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FEASIBILITY OF A FEEDBACK CONTROL OF ATOMIC
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Many interesting nonlinear effects are based on the strong interaction of motional degrees of freedom of atoms
with an optical cavity field. Among them is the spatial self-organization of atoms in a pattern where the atoms
group in either odd or even sites of the cavity-induced optical potential. An experimental observation of this
effect can be simplified by using, along with the original cavity-induced feedback, an additional electronic feed-
back based on the detection of light leaking the cavity and the control of the optical potential for the atoms.
Following our previous study, we show that this approach is more efficient from the laser power perspective than

the original scheme without the electronic feedback.
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1. INTRODUCTION

Although the laser cooling employing resonant tran-
sition has been successful especially for alkali atoms,
the absence of cyclic transitions in other species makes
the applications of this approach difficult for a wide
range of atoms and especially molecules [1]. There-
fore, searching for other more universal cooling meth-
ods is still an important activity in atomic and molec-
ular physics.

A universal method for cooling microparticles that
involves optical fields should be based on the off-reso-
nant dipole interaction, which is conservative. Thus,
an additional decay channel for leaking the energy and
cooling the particles should be provided. These require-
ments are fulfilled in two approaches that we call cavity
cooling and feedback cooling. Both these names refer
to a wide variety of methods that still have some es-
sential similarities.

In cavity cooling [2, 3|, the key ingredient is the
coupled dynamics of the motional degrees of freedom
of particles and the optical cavity mode. The motional
excitation of particles is transferred to the cavity pho-
tons. The photons leak the cavity, which results in
energy dissipation and the net cooling of the particles.
A very interesting and promising variant of cavity cool-

* . .
E-mail: ivanov-den@yandex.ru

211

ing employs pumping of particles with light directed
transversely to the cavity mode [4]. The scattering of
pump photons to the cavity mode becomes cooperative
in this case and the cooling of the ensemble acquires
features of a self-organization process. An efficient re-
alization of this strategy can be obtained if the coupling
between the particles and the cavity is strong enough,
which is possible but technically challenging to real-
ize [5-9].

The feedback cooling [10-13] is another approach to
cool a wide range of species. In this method, a classical
measurement device and the classical signal processing
are used to organize a feedback loop designed to ex-
tract energy from the ensemble of the particles. The
variety of feedback cooling methods originates from the
method of stochastic cooling [14] successfully applied
in high-energy physics and proposed for the cooling of
atoms [15, 16]. There is a variety of particular real-
izations of this method different in the quantity to be
controlled [17-19]. The drawback of this approach is
the fact that the quantity that can be accessed in a
feedback loop is generally a collective observable of an
ensemble. The modes that correspond to the relative
motion of particles remain unchanged by the feedback
loop. Hence, a remixing mechanism that couples dif-
ferent motional modes of the particles is required for
efficient cooling.

Recently [20], we proposed to combine the cavity
and feedback cooling to enhance the cavity self-organi-
zation. The idea behind this is to measure the photon
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flux leaking from the cavity to modify the external op-
tical potential so as to stimulate further scattering from
the pump into the cavity.

This procedure makes the bunching of particles in
the potential minimums favorable and simultaneously
cools the particles. It is not clear, however, whether
the use of the electronic feedback loop as proposed is
more efficient than the original configuration [4], where
the internal cavity-induced feedback works. The easi-
est way to analyze this is to restrict the consideration
to the case where only a few degrees of freedom can be
taken into account. This holds for the quantum degen-
erate regime where all the particles can be described
by a single wavefunction. In this case, not the cooling
of particles but self-organization of the degenerate gas
should be analyzed to prove the feasibility of the elec-
tronic feedback. Below, we show that the feedback en-
hancement of the original self-organization scheme [4]
reduces the laser power needed to observe the particle
self-organization.

To demonstrate the feasibility of the feedback con-
trol in the cavity-induced self-organization setup, we
numerically solve a coupled system of evolution equa-
tions for the atoms and the field. These equations are
derived on the basis of the positive P-representation
[21]. This is done in Sec. 2. The linear stability analy-
sis of the classical approximation is discussed in Sec. 3,
and numerical simulation results and the discussions
are given in Sec. 4.

2. MODEL

The model that we analyze is similar to the model
considered in Ref. [22]. We assume that the 1D Bo-
se-Einstein condensate (BEC) of atoms is placed in an
optical cavity along the cavity axis. The transverse
field at the frequency resonant to the cavity pumps the
atoms. According to the standard approach [4], the
atoms scatter the pump photons into the cavity mode
and the cavity field forms an optical-lattice potential
for the atoms. The effective scattering and hence a
strong potential appear when the atoms are localized
in groups separated by the field wavelength (in each
second well of the optical potential) because such con-
figuration satisfies the Bragg condition.

In our consideration, we supply the setup with a
feedback loop additional to the cavity, which is orga-
nized as follows (see Fig. 1). First, the cavity photon
number is measured and then this electric signal is used
to control the intensity of the laser creating an addi-
tional optical potential for the atoms. The feedback
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Fig.1. Setup of the self-organization experiment with

an additional electronic feedback. Measurement of the

cavity photon number is used to control the strength
of the optical potential for the atoms

loop is designed to increase the optical potential as the
number of detected photons increases. Furthermore, we
assume that the main part of the optical potential act-
ing on the atoms is due to the feedback-controlled laser,
while the cavity merely serves as a collector of the scat-
tered photons. This allows relaxing the requirements
for the interaction between the cavity and the atoms
and therefore simplifying the experiment.

To describe the operation of the setup, we start
with the quantum consideration. The Hamiltonian des-
cribing the evolution of the BEC and the cavity filed
without the feedback is given by

Hy = hw aTa-I-/dx of(x) [—h—262+h—ggUz(1‘)aTa+
0 0 om " A0
hgg * T
+ 0 ) (a4 ma)] W), ()

where wy is the frequency of the cavity mode, a is the
photon annihilation operator of the cavity; ¥(x) is the
annihilation operator of the BEC that obeys the com-
mutation relation [¥(z'), ¥f(z)] = §(z — 2'), m is the
atomic mass, go is the atom—field coupling constant, A
is the atom—cavity detuning, and Up(z) = cos(woz/c)
is the cavity mode function. We here assume that A is
much larger than the spontaneous decay rate v. To be
specific, we consider the D2 transition in Rubidium-85.
The decay rate 7 is then about 27 - 6 MHz [23]. Thus
detuning of about several hundred MHz suffices for the
required condition to be satisfied. We also ignore possi-
ble optical pumping effects on Zeeman sublevels. The
transverse pumping field is considered classically and
described by the field amplitude 7.

The quantum description of the feedback based on
photodetection has been developed in Refs. [24,25].
According to this theory, the unconditioned evolution
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of the quantum state of the system is described by the
master equation

. 7 K T
6=~ Ho 0l = 5 (aag + ga'a) + e Tagal, (2)

where k is the measurement strength, £ is a feedback
super-operator acting on the system, and 7 is the feed-
back interaction time. To provide the feedback that
changes the atomic potential proportionally to the cav-
ity photon number, we assume that the super-operator
L is implicitly given by

Ero=1i 01"

Aol Vd—e

(3)

The operator V in this equation describes the feedback
action on the system, which is the optical potential for
the atoms formed by the controlled laser. We assume
that it is given by

V= h/dx Ul (2) U2 (2) P (). (4)

The parameter I' in (3) is the gain coefficient of the
feedback loop. It describes the depth of the feedback-
induced potential for the atoms. Experimentally, the
feedback-induced potential is realized with an addi-
tional laser field that cannot have an arbitrarily large
intensity. Due to this restriction, the gain I' cannot be
made very large at all stages of the system evolution.
As the atoms become self-organized, the feedback sig-
nal, which linearly depends on the cavity photon num-
ber, can become too large to be practical. To take this
natural limitation into account, we assume that I' is not
a constant parameter but can change as the controlled
system evolves. More on the choice of I is explained in
Sec. 4.

Instead of dealing with the master equation, we
can use the positive P-representation [21], which al-
lows transforming the master equation into the Fok-
ker—Planck equation. The use of the positive P-repre-
sentation implies a doubled phase space of the system,
such that the atoms are described by the pair of fields
o(x,t), (z,t) and the cavity mode is described by
the pair of amplitudes «, 5. This ensures the semi-
positivity of the diffusion matrix in the Fokker—Planck
equation and as a consequence the possibility to trans-
form the Fokker—Planck equation into a set of stochas-
tic differential equations. The final Ito-type stochastic
differential equations for atomic ¢(z,t), ¥(z, t) and op-
tical a, 3 fields are
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th *
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% i 2 L
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hzo (1 4+ ) sin(koz) 0z, £) + hzgf% « ®)
x [Bsin(kox)® + 1" cos kox>] &ty (x,1),
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2
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2
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Here, &;(t) is the white noise with the correlation func-
tion (&(t)&; (")) = 0;,;0(t —t'). In principle, Egs. (5)
take all quantum effects into account via the stochas-
tic terms. However, these equations can be solved nu-
merically for a rather small time interval due to the
well-known problem of vanishing boundary terms [26].
Averaging these equations yields the system of semi-
classical equations. The equation for the atomic field
is analogous to the Gross—Pitaevskii equation with the
potential dependent on the cavity field. In the semi-
classical approximation, there is no need in a doubled
phase space, and therefore only one equation for the
atoms and one for the field remain. These equations
are given by

+ n* cos(kox)] ¥ (z,t) dx +

2

. R s hgo
ihd,(x,t) = =5 —~0, (1) + T (n"a+nB) x

o2
L (141)a)® x

x cos(koxz)p(x,t) + A

x sin(koxz)?é(x, t),

a —z—/w

+ ncos(kox)] d(x,t) dx

aft) = — (t) sin(kox)* +
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As can be seen from these equations, the application
of feedback is not completely equivalent to a scaling of
the atom—field coupling constant go. Hence, the evolu-
tion of the system is not completely analogous to the
dynamics of cavity self-organization without the feed-
back. It is therefore important to specifically address
the feasibility of the feedback to understand what ad-
vantages it may have.

3. STABILITY ANALYSIS IN THE
THREE-SITE APPROXIMATION

Although the system of equations (6) can be di-
rectly simulated, we can have an additional insight into
the dynamics of feedback-enhanced self-organization by
approximating the spatial dependence of the conden-
sate wavefunction. First of all, as described in [20],
we neglect, the long-wavelenghth modes of the conden-
sate excitations, considering only those that have the
same periodicity as the cavity mode function. Then we
divide the distance corresponding to the cavity mode
spatial period into four equal parts and represent each
part with the amplitude

\i/4

dx ¢(z),

A(i—1)/4

(7)

where ¢ = 1,... 4 is the mode number and A is the
wavelength of the cavity field. Two of these modes cor-
respond to odd and even wells of the cavity potential
(proportional to the square of the mode function), and
two others correspond to the potential maxima between
them. It can be shown that the equations of motion for
these last modes coincide, and we therefore keep only
one of them. Finally, we arrive at a system of four dy-
namical equations, of which the first three describe the
evolution of the atomic modes:

. . Y *
¢1 =1i(p2 — 1) —Z\/m(a+a )e1,
Ba = i(p1 + 03 — 202) — i|af* s,

. . . €n * (®)
¢3 =i(p2 — ¥3) +Z\/m(a +a”)ps,

. K. T
& = _§a_zs|¢2|2a—1577 T+1([1 [~ psl*).
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Here, we introduce a dimensionless coupling strength
e = g2/(w,A), where w, = hk3/2m is the recoil fre-
quency. The cavity decay rate x in Eqs. (8) is also
measured in units of w,, and the time is scaled by the
recoil period 1/w,. For convenience, the cavity field
amplitude has been renormalized as @ — a/vI + 1.
This transformation simplifies the analysis of the in-
teresting limit of a small coupling €. The aim of the
feedback is to compensate for ¢ — 0, assuming simul-
taneously that /1 + T — 0o so as to partially preserve
Eqs. (8). However, the last terms in the first and third
equations of system (8) vanish in the limit & — 0 even if
the feedback strength I' is large. These terms represent
the collective recoil of the atoms during the scattering
of pump photons to the cavity mode. They drive the
first and the third atomic modes in a different way,
leading to a spatial redistribution of atoms.

To understand the role of collective recoil in the
process of self-organization, we perform the stability
analysis of the uniform atomic distribution and deter-
mine the conditions required for the self-organization to
emerge. For the 3-mode approximation, a quite com-
plete analytic investigation of this issue can be per-
formed. To deal with real numbers, we transform the
equations for the complex field amplitudes to the equa-
tions for the quadratures defined as

a4+ a* a— o
xTr = =
2 o YT T
wi + ¢} i — i
Xi=——"H", V="
2 21

It is easy to verify that the uniform initial distribu-
tion of the atoms is a stationary solution of Eqs. (8)
with a(® = 0. To be specific, we assume that the
quadrature components of this uniform distribution are
Xl(o) = X2(0) = X:,EO) = Xy = V/N, where N is the num-
ber of atoms per site, while Yl(o) = Y2(0) = Y3(0) = 0.
The linearized equations for the small deviations § X; =
=X, - Xi(o), 0Y; = Y;, 0x = x, and dy = y from the
stationary solution are

d

—(0Z) = AVZ 9

~(07) = AGZ, )
where the vector 6Z comprises all the quadratures of
the atomic and cavity modes. The evolution matrix is
given by
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—K/2 eX2 0 0 0 0 0
—eX§ —k/2 —2enVT+1X, 0 0 2epyT+1Xy O
0 0 0 1 -1 0 0
en
—2—=——=Xp 0 -1 0 1 0 0 0
JT+1
A= (10)
0 0 0 1 0 0 1
0 0 1 2 0 1 0
0 0 0 0 -1 0 1
2 _x, 0 0 0 1 0 -1 0
T+1

For the linear stability analysis, we should solve the
characteristic equation for eigenvalues of the evolution
matrix

N2 (94 0%) [4N 4 4k® o+ (k2 + 4XJe% 4+ 4) X2 +

+4kX + 4Xge” (1 — 8en?) + KQ] =0. (11)

Characteristic equation (11) does not contain the feed-
back gain constant . Thus, the presence of the feed-
back does not affect the stability of the system in the
linear approximation. This, in particular, means that
the physical process responsible for the instability and
self-organization in the linear approximation is the col-
lective atomic recoil. It is possible to find an approxi-
mate condition for the ultimate instability of the sys-
tem. The system becomes unstable when a combina-
tion of parameters Xy, ¢, k, and 1 makes the real part
of at least one of other four eigenvalues positive.

All the roots of Eq. (11) can be given in radicals.
However, some of the results are quite lengthy and dif-
ficult to analyze. We therefore use an approximate
treatment of the part of Eq. (11) in square brackets.
After some rearrangement in this part, we obtain the
following equation for the remaining four eigenvalues:

AX32 (W +1—-8en) + (1+A2) 2A +k)> =0. (12)

We are interested in the critical values of the param-
eters, that is, the values corresponding to bifurcation,
where nonzero real parts of some eigenvalues appear.
To proceed with the approximate treatment of this
part of the characteristic equation, we assume that the
eigenvalues are small compared to the cavity decay rate
k at least near the self-organization threshold. Then
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the analytic approximations for two eigenvalues can be
found and are given by

32e3n2 X
A =y o0y
* K2 + 422 X3

This approximate result can be verified by comparison
with the exact solution of the 4th order equation found,
for example, using some computer algebra system. For
small absolute values of these eigenvalues, the agree-
ment is very good.

If the expression in the radicand in Eq. (13) is pos-
itive, then at least one of the eigenvalues is real and
positive. This ensures the instability of the uniform dis-
tribution. The critical value of the transverse pumping
7 is then given by

(13)

K2 4+ 422 N2

32e3N?2 (14)

Ne =
We note that in the limit of a large number of atoms
N — o0, the critical pumping reaches the finite value
7. = 1/8. This result clearly demonstrates the impor-
tance of the atom—field coupling constant and explains
possible challenges in the experimental observation of
self-organization. Taking the difference in the notation
into account, the result in Eq. (14) agrees with the con-
dition derived in Ref. [22], Eq. (10). This indicates that
in spite of its simplicity, the three-site approximation
seems to capture essential features of the system.

To conclude this part, the feedback based on the
photodetection cannot stimulate the instability of the
uniform distribution and initiate the growth of the scat-
tered signal. However, we can show that in case of si-
multaneous action of the collective recoil and the feed-
back, a considerable reduction in the total power re-
quired to reach self-organization can be obtained.
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Fig.2. The field inside the cavity for n = 1870

(black curve) and n = 1875 (grey curve). No feed-
back enhancement. The parameters of the system are
e=13-10"% k=5-10% and N = 10"

4. NUMERICAL SIMULATIONS

Having the three-site model with only four bosonic
modes, we can perform straightforward numerical ana-
lysis of the nonlinear problem. Since the number of
the degrees of freedom is small, the simulations can be
done on a conventional workstation computer. In par-
ticular, we numerically solve system (8) with the help
of XMDS2 [27].

It is natural first to test the threshold condition,
Eq. (14), without the feedback loop. In Fig. 2, the
evolution of the intracavity intensity |a|? is shown for
two values of the transverse pump 7, both of which
are close to the critical value n.. It is seen that for
the tested conditions, self-organization occurs for the
pump value in the range 7. € (1870, 1875). This result
is in a reasonable agreement with the result predicted
by Eq. (14), which is n. = 1885.

Numerical values are obtained for e = 1.3-1073, k =
=5-10% and N = 10%, which should be easily realized
in experiment. In particular, these values correspond
to k = 38 MHz, g9 = 32 kHz, and A = 100 MHz.
They are taken as an example of the weak atom—field
coupling regime. Hence, the cavity decay rate x is
taken to be larger, while the interaction constant go
is taken to be smaller than in a typical atom—cavity ex-
periment. For example, in Ref. [28], k = 27 - 1.4 MHz
and gop = 27w - 16 MHz. The parameters values given
above are used for all the numerical results presented
below.
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Fig.3. The difference between the numbers of the

atoms in odd and even sites, AN, as a function of

time for different values of the maximal intensity of the

feedback laser. The parameters for the simulations are
e=13-107% 5n=10% and ' = 2-10°

The evolution of the system and the effect of feed-
back with different constant strengths I' have been in-
vestigated in [20]. There, the enhancement of self-or-
ganization has been clearly demonstrated. However,
one important aspect of the application of feedback re-
mains unclear. The application of feedback requires an
additional optical power. Therefore, it is not obvious
that the feedback is energetically more favorable than
the straightforward increase in the transverse pump 7.

To resolve this question, we restrict the intensity
that is produced inside the cavity by the feedback laser
by some value I,,,,,. To implement this restriction in
the simulation program, we assume that the gain I is
a variable quantity and depends on the intracavity in-

tensity |a|? as
r
(7))

Imam

This expression represents a model dependence and is
not based on any real feedback mechanism. The idea
behind Eq. (15) is to make the feedback action to be
approximately linear for small signals (I' ~ I'y) and
provide saturation if the cavity intensity |a|? is large.

The results of numerical simulations for the atom
number difference in odd and even sites AN are shown
in Fig. 3. The transverse pump is set to be well be-
low the critical value, n = 1000. The feedback gain is
chosen to ensure self-organization for the unrestricted
feedback laser intensity, I' = 2 - 10%. It is seen that
the self-organization occurs already for I,,,,, = & - 10%,
which is more than one order of magnitude smaller than

0

(15)
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the intensity of the transverse pump |n|? = 105. Hence,
the total laser intensity required to observe the self-
organization is approximately 3.5 times smaller than
that without the feedback, because in the latter case,
the required total intensity is |n.|* ~ 3.5 10°. Thus,
the application of feedback allows reducing the opti-
cal power requirements for the observation of atomic
self-organization.

The curves in Fig. 3 corresponding to e, = 8- 10%
and Ipes = 1-10° demonstrate oscillations, which are
due to the nonlinearity of the feedback response. These
oscillations practically disappear for larger maximum
intensities of the feedback laser I, (see the curve
corresponding to I, = 2 - 10°). Interestingly, the
oscillatory behavior is also typical for self-organization
without a feedback, as is demonstrated in Fig. 2. But it
does not appear if the feedback is on and the feedback
laser intensity is not limited (see Fig. 3 in Ref. [20]).
To give an estimate of the absolute values of the laser
power required to obtain self-organization, we assume
that the cavity length is L &~ 10 ecm. Then the photon
flux ® that provides the maximal optical potential can
be estimated as ® = I,,,,,L/c ~ 10'5 photons/s. This
is equivalent to about 0.1 mW of laser power, which is
easliy obtained with modern tunable diode lasers.

5. SUMMARY

We have analyzed the use of feedback in the atom—
cavity self-organization setup. The feedback is based
on the measurement of the field leaking from the ca-
vity and the appropriate change in the cavity-induced
potential. The stability of the uniform atomic distribu-
tion has been studied in the three-site approximation,
where long-wavelength excitations of atoms have been
ignored. It has been shown that the feedback adds es-
sentially nonlinear terms to the evolution equations and
does not affect the linear stability of the uniform atomic
distribution. The instability of the uniform atomic dis-
tribution is therefore solely due to the collective atomic
recoil effect.

Thus, in the limit of an extremely small atom—field
coupling, the feedback alone can hardly produce
self-organization. However, the application of feedback
allows considerably reducing the total optical power
needed for self-organization. To demonstrate this, we
have analyzed the performance of the setup in the
case of a limited intensity of the feedback laser. This
restriction has been implemented in simulations via a
nonlinear feedback response with saturation. It has
been shown that in spite of this intensity restriction,

the feedback results in a fast onset of self-organization.
The total laser intensity required for self-organization
with the feedback, at least for some tested parameters,
is a few times smaller than the minimal total intensity
required for observing self-organization without a
feedback.
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University for the research (grant Ne11.38.640.2013).
This work was also supported by the RFBR (grant
Ne12-02-31806).
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