan-
tons create only part of the scalar condensate. At first
glance, this contradicts the results in [10,11], where
the small instantons reproduced the conventional value
of (0]@(0)¢q(0)|0). But in these papers, the instanton
density, which is proportional to 1/R*, is tied to the
gluon condensate, which is known with large uncer-
tainties (up to a factor of 2) [13]. This leaves some
room for other contributions to the quark scalar con-
densate. Here we assume that the small-size instan-
tons provide a fraction w,; of the total scalar con-
densate. Our model assumption is that the rest part
(1 —ws)(0|d(0)g(0)]0) is due to interactions at a large
correlation length p; > 1 GeV~!. It can be approxi-
mated by alocal condensate. Thus the chirality flipping
component of the polarization operator is determined
by terms that describe interactions of the d quark with
the nearest small-size instanton and by a local conden-
sate. We write the expectation value as

(2)]0) = (017(0)¢()|0)s+(0|7(0)¢(0)[0)e,
(2)0)s,e = (0[7(0)q(2)|0)ws. ¢,

ws +wg =1,

(=

(9)

where we do not account for nonlocalities of the se-
cond term. This realizes the old idea [14, 15] that the
large-size instanton contributions are included in con-
densates, while the small-size instantons provide non-
perturbative contributions written explicitly. As a spe-
cial case, the condensate (0|7(0)¢(0)]|0),; can be treated
as due to the long-size instantons with py M > 1.

The polarization operator now obtains a contribu-
tion from a configuration in which one of the u quarks
moves in the zero mode of a small-size instanton, while
the second quark is described by a local scalar con-
densate. In the limit 7 > 1, the leading term of the
expansion in powers of 1/7 is equal to that given by
the standard total condensate of the OPE approach.

For M? of the order of 1 GeVZ, we have p?M? ~ 1,
and the convergence of the OPE series is obscure. For
the chirality-flipping sum rule, the function of A2 on
the left-hand side can be viewed as coming from the
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nonlocality of the scalar quark condensate. The con-
tribution of the four-quark condensate presented in the
instanton picture then makes a much smaller contri-
bution because one instanton can produce only one q
pair of a fixed flavor. On the other hand, some of the
condensates that contribute to the OPE sum rules are
not accounted for in our model, where all the nonzero
mode contribution is approximated by (included in) the
free quark propagator Sy z.

We calculate the polarization operator II(g) in the
instanton vacuum in the NTA and analyze the corre-
sponding sum rules. We demonstrate that the sum
rules have a solution with the value of the nucleon mass
not far from the physical one for all ws; < 0.6-0.7. At
ws & 2/3, the value of the nucleon mass is my
~ 1 GeV. Comparing with the sum rules in terms of
condensates, we find that the consistency between the
left- and right-hand sides of the sum rules is improved.
At the conventional values of the quark condensate
(0g(0)q(0)|0) ~ (=250 MeV)?, the value of the thresh-
old does not change much, while that of the nucleon
residue becomes noticeably smaller. At larger values
of wg, the sum rules have only an unphysical solution
with the contribution of the continuum much exceeding
that of the nucleon pole. In Sec. 2, we recall the main
features of the nucleon sum rules in terms of conden-
sates. In Sec. 3, we calculate the polarization operator
in the instanton vacuum. In Sec. 4, we solve the sum
rule equations. We discuss the results in Sec. 5.

~
~

2. QCD SUM RULES IN TERMS OF
CONDENSATES

In the case of a nucleon (we consider the proton),
the polarization operator takes the form
M(q) = qN"(¢*) + I (¢°), (10)
where ¢ is the four-momentum of the system, ¢ = ¢, v*,
and I is the unit matrix. The first and the second terms
on the right-hand side respectively correspond to the
chirality-conserving and the chirality-flipping contribu-
tions. The dispersion relations are

/ dk?

As noted above, we do not take care of the subtractions.

We present the results of the calculation of the po-
larization operator defined by Eq. (2) with the current
determined by (5). The left-hand side of Eq. (11) can
be written as

i 1
H(q2):;

Tm TT¢ (k2)

R 1=q,1.

(11)
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m OFF(g*) =Y Anld®),

n=0

' P (%) = Bulg®),

n=3

(12)

where the lower index n is the dimension of the
corresponding QCD condensate (Ao stands for the
three-quark loop). The most important terms for n < 8
were obtained earlier [2, 3]. For the chirality-conserving
structure, they are

—Q*InQ? —bln Q?
Ao =——1—, 4= Toaa
6474 12874
1 a? 1 mia® (13)
Camgr BT e or
where Q%> = —¢?> > 0, while @ and b are the scalar

and gluon condensates multiplied by certain numerical
factors

—(2m)*(0lqq|0),

14
b:(zﬂ)2<0|%awazy|o>, (14)
and
0|qa ug uq|0> [eF) GhVAh
m2z%, Guw = — Y —H— (15
0 (0]gq0) w= (15)

h

We discuss the value of m3 in Sec. 5. For the chirali-
ty-flipping structure, we find

_a@’InQ?

By = Bs = 0.
’ ot > D=0

(16)
The leading contribution to the chirality-conserving
structure Ag is the loop containing three free quarks.
The leading contribution to the chirality-odd struc-
ture Bjs is proportional to the scalar quark condensate.
Here, the free u quarks form a loop, while the d quarks
are exchanged with the vacuum condensate, see Fig. 1.

We note the last equality B; = 0, however. There
are indeed two contributions of dimension d = 5,
and we can therefore write Bs = B¢ + B2, The
term B¢ comes from the Taylor expansion of the pro-
duct d(0)d(x) and is proportional to the condensate
(0]d(0)D2d(0)|0). In this case, the u quarks are de-
scribed by free propagators that are diagonal in color
variables. But the product of the operators dgd—%GZ,,
make a contribution to the d quark propagator, pro-
portional to the product

(013G 0,0 a|0)Tap A, /2.

The contribution to the polarization operator B is thus
proportional to the condensate (0|7G,,0,.,¢|0), and the
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¢

Fig.1. The set of diagrams for the lowest OPE terms of

the nucleon sum rules. Wavy lines are for the nucleon

current, solid lines stand for the quarks, and dashed

lines denote the gluons. The circles stand for the quark
and gluon condensates

propagator of one of the u quarks of the polarization
operator should include interaction with this gluon field
(and cannot be treated as a free one). Due to the equa-
tion of motion

1
<D2 - iawg‘w> q= mgq,
where m, is the current mass of the quark, we find that

(01d(0)Dd(0)[0) = 5(0lgoyvGuwal0) (A7)

DO | =

for the massless quark. Thus, the contributions B¢ and
B? can be expressed in terms of the same condensate.
Direct calculation [16] demonstrates that B¢ + B = 0.
We note that this cancelation occurs only for current
(5). If we use current (4) with ¢ # —1, then Bs # 0.

Usually, sum rules for the operators
Pl(MZ) — 3271_4[51175OPE(qZ)7

where B is the Borel transform operator, are actually
considered. The factor 327* is introduced in order to
deal with the values of the order of unity (in GeV units).
After the Borel transform, we write (12) as

PIUM?) = AL(M?),
n=0
n=3

Al (M?) = 321 BA,(¢%),
Bl (M?) = 321*BB,(¢?).

We here present the most important terms:

2
A0 = M, Ay = 2
4 (19)
4
Af = —a®, Bi(M?) =2aM*.

3

The Borel-transformed sum rules (11) can now be writ-
ten as

PiM?) = Fi(M?) + Fi(M?), (20)

where the two terms on the right-hand side are the
contributions to the right-hand side of the Borel-trans-
formed Eq. (11) made by the nucleon pole with the
mass my and by the continuum:
. m2

Fyr?) = 3t exp (1)
(172 i 2 k? 2 (21)
Fo(M?) = /dk exp <_W> A[BIL (k7)].

w2

Here, \? is the residue at the nucleon pole (multiplied
by 327*), W2 is the continuum threshold, and &, = 1,
f] =mn-.

The conventional form of the sum rules is

LY(M?, W?) = RY(M?), (22)
and
£h(Mm?,w?) = RT(M?), (23)

where £? and R’ are the respective Borel transforms of
the left- and right-hand sides of Eqs. (11):

RY(M?) = \? exp <_’;2_?;) , o

Iy 2 my
R'(M?) = mnA”exp <_W> ,
with A? = 327*)%,. The contribution of the continuum

is moved to the left-hand sides of Egs. (22) and (23),
which can be written as

L0=>" A, (M W?),

n=0 ) (25)
Lh=3" B(M*W?),
n=3
(see Eq. (18)). Here,
i MPEx(y) 5 bMPEo(v)
Ay==—2 L 4 =20
L(M?) 4L(M?) (26)
I = 2o By = 2aM*E; (v) _n
6—3a ) 3 = 20 \7), ”V—M2,
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with

Eoy(y)=1—-¢e7", Ei(y)=1-(1+7)e",

27
Ey(v) =1—(1+~v+7/2)e7". (27
The factor
9 In M2/A2 4/9
sort = (i) .

includes the most important radiative corrections of
the order aylnQ? (LLA). These contributions were
summed to all orders of (asIn@Q?)". In Eq. (28), A =
= Agcp is the QCD scale, while y is the normalization
point, its standard choice being u = 0.5 GeV.

The position of the nucleon pole my, its residue A2,
and the continuum threshold W2 are the unknowns
of sum rule equations (22) and (23). The nucleon
sum rule equations (22) and (23) are usually solved
at M? ~ 1 GeV?, namely,

0.8 GeVZ < M2 < 1.4 GeV?. (29)
The range of M? where the sum rules hold is usually
referred to as the “duality interval”.

After the inclusion of several condensates of higher
dimensions and of the lowest-order radiative corrections
beyond the leading logarithmic approximation [17], the
sum rules yield the solution (for Agcp = 230 MeV)
my = 928 MeV, A2 = 2.36 GeV®, W2 = 2.13 GeV?.

3. QCD SUM RULES IN THE INSTANTON
VACUUM

3.1. Instanton representation and the OPE
approximation

We recall that a typical value of the condensate of
dimension d = n is (0|0,]0) ~ ¢™ with ¢ = 250 MeV.
Because we have ¢?M? < 1 at M ~ 1 GeV, we could
expect the convergence of the OPE. In the instanton
language, we have p2M? ~ 1 and cannot expect the
convergence of the series in powers of 1/M?2.

Therefore, the structure of the left-hand sides of
the sum rules differs from that in the condensate rep-
resentation. The leading contribution Ay to the chira-
lity-conserving operator I19 remains unchanged. Howe-
ver, as long as we consider only the nearest small-size
instanton, there is no contribution of two zero-mode u
quarks (this contribution plays the role of a four-quark
condensate in the “condensate language”), because only
one u quark can be placed in the zero mode of the field
of an instanton.
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In the chirality-flipping structure II’, we describe
the d quark by the propagator Sz given by Eq. (7). The
Borel-transformed contribution BII’(M?) depends on
the parameter p2M? ~ 1 and cannot be represented as
a 1/M? series. In the condensate language, this means
that it includes a nonlocal scalar quark condensate.

We note that our form for the propagator Syz
means that we did not include some of contributions
that were present in the condensate picture. In the
terms A4 and BE, the propagator of one of the u quarks
should include the influence of the gluon field. There-
fore, its propagator is not diagonal in color indices,
while both Sz and Syz are.

We now assume that in the NTA, the small-size in-
stantons create only a part ws < 1 of the scalar con-
densate. The contribution of the remaining part of the
condensate (1 —ws)a to the chirality-flipping structure
is expressed by the term B} given by Eq. (19) with
a replaced by as. In the chirality-flipping structure,
one of the u quarks is in the zero mode of the nearest
small-size instanton, while the other is described by a
local condensate. The latter provides the factor ay in
the contribution to the polarization operator, and the
former provides a factor containing a nonlocal scalar
condensate. We note that we do not use the factoriza-
tion hypothesis here.

Considering only the small-size instantons, we do
not have an analogue of the OPE four-quark conden-
sates because two u quarks cannot be in the zero-mode
of the same instanton. We find such an analogue in
going beyond the NTA.

3.2. Calculation of the polarization operator

Instead of the condensate (0|7(0)¢(0)|0), we use the
parameter a defined by Eq. (14). We also introduce
as = aws and ay awyp a(l — wg). With these
variables, Eq. (8) with N, = 3 takes the form

oo

as = 6/dppm(p), Qs

0

—(2m)*(0lql0)s.  (30)

As we have noted, the leading contribution Ay to
the @ structure remains unchanged. The contribution
to the chirality-flipping structure is now

H{(q2) =2a(l — ws)Q2 InQ? + Vs, (31)

where the two terms are the respective contributions of
large-size and small-size instantons. The last one can
be written as Y, = 327*X,, with

d'p  m(p)
Xs — 12/ (271_)47/1 p2

’YVT[JJ/(Q - p)v (32)
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where
1@ ) = [ d'ae™ @) D, (2)), (3
with
b (2) = 7o (@)7,Gol2). (34
Here,
Gol) = ~ 55 (35)

is the Fourier transform of the propagator Syz deter-
mined by Eq. (30). We note that the quark in the
zero mode now carries a nonzero momentum p. In the
condensate language, it carries the momentum p = 0.
Neglecting the momentum p in the factor 7, (Q — p)
on the right-hand side of Eq. (32), we would obtain

_3Q°InQ’

Xs 8t

/mmnm»=BxQ%, (36)

with B3(Q?) defined by Eq. (16) and with a replaced
by as. Thus, in the limit Q% — 0o, we obtain the lowest
OPE term. We can view the calculation of the contri-
bution given by Eq. (32) as the inclusion of nonlocality
in the scalar quark condensate.

The four-quark contribution can emerge only if one
of the @u pairs comes from small-size instantons, while
the other originates from large-size fluctuation. Follo-
wing the previous discussion, we can write the contri-
bution to the polarization operator as

d'p m(p) Q—p

/ @2m* p* (Q-p)?*
The lower index 6 here shows that neglecting p in the
last factor on the right-hand side, we would obtain the
factorized OPE term Ag determined by Eq. (19) times
2wg(1 — wg). The set of diagrams included in the sum
rules is shown in Fig. 2.

It is instructive to trace how the contributions to

_Aaw,(1-w,)
- 2

Ag

(37)

™

the spin-conserving part of the polarization operator
change if we go beyond the NTA. In the loop corre-
sponding to Ao the quark propagators then have their
masses squared in denominators, and the contribution
of Ag diminishes. Two u quarks can now be described
by the chirality-flipping parts of their propagators. The
corresponding contribution of the small-size instantons
is

d4
o 5%
d'p’ m@p) Q—p—p
</ e Q-p-pp Y

a u b u
Ed ;d
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Fig.2. The set of diagrams for the quarks in the field of
instantons. Dark and dashed blobs on the quark lines
stand for small-size and large-size instantons

In the limit Q% — oo, we neglect p and p’ in the last
factor in the integrand, coming to the factorized form
of the OPE contribution.

To obtain results in analytic form, we parameteri-
ze the dynamical quark mass caused by the small-size
instantons as

A
P +n?)%’
with A and 5 being the fitting parameters. The power

in the denominator insures the proper behavior m(p) ~
~p~%as p— oo [10]. Now Eq. (30) can be written as
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2t

m(p) = (39)

as = (40)
Calculating the tensor T},,, we write

3

T2

4
d*p y
(2m)*

f Q=@ =P (4])
p?(p* +n?)?

Further details of the calculation are presented in

the Appendix. We find the Borel transformed contri-
bution

s =

B'(M?) = 2a,M* + 2a,M*F(3),

_e—B
Fo) =3 (e -pere ) 6
B =n’/M?,
where
£(8) = /dtT. (43)
B

In the literature, our function £ is usually denoted by
E;. We avoid this notation because in the QCD sum
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0.2 + i
0.1 | i
0 L L L L L L L
0.8 1.2 1.6 2.0
B
Fig.3.

0.2 ]

0.1 | i

0 L L L L L
0.8 1.2 1.6 2.0
M?, GeV?

a) The function F(B) defined by Eq. (42). b) Dependence of the functions F(n?/M?) for n*> = 1.26 GeV?,

corresponding to the size ps = 0.33 fm

rule publications, the notation E; has another meaning
(see Eq. (27)).

Combining Eq. (40) with the relation m(0) = .A/n°
coming from Eq. (39), we find that 7> = 2as/3m/(0).
It was demonstrated in [10, 11] that as ~ R Zp~ !,
while m(0) ~ R~2p. Thus, * depends only on p, and
n® =1.26 GeV? at p = 0.33 fm. In duality interval (29),
0.9 < 8 < 1.6. The function F(3) is plotted in Fig. 3a.
The dependence of F on M? for n? = 1.26 GeV? is
shown in Fig. 3b. As expected, we find B = B} in the
limit M? — oo (see Eq. (19)).

A similar calculation yields

8 4 1—e ¥

AL == s(1 —w,
6 Baw( ws) 3

(44)

3.3. Parameterization of the nonlocal scalar
condensate

It is reasonable to try to establish a connection with
the OPE approach. We write Eq. (42) as

By(M?) = 2M*a(M?), (45)

where

a(M?) =a (1 —ws + wsF <AZ—22>> , (46)

with F defined by Eq. (42). We have a(M?) — a for
M? — 0o. We now define
M2
r(w) = 20 (47)
a
and try to parameterize the function K (M?) in the du-
ality interval by a power series in 1/M?>:

AlNye

K(M*)=1+>" M—;‘n (48)
n=1

If the second term on the right-hand side can be ap-
proximated by one or two terms, such a representation
can be related to the parameterization of the expecta-
tion value (0]7(0)q(2)|0) by a polynomial in 2. We can

write the polarization operator I; as

i) =2 [ e, )
with f(2?) = (0|7(0)g(z)|0). Assuming that f(z) can
be parameterized as

f(@) = f0)1+ c12” + cpa?) (50)
(we recall that we are in a Euclidean metric), we find

861 3262 >

B =20 (1- 35+ 322

(51)

aATT
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Fig.4. Approximation of the function IK'(M?) defined

by Eq. (47) (solid line) by the series on the right-hand

side of Eq. (48) with parameters determined by Eq. (52)
(dotted line)

and hence

Cl = 861, 02 = 3262 (52)

in (48). We note that the right-hand side of Eq. (50)
cannot be treated as the lowest terms of the Taylor
expansion. The terms 22" with n > 3 yield integrals
that are divergent on the upper limit and cannot be
eliminated by the Borel transformation.

For the medium consisting solely of small-size in-
stantons, i.e., for ws = 1, keeping the first three terms
in (48), we find that ¢, = —1.23 GeV® and Cy =
= 0.54 GeV4, and hence ¢; = —0.15 GeV? and ¢y =
= 0.017 GeV* in the duality interval 0.8 GeV? < M2 <
< 1.4 GeV? determined by Eq. (29). The accuracy of
the parameterization is illustrated by Fig. 4. In the in-
terval 0.8 GeV? < M? < 2.0 GeV?, we find a slightly
different set of values: C; = —1.38 GeV? and O,
= 0.68 GeV?, corresponding to ¢; = —0.17 GeV? and
¢ = 0.021 GeV?. Thus we can assume that paramete-
rization (50) with ¢; &~ —0.2 GeV? and ¢ ~ 0.02 GeV*
can be used for the Borel masses in the GeV region.
This point was discussed in more detail in [18].

~
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4. SOLUTION OF THE SUM RULE
EQUATIONS

We return to the Minkowski metric and analyze
Eqs. (22) and (23) with

[:q
L:I

Ag(M?,W?) 4+ Ag(M?),
B(M?,W?),

(53)

where Ag(M? W?) is given by Eq. (26), Ag = A} is
presented in Eq. (44), and
B(M?,W?) = 2a,M*E» () +

+ 2a, M *®(M? W?), (54)

Sa—e) e 1) -

1 Bt ) 4 BEB) —5(7))) -

®(M? W?) = % (2

The functions FE;(i
Eq. (27).

0,1,2) are determined by

4.1. The absence of a solution at w, = 1

We can immediately guess that there is no solution
for ws = 1. Indeed, if the values my, A%, and W?>
compose a solution, we should obtain

[:I(MZ,WZ)

K(M2) Eq(M2,W2)

~ const = my. (55)

Because the contribution of the continuum should not

be too large, we should expect

L1(M?)
La(M2)

~ const & my, (56)
where we set £!(M?) = L{(M?,W? — ). Forws = 1,
Eq. (56) takes the form

2aF(n2/M2).

k(M?) = e

(57)
Using the dependence of the function F on M? for
n? = 1.26 GeV? presented in Fig. 3b, we can see
that the values of & range between 2a - 0.36/GeV? and
2a - 0.27/GeV? in the interval (29) of variation of M?2.
For the distance R = 1 fm between small-size instan-
tons, a = 0.59 GeV?® [10, 11]. Hence, my ~ 0.35 GéV.

The unrealistic value of the nucleon mass obtained
in such a way is not the main problem, however. We
try to find the value of A\> using Eq. (21). We ob-
tain MCexp(m% /M?) = A\%. But the left-hand side of
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Fig.5. Dependence of the solution of the sum rule equations on the value of ws at ps = 0.33 fm for the nucleon mass m
(a), \* (b), and W? (c). The solid, dashed, dotted, and dashed-dotted lines are for the respective scalar condensate values
a = 0.58, 0.67, 0.80, and 0.96 GeV*®

this equality changes by a factor of 6 in duality inter-
val (29). Therefore, the equality can be satisfied only if
the contribution of the continuum, which was moved to
the left-hand side, as discussed around Eqs. (22)—(25),
changes the left-hand side strongly. Hence, we come to
an unphysical solution of the sum rules [19]. As we see
below, a more detailed analysis confirms this conclu-
sion.

We note that at ws; = 1, the right-hand sides of the
sum rules for both chirality-flipping and chirality-con-
serving structures suffered large changes comparing to
the standard OPE sum rules. The most important
change in the former case is the inclusion of the nonlo-
cality of the scalar condensate. In the latter case, there
is no four-quark condensate, which played an important
role in the OPE case.

4.2. Dependence of solutions on the fraction of
small-size instantons

The functions £9 and £ depend explicitly on the
scalar condensate a, on its fraction caused by the in-
stantons of the small size as = aws, and on the para-
meter n?. On the other hand, the medium of small in-
stantons is determined by their average size ps and the
distance between the instantons R(ws). It was found
in [10, 11] that

C

(012(0)¢(0)[0)s = o)y, (58)

where C' = 25.0 and R is the distance between small-si-
ze instantons. Hence, we can study the dependence of
the solution of the sum rule equations on the fraction of
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small-size instantons w, for several values of the scalar
condensate

= —(27)2(017(0)a(0)]0)
and for different sizes of small instantons p;.

We note that at p; = 0.33 fm and R(1) =1 fm, the
scalar condensate a = 0.58 GeV? (at the conventional
normalization point u = 0.5 GeV) [10, 11]. This en-
ables us to find the dependence on w; at any values of
a and pg.

The results for ps = 0.33 fm are presented in Tab-
le 1 and in Fig. 5. We can see that at several reasonable
values of the quark condensate, the sum rules have a
physical solution for ws not exceeding a certain value
wo- At wy = wo ~ 0.67, the solutions jump to unphy-
sical ones with a smaller value of the nucleon mass and
the dominant contribution of the continuum [19]. At
wg about 0.6, the nucleon mass is close to the physical
value.

In Table 1 and in Fig. 5, we present the results for
four values of the scalar condensate a corresponding to
ps = 0.33 fm and the distances between the small in-
stantons R = 1.3, 1.2, 1.1, and 1.0 fm at ws; = 0.6. The
distances R = 1.3 fm and R = 1.2 fm correspond to the
values a = 0.58 GeV?® and a = 0.67 GeV?, i.e., to the
values of the scalar condensate (0]G(0)g(0)|0) equal to
(—244 MeV)? and (—257 MeV)3, close to the conven-
tional values. The distances R = 1.1 fmand R = 1.0 fm
correspond to a 0.80 GeV? and a = 0.96 GeV?,
i.e., to somewhat larger values of (0|g(0)¢(0)|0) equal
to (=273 MeV)? and a less realistic (—290 MeV)3. The
consistency of the left- and right-hand sides of the sum
rules is illustrated in Fig. 6.
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Table 1.  Solutions of the sum rule equations for p = 0.33 fm
a, GeV3 w, my, GeV A2, GeVE W2, GeV? i

0.30 1.45 8.7 6.6 3.7(—2)
. 1.1 2. 2. 4.0(-2
0.96 0.60 5 8 9 0(-2)
0.66 1.05 1.9 2.3 3.9(-2)
0.67 0.82 0.86 14 2.1(-2)
0.30 1.40 6.2 4.9 1.7(-2)
. 1.1 2. 2. 2.3(—2
0.80 0.60 0 0 6 3(-2)
0.67 0.99 1.2 2.0 2.2(-2)
0.68 0.80 0.60 1.3 1.2(-2)
0.30 1.33 4.3 4.0 8.3(—3)
0.67 0.60 1.05 1.4 2.2 1.4(-2)
' 0.67 0.95 0.83 1.7 1.3(-2)
0.68 0.77 0.41 1.1 5.9(—3)
0.30 1.27 3.0 34 4.2(-2)
057 0.60 1.00 0.95 1.9 8.9(—3)
. 0.67 0.90 0.57 1.5 8.3(—3)
0.68 0.75 0.30 1.0 3.0(—3)

As noted above, the pole-to-continuum ratio

ri(M?) = FP(M?) ) F{(M?), i=q,1, (59)

of the two contributions to the right-hand side of
Eq. (20) characterizes the validity of the “pole + contin-
uum” model for the spectrum of the polarization opera-
tor in Eqgs. (20) and (21). For larger values of r;(M?),
the model is justified better. The values of the ratio are
presented in Table 2 for p; = 0.33 fm and w; = 0.60.
We take two cases for illustration. For a = 0.58 GeV?,
the solution is

my = 1.01 GeV, A2 =1.2 GeV®,

W? =2.0 GeVZ. (60)

The pole-to-continuum ratio decreases with the value
of M? (see Table 2). Although the sum rule equa-
tions can be solved with good accuracy in the broad
interval of values of the Borel mass (see Table 3), the
pole-to-continuum ratio becomes unacceptably small
for M? > 1.4 GeV?. In this case, we therefore stay in
the traditional duality interval determined by Eq. (29).

For the condensate a = 0.96 GeV?, corresponding
to R(0.6) = 1 fm, the solution is

my = 1.15 GeV, )2 =28 GeVS,

W? =29 GeV2. (61)
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Here, the sum rule equations can also be solved with
good accuracy in a large interval of values of the Borel
mass (see Table 3). We can see that both r, and r;
decrease as M? increases. In this case, the pole-to-
continuum ratio is much larger than it was for smaller
values of the condensate. Hence, the interval of the val-
ues of M? where the sum rule equations can be solved
becomes larger.

We also fix the value R = 1.3 fm and trace the
dependence of the solutions on ps. In Table 4, we
present the results for p = 0.25 fm (a = 0.76 GeV?
and (0]|g(0)g(0)|0) = (—268 MeV)?) and ps = 0.40 fm
(a = 0.48 GeV? and (0|3(0)¢(0)|0) = (=230 MeV)?).
They are shown in Fig. 7. The situation is similar to
the preceding case when we changed R. However, at
ps = 0.40 fm, the jump to the unphysical solution oc-
curs at a larger value w, ~ 0.75.

For wy; = 0.65, the function K (M?) determined by
Eq. (47) is approximated by the series on the right-hand
side of Eq. (48) with the parameters

Oy = —0.80 GeV?, (5 =0.35 GeV',  (62)

whence ¢; = —0.10 GeV? and ¢y = 0.011 GeV*.
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RHS/LHS
1.2 : . . . :

0.8 1.0 1.2 1.4
M?, GeV?

Fig.6. Consistency of the left- and right-hand sides

(LHS, RHS) of the sum rules for a = 0.58 GeV?,

ws = 0.60. The solid and dashed lines respectively

show the ratios of the right- to the left-hand sides for

the sum rules for chirality-conserving and chirality-flip-
ping equations

Table 2. Pole-to-continuum ratio r(M?) for solutions
of the sum rules at p = 0.33 fm for a = 0.58 GeV?
and a = 0.96 GeV?; ws = 0.60

a, GeV3 | M2, GeV? | ry(M?) | rr(M?)

0.8 1.25 1.84
1. . 1.

0.58 0 0.69 08
1.2 0.43 0.72
1.4 0.29 0.52
0.8 4.69 5.85
1. 2. 2.

0.96 0 30 99
1.2 1.34 1.82
1.4 0.86 1.23

5. SUMMARY

We calculated the polarization operator of the nu-
cleon current in the instanton medium that we assumed
to be a composition of the small-size instantons and
some large-size gluon field fluctuations with the corre-
lation length p; > 1 GeV~!. The instantons of large

4 ZKST®, Bom. 3 (9)

size p > (1 GeV) ™! manifest themselves in terms of
the local scalar quark condensate. The quark propa-
gator in the field of small-size instantons contains the
zero mode chirality-flipping part proportional to the ef-
fective quark mass m(p) and a nonzero-mode part ap-
proximated by the propagator of a free massless quark
[10, 11]. The zero-mode part can be expressed in terms
of the nonlocal scalar condensate.

We solved the sum rule equations and traced the
dependence of the solution on the fraction of small-size
instantons w,;. We demonstrated that at w; < 0.6-0.7,
the sum rules have a solution with a reasonable value
of the nucleon mass. At ws; ~ 2/3, the value of the
nucleon mass is very close to the physical one. The nu-
merical values vary slightly with variation of the actual
values of the size of small instantons and of the distance
between them. Finally at the values of the scalar con-
densate close to the conventional value (—250 MeV)3,

my ~1GeV, A ax1GeV®, W?x~2GeV2. (63)

At larger values of wg, the sum rules have only an un-
physical solution with a strong domination of the con-
tinuum contribution over that of the nucleon pole and
with a small value of the nucleon mass.

Solution (63) was found for ps = 0.33 fm, with R =
= 1.2-1.3 fm. It is also valid for R ~ 1.3 fm with
ps ~ 0.25-0.40 fm. We note that in [10,11], the value
of R is tied to that of the gluon condensate, which is
known with a large uncertainty [13], and R = 1.2 fm
is not unrealistic. Also (see [9]), we can tie the gluon
condensate to the total instanton density. For the con-
ventional value

a 1
<0|fGWGfW|0>m = (200 MeV)*
and the distance between small-size instantons
R = 1.2 fm, the densities of small-size and large-size
instantons are approximately the same.

At larger values of the quark condensate, the values
of the nucleon residue and of the continuum threshold
increase, reaching the values A2 ~ 3 GeV® and W2 ~
~ 3 GeV? at (0/G(0)¢(0)]0) = (—290 MeV)?.

Compared to the sum rules in the condensate repre-
sentation, we included the nonlocality of the scalar con-
densate. Also, the instanton representation strongly di-
minished the role of the contribution corresponding to
the four-quark condensate in the condensate language.

The consistency between the left- and right-hand
sides of the sum rules appeared to be much better than
in the sum rules in terms of local condensates, where
the value of “x? per point” was of the order 107! [17]
assuming 10 % error bars. The mean relative difference
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Fig.7. Dependence of the solution of the sum rule equations on the value of ws at R ~ 1.3 fm for the nucleon mass m (a),
A2 (b), and W? (¢). The solid, dashed, and dotted curves are for the respective values of the scalar condensate a = 0.58,
0.48, and 0.77 GeV?

Table 3. Solutions of the sum rule equations in various intervals of the values of the Borel mass. The parameter values
are the same as in Table 2
a, GeV? M2, GeV? my, GeV A2 GeV® W2, GeV? %
0.8-1.4 1.01 0.98 1.96 9.3(—3)
0.58 0.8-1.6 1.02 1.01 1.99 1.2(-2)
0.8-1.8 1.03 1.04 2.01 1.5(-2)
0.8-1.4 1.15 2.83 2.93 4.0(-2)
0.96 0.8-1.6 1.17 3.03 3.02 5.1(—2)
0.8-1.8 1.19 3.20 3.08 6.0(—2)

between the left- and right-hand sides is about 3 %. At
larger values of the scalar condensate, the domination
of the contribution of the pole over that of the con-
tinuum becomes more pronounced. Also, the duality
interval becomes larger than that defined by Eq. (29)
due to the shift of the upper limit.

We demonstrated that the contribution of the non-
locality of the scalar condensate can be approximated
by two additional terms of the 1/M? series. This cor-
responds to approximating the dependence of the non-
local quark condensate f(z%) = (0|¢(z)q(0)|0) on 2> by
a polynomial of the second order. At 22> = 1 GeV ™2
(with the Euclidean metric), we found f(2?) — £(0)
= tf(0) with ¢ = —0.14 for ws = 1 and t = —0.09
for wy; = 0.65. More complicated calculations in the
framework of the instanton liquid model [20] yielded
t ~ —0.1 for 22 = 1 GeV %, The parameter m3 de-
fined by Eq. (15) determines the lowest-order term of
the Taylor series of the condensate f(2?). Its value
was estimated in the nucleon QCD sum rule analysis
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two sides of the sum
~ 0.8 GeV?, leading
0.2 GeV? yielding

as providing the best fit of the
rules. The result in [16] is m2
to t a~ 0.2, while the value m}

t & —0.05 was obtained in [21].

We note that these are to large extent the prelimi-
nary results. Representing the continuous distribution
of instanton sizes as a superposition of small-size in-
stantons and of some large-size gluon field fluctuations,
we neglected their possible interactions. Another point
is the interpretation of the condensate (1 — w,)(0|7q|0)
caused by the interactions at the large scale. A more
general analysis should be carried out. The last but
not, the least, we plan to include interactions between
the quarks composing the polarization operator, i.e.,
to take the radiative corrections into account. They
are the same as in the condensate representation for
the structure I19. However, additional work is required
to find these corrections for the chirality-flipping struc-
ture II7. Hence, a more general analysis is required;
the corresponding results will be published elsewhere.

~
~
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Table 4. Solutions of the sum rule equations for R ~ 1.3 fm
a, GeV? w, my, GeV A2, GeV® W2, GeV? %
0.60 1.09 1.52 2.31 3.8(—3)
0.77 0.70 0.88 0.55 1.38 1.5(-3)
0.50 1.06 1.20 2.21 7.8(—3)
0.48 0.60 0.98 0.82 1.87 1.1(-2)

We thank A. E. Dorokhov, N. I. Kochelev, and es-
pecially V. Yu. Petrov for the stimulating discussions.

APPENDIX

To calculate the integral on the right-hand side of

Eq. (41), we write
_/°° dy
J (@-p)?+y

Here and below, we omit polynomials in @2 because
they are eliminated by the Borel transformation. Now
we can write

(A1)

: 4
Xs = _ﬁ / d P B A X
m ) @2m)* p?(p* +n?)?
x / dyy (A.2)
0
We can verify that
1 / dx 2*
T T
T N
PPt ) ) (49
whence
1
= —3/dxx U (nz) (A4)
0
where
3A [
¥(2) = 25 [ dyyaee.y)
0 (A.5)
d* 1 1
st = [0
Uew) @m)* (p* +p2)* (Q—p)” +
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Integrating over the angular variables, we find

1

t)3
@ —
() 487r2/ (ty+12> (=) +(1-0)Q%)?
0
[ i~ 1) (11
t(1— 9 pwo(l—t
= = 1-— . (Al
[ e rm @0+ ()
0
Integrating over y, we obtain
A r 1\’ u
T(p?) = du({1——) —5———. A
(1) 3274 u( u) Q? + p’u (A7)
1

The divergence at the upper limit is not important,
because this contribution is eliminated by the Borel
transformation. Returning to Eq. (A.4), we can write
it as

1 00
Xs—327r4/dx /dux
0 1
1\’ u
1——) ————. (A8
% ( u) Q? + n*ux (4.8)
We can now integrate easily, with the result
3.4 Q4 QZ + 772
s = —In +
3274 | 6 Q2
3Q° 3 Q° - n?
+(n—4+n—2+@>l . (A9)

After the Borel transformation, we arrive at Eq. (42).
We note that the Borel transform of the right-hand side
of Eq. (A.8) is given by compact expression

2
BX;s = 3?;;_‘4 dacx2/duu(1—%> X
n’zu

xexp | =5 ) (A.10)
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