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HAWKING RADIATION OF SPIN-1 PARTICLES FROMA THREE-DIMENSIONAL ROTATING HAIRY BLACK HOLEI. Sakalli, A. Ovgun *Department of Physis, Eastern Mediterranean UniversityFamagusta, North Cyprus, Mersin-10, TurkeyReeived Marh 27, 2015We study the Hawking radiation of spin-1 partiles (so-alled vetor partiles) from a three-dimensional rotatingblak hole with salar hair using a Hamilton�Jaobi ansatz. Using the Proa equation in the WKB approxi-mation, we obtain the tunneling spetrum of vetor partiles. We reover the standard Hawking temperatureorresponding to the emission of these partiles from a rotating blak hole with salar hair.DOI: 10.7868/S00444510150900471. INTRODUCTIONOne of the most radial preditions of general rel-ativity is the existene of blak holes. Aording tothe seminal works of Hawking [1�3℄, blak holes arenot entirely blak. That was the surprising laim madeby Hawking over forty years ago. Examining the be-havior of quantum �utuations around the event hori-zon of a blak hole, Hawking substantiated the theorythat blak holes emit thermal radiation, with a on-stant temperature (so-alled Hawking temperature) di-retly proportional to the surfae gravity �, whih is thegravitational aeleration experiened at the blak holehorizon: TH = }�2� ; (1)where the system of units with  = G = kB = 1 isused. The works of Hawking and Bekenstein [4℄ and ofothers [5�15℄, rederiving TH in various ways, bring to-gether the normally disparate areas: general relativity,quantum mehanis, and thermodynamis. The enthu-siasm for understanding the underlying oordinationsbetween these subjets of physis reates ample motiva-tion for the study of Hawking radiation (see, e. g., [16�27℄ and referenes therein).Quantum �utuations reate a virtual partile pairnear the blak hole horizon. While the partile withnegative energy tunnels into the horizon (absorption),*E-mail: ali.ovgun�emu.edu.tr

the other, having positive energy, �ies away to the spa-tial in�nity (emission) and produes Hawking radia-tion. In the WKB approximation for the emission andabsorption probabilities of the tunneling partiles, thetunneling rate � is [12, 28, 29℄� = PemissionPabsorption = exp(�2 ImS) == exp��EnetT � ; (2)where S is the ation of the lassially forbidden traje-tory of a tunneling partile, whih has the net energyEnet and temperature T . One of the methods for �nd-ing S is the Hamilton�Jaobi method. This methodis generally implemented by substituting a suitableansatz, onsistent with the symmetries of the spae-time, in the relativisti Hamilton�Jaobi equation. Theresulting radial integral always has a pole loated at theevent horizon. However, using the residue theory, theassoiated pole an be analytially evoided [30℄.Reently, in the framework of the Hamilton�Jaobimethod, the Hawking radiation of spin-1 partiles de-sribed by the Proa equation in 3D nonrotating statiblak holes was studied by Kruglov [28℄. These spin-1partiles are in fat vetor partiles like the Z and W�bosons, and they play a signi�ant role in the Stan-dard Model [31℄. Based on Kruglov's study [28℄, Chenet al. [32℄ very reently investigated the Hawking ra-diation of these bosons in the rotating BTZ geome-try. Here, similarly to [28, 32℄, our aim is to study theHawking radiation of the vetor partiles in a three-dimensional (3D) rotating blak hole with the salar466



ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Hawking radiation of spin-1 partiles : : :hairs [33�36℄. These blak holes are solutions of the a-tion in 3D Einstein gravity that is nonminimally ou-pled to a salar �eld �. In the limit � = 0, the rotatingblak hole with the salar hairs is nothing but a rotat-ing BTZ blak hole [33; 37℄.This paper is organized as follows. In Se. 2, weintrodue the geometrial and thermodynamial fea-tures of the 3D rotating blak hole with the salarhairs spae-time. In Se. 3, we study the Proa equa-tion for a massive boson in this geometry. We thenuse the Hamilton�Jaobi method with the separation-of-variables tehnique to obtain the Hawking radiationof the rotating blak hole with the salar hairs. Finally,in Se. 4, we present our remarks.2. 3D ROTATING BLACK HOLE WITH THESCALAR HAIRS SPACE-TIMEThe ation in a 3D Einstein gravity with a nonmin-imally oupled salar �eld is given by [33℄I = 12 Z d3xp�g �� �R� g��r��r��� �R�2 � 2V (�)� ; (3)where the oupling strength � between gravity and thesalar �eld is 1=8. Furthermore, the salar potentialV (�) isV (�) = ��+ 1512 ��+ �B2��6 ++ 1512 a2B4 ��6 � 40�4 + 640�2 � 4608��10(�2 � 8)5 ; (4)where the parameters �, B, and a are integration on-stants, and � is the osmologial onstant. The lineelement of the rotating blak hole with the salar hairsis given byds2 = �f(r)dt2 + 1f(r)dr2 + r2 [d� + !(r)dt℄2 ; (5)with the metri funtionsf(r) = �M �1 + 2B3r �+ r2�+ (3r + 2B)2 J236r4 ; (6)!(r) = � (3r + 2B) J6r3 ; (7)where J is the angular momentum of the blak hole.The salar �eld is represented by� = �r 8Br +B : (8)

It is worth noting that the rotating blak hole withthe salar hairs an be redued to the rotating BTZblak hole solution when B = 0 [33�36℄. Follow-ing [35, 36℄, we an see that the mass, the Hawkingtemperature, the Bekenstein�Hawking entropy, and theangular veloity of the partile at the horizon of thisblak hole are given byM = J2l2 (2B + 3r+)2 + 36r6+12l2r3+ (2B + 3r+) ; (9)TH = f 0(r+)4� == (B + r+) �36r6+ � J2l2(2B + 3r+)2�24�l2r5+ (2B + 3r+) ; (10)SBH = AH4G [1� ��2(r+)℄ = 4�r2+B + r+ ; (11)
H = �!(r+) = (3r+ + 2B) J6r3+ ; (12)where � = 1=l2; and r+ is referred to as the event hori-zon of the blak hole. In order to �nd r+ values, weimpose the ondition f(r+) = 0, whih yields a partiu-lar ubi equation. The solutions of that ubi equationare also given in detail in [35℄. We an verify that the�rst law of thermodynamisdM = THdSBH +
HdJ (13)holds. On the other hand, alulating the spei� heatusing CJ = TH ��SBH�TH �Jproves that the rotating blak hole with the salar hairsis loally stable when r+ > rext. Here, rext is the ra-dius of an extremal rotating blak hole with the salarhairs that yields TH = 0 [35℄.3. HAWKING RADIATION OF SPIN-1PARTICLES FROM AN ROTATING BLACKHOLE WITH THE SCALAR HAIRSAs desribed in [28℄, the Proa equation for massivevetor partiles having the wave funtion � is1p�g�� �p�g����+ m2~2 �� = 0; (14)where ��� = ���� � ���� : (15)467 3*



I. Sakalli, A. Ovgun ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015We hoose the vetor funtion in the form�� = (0; 1; 2) exp � i~S(t; r; �)� ; (16)and assume that the ation is given byS(t; r; �) = S0(t; r; �) + ~S1(t; r; �) ++ ~2S2(t; r; �) + : : : (17)Aording to the WKB approximation, we an furtherset S0(t; r; �) = �Et+ L(r) + j� +|; (18)where E and j are the energy and angular momentumof the spin-1 partiles, and | is a (omplex) onstant.Substituting Eqs. (15)�(18) in Eq. (14) and onsider-ing the leading order in ~, we obtain an equation fora 3 � 3 matrix, denoted by �: � (1; 2; 3)T = 0 (thesupersript T means the transposition). The nonzeroomponents of � are�11 = A1 � j2;�12 = �21 = �A2�rL(r);�13 = �31 = A1!(r)� jE;�22 = �m2r2 + j2� f(r)�A2;�23 = �32 = �rL(r) �A2!(r)2 � jf(r)2� ;�33 = A1r2 �f(r)� !(r)2r2��E2; (19)
where A1 = r2 nm2 + f(r) [�rL(r)℄2o ; (20)A2 = r2f(r) [E + j!(r)℄ : (21)Using the fat that any homogeneous system of lin-ear equations (19) admits a nontrivial solution if andonly if det� = 0; we obtaindet� = m2r6 �A1 + j2 � A22r2f(r)3 �2 = 0: (22)Solving for L(r) yieldsL�(r) == � Z s [E + !(r)j℄2 � f(r)(m2 + j2=r2)f(r)2 dr: (23)We an immediately see that when !(r) = 0, thisredues to Kruglov's solution [28℄. Here, L+ orre-sponds to outgoing spin-1 partiles (moving away from

the blak hole) and L� to the ingoing spin-1 partiles(moving towards the blak hole). The imaginary partof L�(r) an be alulated by using the pole developedat the horizon. Aording to the omplex path integra-tion method via Feynman's presription [30℄ (see [12℄for a similar proess), we haveImL�(r) = � �f 0(r+)Enet; (24)whereEnet = E +E0 = E + !(r+)j = E � j
H : (25)Therefore, the probabilities of the vetor partilesrossing the horizon in the in- and out-diretions be-omePemission = exp��2~ ImS� == exp ��2~(ImL+ + Im|)� ; (26)Pabsorption = exp�2~ ImS� == ��2~(ImL� + Im|)� : (27)Aording to the lassial de�nition of a blak hole,any outside partile ertainly falls onto the blak hole.Therefore, we must have Pabsorption = 1, whih yieldsIm| = ImL�: On the other hand, L+ = �L�, andhene the total probability of radiating partiles (as aonsequene of quantum mehanis) is� = Pemission = exp��4~ ImL+� == exp�� 4�f 0(r+)Enet� : (28)Comparing Eq. (28) with Eq. (2) we an reover theorret Hawking temperature (10) of a rotating blakhole with the salar hairs:T � TH = f 0(r+)4� == (B + r+) �36r6+ � J2l2(2B + 3r+)2�24�l2r5+ (2B + 3r+) : (29)468
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