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The electron spectrum of a single-wall carbon metal nanotube is analyzed numerically. The interaction of a
free electron with atomic ions and bound electrons is approximated by an attractive delta-function potential in
the single-particle Schrédinger equation. The interaction of an electron with other free electrons is presented
by the Hartree nonlinear repulsive short-range potential.
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1. INTRODUCTION

Carbon nanotubes attract significant scientific in-
terest due to their extraordinary properties [1]. They
have been considered for a wide range of applications
from mechanics to nanoelectronics [2,3]. The study
of their electronic properties was stimulated in 1991,
soon giving the first outcome as a series of articles by
several groups [4,5]. Theoretical studies have shown
that shell depends on the symmetry of the tube (the
chiral angle and radius) and that the tube can exhibit
metal or semiconductor behavior. The problems of con-
ductivity of a single-wall nanotube (SWNT) have also
been addressed (see, e.g., [6]). Density functional the-
ory (DFT) studies of SWNT electronic properties are
described in [7]. However, the first experimental sepa-
ration of metallic and semiconductor nanotubes [8] was
not performed until some time after the publication of
first theoretical estimates of carbon nanotube electronic
properties. The first experiments were carried out on
samples containing bundles of metallic SWNTs, and
hence the measured spectra were significantly broad-
ened. Production of separated nanotubes (Fig. 1) al-
lowed investigating their properties much better [9]. In
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an ideal carbon nanotube, every carbon atom has four
valence electrons, three of which form localized ¢ bonds
and the fourth takes part in the formation of a delocal-
ized 7 system (Fig. 2). The picture is quite similar to
the one in benzol. The 7 electrons are weakly bound
to their atoms and may participate in the conductiv-
ity of the system. The current of free electrons along
the SWNT depends on the positions of separated lev-
els of angular quantization. We consider interacting
electrons in a long single-wall carbon metallic armchair
nanotube without defects (Fig. 3). Most SWNTs have a
diameter close to 1-10 nanometers, with a tube length
that can be many millions of times longer. The struc-
ture of an SWNT can be conceptualized by wrapping
a one-atom-thick layer of graphite called graphene into
a seamless cylinder.

An effective linear model that allows studying
the electric current consists of a continuous conduct-
ing cylinder with an attractive delta-function poten-
tial [10]. This potential describes the mean field of
atomic ions and bound electrons in the nanotube. Such
an approach is applicable to relatively large nanotubes
when the tube radius a is large compared with the ef-
fective width of the graphite layer ro &~ 0.1 nm, which
is on the atomic scale. Typically, a ~ 5 nm. The sim-
ple linear single-electron Hamiltonian of an SWNT is
of the form (atomic units are used here and hereafter,
h=m=1)
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Fig.1. Ideal metallic carbon nanotube

Fig.2. Electron orbitals of a carbon atom in a nan-
otube (trigonal planar carbon with a p orbital)
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Fig.3. Arrangement of the electron orbitals of carbon
atoms
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Hz—%A—UaJ(r—a). (1)

Here, r is the radial coordinate in a cylindrical coordi-
nate system with the z axis pointing along the tube; U
is the amplitude of the attractive potential, a quantity
of the order of the Rydberg energy. Of course, a re-
alistic attraction interaction is described by a screened
Coulomb potential. We approximate it by the delta-
function because a > ro. This potential is strong such
that U > h?/ma®. The quantity U is of the order of
30 eV (pseudopotential of carbon).

The stationary single-particle Schrodinger equation
for an electron is written as

HU = EV. (2)

We take the electron wave function in the form
U(z,r,0) =Yt (r)exp(ip.2 +ing).  (3)
n=0

The electron moves freely with the momentum p, along
the tube. The electron angular motion is determined
by the magnetic quantum number n. Separating the
variables, we obtain a differential equation for the ra-
dial part of the wave function,

@ 1 din + n—2wn —2Uaé (r —a) i, =

dr? r dr r2
P
=2 (E— —2z> Y. (4)

We assume that the mean potential U is strong such
that U > 1/a®. This inequality is realized for large
nanotubes. We introduce the quantities

k=+/p?—2E, x=kr (5)

Then Eq. (4) can be rewritten in the form

P | dip,
R
= —2Uk:a3(5 (l‘ - xO) wnv (6)

where o = ka. We now impose boundary conditions
and require the wave function to be regular at x = 0
and to be zero at @ — oco. The solution of Eq. (6) at
r < 29 and at x > xq is

Py () = Apl, (), 2 < w0,

Yy () = B Ky (), x> xp. @

Here, I, (r) and K, (r) are the respective modified
Bessel functions of the first and second kind. Integrat-
ing Eq. (6) over an infinitesimal interval in the vicinity
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of xg, we obtain the relation for derivatives of the wave
function

di,, (20+0) B Ay, (29—0)
dx dx

2Ua
k

Un (20) . (8)

Using the matching condition of the wave function at
Tr = o,

Anl, (x9) = Bp Ky, (20) 9)

and the well-known value for the Wronskian determi-
nant of the modified Bessel functions

dl,,(x) dK,(z)

. 1
W(zx) = I‘n(x)v = In(z) dr 2 (10)
we find the spectral equation
UK, (ka) I, (ka) = 1. (11)

Under the condition Ua? > 1, this equation has a
simple solution for the electron energy [10] (we restore
the electron mass m and the Planck constant #)

U?ma?
2h2

N n? (n? —1/4)

2

2=
B,=1
2ma?

T om

(12)

When Ua? < 1, Eq. (11) always has the solution with
n = 0, while if n = 1,2,..., the electron levels disap-
pear when Ua? < n.

2. NONLINEAR SCHRODINGER EQUATION

The main goal of this paper is to take into account
the repulsive interaction of a given free electron with
other free electrons in the nanotube. The Coulomb
long-range repulsion between electrons strongly de-
creases at large distances because of the screening by
atomic ions. Therefore, this interaction can be quali-
tatively approximated by a short-range delta-function
for interacting electrons with opposite spins in accor-
dance with the Pauli principle. Hence, in the Hartree
self-consistent approach, we can approximate this in-
teraction by a simple nonlinear potential ¢ |1/Jn|2 with
the nonlinearity parameter g > 0, analogously to the
Hubbard approach [11]. This approximation occurs in
different physical situations (e. g., nonlinear optics, spin
waves in magnetic films) and in particular has proved to
correctly describe the dynamics of Bose—Einstein con-
densates of dilute alkaline atoms [12]. Analogously to
the linear case, the variables in the stationary nonlinear
Schrédinger equation separate. Thus, we obtain a gen-
eralization of Eq. (4) for radial motion of the electron
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p  1dip, n®
- - o ¥n T 2 - n
dr? rodr  r? v Uad (r - a) ¥ +
2 A
+ g |Yn|” Y =2 (E - 7) Yn. (13)
The generalization of Eq. (6) is of the form
>y dyp
20" Yn no_ (2 2 _
Tz T (2% +n”) ¥y
— gk || thn = —2Uka®5 (& — x0) thn.  (14)

In the numerical solution of Eq. (14), the delta-
function is substituted by the Lorentz curve

1 0.01

(=) = L S0 12

(15)

The typical radius of the tube was chosen as a
= 0.5 nm = 10 a.u., the potential of the order of
U =136 eV = 0.5 a.u. and ¢ < U. The bound-
ary condition at infinity is analogous to the one in the
linear case, ¥,(x — oo0) = 0. The second boundary
condition at the origin is also analogous to that in the
linear case (the solution of the equation for r < g
should become the solution of the corresponding linear
problem when the nonlinearity vanishes, i.e., the mod-
ified Bessel function I,,(r) of the first kind). We add
an additional (nonobvious) condition of normalization
of the wave function for the nonlinear single-particle
Schrédinger equation:

[ 1@ dr=1. (16)

2.1. Magnetic quantum number n = 0

The Cauchy problem is defined by Eq. (14) with
the delta-function substituted by a Lorentzian curve
and with three boundary conditions. The first bound-
ary condition states that the wave function vanishes in
the limit  — oo. For the second boundary condition,
we consider the region z < 1. The term with the delta-
function is negligible there and Eq. (14) can be written
in the equivalent form

o 1 dibg
a? trde Y

— gk 2 by =
> dv g |¢0| 1/]0 07

(17)

with the well-known solution ¢grin = colo(r), co =
= const. Since the initial derivative of 1)p must be zero,
Yo = co + O(r?) and Eq. (17) can be approximated by
the linear equation (¢g is assumed to be real)

d*o 1 dipo

de? " x dr

(1+ gk>c)vo = 0, (18)
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Fig.5. Electron spectra of an SWNT for the mag-

Fig.4. An example of a physically meaningful solution

(the magnetic quantum number n = 0 and the non-

linearity parameter ¢ = 1). The thin line denotes the
delta-potential

which has the solution

o = c1lp(y/1 + gk2cir), r< 1.

Thus, the second condition along with Eqs. (14)
and (15) for physically meaningful solutions is that
dipg/dx(x — 0) = 0. In the linear case, the wave func-
tion should be regular at x = 0. In the nonlinear case,
this requirement is insufficient because the eingenvalue
depends on the value ¢o(x — 0). The last condition is
given by (16).

Figure 4 shows a physically meaningful solu-
tion of the problem: a normalized wave function
(fs~ 1Yo ()7 dz 1) corresponding to U 2.5,
g = 1, and ¢p(x 0) 0.037. Our goal is to
investigate the action of m-electron self-interaction
induced nonlinearity on the electron energy.

Figure 5 shows the dependence of the electron en-
ergy on the nonlinearity parameter. As is clearly seen,
the nonlinearity shifts the values of & down, which
means it shifts the energy levels up.

In Sec. 2.2, we see that for n > 0 and small values of
U, this shift may result in the disappearance of levels.

(19)

22. n=1

In this case, the linear solution in the region of small
x is proportional to the modified Bessel function of first
kind, I (r). This imposes the condition ¢ (z — 0) =0
for the nonlinear solution.

A meaningful solution is shown in Fig. 6 (the thin
vertical line denotes the delta-function potential).

Figure 7 illustrates the disappearance of electron
energy levels for Uay < n. The shift of the levels by
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netic quantum number n = 0 and different values of

the delta-potential amplitude (U = 2.5, 2.0 from top

down). Because k = /p? — 2E, the energy levels shift
up with an increase in the interaction strength
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Fig.6. A physically meaningful solution (the magnetic
quantum number n = 1 and the nonlinearity parameter
g = 1). The thin line denotes the delta-potential
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Fig.7. Disappearance of the energy levels at Ua? < n
(k=0,n=1)
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Fig.8. Electron spectra for the magnetic quantum

number n = 1 and different values of the delta-

potential amplitude (U = 2.5, 2, 1.2 from top down).

It is seen that the energy levels shift up with an increase
in the interaction strength
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Fig.9. A realistic solution (magnetic quantum number
n=2,g=15)

the nonlinearity is shown in Fig. 8 for different values
of the delta-potential height U.

2.3. n=2

Because the solution of the linear equation for x < a
is equal to c¢I>(r) with a constant ¢, the boundary condi-
tion for the wave function in the nonlinear case should
be written as ¢o(x — 0) = 0. The boundary condi-
tion for dis/dx(x — 0) is given by the normalization
of the wave function to unity. A realistic solution and
the disappearance of levels are shown in Figs. 9 and
10. Figure 11 illustrates the shift of the electron en-
ergy levels due to the nonlinearity for different values
of the potential height U.
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Fig.10. The energy levels disappear when Ua® < n

(k=0,n=2)
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Fig.11. Action of the strong nonlinearity shifts the en-
ergy levels up, n = 2, and U = 2.52 and 2.3, for the
respective upper and lower lines

3. CONCLUSION

Taking the interaction of delocalized 7 electrons
in an ideal metallic single-wall carbon nanotube into
account in the Hartree mean-field approximation, we
calculated the spectrum of a long metal armchair ideal
nanotube. An upward shift of electron energy levels is
shown to occur due to this interaction. Moreover, it
is shown that levels disappear when Ua? < n with an
attractive delta-potential amplitude U, the magnetic
quantum number n, and the tube radius a.
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