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GRAVITATING LEPTON BAG MODELA. Burinskii *Nu
lear Safety Institute, Russian A
ademy of S
ien
es115191, Mos
ow, RussiaRe
eived January 19, 2015The Kerr�Newman (KN) bla
k hole (BH) solution exhibits the external gravitational and ele
tromagneti
 �eld
orresponding to that of the Dira
 ele
tron. For the large spin/mass ratio, a� m, the BH loses horizons andobtains a naked singular ring 
reating two-sheeted topology. This spa
e is regularized by the Higgs me
hanism ofsymmetry breaking, leading to an extended parti
le that has a regular spinning 
ore 
ompatible with the externalKN solution. We show that this 
ore has mu
h in 
ommon with the known MIT and SLAC bag models, but hasthe important advantage of being in a

ordan
e with the external gravitational and ele
tromagneti
 �elds of theKN solution. A pe
uliar two-sheeted stru
ture of Kerr's gravity provides a framework for the implementationof the Higgs me
hanism of symmetry breaking in 
on�guration spa
e in a

ordan
e with the 
on
ept of theele
troweak se
tor of the Standard Model. Similar to other bag models, the KN bag is �exible and pliant todeformations. For parameters of a spinning ele
tron, the bag takes the shape of a thin rotating disk of theCompton radius, with a ring-string stru
ture and a quark-like singular pole formed at the sharp edge of thisdisk, indi
ating that the 
onsidered lepton bag forms a single bag�string�quark system.DOI: 10.7868/S00444510150800391. INTRODUCTION AND OVERVIEWIt has been dis
ussed for a long time that bla
k holes(BH) are to be related to elementary parti
les [1℄. TheKerr�Newman (KN) rotating BH solution was of espe-
ial interest in this respe
t be
ause, as was shown byCarter [2℄, its gyromagneti
 ratio g = 2 
orresponds tothe Dira
 ele
tron, and therefore the four measurableparameters of the ele
tron (spin J , mass m, 
harge e,and magneti
 moment �) indi
ate that gravitationaland ele
tromagneti
 �elds of the ele
tron should bedes
ribed by the KN solution. In re
ent paper [3℄,Doku
haev and Eroshenko 
onsidered a solution of theDira
 equation under BH horizon, and suggested thatthis model may represent a � : : : parti
le-like 
hargedsolutions in general relativity : : : �. On the other hand,we note that the model of a Dira
 parti
le 
on�ned un-der a BH horizon 
an also be 
onsidered a type of grav-itating bag model, and it a
quires spe
ial interest be-
ause this bag is to be gravitating, leading to a progressbeyond the known MIT and SLAC bag models [4, 5℄.However, the spin and 
harge of elementary parti
lesare very high with respe
t to their masses, whi
h pre-*E-mail: burinskii�mail.ru

vents formation of the BH horizons. In parti
ular, theKN solution with parameters of the ele
tron (
hargee, mass m, and spin parameter a = J=m) ex
eeds thethreshold value e2 + a2 � m2 for the existen
e of thehorizons by about 21 orders. Similar ratios for otherelementary parti
les show that besides the Higgs bo-son, whi
h has neither spin nor 
harge, none of the ele-mentary parti
les may be asso
iated with a true bla
khole, and they should rather be asso
iated with theover-rotating Kerr geometry, with jaj � m.The 
orresponding over-rotating KN spa
e has atopologi
al defe
t, the naked Kerr singular ring, whi
hforms a bran
h line of spa
e into two sheets des
ribedby di�erent metri
s: the sheet of advan
ed and sheetof retarded �elds. The Kerr singular and related two-sheeted stru
ture 
reated the problem of a mysterioussour
e of the Kerr and KN solutions, whi
h has re-
eived 
onsiderable attention during more than fourde
ades [6�14℄. For the story of this investigation, werefer the reader, e. g., to [15℄. Long-term attempts toresolve the puzzle of the sour
e of Kerr geometry led�rst to the model of the va
uum bubble � a rotatingdisk-like shell [8; 9℄. The va
uum state inside the bub-ble turned later into a super
ondu
ting bulk formed ofa false-va
uum 
ondensate of the Higgs �eld [13, 14℄.The stru
ture of the sour
e a
quired typi
al features of228
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Fig. 1. Spheri
al bag with zero rotation, a=R = 0(A), and the rotating disk-like bags for di�erent ratiosa=R = 3 (B), 7 (C), 10 (D)the soliton and Q-ball models, be
oming similar to theknown bag models [4, 5℄.Re
ent analysis of the Dira
 equation inside the KNsoliton sour
e [16℄ 
on�rmed that the regularized KNsolution shares mu
h in 
ommon with the known MITand SLAC bag models. However, the gravitating bagformed by the KN bubble sour
e should have spe
i�
features asso
iated with the need to preserve the exter-nal KN �eld.On the other hand, the semi
lassi
al theory of thebag models [5℄ in
ludes elements of quantum theorythat are based on a �at spa
e�time without gravity,and we are fa
ed with the known 
on�i
t between grav-ity and quantum theory. Our solution to this problemin [13, 14℄ is based on two requirements.I. The spa
e�time should be �at inside the bag.II. The spa
e�time outside the bag should be theexa
t KN solution.Thus, the quantum�gravity 
on�i
t is resolved by sep-aration of their regions of in�uen
e. Remarkably, theserequirements determine features of the KN bag unam-biguously. First of all, they uniquely determine theborder of the KN bag, showing expli
itly that, in a
-
ordan
e with the general 
on
ept of bag models [5, 17℄,the KN bag has to be �exible and its shape depends onthe rotation parameter a = J=m and on the lo
al in-tensity of the ele
tromagneti
 (EM) �eld.As a result, for parameters of an ele
tron, the rotat-ing bag takes the shape of a thin disk of ellipsoidal form(see Fig. 1). Its thi
kness R turns out to be equal to the
lassi
al radius of the ele
tron re = e2=2m, while theradius of the disk 
orresponds to the Compton wave-

length of the disk1), whi
h allows identifying it with adressed ele
tron.The degree of oblateness of this disk is a=R == ��1 = 137, and the �ne stru
ture 
onstant � thusa
quires a geometri
al interpretation.The next very important 
onsequen
e of these re-quirements is the emergen
e of a ring-string stru
tureon the bag border, and further the emergen
e of a sin-gular pole asso
iated with traveling-wave ex
itations ofthe string [18; 19℄. This pole 
an be asso
iated with asingle quark, and the KN bag �nally takes the form ofa 
oherent �bag�string�quark� system.Finally, these requirements determine that theHiggs 
ondensate should be en
losed inside the bag,
ontrary to the standard treatments of the bag as a 
av-ity in the Higgs 
ondensate, [4℄. This requirement 
an-not be realized with the usual quarti
 self-intera
tionpotential of the Higgs �ield [4, 5℄, and requires a more
ompli
ated �eld model, based on a few 
hiral �elds anda supersymmetri
 s
heme of the phase transition [20℄.At this point, we have to mention the importantrole of the Kerr theorem, whi
h determines the nullve
tor �eld k�(x), the Kerr prin
ipal 
ongruen
e thatforms a vortex polarization of Kerr�S
hild (KS) metri
g�� = ��� + 2Hk�k� : (1)The Kerr theorem gives two solutions for this 
ongru-en
e k�� , whi
h determine two sheets of the KN solution
orresponding to two di�erent metri
s g��� . Solutionsof the Dira
 equation on the KN ba
kground shouldbe 
onsistent with the metri
 
orresponding to one ofthese 
ongruen
es.We show that two solutions of the Kerr theoremgenerate two massless Weyl spinor �elds that are 
ou-pled into a Dira
 �eld 
onsistent with the Kerr geom-etry. However, the null spinor �elds of the Kerr 
on-gruen
es are massless, and there appears the questionof the origin of the mass term. The answer 
omes fromthe theory of bag models [5℄, where the Dira
 mass isa variable depending on the lo
al va
uum expe
tationvalue (vev) of the Higgs 
ondensate.This gives a dire
t hint to a 
onsistent embeddingof the Dira
 equation into the regularized KN ba
k-ground, indi
ating that both sheets of the KN solutionare ne
essary as 
arriers of the initially massless lep-tons. This is in agreement with the basi
 
on
epts ofthe Glashow�Salam�Weinberg model [21℄, in whi
h thelepton masses are generated by the Higgs me
hanismof symmetry breaking.1) This was determined by López [9℄.229
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on
lude that two-sheeted Kerr'sstru
ture is an essential element for the spa
e�time real-ization of the ele
troweak se
tor of the Standard Model
onsistent with gravity.2. OVER-ROTATING KERR GEOMETRY:TWO-SHEETED STRUCTURE ANDREGULAR SOURCEThe KN solution in the KS form [22℄ has the metri
g�� = ��� + 2Hk�k� ; (2)where ��� is metri
 of auxiliary Minkowski spa
e, x� == (t; x; y; z) 2M4 2), andH = mr � e2=2r2 + a2 
os2 � : (3)The ve
tor �eld k� is null, k�k� = 0, and deter-mined by the di�erential formk = k�dx� = dr � dt� a sin2 � d�; (4)where t; r; �; �, are the Kerr oblate spheroidal 
oordi-nates:x+iy = (r+ia)ei� sin �; z = r 
os �; t = ��r: (5)The �eld k�(x) forms a prin
ipal null 
ongruen
e(PNC) K [23℄, whi
h determines polarization of theKerr spa
e�time. The PNC is fo
ussed at the Kerrsingular ring, r = 0, 
os � = 0, whi
h is the bran
h lineof the Kerr spa
e into two sheets r > 0 and r < 03).Extending the Kerr 
ongruen
e to the negativesheet of the KS spa
e (r < 0) along the lines � = 
onst,� = 
onst 
reates another 
ongruen
e with a di�erentradial dire
tion, and the 
ongruen
e whi
h is outgoingby r > 0 turns into the ingoing one on the negativesheet4). Thus, the Kerr solution in the KS form de-s
ribes two di�erent sheets of spa
e�time, determinedby two di�erent 
ongruen
esk�� (x)dx� = �dr � dt� a sin2 � d� (6)and two di�erent metri
sg��� = ��� + 2Hk�� k�� (7)on the same Minkowski ba
kground x� 2M4.2) We use the signature (�+++).3) These are Riemannian sheets of the Kerr 
omplex radialdistan
e ~r = r + ia 
os �.4) Relations (5) also 
hange [23℄.

This two-sheetedness 
reated the problem of thesour
e of Kerr geometry, and there appeared two linesof investigation. One of them [10; 11; 24℄, a

epted thetwo-sheetedness as an indi
ation of its plausible 
on-ne
tion with a spinor stru
ture of the Kerr spa
e�timeand with the two-sheeted stru
ture of the topologi
allynontrivial �Ali
e� strings introdu
ed by S
hwarz andWitten [25℄.An alternative line of investigation was related totrun
ation of the KN negative sheet, and to a 
on-sistent repla
ement of the ex
ised region by a sour
ein agreement with the Einstein�Maxwell �eld equa-tions [6�9; 12�14℄.There is a freedom in 
hoosing the trun
ating sur-fa
e, and in the most su

essful version of the modelsuggested by López [9℄, the KN sour
e formed a bub-ble, whose boundary was determined by mat
hing theexternal KN metri
 (2) with a �at metri
 inside thebubble. A

ording to (2) and (3), this boundary has tobe pla
ed at the radius r = R = e2=2m.We see from (5) that r is indeed the oblate spheroi-dal 
oordinate,x2 + y2a2 sin2 � � z2a2 
os2 � = 1; (8)and the sour
e of the KN solution takes the form of avery oblate disk of the radius r
 � a = 1=2m with thethi
kness re = e2=2m; (9)whi
h is the 
lassi
al radius of the ele
tron. Thus,the �ne stru
ture 
onstant a
quires a geometri
al mea-ning as the degree of oblateness of the disk-like sour
e,re=r
 = e2 � 137�1.As a result of the regularization, the disk-like re-gion surrounding the Kerr singular ring is ex
ised andrepla
ed by �at spa
e, whi
h a
ts as a 
ut-o� para-meter � an e�e
tive minimal distan
e R = re to theformer Kerr singular ring. We note that in the 
asewithout rotation, a = 0, the disk-like bubble takes thespheri
al form and the size of the 
lassi
al ele
tron,Eq. (9).The López model was later transformed into asoliton�bubble model [13, 14℄, in whi
h the thin shell ofthe bubble was repla
ed by a �eld model of a domainwall providing a smooth phase transition between theexternal KN solution and the �at internal spa
e. Thisphase transition was modelled by the Higgs me
hanismof symmetry breaking, and the �at interior of the KNbubble was formed by a false-va
uum state of the Higgs
ondensate.230



ÆÝÒÔ, òîì 148, âûï. 2 (8), 2015 Gravitating lepton bag modelThe �eld model of broken symmetry is similar tothe Landau�Ginzburg model of super
ondu
tivity [26℄,and regularization of the singular KN solution 
an beviewed as an analogue to the Meissner e�e
t, expulsionof the gravitational and EM �elds from the interior ofthe super
ondu
ting sour
e.3. HIGGS CONDENSATE AND THE MASS OFTHE DIRAC FIELDThe Higgs symmetry breaking me
hanism used forregularization of the KN solution relates the sour
eof the KN solution to many other extended parti
le-like models of the ele
troweak se
tor of the StandardModel. In parti
ular, we note the super
ondu
tingstring model of Nielsen and Olesen [26; 27℄, Coleman'sQ-ball models [28�32℄, and the famous MIT and SLACbag models. In this paper, we pay espe
ial attentionto the fermioni
 se
tor of the KN sour
e and obtain a
lose similarity between the Higgs me
hanism of massgeneration in the KN soliton model and that in theSLAC bag model [5℄.The Hamiltonian of the SLAC model for 
ouplingthe Higgs �eld to the Dira
 �eld  has the formH = Z d3x� y(�i� �r+ g��) ++ 12( _�2 + jr�j2) + V (�)� ; (10)where g is a dimensionless 
oupling parameter, andself-intera
tion of the nonlinear Higgs �eld � is de-s
ribed by the quarti
 potentialV (j�j) = g(��� � f2)2; (11)where � = hj�ji is the vev of the Higgs �eld. The trueva
uum of the Higgs �eld � = 0 is not the lowest-energystate, and the Higgs �eld is triggered in the false-va
u-um state � = f , whi
h breaks the gauge symmetry ofthe spinor �eld  . As a result, the fermion a
quires themass m = g�, whi
h is used in the 
on�nement me
ha-nism of bag models. However, the false-va
uum state ofthe Higgs �eld � = f also breaks the gauge symmetryof the EM �elds. In the known bag models, it turns theexternal EM �elds into short-range one, whi
h distortsthe external KN solution.For example, in the MIT bag model, the Higgs vevvanishes inside the bag, r < R, and takes a nonvani-shing value � = f in outer region r > R (see Fig. 2).The Dira
 equation in the presen
e of the � �eldtakes the form (i
��� � g�) = 0; (12)
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Fig. 2. Kerr's prin
ipal 
ongruen
e of null lines(twistors) is fo
used on the Kerr singular ring, form-ing a bran
h line of the Kerr spa
e into two sheets
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Fig. 3. Positions of the vev of the Higgs �eld � andthe 
on�ned spinor wave fun
tion 	 (quark) in the MITbag modeland the Dira
 wave fun
tion  turns out to be mass-less inside the bag and a
quires a large e�e
tive massm = gf outside. The quarks are 
on�ned inside thebag, where they o

upy the most energeti
ally favor-able position.Geometry of the Higgs va
uum state is di�erent inthe SLAC bag models (see Fig. 3). The vev � givesthe mass to the Dira
 �eld outside the bag as well asinside. The mass vanishes only in a very narrow regionnear the surfa
e of the bag, r � R. Su
h geometry ofthe broken va
uum state 
reates a sharp lo
alization ofthe Dira
 wave fun
tion at the border of the bag.In the bag models, we are fa
ed with several veryimportant novelties.231
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h�i h�i = f
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Fig. 4. Classi
al solutions of the SLAC bag model. Theva
uum �eld � and the lo
alized spinor (quark) wavefun
tion 
on�ned to the thin shell, the boundary of thebag(A) The statement on the impossibility of lo
aliza-tion of the Dira
 wave fun
tion beyond the distan
es
omparable with the Compton wave length ~=m
 is vio-lated, and quarks 
an lo
alize within a very thin regionat the bag shell. The reason of that is the s
alar natureof the 
on�nement potential, for whi
h � : : : there isno Klein paradox of the familiar type en
ountered inthe presen
e of strong, sharp ve
tor potential� [5℄.(B) A semi
lassi
al approa
h to the one-parti
leDira
 theory is e�e
tively used. Solving the Dira
 equa-tion for a quark in a s
alar potential assumes that allthe negative-energy states are �lled, and the treatmentis fo
used on the lowest positive-energy eigenvalues.Therefore, � : : : there is no ambiguity in identify-ing and interpreting the desired positive energy �one-parti
le� solutions� [5; 33℄.(C) The mass term of Dira
 equation (12) is deter-mined by the vev of the Higgs �eld �(x) = hj�(x)ji, andtherefore turns out to be a fun
tion in the 
on�gurationspa
e.(D) Bag models are presumed to be very soft, 
om-pliable, and extensible. They are easily deformed, andunder rotations and deformations they may a
quire ex-tended stringy stru
tures a

ompanied by vibrations.All these pe
uliarities of the bag models are 
om-patible with the soliton-bubble sour
e of the KN solu-tion. However, there is one important di�eren
e: thetypi
al bag model represents a bubble or 
avity in asuper
ondu
ting media, the Higgs 
ondensate, while inthe gravitating bubble-sour
e of the KN solution, theHiggs 
ondensate is en
losed within the bubble, leavingthe true va
uum outside the bag unbroken.In the MIT and SLAC bag models, the Higgs 
on-

densate is pla
ed outside the sour
e, and the exter-nal va
uum represents a super
ondu
ting false-va
uumstate (see Fig. 4), leading to the short-range externalEM �eld.A dual geometry (turned inside out) was suggestedin the Coleman Q-ball model [28℄. The self-intera
tingHiggs �eld of a Q-ball is 
on�ned inside a ball-likesour
e, r < R, leaving the external va
uum unbroken.Most of the Q-ball models led to a 
oherent os
illatingstate of the Higgs va
uum inside the bag (os
illons [30�32℄)5). The KN soliton sour
e [13, 14℄ also exhibits thispe
uliarity. We 
an summarize that 
on�nement of theHiggs 
ondensate inside the bag is a ne
essary require-ment for the 
orre
t gravitating properties of the bagmodels. However, formation of the 
orresponding po-tential turns out to be a very nontrivial problem, whi
h
annot be solved by the usual quarti
 potential (11).4. FIELD MODEL OF BROKEN SYMMETRYAND PHASE TRANSITION FOR THEGRAVITATING BAG MODELAmong theories with spontaneous symmetry brea-king, an important pla
e is taken by the �eld modelof a vortex in 
ondensed matter, whi
h was 
onside-red by Abrikosov in 
onne
tion with the theory oftype-II super
ondu
tors. Nielsen and Olesen (NO)used this solution for a semi
lassi
al relativisti
 stringmodel [26℄. The NO string model, representing a mag-neti
 �ux tube in a super
ondu
tor, was generalizedto many other semi
lassi
al �eld models of the soli-toni
 strings and has found wide appli
ation in the ele
-troweak se
tor of the standard Glashow�Salam�Wein-berg model [27; 34℄.The NO model [26℄ 
ontains a 
omplex s
alar �eld� and the gauge EM �eld A�, whi
h be
omes massivevia the Higgs me
hanism. The Lagrangian has the formLNO = �14F��F���12(D��)(D��)��V (j�j); (13)where D� = r� + ieA� are the U(1) 
ovariant deriva-tives and F�� = A�;� � A�;� is the �eld strength. Thepotential V has the same quarti
 form as in (11),V = �(�y�� f2)2; (14)where � is repla
ed by the 
omplex �eld � = j�jei�.The Lagrangian LNO � Lmat des
ribes a vortexstring embedded in the super
ondu
ting Higgs 
onden-sate in �at spa
e�time. Similarly to the bag models,this model 
annot be generalized to gravity be
ause5) Su
h a model was �rst 
onsidered by Rosen [29℄.232



ÆÝÒÔ, òîì 148, âûï. 2 (8), 2015 Gravitating lepton bag modelthe Higgs 
ondensate gives mass to the external EMand gravitational �elds, turning them into nonphysi
alshort-range �elds 
on�i
ting with the real gravitationaland EM properties of strings and parti
les.An improvement of this �aw was suggested by Wit-ten in his U(1) � ~U(1) �eld model of a 
osmi
 super-
ondu
ting string [25℄, in whi
h he used two Higgs-like�elds, �1 and �2. One of them, say �1, had the re-quired behavior, being 
on
entrated inside the sour
e,while the other, �2, played an auxiliary role and tookthe external 
omplementary domain extending up toin�nity. These two Higgs �eld are 
harged and ad-joined to two di�erent gauge �elds A1 and A2, su
hthat when one of them is long-distant in some region 
,the other is long-distant in the 
omplementary region
 = U1=
. This model is suitable for any lo
alizedgravitating sour
e, but for the super
ondu
ting sour
eof the KN solution we used in [13℄, a supersymmetri
generalization of the Witten model was suggested byMorris [35℄.4.1. Supersymmetri
 phase transitionThe supersymmetri
 s
heme of a phase transition isbased on three 
hiral �elds �(i), i = 1; 2; 3 [20℄. Oneof this �elds, say �(1), has the required radial depen-den
e, and we 
hose it as the Higgs �eld H, setting theadditional notation as (H; Z;�) � (�0;�1;�2).The a
tion 
oupled to gravity is given byS = Z p�g d4x� R16�G + Lmat� ; (15)where the full matter Lagrangian takes the formLmat = �14F��F�� �� 12Xi (D(i)� �(i))(D(i)��(i))� � V; (16)whi
h 
ontains a 
ontribution from the triplet of the
hiral �eld �(i).The potential V required for our model is obtainedby a standard supersymmetri
 s
heme of broken sym-metry [20℄, whi
h determines it via a superpotentialW (�(i), �(i)�), V (r) =Xi j�iW j2: (17)The superpotential leading to the required geometry ofbroken symmetry was suggested by Morris [35℄:W (�i; ��i) = Z(���� �2) + (Z + �)H �H; (18)

where � and � are real 
onstants. This yieldsV = (Z+�)2jHj2+(Z)2j�j2+(���+H �H��2)2; (19)and the equation �iW = 0 (20)determines two va
uum states separated by a spike ofthe potential V at r � R:EXT: the external va
uum, r > R + Æ, V (r) = 0,with the vanishing Higgs �eldH = 0, and Z = 0;� = �,andINT: an internal state of the false va
uum, r << R � Æ, V (r) = 0, with broken symmetry, jHj = �,and Z = ��, � = 0.4.2. Appli
ation to the KN sour
eChoosing López's boundary for regularization of theKN sour
e allows us to negle
t gravity inside the sour
eand at the boundary, and we 
an hen
e negle
t thegravitational �eld in the zone of the phase transitionand 
onsider the spa
e�time as �at. At the same time,outside the sour
e, we have the exa
t Einstein�Maxwellgravity, be
ause the gauge symmetry is unbroken andall the terms 12(D��(i))(D��(i))�vanish together with the potential V (j�j). Therefore,outside the sour
e, we have only the matter termLmat � �14F��F��leading to the external KN solution.Hen
e, inside the sour
e (zone INT) and on theboundary, we have only the part of Lagrangian that
orresponds to self-intera
tion of the 
omplex Higgs�eld and its intera
tion with the ve
tor potential ofthe KN ele
tromagneti
 �eld A� in �at spa
e�time.The �eld model is redu
ed to the model 
onsideredby Nielsen and Olesen for a vortex string in super
on-du
ting media [26℄,LNO = �14F��F���12(D�H)(D�H)�+V (jHj); (21)where D� = r� + ieA� is the 
ovariant derivative,F�� = A�;� � A�;�, and r� � �� redu
es to a deriva-tive in �at spa
e with the �at D'Alembertian ���� = �.For the intera
tion of the 
omplex Higgs �eldH(x) = jH(x)jei�(x) (22)233
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0 2 3 4 51 R � bag boundary
Potential V (r)External KNva
uum V = 0

�2�101
23 va
uum stateV = 0Internal falsefield jHjConfined Higgs

r
Fig. 5. Region of broken symmetry in the KN solitonbag model. The potential V (R) forms the inner andouter va
uum states V = 0 with a narrow spike at theboundary of the bag. The Higgs �eld H is 
on�nedinside the bag, r < R, forming a false va
uum state,whi
h gives mass to the Dira
 equationwith the Maxwell �eld, we obtain the following 
ompli-
ated systems of nonlinear di�erential equations:D�D�H = � �HV; (23)�A� = I� = ejHj2(�;�+eA�): (24)The obtained va
uum states EXT and INT show thatjH(r)j should be a step-like fun
tionjH(r)j = (�; r � R� Æ;0; r � R+ Æ; (25)with a transition region R � Æ < r < R + Æ, where itsbehavior is determined by the impa
t of the ele
tro-magneti
 �eld.Outside the sour
e, r > R+ Æ, we have H = 0 andobtain I� = 0. Inside the sour
e, with r � R � Æ, wehave also I� = 0, whi
h is provided there by the 
om-pensation of the ve
tor potential by the gradient of thephase � of the Higgs �eld, �;�+eA� = 0. Hen
e, anonzero 
urrent exists only in the narrow transitionalregion R� Æ < r < R, where this 
ompensation is onlypartial, and (24) des
ribes the �region of penetration�of the EM �eld inside the Higgs 
ondensate (see Fig. 5).4.3. Important 
onsequen
esThe analysis of Eq. (24) in [13, 14℄ showed two re-markable properties of the KN rotating soliton:(I) the vortex of the KN ve
tor potential A� formsa quantum Wilson loop pla
ed along the border of the

disk-like sour
e, whi
h leads to quantization of the an-gular momentum of the soliton,(II) the Higgs 
ondensate should os
illate inside thesour
e with the frequen
y ! = 2m.The KN ve
tor potential has the form [22℄A�dx� = �Re� er+ia 
os � (dr�dt�a sin2 � d�� : (26)The maximum of the potential is rea
hed in the equa-torial plane, 
os � = 0, at the López's boundary of thedisk-like sour
e (9), re = e2=2m, whi
h plays the roleof a 
ut-o� parameter,Amax� dx� = � ere (dr � dt� a d�): (27)The � 
omponent of the ve
tor potential, Amax� == ea=re, shows that the potential forms a 
ir
ular �ow(Wilson loop) near the sour
e boundary. A

ordingto (24), this �ow is 
ompensated inside the solitonby the gradient of the Higgs phase �;�, and does notpenetrate inside the sour
e beyond a transition regionr < re � Æ. Integrating this relation along the 
losedloop � = [0; 2�℄ under the 
ondition I� = 0 yields theresult (I).Similarly, using (24) and the 
ondition I� = 0 forthe time 
omponent of the ve
tor potentialAmax0 = e2re = me ;we obtain the result (II).5. FERMIONIC SECTOR OF THE KN BAGMODELNow we have to 
onsider mat
hing the solutions ofthe Dira
 equation with the interior of the regular soli-toni
 sour
e and with the external KN solution. Westart from the region inside the KN sour
e and the ad-ja
ent Æ-narrow layer of phase transition, r < R + Æ.In a

ordan
e with the used s
heme of regularization,these regions are to be �at, and we 
an use the usualDira
 equation 
���	 = m	, whi
h in the Weyl rep-resentation splits into two equations��� _�i�� �� _� = m��; ��� _��i���� = m�� _�; (28)where the Dira
 bispinor	 =  ���� _� !is presented by two Weyl spinors �� and �� _�.234



ÆÝÒÔ, òîì 148, âûï. 2 (8), 2015 Gravitating lepton bag modelIn the 
on
ept of bag models, fermions a
quire massvia a Yukawa 
oupling to the Higgs �eld, Eq. (12), andbe
ause the Higgs 
ondensate in the KN sour
e is 
on-
entrated inside the bag, Eq. (25), the mass term of theDira
 equation takes the maximal valuem = g� (29)in the internal region while the Dira
 equation outsidethe bag turns out to be massless and splits into twoindependent massless equations��� _�i�� �� _� = 0; ��� _��i���� = 0; (30)
orresponding to the left-handed and right-handed�ele
tron-type leptons� of the Glashow�Salam�Wein-berg model [21℄.Outside the bag, we have external gravitational andEM �elds of the KN solution, and we should use theDira
 equation in the 
ovariant form
�KSD�	 = 0; (31)where 
�KS are 
-matrixes adapted to the KS form ofmetri
 (2), andD� = �� � 12������� � i k2p2
�F����� (32)are 
ovariant derivatives.The exa
t solutions on the KS ba
kground were pre-viously 
onsidered by Einstein and Finkelstein in [36℄,and following them we 
an 
hoose the 
�KS matrixes inthe form 
�KS = 
�W +p2Hk�
5W ; (33)where 
�W are matri
es of the Weyl representation forthe Minkowski spa
e ��� . They satisfy the usual anti-
ommuting relationsf
�W ; 
�W g = 2��� ; f
�W ; 
5W g = 0;(
5W )2 = �1; (34)while 
�KS satisfy the anti
ommuting relations12f
�KS ; 
�KSg = ��� � 2Hk�k� = g��KS; (35)adapted to the KS metri
. It is known that the exa
tKS solutions belong to the 
lass of algebrai
ally spe-
ial solutions, for whi
h all the tensor quantities are tobe aligned with the Kerr null 
ongruen
e [22℄, and thegeneral relations (31), (33), (32) be
ome mu
h simplerwhen the Dira
 �eld 	(x) is �aligned� with the Kerr
ongruen
e k�(x), k�
�	 = 0: (36)

For the aligned Dira
 �eld, the nonlinear terms of theele
tromagneti
 and gravitational intera
tions 
an
el,and the Dira
 equation linearizes [36℄, taking the formof a free Dira
 equation in �at spa
e�time (30).The alignment 
ondition (36) 
an be rewritten inthe form (k � �)� = �; (k � �)�� = ���; (37)whi
h shows that the left-handed and the right-handed�elds �� and � are to be oppositely polarized with re-spe
t to the spatial dire
tion of the Kerr 
ongruen
ek. We obtain that only one of these two �half-leptons�,the left-handed �, is indeed 
onsistent with the Kerr
ongruen
e k+ = (1;k), sele
ted for the physi
al sheetof the KN solution. The 
onsistent solution takes theform 	TL = (�; 0), whi
h shows expli
itly that only theleft-handed �eld � is aligned with k+ and survives onthe physi
al sheet of the KN geometry. This solutionis exa
t, be
ause the left- and right-handed spinors areindependent for the massless Dira
 equation. Similarly,we obtain the solution	TR = (0; ��), whi
h is not alignedwith k+ and with the sele
ted physi
al sheet of the KNsolution. However, it is aligned with the 
ongruen
ek� and �lives� on the negative sheet of advan
ed �elds.Thus, the massive Dira
 solution	 =  ���� _� !splits into the left and right massless parts 	L and 	R,whi
h outside the bag 
an live only on the di�erentsheets of the two-sheeted Kerr geometry.This important pe
uliarity of the Dira
 solutionson the Kerr ba
kground was also mentioned in [36℄,where authors noted that the Dira
 equations on theKS ba
kground � : : : are not 
onsistent unless the massvanishes : : : �. Meanwhile, this obsta
le disappears in-side the bag-like sour
e of the Kerr geometry, where thespa
e is �at by 
onstru
tion of the solitoni
 sour
e (seeSe
. 2). When the massless Weyl spinors pass from twodi�erent external sheets on a 
ommon �at spa
e insidethe bag, they are 
ombined into a Dira
 bispinor, whi
ha
quires mass from the Higgs 
ondensate via Yukawa
oupling (see Fig. 6). Removing the two-sheeted stru
-ture that was asso
iated with the problem the sour
e ofKN solution, we meet its appearan
e from another side,by analysis of the 
onsistent solutions of the Dira
 equa-tion on the KS ba
kground. We obtain that the two-sheeted stru
ture of KS geometry agrees with elemen-tary 
onstituents of the standard model, the massless�left-handed� and �right-handed� ele
tron �elds [21; 33℄,providing the 
onsisten
y of the external Dira
 �eldwith KN gravity.235
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Fig. 6. Two sheets of the external KN solution aremat
hed with �at spa
e inside the bag. The masslessspinor �elds �� and �� _� live on di�erent KN sheets,aligned with k+� and k�� null dire
tions. Inside the bag,they join into a Dira
 bispinor, whi
h obtains mass fromthe Higgs 
ondensate 
on�ned inside the bagThe Kerr 
ongruen
es are determined by the Kerrtheorem [22; 37℄, whi
h is formulated in twistor termson the Minkowski spa
e ��� auxiliary to KS metri
(2). The �rst twistor 
omponent Y also plays the roleof a proje
tive spinor 
oordinate (see details in theAppendix and [16; 37℄). The Kerr theorem gives twosolutions Y �(x) for the KN parti
le, whi
h are 
on-ne
ted by the antipodal relation Y + = �1= �Y � and de-termine two antipodal 
ongruen
es k+��(x) and k���(x).The Weyl spinors 
orresponding to solutions Y �(x) areexa
tly the Weyl spinor 
omponents � and � of thealigned Dira
 solutions 
onsidered above. Be
ause theKerr theorem is formulated in �at spa
e�time, the solu-tions Y �(x) are extended unambiguously from the ex-ternal KN spa
e to the �at spa
e inside the bag, whi
hdetermines the Dira
 bispinor~	 =  f1(x)��f2(x)�� _� ! ; (38)whi
h is aligned to both external 
ongruen
es and rep-resents a 
onstraint, sele
ting the Dira
 solution withthe required polarization in the �at spa
e inside thebag.Another very spe
i�
 pe
uliarity of the bag mod-els is the emergen
e of the variable mass term in Dira
equation (12). The mass term is determined by thevev of the Higgs 
ondensate �, whi
h depends on theregions of spa
e�time, and in the region of the maxi-mum of the Higgs 
ondensate � = �, is 
alled the baremass m = g�. The Dira
 wave fun
tion, a solution of

the Dira
 equation with a variable mass term, avoidsthe region with a large bare mass, and tends to o

upya more energeti
ally favorable position, whi
h is theprin
ipal idea of quark 
on�nement.In the SLAC bag model [5℄, the resulting wave fun
-tion is determined by the variational approa
h. TheHamiltonian isH(x) = 	y�1i� �r+ g���	; (39)and the energeti
ally favorable wave fun
tion is de-termined by minimizing the averaged HamiltonianH = R d3xH(x) under the normalization 
onditionZ d3x	y(x)	(x) = 1:This yields �1i� �r+ g���	 = E	; (40)where E appears as the Lagrangian multiplier enfor
ingthe normalization 
ondition. Similarly to the results ofthe SLAC bag model, we expe
t that the Dira
 wavefun
tion does not penetrate deep in the region of a largebare mass m = g�, and 
on
entrates in a very narrowtransition zone at the bag boundary R�Æ < r < R+Æ.As was argued in [5℄, the narrow 
on
entration of theDira
 wave fun
tion is admissible in bag models be-
ause there is no Klein paradox for the s
alar poten-tial. The exa
t solutions of this kind are known inthe two-dimensional 
ase, and the 
orresponding varia-tional problem should apparently be solved numeri
allyby using ansatz (38), where f1(x) and f2(x) are variablefa
tors.The use of 
lassi
al solutions of the Dira
 equationin a given s
alar potential leads also to the problem ofnegative-energy states. In the bag models, this problemis treated semi
lassi
ally by using the assumption [5℄that � : : : all the negative-energy states in the pres-en
e of this potential are �lled : : : �, and as a result, itis ne
essary to 
onsider only the lowest positive-energyeigenvalues6).6) This is an approximation to rigorous treatment based onthe normal ordering. The negative-energy states 
orrespond to
harge-
onjugate solutions 	
(x) = C �	(x), �	
(x) = C�1 �	(x)of the 
harge-
onjugate Dira
 equations (with the repla
emente! �e). In parti
ular, the 
urrent density is determined by the
ommutation relationsj�(x) = ie2 [ �	(x); 
�	(x)℄ = ie2 ( �	(x)
�	(x)� ie2 �	
(x)
�	
(x));and similarly for the expe
tation value of energy or any otheroperator bilinear in the fermion �eld.236
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e�time outside thesour
e of the KN solution looks strange from the stand-point of standard gravitation, but it appears more nat-ural by 
omparison with ele
tromagnetism, whi
h issensitive to the di�eren
e between retarded and ad-van
ed �elds.It is known [38℄ that the Kerr solution 
an be repre-sented in the KS form via both Kerr 
ongruen
es k+� ork�� , but not via the both simultaneously. For the KNsolution with an EM �eld, the situation is more 
om-pli
ated. Although both representations are admissi-ble, the representation via retarded �elds is physi
allypreferable be
ause the asymptoti
 advan
ed EM �eldof the KN solution would 
ontradi
t its experimentalbehavior in �at spa
e. The ve
tor potential A� of theKN solution must also be aligned with the Kerr 
on-gruen
e, and should be retarded (Aret) on the physi
alsheet determined by the outgoing Kerr 
ongruen
e k+� .The appearan
e of advan
ed EM �elds (Aadv) is impor-tant in nonstationary problems. In parti
ular, in theDira
 theory of radiation rea
tion, the retarded poten-tials Aret are split into a half-sum and half-di�eren
ewith advan
ed onesAret = 12[Aret +Aadv℄ + 12[Aret �Aadv ℄;where A+ret = 12[Aret +Aadv℄ (41)is 
onne
ted with radiation rea
tion, andA�ret = 12[Aret �Aadv℄ (42)forms a self-intera
tion of the sour
e. A similar stru
-ture is also present in the Feynman propagator.The �elds Aret and Aadv 
annot reside on the samephysi
al sheet of the Kerr geometry, be
ause ea
h ofthem should be aligned with the 
orresponding Kerr
ongruen
e. Considering the retarded sheet as a ba-si
 physi
al sheet, we �x the 
ongruen
e k+� and the
orresponding metri
 g+�� , whi
h are not allowed forthe advan
ed �eld Aadv and must be positioned on theseparate sheet with a di�erent metri
 g��� .6. DISCUSSIONTaking the bag model 
on
ept, we should also a
-
ept the dynami
al properties of the bags, whi
h aresoft and easily deformable [5, 17℄, forming a stringystru
ture. Typi
ally, these are radial and rotationalex
itations a

ompanied by the formation of the open

tube-shaped string ending with quarks. Another typeof deformation was 
onsidered in the Dira
 model ofan �extensible� ele
tron (1962) [39℄, whi
h 
an also beregarded as a prototype bag model with radial ex
ita-tions7). The bag-like sour
e of the KN solution with-out rotation, a = 0, 
oin
ides with this �extensible�model of the Dira
 ele
tron, leading to the �
lassi
alele
tron radius� R = re = e2=2m. As we dis
ussed inthe Introdu
tion, the disk-like bag of the rotating KNsour
e 
an be viewed as the stret
hing of the spheri
albag by rotations. For the parameters of an ele
tron,the spinning bag stret
hed into a disk of the radiusa = ~=2m
, 
overing the Compton area of the �dressed�ele
tron. The disk is very thin with the degree of �at-tening � = 137�1. The boundary of the disk appearsto be very 
lose to the former position of the Kerr sin-gular ring, and the EM �eld near the boundary may beseen as a regularization of the KN singular EM �eld.Similarly to other singular lines, the Kerr singular ringwas 
onsidered as a string in [11℄. The stru
ture of theEM �eld near this string was analyzed �rst in [10, 11℄,and mu
h later in [24℄. It appeared to be similar to thestru
ture of the fundamental string solution, obtainedby Sen in the low-energy heteroti
 string theory [24℄. Itis a typi
al light-like pp-wave string solution [19; 43; 44℄,whi
h in the Kerr geometry takes a ring-like form.Regularization of the KN sour
e does not removethis ring-string, but gives it a 
ut-o� parameter (9),R = re. It was shown in [10, 11℄ and later spe
i�edin [19; 37; 45℄ that the EM ex
itations of the KN so-lution lead to the appearan
e of traveling waves prop-agating along this ring-string. However, the light-likering-string 
annot be 
losed [46℄, sin
e the points dif-ferent by the angular period, x�(�; t) and x�(�+2�; t),should not 
oin
ide, and a pe
uliar point on the ring-string should make it open, forming a single quark-likeendpoint.The string traveling waves deform the bag bound-ary, 
reating a singular pole [47℄. We do not dis-
uss it here in detail, leaving the treatment to a sepa-rate paper. We only note that the exa
t solutions forthe EM ex
itations on the Kerr ba
kground were ob-tained in [22℄, and using 
onditions I and II 
onsideredin the introdu
tion, we 
an unambiguously determinethe ba
k-rea
tion of the lo
al EM �eld on the metri
and obtain the 
orresponding deformations of the bagboundary. The origin of singular pole is 
aused by a
ir
ulating node in the EM string ex
itation. This node7) This view was also suggested in [40℄. An interpretation ofthe bla
k holes and AdS geometries as a sort of bag was alsonoted in [41; 42℄.237
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ut-o� parameter R, 
reating 
onta
t ofthe bag boundary with the singular ring.This singular pole 
ir
ulates along the sharp bor-der of the disk with the speed of light and may be
onsidered in three ways: a) as a light-like quark en-
losed inside the bag, b) as a single end-point of thelight-like ring-string (as show in [46℄, the light-like fun-damental string 
annot be 
losed), and 
) as a nakedpoint-like ele
tron en
losed in a 
ir
ular �zitterbewe-gung�. It leads to an integrated model for the dressedand bare ele
tron as a single 
oherent system similar tothe hadroni
 bag models.7. CONCLUSIONStarting from the old problem of the sour
e of theKN geometry, we �rst obtained a bubble-
ore modelof the spinning parti
le, the false va
uum of whi
h isformed by the Higgs me
hanism of symmetry breaking.Contrary to the most other known models of parti
le-like obje
ts, the KN bubble forms a gravitating soliton
reating the external gravitation and EM �eld of anele
tron. This 
ompatibility with gravity has requiredthe use of a supersymmetri
 �eld model of phase tran-sition, leading to a supersymmetri
 false-va
uum statein the 
ore of the parti
le and leaving the external grav-itational and EM �elds unbroken.The resulting soliton model has mu
h in 
ommonwith the famous MIT and SLAC bag models, but a
-quires the �dual bag geometry�, in whi
h the Higgs 
on-densate is embedded �inside out � 
ompared to the pre-vious bag models.In this model, the two-sheeted stru
ture of the Kerrgeometry is given by a natural spa
e�time (
oordi-nate) implementation, forming a ba
kground for theinitially massless leptons of the Glashow�Salam�Wein-berg model [21℄.Without attempting a detailed des
ription, we 
annote that the des
ribed dressed ele
tron may be turnedinto a positron if we 
hange the role of the advan
ed andretarded sheets of the Kerr geometry. The higher ex
i-tation of the ring-string may generate the muon state,while swit
hing o� the s
alar and longitudinal 
ompo-nents of the EM �eld 
orresponding to the 
harge ofthe KN solution [48℄ and preserving only the transver-sal traveling waves, gives a neutral parti
le, whi
h hasthe features of a neutrino. Therefore, some variationsof the KN bag model 
an give the spa
e�time stru
turefor some other spinning parti
les of the ele
troweak se
-tor of the Standard Model.Note added. After this paper �nished and sub-

mitted for publi
ation I learned from Jim Bogan on thepaper [49℄. In this paper, whi
h is a development ofthe previous paper [50℄, authors 
onsider a geometri
almodel of the ele
tron and other parti
les on the baseof Taub�NUT solution, the self-dual properties andtwistorial stru
ture of whi
h provide 
onne
tions withthe Dira
 theory. Most part of their mathemati
altreatment on the Dira
 equation is also related to theKerr�Newman solution, twistorial stru
ture of whi
his based on the Kerr theorem. Indeed, the knownKerr�NUT solution represents a 
ommon basis forthese both lines of investigation. I believe that thestru
ture of ele
tron is rather related with the Kerrrotation parameter, while the monopole parameter ofthe NUT solution may be important for the stru
tureof hadrons. I am grateful to J. Bogan for pointing thiswork.This work is supported by the RFBR (grant� 13-01-00602). The author thanks T. M. Nieuwen-huizen, Y. Rybakov, and B. Whiting for the interestin this work and the useful 
onversations.APPENDIXThe Kerr theoremThe Kerr theorem determines all the geodesi
 andshear free 
ongruen
es as analyti
 solutions of the equa-tion F (TA) = 0; (43)where F is an arbitrary holomorphi
 fun
tion of theproje
tive twistor variablesTA = fY; � � Y v; u+ Y ��g; A = 1; 2; 3; (44)where� = x+ iyp2 ; � = x� iyp2 ; u = z + tp2 ; v = z � tp2are null Cartesian 
oordinates of the auxiliary Minkow-ski spa
e.We note that the �rst twistor 
oordinate Y is alsoa proje
tive spinor 
oordinateY = �1=�0; (45)and it is equivalent to the two-
omponent Weyl spinor��, whi
h de�nes the null dire
tion8) k� = �� _�� _��� ��.8) We use the spinor notation of book [20℄, where the �-mat-ri
es have the form �� = (1; �i), ��� = (1;��i), i = 1; 2; 3 and�� = ��� _�, ��� = ��� _��.238



ÆÝÒÔ, òîì 148, âûï. 2 (8), 2015 Gravitating lepton bag modelIt is known [22; 37℄ that the fun
tion F for theKerr and KN solutions 
an be represented in the formquadrati
 in Y ,F (Y; x�) = A(x�)Y 2 +B(x�)Y + C(x�): (46)In this 
ase, Eq. (43) 
an be solved expli
itly, leadingto two solutions Y �(x�) = �B � ~r2A ; (47)where ~r = (B2 � 4AC)1=2. It has been shown in [37℄that these solutions are antipodally 
onjugate,Y + = �1= �Y �: (48)Therefore, solutions (47) determine twoWeyl spinor�elds �� and �� _�, whi
h in agreement with (48) are re-lated with two antipodal 
ongruen
esY + = �1=�0; (49)Y � = �� _1=�� _0: (50)In the Debney�Kerr�S
hild formalism [22℄, the fun
tionY is also a proje
tive angular 
oordinateY + = ei� tan �2 :It gives an expli
it dependen
e on the Kerr angular 
o-ordinates � and � to spinor �elds �� and �� _�.For the 
ongruen
e Y +, this dependen
e takes theform �� = 0BB� ei�=2 sin �2e�i�=2 
os �2 1CCA : (51)In agreement with (48), we have�Y � = �e�i� 
ot �2 ;and from the invariant normalization ���� = 1, weobtain �� = 0BB� �ei�=2 
os �2e�i�=2 sin �2 1CCA ;whi
h yields�� _� = � _� _� �� _� = 0BB� ei�=2 sin �2e�i�=2 
os �2 1CCA : (52)
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