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GRAVITATING LEPTON BAG MODEL
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The Kerr—Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field
corresponding to that of the Dirac electron. For the large spin/mass ratio, a >> m, the BH loses horizons and
obtains a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of
symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external
KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has
the important advantage of being in accordance with the external gravitational and electromagnetic fields of the
KN solution. A peculiar two-sheeted structure of Kerr's gravity provides a framework for the implementation
of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the
electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to
deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the
Compton radius, with a ring-string structure and a quark-like singular pole formed at the sharp edge of this
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disk, indicating that the considered lepton bag forms a single bag—string—quark system.
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1. INTRODUCTION AND OVERVIEW

It has been discussed for a long time that black holes
(BH) are to be related to elementary particles [1]. The
Kerr—Newman (KN) rotating BH solution was of espe-
cial interest in this respect because, as was shown by
Carter [2], its gyromagnetic ratio g = 2 corresponds to
the Dirac electron, and therefore the four measurable
parameters of the electron (spin .J, mass m, charge e,
and magnetic moment pu) indicate that gravitational
and electromagnetic fields of the electron should be
described by the KN solution. In recent paper [3],
Dokuchaev and Eroshenko considered a solution of the
Dirac equation under BH horizon, and suggested that
this model may represent a “ ... particle-like charged
solutions in general relativity ... ”. On the other hand,
we note that the model of a Dirac particle confined un-
der a BH horizon can also be considered a type of grav-
itating bag model, and it acquires special interest be-
cause this bag is to be gravitating, leading to a progress
beyond the known MIT and SLAC bag models [4, 5].
However, the spin and charge of elementary particles
are very high with respect to their masses, which pre-
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vents formation of the BH horizons. In particular, the
KN solution with parameters of the electron (charge
e, mass m, and spin parameter a = J/m) exceeds the
threshold value e? + a®> < m? for the existence of the
horizons by about 21 orders. Similar ratios for other
elementary particles show that besides the Higgs bo-
son, which has neither spin nor charge, none of the ele-
mentary particles may be associated with a true black
hole, and they should rather be associated with the
over-rotating Kerr geometry, with |a| > m.

The corresponding over-rotating KN space has a
topological defect, the naked Kerr singular ring, which
forms a branch line of space into two sheets described
by different metrics: the sheet of advanced and sheet
of retarded fields. The Kerr singular and related two-
sheeted structure created the problem of a mysterious
source of the Kerr and KN solutions, which has re-
ceived considerable attention during more than four
decades [6-14]. For the story of this investigation, we
refer the reader, e.g., to [15]. Long-term attempts to
resolve the puzzle of the source of Kerr geometry led
first to the model of the vacuum bubble — a rotating
disk-like shell [8,9]. The vacuum state inside the bub-
ble turned later into a superconducting bulk formed of
a false-vacuum condensate of the Higgs field [13, 14].
The structure of the source acquired typical features of
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Fig.1.
(A), and the rotating disk-like bags for different ratios
a/R =3 (B), 7 (C), 10 (D)

Spherical bag with zero rotation, a/R = 0

the soliton and Q-ball models, becoming similar to the
known bag models [4, 5].

Recent analysis of the Dirac equation inside the KN
soliton source [16] confirmed that the regularized KN
solution shares much in common with the known MIT
and SLAC bag models. However, the gravitating bag
formed by the KN bubble source should have specific
features associated with the need to preserve the exter-
nal KN field.

On the other hand, the semiclassical theory of the
bag models [5] includes elements of quantum theory
that are based on a flat space—time without gravity,
and we are faced with the known conflict between grav-
ity and quantum theory. Our solution to this problem
in [13, 14] is based on two requirements.

I. The space—time should be flat inside the bag.

IT. The space-time outside the bag should be the

exact KN solution.
Thus, the quantum—gravity conflict is resolved by sep-
aration of their regions of influence. Remarkably, these
requirements determine features of the KN bag unam-
biguously. First of all, they uniquely determine the
border of the KN bag, showing explicitly that, in ac-
cordance with the general concept of bag models [5, 17],
the KN bag has to be flexible and its shape depends on
the rotation parameter a = .J/m and on the local in-
tensity of the electromagnetic (EM) field.

As a result, for parameters of an electron, the rotat-
ing bag takes the shape of a thin disk of ellipsoidal form
(see Fig. 1). Its thickness R turns out to be equal to the
classical radius of the electron r, = e%/2m, while the
radius of the disk corresponds to the Compton wave-
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length of the disk!), which allows identifying it with a
dressed electron.

The degree of oblateness of this disk is a/R
= a~! = 137, and the fine structure constant o thus
acquires a geometrical interpretation.

The next very important consequence of these re-
quirements is the emergence of a ring-string structure
on the bag border, and further the emergence of a sin-
gular pole associated with traveling-wave excitations of
the string [18,19]. This pole can be associated with a
single quark, and the KN bag finally takes the form of
a coherent “bag—string—quark” system.

Finally, these requirements determine that the
Higgs condensate should be enclosed inside the bag,
contrary to the standard treatments of the bag as a cav-
ity in the Higgs condensate, [4]. This requirement can-
not be realized with the usual quartic self-interaction
potential of the Higgs fiield [4, 5], and requires a more
complicated field model, based on a few chiral fields and
a supersymmetric scheme of the phase transition [20].

At this point, we have to mention the important
role of the Kerr theorem, which determines the null
vector field k,(z), the Kerr principal congruence that
forms a vortex polarization of Kerr—Schild (KS) metric

Juv = Nuw + 2HEky . (1)
The Kerr theorem gives two solutions for this congru-
ence kf, which determine two sheets of the KN solution
corresponding to two different metrics gi,. Solutions
of the Dirac equation on the KN background should
be consistent with the metric corresponding to one of
these congruences.

We show that two solutions of the Kerr theorem
generate two massless Weyl spinor fields that are cou-
pled into a Dirac field consistent with the Kerr geom-
etry. However, the null spinor fields of the Kerr con-
gruences are massless, and there appears the question
of the origin of the mass term. The answer comes from
the theory of bag models [5], where the Dirac mass is
a variable depending on the local vacuum expectation
value (vev) of the Higgs condensate.

This gives a direct hint to a consistent embedding
of the Dirac equation into the regularized KN back-
ground, indicating that both sheets of the KN solution
are necessary as carriers of the initially massless lep-
tons. This is in agreement with the basic concepts of
the Glashow—Salam—Weinberg model [21], in which the
lepton masses are generated by the Higgs mechanism
of symmetry breaking.

1) This was determined by Lopez [9].
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As a result, we conclude that two-sheeted Kerr’s
structure is an essential element for the space—time real-
ization of the electroweak sector of the Standard Model
consistent with gravity.

2. OVER-ROTATING KERR GEOMETRY:
TWO-SHEETED STRUCTURE AND
REGULAR SOURCE

The KN solution in the KS form [22] has the metric
(2)

where 1, is metric of auxiliary Minkowski space, z# =
= (t,x,y,z) € M*? and

Guv = Nuv +2HE, Ky,

mr —e?/2

r2 +a2cos26’

(3)

The vector field k, is null, k,k* = 0, and deter-
mined by the differential form
k = k,dz" = dr — dt — asin’® 0 d¢, (4)
where t,r,60, ¢, are the Kerr oblate spheroidal coordi-
nates:
z+iy = (r+ia)e’® sin6, (5)
The field k*(z) forms a principal null congruence
(PNC) K [23], which determines polarization of the
Kerr space—time. The PNC is focussed at the Kerr
singular ring, r = 0, cos# = 0, which is the branch line
of the Kerr space into two sheets r > 0 and r < 03).
Extending the Kerr congruence to the negative
sheet of the KS space (r < 0) along the lines ¢ = const,
# = const creates another congruence with a different
radial direction, and the congruence which is outgoing
by r > 0 turns into the ingoing one on the negative
sheet?). Thus, the Kerr solution in the KS form de-
scribes two different sheets of space—time, determined
by two different, congruences

z=rcosh, t=p-r.

+ _ .2
ky (z)dr" = £dr — dt — asin” 0 d¢ (6)

and two different metrics
9 = Nuw + 2HEKE (7)

on the same Minkowski background xz* € M?*.

2) We use the signature (— + ++).

3) These are Riemannian sheets of the Kerr complex radial
distance 7 = r 4 ia cosé.

4) Relations (5) also change [23].
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This two-sheetedness created the problem of the
source of Kerr geometry, and there appeared two lines
of investigation. One of them [10, 11, 24], accepted the
two-sheetedness as an indication of its plausible con-
nection with a spinor structure of the Kerr space—time
and with the two-sheeted structure of the topologically
nontrivial “Alice” strings introduced by Schwarz and
Witten [25].

An alternative line of investigation was related to
truncation of the KN negative sheet, and to a con-
sistent replacement of the excised region by a source
in agreement with the Einstein-Maxwell field equa-
tions [6-9, 12-14].

There is a freedom in choosing the truncating sur-
face, and in the most successful version of the model
suggested by Lopez [9], the KN source formed a bub-
ble, whose boundary was determined by matching the
external KN metric (2) with a flat metric inside the
bubble. According to (2) and (3), this boundary has to
be placed at the radius r = R = €?/2m.

We see from (5) that r is indeed the oblate spheroi-
dal coordinate,

2

22 +y? z

_ — 1
a?sin’f a2 cos? @

; (8)

and the source of the KN solution takes the form of a
very oblate disk of the radius r. ~ a = 1/2m with the
thickness

re = e2/2m, 9)
which is the classical radius of the electron. Thus,
the fine structure constant acquires a geometrical mea-
ning as the degree of oblateness of the disk-like source,
re/re = e? ~ 13771

As a result of the regularization, the disk-like re-
gion surrounding the Kerr singular ring is excised and
replaced by flat space, which acts as a cut-off para-
meter — an effective minimal distance R = r. to the
former Kerr singular ring. We note that in the case
without rotation, a = 0, the disk-like bubble takes the
spherical form and the size of the classical electron,
Eq. (9).

The Lopez model was later transformed into a
soliton-bubble model [13, 14], in which the thin shell of
the bubble was replaced by a field model of a domain
wall providing a smooth phase transition between the
external KN solution and the flat internal space. This
phase transition was modelled by the Higgs mechanism
of symmetry breaking, and the flat interior of the KN
bubble was formed by a false-vacuum state of the Higgs
condensate.



MKIOT®, Tom 148, Boin. 2 (8), 2015

Gravitating lepton bag model

The field model of broken symmetry is similar to
the Landau—Ginzburg model of superconductivity [26],
and regularization of the singular KN solution can be
viewed as an analogue to the Meissner effect, expulsion
of the gravitational and EM fields from the interior of
the superconducting source.

3. HIGGS CONDENSATE AND THE MASS OF
THE DIRAC FIELD

The Higgs symmetry breaking mechanism used for
regularization of the KN solution relates the source
of the KN solution to many other extended particle-
like models of the electroweak sector of the Standard
Model. In particular, we note the superconducting
string model of Nielsen and Olesen [26,27], Coleman’s
Q-ball models [28-32], and the famous MIT and SLAC
bag models. In this paper, we pay especial attention
to the fermionic sector of the KN source and obtain a
close similarity between the Higgs mechanism of mass
generation in the KN soliton model and that in the
SLAC bag model [5].

The Hamiltonian of the SLAC model for coupling
the Higgs field to the Dirac field ¢ has the form

H= /d3x {W(—ia -V +gBo)y +

1 .5 2
+ 5(0 +|Vo| )—}—V(U)}7 (10)

where ¢ is a dimensionless coupling parameter, and
self-interaction of the nonlinear Higgs field ® is de-
scribed by the quartic potential

V(I2]) = g(G0 — £2)?, (11)

where o = (|®|) is the vev of the Higgs field. The true
vacuum of the Higgs field o = 0 is not the lowest-energy
state, and the Higgs field is triggered in the false-vacu-
um state 0 = f, which breaks the gauge symmetry of
the spinor field . As a result, the fermion acquires the
mass m = g1, which is used in the confinement mecha-
nism of bag models. However, the false-vacuum state of
the Higgs field o = f also breaks the gauge symmetry
of the EM fields. In the known bag models, it turns the
external EM fields into short-range one, which distorts
the external KN solution.

For example, in the MIT bag model, the Higgs vev
vanishes inside the bag, r < R, and takes a nonvani-
shing value o = f in outer region r > R (see Fig. 2).

The Dirac equation in the presence of the o field
takes the form

(i7"0u — go)y =0, (12)
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(twistors) is focused on the Kerr singular ring, form-
ing a branch line of the Kerr space into two sheets

Kerr's principal congruence of null lines
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Fig.3. Positions of the vev of the Higgs field o and
the confined spinor wave function ¥ (quark) in the MIT
bag model

and the Dirac wave function ¢ turns out to be mass-
less inside the bag and acquires a large effective mass
m = gf outside. The quarks are confined inside the
bag, where they occupy the most energetically favor-
able position.

Geometry of the Higgs vacuum state is different in
the SLAC bag models (see Fig. 3). The vev o gives
the mass to the Dirac field outside the bag as well as
inside. The mass vanishes only in a very narrow region
near the surface of the bag, r & R. Such geometry of
the broken vacuum state creates a sharp localization of
the Dirac wave function at the border of the bag.

In the bag models, we are faced with several very
important novelties.
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Fig.4. Classical solutions of the SLAC bag model. The

vacuum field o and the localized spinor (quark) wave

function confined to the thin shell, the boundary of the
bag

(A) The statement on the impossibility of localiza-
tion of the Dirac wave function beyond the distances
comparable with the Compton wave length i/mc is vio-
lated, and quarks can localize within a very thin region
at the bag shell. The reason of that is the scalar nature
of the confinement potential, for which “ ... there is
no Klein paradox of the familiar type encountered in
the presence of strong, sharp vector potential” [5].

(B) A semiclassical approach to the one-particle
Dirac theory is effectively used. Solving the Dirac equa-
tion for a quark in a scalar potential assumes that all
the negative-energy states are filled, and the treatment
is focused on the lowest positive-energy eigenvalues.
Therefore, « there is no ambiguity in identify-
ing and interpreting the desired positive energy “one-
particle” solutions” [5, 33].

(C) The mass term of Dirac equation (12) is deter-
mined by the vev of the Higgs field o(z) = (|®(z)[), and
therefore turns out to be a function in the configuration
space.

(D) Bag models are presumed to be very soft, com-
pliable, and extensible. They are easily deformed, and
under rotations and deformations they may acquire ex-
tended stringy structures accompanied by vibrations.

All these peculiarities of the bag models are com-
patible with the soliton-bubble source of the KN solu-
tion. However, there is one important difference: the
typical bag model represents a bubble or cavity in a
superconducting media, the Higgs condensate, while in
the gravitating bubble-source of the KN solution, the
Higgs condensate is enclosed within the bubble, leaving
the true vacuum outside the bag unbroken.

In the MIT and SLAC bag models, the Higgs con-
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densate is placed outside the source, and the exter-
nal vacuum represents a superconducting false-vacuum
state (see Fig. 4), leading to the short-range external
EM field.

A dual geometry (turned inside out) was suggested
in the Coleman Q-ball model [28]. The self-interacting
Higgs field of a Q-ball is confined inside a ball-like
source, r < R, leaving the external vacuum unbroken.
Most of the Q-ball models led to a coherent oscillating
state of the Higgs vacuum inside the bag (oscillons [30—
32])3). The KN soliton source [13, 14] also exhibits this
peculiarity. We can summarize that confinement, of the
Higgs condensate inside the bag is a necessary require-
ment for the correct gravitating properties of the bag
models. However, formation of the corresponding po-
tential turns out to be a very nontrivial problem, which
cannot be solved by the usual quartic potential (11).

4. FIELD MODEL OF BROKEN SYMMETRY
AND PHASE TRANSITION FOR THE
GRAVITATING BAG MODEL

Among theories with spontaneous symmetry brea-
king, an important place is taken by the field model
of a vortex in condensed matter, which was conside-
red by Abrikosov in connection with the theory of
type-II superconductors. Nielsen and Olesen (NO)
used this solution for a semiclassical relativistic string
model [26]. The NO string model, representing a mag-
netic flux tube in a superconductor, was generalized
to many other semiclassical field models of the soli-
tonic strings and has found wide application in the elec-
troweak sector of the standard Glashow—Salam—Wein-
berg model [27, 34].

The NO model [26] contains a complex scalar field
® and the gauge EM field A*, which becomes massive
via the Higgs mechanism. The Lagrangian has the form

1 1
Lo = —sBuFe-Lma)0rar-v(e). (3)

where D, = V,, + ieA, are the U(1) covariant deriva-
tives and F,, = A, , — A, is the field strength. The
potential V' has the same quartic form as in (11),

V=\e'® - )% (14)
where o is replaced by the complex field ® = |®|e?X.
The Lagrangian Lyo = L™ describes a vortex
string embedded in the superconducting Higgs conden-
sate in flat space—time. Similarly to the bag models,
this model cannot be generalized to gravity because

5) Such a model was first considered by Rosen [29].
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the Higgs condensate gives mass to the external EM
and gravitational fields, turning them into nonphysical
short-range fields conflicting with the real gravitational
and EM properties of strings and particles.

An improvement of this flaw was suggested by Wit-
ten in his U(1) x U(1) field model of a cosmic super-
conducting string [25], in which he used two Higgs-like
fields, ®' and ®2. One of them, say ®', had the re-
quired behavior, being concentrated inside the source,
while the other, ®2, played an auxiliary role and took
the external complementary domain extending up to
infinity. These two Higgs field are charged and ad-
joined to two different gauge fields A' and A2, such
that when one of them is long-distant in some region (2,
the other is long-distant in the complementary region
Q = Uy/Q. This model is suitable for any localized
gravitating source, but for the superconducting source
of the KN solution we used in [13], a supersymmetric
generalization of the Witten model was suggested by
Morris [35].

4.1. Supersymmetric phase transition

The supersymmetric scheme of a phase transition is
based on three chiral fields @, i = 1,2,3 [20]. One
of this fields, say ®(), has the required radial depen-
dence, and we chose it as the Higgs field H, setting the
additional notation as (#, Z, %) = (8°, &', ®2).

The action coupled to gravity is given by

S = /\/—_gd4x (% + U’mt) , (15)
where the full matter Lagrangian takes the form
L£mat — —EFWF‘“’ -
% S (D80 (DORe®) — v, (16)

(3

which contains a contribution from the triplet of the
chiral field ®(.

The potential V' required for our model is obtained
by a standard supersymmetric scheme of broken sym-
metry [20], which determines it via a superpotential
W(d0, ®()*)

V(r) = Z 0 W |, (17)

The superpotential leading to the required geometry of

broken symmetry was suggested by Morris [35]:

W(®', &%) = Z(ST —n?) + (Z + p)HH, (18)
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where p and n are real constants. This yields

V = (Z4+p)? 1P+ (22| H(SS+HH-—?)?,  (19)

and the equation

oW =0 (20)
determines two vacuum states separated by a spike of
the potential V' at r =~ R:

EXT: the external vacuum, r > R+ 4, V(r) = 0,
with the vanishing Higgs field H = 0, and Z = 0,3 = 7,
and

INT: an internal state of the false vacuum, r <
< R -4, V(r) = 0, with broken symmetry, |H| = 7,
and Z = —p, £ = 0.

4.2. Application to the KN source

Choosing Lopez’s boundary for regularization of the
KN source allows us to neglect gravity inside the source
and at the boundary, and we can hence neglect the
gravitational field in the zone of the phase transition
and consider the space—time as flat. At the same time,
outside the source, we have the exact Einstein—Maxwell
gravity, because the gauge symmetry is unbroken and
all the terms

(D, 80) (DF0)*

vanish together with the potential V' (|®|). Therefore,
outside the source, we have only the matter term

£net = —%FWFW

leading to the external KN solution.

Hence, inside the source (zone INT) and on the
boundary, we have only the part of Lagrangian that
corresponds to self-interaction of the complex Higgs
field and its interaction with the vector potential of
the KN electromagnetic field A* in flat space—time.

The field model is reduced to the model considered
by Nielsen and Olesen for a vortex string in supercon-
ducting media [26],

1 1
Lno == Fu F" =S (DH) (D" H)™+V (M), (21)

where D, = V, + ieA, is the covariant derivative,
F,. =A4,,—-A,,, and V, = 9, reduces to a deriva-
tive in flat space with the flat D’Alembertian 9, 0"
For the interaction of the complex Higgs field

H(z) = [H(x)[eX (22)
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Fig.5. Region of broken symmetry in the KN soliton

bag model. The potential V(R) forms the inner and

outer vacuum states V' = 0 with a narrow spike at the

boundary of the bag. The Higgs field H is confined

inside the bag, » < R, forming a false vacuum state,
which gives mass to the Dirac equation

with the Maxwell field, we obtain the following compli-
cated systems of nonlinear differential equations:

D,D"H = dgV, (23)
OA, = Iy = e|H* (o +edy). (24)

The obtained vacuum states EXT and INT show that
|H(r)| should be a step-like function

7, TSR_57
[H(r)| =
0, >R+,

(25)
with a transition region R —§ < r < R + 0, where its
behavior is determined by the impact of the electro-
magnetic field.

Outside the source, r > R + §, we have H = 0 and
obtain I, = 0. Inside the source, with r < R — 4, we
have also I, = 0, which is provided there by the com-
pensation of the vector potential by the gradient of the
phase x of the Higgs field, x,, +eA, = 0. Hence, a
nonzero current exists only in the narrow transitional
region R — 0 < r < R, where this compensation is only
partial, and (24) describes the “region of penetration”
of the EM field inside the Higgs condensate (see Fig. 5).

4.3. Important consequences

The analysis of Eq. (24) in [13, 14] showed two re-
markable properties of the KN rotating soliton:

(I) the vortex of the KN vector potential A, forms
a quantum Wilson loop placed along the border of the

disk-like source, which leads to quantization of the an-
gular momentum of the soliton,

(IT) the Higgs condensate should oscillate inside the
source with the frequency w = 2m.

The KN vector potential has the form [22]

A,dz* = —Re (dr—dt—asin® 8 de| . (26)

r+ia cos
The maximum of the potential is reached in the equa-
torial plane, cosf = 0, at the Lopez’s boundary of the
disk-like source (9), r. = €2/2m, which plays the role
of a cut-off parameter,

maxr €
A dat = —E(dr —dt — ado). (27)

The ¢ component of the vector potential, AF** =
= ea/re, shows that the potential forms a circular flow
(Wilson loop) near the source boundary. According
to (24), this flow is compensated inside the soliton
by the gradient of the Higgs phase x,4, and does not
penetrate inside the source beyond a transition region
r < r. — 0. Integrating this relation along the closed
loop ¢ = [0, 27] under the condition I; = 0 yields the
result (I).

Similarly, using (24) and the condition Iy = 0 for
the time component of the vector potential

Amaez _ e — ﬂ
0 2r, e

b

we obtain the result (IT).

5. FERMIONIC SECTOR OF THE KN BAG
MODEL

Now we have to consider matching the solutions of
the Dirac equation with the interior of the regular soli-
tonic source and with the external KN solution. We
start from the region inside the KN source and the ad-
jacent d-narrow layer of phase transition, r < R + 0.
In accordance with the used scheme of regularization,
these regions are to be flat, and we can use the usual
Dirac equation v#9,% = m¥, which in the Weyl rep-
resentation splits into two equations

ThaiOu X" = moa, 30,00 =my*, (28

where the Dirac bispinor

()

is presented by two Weyl spinors ¢, and y%.
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In the concept of bag models, fermions acquire mass
via a Yukawa coupling to the Higgs field, Eq. (12), and
because the Higgs condensate in the KN source is con-
centrated inside the bag, Eq. (25), the mass term of the
Dirac equation takes the maximal value

m = gn (29)

in the internal region while the Dirac equation outside
the bag turns out to be massless and splits into two
independent massless equations

o"i9, XY =0, F1Y,p, =0, (30)

corresponding to the left-handed and right-handed
“electron-type leptons” of the Glashow—Salam—Wein-
berg model [21].

Outside the bag, we have external gravitational and
EM fields of the KN solution, and we should use the
Dirac equation in the covariant form

YiesDu¥ =0, (31)

where 74 ¢ are y-matrixes adapted to the KS form of
metric (2), and

2V/2

1
D, =0, — §rwz"* — i ——=7, F )\ (32)
are covariant derivatives.

The exact solutions on the KS background were pre-
viously considered by Einstein and Finkelstein in [36],
and following them we can choose the 7/ ¢ matrixes in

the form

Vhes = Yy + V2HE vy, (33)

where ~};, are matrices of the Weyl representation for
the Minkowski space n*”. They satisfy the usual anti-
commuting relations

vy =20 o) =0, (34)
(76‘/)2 = _17
while 74 ¢ satisfy the anticommuting relations
1 v v v v
5{71‘;(57 kst =" = 2HE'E" = gics, (35)

adapted to the KS metric. It is known that the exact
KS solutions belong to the class of algebraically spe-
cial solutions, for which all the tensor quantities are to
be aligned with the Kerr null congruence [22], and the
general relations (31), (33), (32) become much simpler
when the Dirac field ¥(z) is “aligned” with the Kerr
congruence k*(z),

kv " = 0. (36)
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For the aligned Dirac field, the nonlinear terms of the
electromagnetic and gravitational interactions cancel,
and the Dirac equation linearizes [36], taking the form
of a free Dirac equation in flat space-time (30).

The alignment condition (36) can be rewritten in
the form

(k . U)¢ = ¢7 (k . U)X ==X, (37)

which shows that the left-handed and the right-handed
fields Y and ¢ are to be oppositely polarized with re-
spect to the spatial direction of the Kerr congruence
k. We obtain that only one of these two “half-leptons”,
the left-handed ¢, is indeed consistent with the Kerr
congruence kT = (1,k), selected for the physical sheet
of the KN solution. The consistent solution takes the
form U7 = (¢,0), which shows explicitly that only the
left-handed field ¢ is aligned with k™ and survives on
the physical sheet of the KN geometry. This solution
is exact, because the left- and right-handed spinors are
independent for the massless Dirac equation. Similarly,
we obtain the solution U5 = (0, Y), which is not aligned
with &7 and with the selected physical sheet of the KN
solution. However, it is aligned with the congruence
k~ and “lives” on the negative sheet of advanced fields.
Thus, the massive Dirac solution

()

XCY
splits into the left and right massless parts ¥y and ¥ p,
which outside the bag can live only on the different
sheets of the two-sheeted Kerr geometry.

This important peculiarity of the Dirac solutions
on the Kerr background was also mentioned in [36],
where authors noted that the Dirac equations on the
KS background “ ... are not consistent unless the mass
vanishes ... 7. Meanwhile, this obstacle disappears in-
side the bag-like source of the Kerr geometry, where the
space is flat by construction of the solitonic source (see
Sec. 2). When the massless Weyl spinors pass from two
different external sheets on a common flat space inside
the bag, they are combined into a Dirac bispinor, which
acquires mass from the Higgs condensate via Yukawa
coupling (see Fig. 6). Removing the two-sheeted struc-
ture that was associated with the problem the source of
KN solution, we meet its appearance from another side,
by analysis of the consistent solutions of the Dirac equa-
tion on the KS background. We obtain that the two-
sheeted structure of KS geometry agrees with elemen-
tary constituents of the standard model, the massless
“left-handed” and “right-handed” electron fields [21, 33],
providing the consistency of the external Dirac field
with KN gravity.
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External Kerr — Newman solution

Two massless spinor fields
of the Kerr congruence <

Y\k;

Bag with
_al Higgs vacua
—6 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5
Fig.6. Two sheets of the external KN solution are

matched with flat space inside the bag. The massless

spinor fields ¢, and {% live on different KN sheets,

aligned with k;7 and k;, null directions. Inside the bag,

they join into a Dirac bispinor, which obtains mass from
the Higgs condensate confined inside the bag

The Kerr congruences are determined by the Kerr
theorem [22,37], which is formulated in twistor terms
on the Minkowski space 7,, auxiliary to KS metric
(2). The first twistor component Y™ also plays the role
of a projective spinor coordinate (see details in the
Appendix and [16,37]). The Kerr theorem gives two
solutions Y*(z) for the KN particle, which are con-
nected by the antipodal relation Y+ = —1/Y~ and de-
termine two antipodal congruences &, () and k, (z).
The Weyl spinors corresponding to solutions Y+ (z) are
exactly the Weyl spinor components ¢ and ) of the
aligned Dirac solutions considered above. Because the
Kerr theorem is formulated in flat space—time, the solu-
tions Y+ (z) are extended unambiguously from the ex-
ternal KN space to the flat space inside the bag, which
determines the Dirac bispinor

f2(z)x”

which is aligned to both external congruences and rep-
resents a constraint, selecting the Dirac solution with
the required polarization in the flat space inside the
bag.

Another very specific peculiarity of the bag mod-
els is the emergence of the variable mass term in Dirac
equation (12). The mass term is determined by the
vev of the Higgs condensate o, which depends on the
regions of space—time, and in the region of the maxi-
mum of the Higgs condensate o = 1, is called the bare
mass m = gn. The Dirac wave function, a solution of

the Dirac equation with a variable mass term, avoids
the region with a large bare mass, and tends to occupy
a more energetically favorable position, which is the
principal idea of quark confinement.

In the SLAC bag model [5], the resulting wave func-
tion is determined by the variational approach. The
Hamiltonian is

H(z) = ¥t <%a -V + gﬂa) v, (39)

and the energetically favorable wave function is de-
termined by minimizing the averaged Hamiltonian
H = [ d*zH(x) under the normalization condition

/d3x Uf(2)¥(2) = 1.

This yields

(%a V4 gﬂa) ¥ = £, (40)

where £ appears as the Lagrangian multiplier enforcing
the normalization condition. Similarly to the results of
the SLAC bag model, we expect that the Dirac wave
function does not penetrate deep in the region of a large
bare mass m = gn, and concentrates in a very narrow
transition zone at the bag boundary R—0 < r < R+90.
As was argued in [5], the narrow concentration of the
Dirac wave function is admissible in bag models be-
cause there is no Klein paradox for the scalar poten-
tial. The exact solutions of this kind are known in
the two-dimensional case, and the corresponding varia-
tional problem should apparently be solved numerically
by using ansatz (38), where fi(x) and f>(z) are variable
factors.

The use of classical solutions of the Dirac equation
in a given scalar potential leads also to the problem of
negative-energy states. In the bag models, this problem
is treated semiclassically by using the assumption [5]
that “ ... all the negative-energy states in the pres-
ence of this potential are filled ... ”, and as a result, it
is necessary to consider only the lowest positive-energy
eigenvalues® .

6) This is an approximation to rigorous treatment based on
the normal ordering. The negative-energy states correspond to
charge-conjugate solutions ¥¢(x) = C¥(x), ¥¢(x) = C~1T(x)
of the charge-conjugate Dirac equations (with the replacement
e — —e). In particular, the current density is determined by the
commutation relations
ie . = ie
= —[¥(x U(z)] = —
@) )] =
and similarly for the expectation value of energy or any other
operator bilinear in the fermion field.

n(@) (W) ()= o T ()7, 9° (2)),
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The splitting of the KS space-time outside the
source of the KN solution looks strange from the stand-
point of standard gravitation, but it appears more nat-
ural by comparison with electromagnetism, which is
sensitive to the difference between retarded and ad-
vanced fields.

It is known [38] that the Kerr solution can be repre-
sented in the KS form via both Kerr congruences k: or
k., but not via the both simultaneously. For the KN
solution with an EM field, the situation is more com-
plicated. Although both representations are admissi-
ble, the representation via retarded fields is physically
preferable because the asymptotic advanced EM field
of the KN solution would contradict its experimental
behavior in flat space. The vector potential A, of the
KN solution must also be aligned with the Kerr con-
gruence, and should be retarded (A,.;) on the physical
sheet determined by the outgoing Kerr congruence k:
The appearance of advanced EM fields (Agq4,) is impor-
tant in nonstationary problems. In particular, in the
Dirac theory of radiation reaction, the retarded poten-
tials A,e; are split into a half-sum and half-difference
with advanced ones

1 1
Aret = i[Aret + Aadv] + i[Aret - Aadv]a

where
n 1
Ary = i[Aret + Aadv] (41)
is connected with radiation reaction, and
_ 1
Aret - i[Aret - Aadv] (42)

forms a self-interaction of the source. A similar struc-
ture is also present in the Feynman propagator.

The fields A,e; and A,q, cannot reside on the same
physical sheet of the Kerr geometry, because each of
them should be aligned with the corresponding Kerr
congruence. Considering the retarded sheet as a ba-
sic physical sheet, we fix the congruence k: and the
corresponding metric g‘fy, which are not allowed for
the advanced field A,4, and must be positioned on the
separate sheet with a different metric g,,,,.

6. DISCUSSION

Taking the bag model concept, we should also ac-
cept the dynamical properties of the bags, which are
soft and easily deformable [5, 17], forming a stringy
structure. Typically, these are radial and rotational
excitations accompanied by the formation of the open

237

tube-shaped string ending with quarks. Another type
of deformation was considered in the Dirac model of
an “extensible” electron (1962) [39], which can also be
regarded as a prototype bag model with radial excita-
tions”). The bag-like source of the KN solution with-
out rotation, a = 0, coincides with this “extensible”
model of the Dirac electron, leading to the “classical
electron radius” R = r, = €?/2m. As we discussed in
the Introduction, the disk-like bag of the rotating KN
source can be viewed as the stretching of the spherical
bag by rotations. For the parameters of an electron,
the spinning bag stretched into a disk of the radius
a = h/2me, covering the Compton area of the “dressed”
electron. The disk is very thin with the degree of flat-
tening o = 137!, The boundary of the disk appears
to be very close to the former position of the Kerr sin-
gular ring, and the EM field near the boundary may be
seen as a regularization of the KN singular EM field.
Similarly to other singular lines, the Kerr singular ring
was considered as a string in [11]. The structure of the
EM field near this string was analyzed first in [10, 11],
and much later in [24]. It appeared to be similar to the
structure of the fundamental string solution, obtained
by Sen in the low-energy heterotic string theory [24]. It
is a typical light-like pp-wave string solution [19, 43, 44],
which in the Kerr geometry takes a ring-like form.

Regularization of the KN source does not remove
this ring-string, but gives it a cut-off parameter (9),
R = r.. Tt was shown in [10, 11] and later specified
in [19,37,45] that the EM excitations of the KN so-
lution lead to the appearance of traveling waves prop-
agating along this ring-string. However, the light-like
ring-string cannot be closed [46], since the points dif-
ferent by the angular period, x#(¢, t) and z#(¢+ 27, t),
should not coincide, and a peculiar point on the ring-
string should make it open, forming a single quark-like
endpoint.

The string traveling waves deform the bag bound-
ary, creating a singular pole [47]. We do not dis-
cuss it here in detail, leaving the treatment to a sepa-
rate paper. We only note that the exact solutions for
the EM excitations on the Kerr background were ob-
tained in [22], and using conditions I and II considered
in the introduction, we can unambiguously determine
the back-reaction of the local EM field on the metric
and obtain the corresponding deformations of the bag
boundary. The origin of singular pole is caused by a
circulating node in the EM string excitation. This node

) This view was also suggested in [40]. An interpretation of
the black holes and AdS geometries as a sort of bag was also
noted in [41,42].
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yields the zero cut-off parameter R, creating contact of
the bag boundary with the singular ring.

This singular pole circulates along the sharp bor-
der of the disk with the speed of light and may be
considered in three ways: a) as a light-like quark en-
closed inside the bag, b) as a single end-point, of the
light-like ring-string (as show in [46], the light-like fun-
damental string cannot be closed), and c) as a naked
point-like electron enclosed in a circular “zitterbewe-
gung”. Tt leads to an integrated model for the dressed
and bare electron as a single coherent system similar to
the hadronic bag models.

7. CONCLUSION

Starting from the old problem of the source of the
KN geometry, we first obtained a bubble-core model
of the spinning particle, the false vacuum of which is
formed by the Higgs mechanism of symmetry breaking.
Contrary to the most other known models of particle-
like objects, the KN bubble forms a gravitating soliton
creating the external gravitation and EM field of an
electron. This compatibility with gravity has required
the use of a supersymmetric field model of phase tran-
sition, leading to a supersymmetric false-vacuum state
in the core of the particle and leaving the external grav-
itational and EM fields unbroken.

The resulting soliton model has much in common
with the famous MIT and SLAC bag models, but ac-
quires the “dual bag geometry”, in which the Higgs con-
densate is embedded “inside out ” compared to the pre-
vious bag models.

In this model, the two-sheeted structure of the Kerr
geometry is given by a natural space—time (coordi-
nate) implementation, forming a background for the
initially massless leptons of the Glashow—Salam—Wein-
berg model [21].

Without attempting a detailed description, we can
note that the described dressed electron may be turned
into a positron if we change the role of the advanced and
retarded sheets of the Kerr geometry. The higher exci-
tation of the ring-string may generate the muon state,
while switching off the scalar and longitudinal compo-
nents of the EM field corresponding to the charge of
the KN solution [48] and preserving only the transver-
sal traveling waves, gives a neutral particle, which has
the features of a neutrino. Therefore, some variations
of the KN bag model can give the space—time structure
for some other spinning particles of the electroweak sec-
tor of the Standard Model.

Note added. After this paper finished and sub-
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mitted for publication I learned from Jim Bogan on the
paper [49]. In this paper, which is a development of
the previous paper [50], authors consider a geometrical
model of the electron and other particles on the base
of Taub-NUT solution, the self-dual properties and
twistorial structure of which provide connections with
the Dirac theory. Most part of their mathematical
treatment on the Dirac equation is also related to the
Kerr—-Newman solution, twistorial structure of which
is based on the Kerr theorem. Indeed, the known
Kerr—NUT solution represents a common basis for
these both lines of investigation. I believe that the
structure of electron is rather related with the Kerr
rotation parameter, while the monopole parameter of
the NUT solution may be important for the structure
of hadrons. I am grateful to J. Bogan for pointing this
work.

This work is supported by the RFBR (grant
Ne13-01-00602). The author thanks T. M. Nieuwen-
huizen, Y. Rybakov, and B. Whiting for the interest
in this work and the useful conversations.

APPENDIX

The Kerr theorem

The Kerr theorem determines all the geodesic and
shear free congruences as analytic solutions of the equa-
tion

F(T*) =0, (43)

where F' is an arbitrary holomorphic function of the
projective twistor variables

TA={Y,(-Yv, u+Y(}, A=1,23, (44)

where
T+ iy T —1y z+1t _z—t
are null Cartesian coordinates of the auxiliary Minkow-
ski space.
We note that the first twistor coordinate Y is also
a projective spinor coordinate

Y = ¢1/¢o,

and it is equivalent to the two-component Weyl spinor
¢o, Which defines the null direction®) k, = ¢505%¢q.

Z:

C:

(45)

8) We use the spinor notation of book [20], where the o-mat-
rices have the form o# = (1,0%), o* = (1,—0"), ¢ = 1,2,3 and

b — gt  Fr — FHoo
ot =0,4, 0 =0 .
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It is known [22,37] that the function F' for the
Kerr and KN solutions can be represented in the form
quadratic in Y,

F(Y,z") = A(z")Y? + B(z")Y + C(2"). (46)

In this case, Eq. (43) can be solved explicitly, leading
to two solutions

_ —BFr
24
where 7 = (B? — 4AC)'/2. Tt has been shown in [37]
that these solutions are antipodally conjugate,

YE(zH) (47)

Y+ =—1/7". (48)

Therefore, solutions (47) determine two Weyl spinor
fields ¢, and Yg, which in agreement with (48) are re-
lated with two antipodal congruences

Y = 61/¢o, (49)

Y™ =Xi/Yo- (50)
In the Debney-Kerr—Schild formalism [22], the function
Y is also a projective angular coordinate

X 0
Y+ = ¢ tan 3

It gives an explicit dependence on the Kerr angular co-
ordinates ¢ and # to spinor fields ¢, and Yg4-

For the congruence Yt, this dependence takes the
form

. 0
id/2 iy Z
e'®/" sin o

¢oz = 0 (51)
—i¢/2 z
e €08 5
In agreement with (48), we have
. . 0
Y~ =—e“cot -
e oty
and from the invariant normalization ¢,y* = 1, we
obtain ;
— /2 Z
e'?/* cos 5
Xa = )
, 0
—i¢/2 gip —
e sin
which yields
€'9/2 gin Q
& &b — 2
X" =€y = (52)

. 0
—i¢/2 o5 =
e €08 5
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