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ELECTRON SPECTRUM OF A SINGLE-WALL CARBONNANOTUBE IN THE FRAMEWORK OF THE NONLINEARSCHRÖDINGER EQUATIONH. A. Ishkhanyan a;b, V. P. Krainov a*aMos
ow Institute of Physi
s and Te
hnology141700, Dolgoprudny, Mos
ow Region, RussiabInstitute for Physi
al Resear
h, National A
ademy of S
ien
es of Armenia0203, Ashtarak-2, ArmeniaRe
eived January 23, 2015The ele
tron spe
trum of a single-wall 
arbon metal nanotube is analyzed numeri
ally. The intera
tion of afree ele
tron with atomi
 ions and bound ele
trons is approximated by an attra
tive delta-fun
tion potential inthe single-parti
le S
hrödinger equation. The intera
tion of an ele
tron with other free ele
trons is presentedby the Hartree nonlinear repulsive short-range potential.DOI: 10.7868/S00444510150801791. INTRODUCTIONCarbon nanotubes attra
t signi�
ant s
ienti�
 in-terest due to their extraordinary properties [1℄. Theyhave been 
onsidered for a wide range of appli
ationsfrom me
hani
s to nanoele
troni
s [2; 3℄. The studyof their ele
troni
 properties was stimulated in 1991,soon giving the �rst out
ome as a series of arti
les byseveral groups [4; 5℄. Theoreti
al studies have shownthat shell depends on the symmetry of the tube (the
hiral angle and radius) and that the tube 
an exhibitmetal or semi
ondu
tor behavior. The problems of 
on-du
tivity of a single-wall nanotube (SWNT) have alsobeen addressed (see, e. g., [6℄). Density fun
tional the-ory (DFT) studies of SWNT ele
troni
 properties aredes
ribed in [7℄. However, the �rst experimental sepa-ration of metalli
 and semi
ondu
tor nanotubes [8℄ wasnot performed until some time after the publi
ation of�rst theoreti
al estimates of 
arbon nanotube ele
troni
properties. The �rst experiments were 
arried out onsamples 
ontaining bundles of metalli
 SWNTs, andhen
e the measured spe
tra were signi�
antly broad-ened. Produ
tion of separated nanotubes (Fig. 1) al-lowed investigating their properties mu
h better [9℄. In*E-mail: vpkrainov�gmail.
om

an ideal 
arbon nanotube, every 
arbon atom has fourvalen
e ele
trons, three of whi
h form lo
alized � bondsand the fourth takes part in the formation of a delo
al-ized � system (Fig. 2). The pi
ture is quite similar tothe one in benzol. The � ele
trons are weakly boundto their atoms and may parti
ipate in the 
ondu
tiv-ity of the system. The 
urrent of free ele
trons alongthe SWNT depends on the positions of separated lev-els of angular quantization. We 
onsider intera
tingele
trons in a long single-wall 
arbon metalli
 arm
hairnanotube without defe
ts (Fig. 3). Most SWNTs have adiameter 
lose to 1�10 nanometers, with a tube lengththat 
an be many millions of times longer. The stru
-ture of an SWNT 
an be 
on
eptualized by wrappinga one-atom-thi
k layer of graphite 
alled graphene intoa seamless 
ylinder.An e�e
tive linear model that allows studyingthe ele
tri
 
urrent 
onsists of a 
ontinuous 
ondu
t-ing 
ylinder with an attra
tive delta-fun
tion poten-tial [10℄. This potential des
ribes the mean �eld ofatomi
 ions and bound ele
trons in the nanotube. Su
han approa
h is appli
able to relatively large nanotubeswhen the tube radius a is large 
ompared with the ef-fe
tive width of the graphite layer r0 � 0:1 nm, whi
his on the atomi
 s
ale. Typi
ally, a � 5 nm. The sim-ple linear single-ele
tron Hamiltonian of an SWNT isof the form (atomi
 units are used here and hereafter,~ = m = 1)333
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Fig. 1. Ideal metalli
 
arbon nanotube

Fig. 2. Ele
tron orbitals of a 
arbon atom in a nan-otube (trigonal planar 
arbon with a p orbital)
Fig. 3. Arrangement of the ele
tron orbitals of 
arbonatoms

H = �12�� UaÆ (r � a) : (1)Here, r is the radial 
oordinate in a 
ylindri
al 
oordi-nate system with the z axis pointing along the tube; Uis the amplitude of the attra
tive potential, a quantityof the order of the Rydberg energy. Of 
ourse, a re-alisti
 attra
tion intera
tion is des
ribed by a s
reenedCoulomb potential. We approximate it by the delta-fun
tion be
ause a > r0. This potential is strong su
hthat U � ~2=ma2. The quantity U is of the order of30 eV (pseudopotential of 
arbon).The stationary single-parti
le S
hrödinger equationfor an ele
tron is written asH	 = E	: (2)We take the ele
tron wave fun
tion in the form	(z; r; �) = 1Xn=0 n (r) exp (ipzz + in�) : (3)The ele
tron moves freely with the momentum pz alongthe tube. The ele
tron angular motion is determinedby the magneti
 quantum number n. Separating thevariables, we obtain a di�erential equation for the ra-dial part of the wave fun
tion,� d2 ndr2 � 1r d ndr + n2r2  n � 2UaÆ (r � a) n == 2�E � p2z2 � n: (4)We assume that the mean potential U is strong su
hthat U � 1=a2. This inequality is realized for largenanotubes. We introdu
e the quantitiesk =pp2z � 2E; x = kr: (5)Then Eq. (4) 
an be rewritten in the formx2 d2 ndx2 + xd ndx � �x2 + n2� n == �2Uka3Æ (x� x0) n; (6)where x0 = ka. We now impose boundary 
onditionsand require the wave fun
tion to be regular at x = 0and to be zero at x ! 1. The solution of Eq. (6) atx < x0 and at x > x0 is n (x) = AnIn (x) ; x < x0; n (x) = BnKn (x) ; x > x0: (7)Here, In (r) and Kn (r) are the respe
tive modi�edBessel fun
tions of the �rst and se
ond kind. Integrat-ing Eq. (6) over an in�nitesimal interval in the vi
inity334
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tron spe
trum of a single-wall 
arbon nanotube : : :of x0, we obtain the relation for derivatives of the wavefun
tiond n (x0+0)dx �d n (x0�0)dx = �2Uak  n (x0) : (8)Using the mat
hing 
ondition of the wave fun
tion atx = x0, AnIn (x0) = BnKn (x0) ; (9)and the well-known value for the Wronskian determi-nant of the modi�ed Bessel fun
tionsW (x) = Kn(x)dIn(x)dx � In(x)dKn(x)dx = 1x ; (10)we �nd the spe
tral equation2Ua2Kn (ka) In (ka) = 1: (11)Under the 
ondition Ua2 � 1, this equation has asimple solution for the ele
tron energy [10℄ (we restorethe ele
tron mass m and the Plan
k 
onstant ~)En = p2z2m � U2ma22~2 + ~2 �n2 � 1=4�2ma2 : (12)When Ua2 < 1, Eq. (11) always has the solution withn = 0, while if n = 1; 2; : : : , the ele
tron levels disap-pear when Ua2 < n.2. NONLINEAR SCHRÖDINGER EQUATIONThe main goal of this paper is to take into a

ountthe repulsive intera
tion of a given free ele
tron withother free ele
trons in the nanotube. The Coulomblong-range repulsion between ele
trons strongly de-
reases at large distan
es be
ause of the s
reening byatomi
 ions. Therefore, this intera
tion 
an be quali-tatively approximated by a short-range delta-fun
tionfor intera
ting ele
trons with opposite spins in a

or-dan
e with the Pauli prin
iple. Hen
e, in the Hartreeself-
onsistent approa
h, we 
an approximate this in-tera
tion by a simple nonlinear potential g j nj2 withthe nonlinearity parameter g > 0, analogously to theHubbard approa
h [11℄. This approximation o

urs indi�erent physi
al situations (e. g., nonlinear opti
s, spinwaves in magneti
 �lms) and in parti
ular has proved to
orre
tly des
ribe the dynami
s of Bose�Einstein 
on-densates of dilute alkaline atoms [12℄. Analogously tothe linear 
ase, the variables in the stationary nonlinearS
hrödinger equation separate. Thus, we obtain a gen-eralization of Eq. (4) for radial motion of the ele
tron

� d2 ndr2 � 1r d ndr + n2r2  n � 2UaÆ (r � a) n ++ g j nj2  n = 2�E � p2z2 � n: (13)The generalization of Eq. (6) is of the formx2 d2 ndx2 + xd ndx � �x2 + n2� n �� gk2x2 j nj2  n = �2Uka3Æ (x� x0) n: (14)In the numeri
al solution of Eq. (14), the delta-fun
tion is substituted by the Lorentz 
urveÆ(x)! 1� 0:010:0001+ x2 : (15)The typi
al radius of the tube was 
hosen as a == 0:5 nm = 10 a. u., the potential of the order ofU = 13:6 eV = 0:5 a. u. and g < U . The bound-ary 
ondition at in�nity is analogous to the one in thelinear 
ase,  n(x ! 1) = 0. The se
ond boundary
ondition at the origin is also analogous to that in thelinear 
ase (the solution of the equation for r < r0should be
ome the solution of the 
orresponding linearproblem when the nonlinearity vanishes, i. e., the mod-i�ed Bessel fun
tion In(r) of the �rst kind). We addan additional (nonobvious) 
ondition of normalizationof the wave fun
tion for the nonlinear single-parti
leS
hrödinger equation:1Z0 j n(x)j2 dx = 1: (16)2.1. Magneti
 quantum number n = 0The Cau
hy problem is de�ned by Eq. (14) withthe delta-fun
tion substituted by a Lorentzian 
urveand with three boundary 
onditions. The �rst bound-ary 
ondition states that the wave fun
tion vanishes inthe limit x ! 1. For the se
ond boundary 
ondition,we 
onsider the region x� 1. The term with the delta-fun
tion is negligible there and Eq. (14) 
an be writtenin the equivalent formd2 0dx2 + 1x d 0dx �  0 � gk2 j 0j2  0 = 0; (17)with the well-known solution  0Lin = 
0I0(r), 
0 == 
onst. Sin
e the initial derivative of  0 must be zero, 0 = 
0 +O(r2) and Eq. (17) 
an be approximated bythe linear equation ( 0 is assumed to be real)d2 0dx2 + 1x d 0dx � (1 + gk2
20) 0 = 0; (18)335
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Fig. 4. An example of a physi
ally meaningful solution(the magneti
 quantum number n = 0 and the non-linearity parameter g = 1). The thin line denotes thedelta-potentialwhi
h has the solution 0 = 
1I0(q1 + gk2
20r); r � 1: (19)Thus, the se
ond 
ondition along with Eqs. (14)and (15) for physi
ally meaningful solutions is thatd 0=dx(x ! 0) = 0. In the linear 
ase, the wave fun
-tion should be regular at x = 0. In the nonlinear 
ase,this requirement is insu�
ient be
ause the eingenvaluedepends on the value  0(x! 0). The last 
ondition isgiven by (16).Figure 4 shows a physi
ally meaningful solu-tion of the problem: a normalized wave fun
tion(R10 j 0(x)j2 dx = 1) 
orresponding to U = 2:5,g = 1, and  0(x = 0) = 0:037. Our goal is toinvestigate the a
tion of �-ele
tron self-intera
tionindu
ed nonlinearity on the ele
tron energy.Figure 5 shows the dependen
e of the ele
tron en-ergy on the nonlinearity parameter. As is 
learly seen,the nonlinearity shifts the values of k down, whi
hmeans it shifts the energy levels up.In Se
. 2.2, we see that for n > 0 and small values ofU , this shift may result in the disappearan
e of levels.2.2. n = 1In this 
ase, the linear solution in the region of smallx is proportional to the modi�ed Bessel fun
tion of �rstkind, I1(r). This imposes the 
ondition  1(x! 0) = 0for the nonlinear solution.A meaningful solution is shown in Fig. 6 (the thinverti
al line denotes the delta-fun
tion potential).Figure 7 illustrates the disappearan
e of ele
tronenergy levels for Ua2 < n. The shift of the levels by
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Fig. 5. Ele
tron spe
tra of an SWNT for the mag-neti
 quantum number n = 0 and di�erent values ofthe delta-potential amplitude (U = 2:5, 2:0 from topdown). Be
ause k =pp2z � 2E, the energy levels shiftup with an in
rease in the intera
tion strength
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Fig. 6. A physi
ally meaningful solution (the magneti
quantum number n = 1 and the nonlinearity parameterg = 1). The thin line denotes the delta-potential
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Fig. 7. Disappearan
e of the energy levels at Ua2 < n(k = 0, n = 1)336
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Fig. 8. Ele
tron spe
tra for the magneti
 quantumnumber n = 1 and di�erent values of the delta-potential amplitude (U = 2:5, 2, 1:2 from top down).It is seen that the energy levels shift up with an in
reasein the intera
tion strength
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Fig. 9. A realisti
 solution (magneti
 quantum numbern = 2, g = 1:5)the nonlinearity is shown in Fig. 8 for di�erent valuesof the delta-potential height U .2.3. n = 2Be
ause the solution of the linear equation for x < ais equal to 
I2(r) with a 
onstant 
, the boundary 
ondi-tion for the wave fun
tion in the nonlinear 
ase shouldbe written as  2(x ! 0) = 0. The boundary 
ondi-tion for d 2=dx(x ! 0) is given by the normalizationof the wave fun
tion to unity. A realisti
 solution andthe disappearan
e of levels are shown in Figs. 9 and10. Figure 11 illustrates the shift of the ele
tron en-ergy levels due to the nonlinearity for di�erent valuesof the potential height U .
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Fig. 10. The energy levels disappear when Ua2 < n(k = 0, n = 2)
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Fig. 11. A
tion of the strong nonlinearity shifts the en-ergy levels up, n = 2, and U = 2:52 and 2:3, for therespe
tive upper and lower lines3. CONCLUSIONTaking the intera
tion of delo
alized � ele
tronsin an ideal metalli
 single-wall 
arbon nanotube intoa

ount in the Hartree mean-�eld approximation, we
al
ulated the spe
trum of a long metal arm
hair idealnanotube. An upward shift of ele
tron energy levels isshown to o

ur due to this intera
tion. Moreover, itis shown that levels disappear when Ua2 < n with anattra
tive delta-potential amplitude U , the magneti
quantum number n, and the tube radius a.The work was supported by the State Committee ofS
ien
e of Armenia (13YR-1C0055), the Dynasty Foun-dation (Mos
ow), and the Ministry of Edu
ation andS
ien
e of Russia (State assignment No. 3.679.2014/K),RFBR (grant � 13-02-00072).9 ÆÝÒÔ, âûï. 2 (8) 337
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