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DRAG OF BALLISTIC ELECTRONS BY AN ION BEAMV. L. Gurevih, M. I. Muradov *Io�e Institute, Russian Aademy of Sienes194021, Saint Petersburg, RussiaReeived January 27, 2015Drag of eletrons of a one-dimensional ballisti nanowire by a nearby one-dimensional beam of ions is onsid-ered. We assume that the ion beam is represented by an ensemble of heavy ions of the same veloity V. Theratio of the drag urrent to the primary urrent arried by the ion beam is alulated. The drag urrent turnsout to be a nonmonotoni funtion of veloity V . It has a sharp maximum for V near vnF =2, where n is thenumber of the uppermost eletron miniband (hannel) taking part in ondutane and vnF is the orrespondingFermi veloity. This means that the phenomenon of ion beam drag an be used for investigation of the eletronspetra of ballisti nanostrutures. We note that whereas observation of the Coulomb drag between two parallelquantum wires may be in general ompliated by phenomena suh as tunneling and phonon drag, the Coulombdrag of eletrons of a one-dimensional ballisti nanowire by an ion beam is free from suh spurious e�ets.DOI: 10.7868/S00444510151200931. FORMULATION OF THE PROBLEMDrag as a physial phenomenon in solids an be de-sribed as follows. We onsider a solid with two typesof quasipartiles (type 1 and type 2) and reate a �uxof the quasipartiles of type 2, the so-alled ative, ordriving urrent. As a result of the interation betweenpartiles, a urrent of quasipartiles of type 1, the so-alled passive, or drag urrent is exited. An exampleof this phenomenon is the Coulomb drag, where due toCoulomb interation between the eletrons, a urrentin a ondutor reates a urrent in an adjaent ondu-tor. This phenomenon was predited in seminal papersby Pogrebinskii [1℄ and Prie [2℄.In this paper, we onsider a physially entirely dif-ferent situation where the driving urrent is reated byreal heavy partiles outside the ondutor (rather thanby Fermi degenerate quasipartiles within another on-dutor).Two formulations of the problem are feasible.1. The dragging �ux onsists of heavy ions of almostthe same veloity V.2. A �ux of weakly ionized gas is in thermal equilib-rium, having some temperature T and hydrodynamialveloity V (f. with Ref. [3℄).*E-mail: mag.muradov�mail.io�e.ru

In this paper, we treat the �rst possibility. In otherwords, we onsider an ion beam, i. e., a �ux of ions hav-ing the same veloityV. For the simplest situation, thevalue of veloity V is determined by the aeleratingvoltage V and the ion mass M asMV 22 = eIV; (1)where eI is the harge of an ion.It is interesting to ompare in advane the situa-tion we disuss in this paper with the drag in the asewhere both ondutors are one-dimensional (1D) stru-tures with the eletrons performing ballisti (ollision-less) motion. Suh nanosale systems may have ratherlow eletron densities, whih an be varied by means ofthe gate voltage. The e�e (eletron�eletron) intera-tion an be treated as e�e ollisions between the ele-trons belonging to the drive (ative) and drag (passive)wires (see Refs. [4�11℄).Experimentally, in our opinion, the situation withtwo 1D quantum wires annot be onsidered settled.Two 1D quantum wires interating via a Coulomb po-tential are usually reated in solids arti�ially (e. g., bysplit gates), and therefore speial are should be takenin order that there be no tunneling between the wires,beause tunneling an hamper observation of the drag.On the other hand, a hange in the split gate voltagemay result not only in the shift of the hemial po-tentials of individual nanowires but also in variation ofthe barrier width (or a spatial distane) between the6 ÆÝÒÔ, âûï. 6 (12) 1137



V. L. Gurevih, M. I. Muradov ÆÝÒÔ, òîì 148, âûï. 6 (12), 2015wires. In some ases, even a hange in the Coulombdrag urrent diretion is observed [9℄. Furthermore, aphonon-mediated ontribution [12, 13℄ to the drag isin general inevitable for two nanowires formed by splitgates.It is usually assumed that the eletrons of the quan-tum wires are degenerate and the temperature is lowompared to the eletron Fermi energy. The ollision-less quantum wires at as waveguides for the eletronde Broglie waves. For a strong Fermi degenerayT � �; (2)where � is the Fermi energy (we use the energy unitsfor the temperature T assuming kB � 1), eah mini-band of transverse quantization (hannel) makes theontribution to the ondutane given by [14℄G0 = e2�~ (3)(e being the eletron harge), and hene the total on-dutane of a quantum wire isG = NG0;where N is the number of ative hannels, i. e., mini-bands with bottoms �n(0) below the Fermi level �. It isassumed that eah quantum wire is onneted to idealeletroni reservoirs attahed to its ends. The relax-ation proesses in the reservoirs are onsidered to beso fast that eah of them is in thermal equilibrium.The e�e interation within a single quantum wire doesnot result in a urrent variation beause of the quasi-momentum onservation in e�e ollisions in a semion-dutor. However, if two suh wires, 1 and 2, are nearone another and are parallel, the Coulomb interationof eletrons belonging to di�erent wires an transferquasimomentum between the wires, whih eventuallygives rise to a drag e�et. The drag fore due to theballisti urrent in wire 2 reates a sort of permanentaeleration on the eletrons of wire 1. As wire 1 hasa �nite length L, a steady drag urrent Jd is estab-lished. Within the Fermi-liquid approah, we shouldrestrit ourselves to diret e�e ollisions mediated bythe Coulomb interation.For suh e�e ollision to be possible, the absolutevalues of the four eletron energies should be withinthe stripes of width approximately equal to T near theorresponding Fermi levels, �d and �a. This meansthat the relation j�a � �dj . T (4)

should hold. In other words, beause of the onserva-tion of the eletron energy and quasimomentum in om-bination with the Fermi degeneray, the drag urrentexists only if the Fermi levels of the eletrons of bothwires oinide within the auray of thermal broaden-ing. A 1D quantum wire an have several minibandsof transverse quantization (hannels), and there is aFermi level assoiated with eah suh hannel. The o-inidene of any pair of Fermi levels of the ative (drive)and drag wires should result in a sharp spike of the dragurrent [4℄.The primary aim of this paper is to onsider the sit-uation where many (or some) of the above-mentionedexperimental di�ulties do not arise and the piture isas lear as possible, suh that the Coulomb drag ouldbe investigated exatly, retaining the prinipal featuresof the 1D drag situation as losely as possible. As re-gards the drag by an ion beam, quite unlike the situa-tion with two Fermi-degenerate ondutors, the velo-ity of ions V an be varied in experiment. As we see inwhat follows, this possibility provides a tool to investi-gate the eletron spetrum of a ballisti 1D ondutor.We see below that varying the veloity V allows ob-serving a maximum of the drag urrent Jd(V ). Theposition of the maximum orresponds to the onditionV = vF =2; (5)where vF is the Fermi veloity orresponding not toany miniband (as in the ase of two quantum wiresoutlined above) but to the uppermost miniband takingpart in ondution of the drag urrent. The point is ina di�erent physis behind these two types of osillatorybehavior.Our purpose is to investigate the main features ofthis drag phenomenon. We assume that the distane dbetween the ion beam and the wire is muh larger thanthe width of the wire, and hene the Coulomb intera-tion of ions and eletrons is a smooth funtion on thesale of this width. Then the seletion rules for the or-responding matrix elements require that the eletronsinvolved in the transitions hange their quasimomentaand remain in the �rst approximation within the initialtransverse quantized hannel n. We an vary the velo-ity V of the ions with the aelerating voltage V andmeasure the resulting variation of the drag urrent (ordrag voltage). We let Vr denote the volume oupiedby the nanowire and VR denote the volume where the�ux of ions propagates and interats with the eletronsof the nanowire. We assume both Vr and VR to have a1D shape of length L parallel to the z axis.For the treatment of our problem, we use the Boltz-mann equation for the one-partile eletron distribu-1138



ÆÝÒÔ, òîì 148, âûï. 6 (12), 2015 Drag of ballisti eletrons by an ion beamtion funtion. As is well known, due to e�e intera-tion, a single-hannel state may be unstable, whih forN = 1 gives rise to the so-alled Tomonaga�Luttingerliquid [15, 16℄ for the drag wire. This means that theresults of this paper are valid forN > 1; the aseN = 1may be not overed by the theory we work out below.We an give the following qualitative onsidera-tions onerning the drag by an ion beam. Dueto the onservation of quantities suh as the energy,the transverse quantized hannel number n, and the(quasi)momentum in eletron�ion ollisions, we have toonsider in the Born approximation the transition of aneletron from an jn; pi to an jn; p+qzi state (where p isthe z-omponent of the eletron quasimomentum) andthat of the ion from a jPi to a jP� qi state aordingto the relationp22m + P22M = (p+ qz)22m + (P� q)22M ; (6)wherem is the e�etive mass of the ondution eletronandM is the mass of an ion. The Æ-funtion desribingthe energy onservation an therefore be written asÆ � q2z2m �1 + mM �+ qzm (p�mV ) + q2?2M � �� 2mjqzjÆ [qz � 2(mV � p)℄ ; (7)where Pz � P = MV . In what follows, we take intoaount that m=M � 1 and neglet m=M omparedto unity and (m=M)q2? ompared to q2z . Therefore, thetransferred (quasi)momentum is qz = 2(mV � p) andthe probability of suh a transition inludes the fatorfn(p)[1� fn(p+ qz)℄� fn(p+ qz)[1� fn(p)℄ == fn(p)� fn(2mV � p) (8)as well as the eletron�ion Coulomb interation matrixelement squared. For the 1D situation under onsider-ation, it has a fator proportional toK20 (jqzjd=~)��qz=2(mV�p) ; (9)where d is the distane between the ion beam andthe wire and K0 is the MDonald funtion (see belowEq. (19)). For it, we an use the approximate equationsK0(s) � ln 2s ; s� 1; (10)K0(s) �r �2se�s; s� 1; (11)
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Fig. 1. Momenta from �pF to 2mV �pF are involvedin transitions. For V > vF =2, all negative momenta pontribute to the drag urrentwhere ln  = 0:577. The drag urrent is proportional tothe sum over eletron quasimomenta p of the produtsin Eqs. (7)�(9). We onsider p < 0 and require thestate p to be oupied, whih leads to �pF < p < 0.The requirement that the �nal state with the momen-tum 2mV �p is empty gives 2mV �p > pF if V < vF =2(Fig. 1). If V > vF =2, there is no additional restri-tion exept �pF < p < 0, i. e., all oupied states areinvolved in transitions. Therefore, if V < vF =2, weobtain for the drag urrentJd / �pF+2mVZ�pF dpK20 [2(mV � p)d=~℄mV � p == pF+mVZpF�mV dpK20 (2pd=~)p ; (12)and we see that an inrease in V dereases the mini-mal transferred momentum and inreases the e�etiveCoulomb interation K0(2pd=~). If V > vF =2, we haveJd / 0Z�pF dpK20 [2(mV � p)d=~℄mV � p == pF+mVZmV dpK20 (2pd=~)p ; (13)and an inrease in V results in a derease in the dragurrent. These equations provide an adequate desrip-tion of the drag urrent dependene on the ion beamveloity, as an be readily seen in our quantitative ap-proah below.One more omment onerning onservation law (6)is alled for. The point is that p is the z-omponent ofthe eletron quasimomentum rather than the true mo-mentum. This means that it is onserved within the1139 6*



V. L. Gurevih, M. I. Muradov ÆÝÒÔ, òîì 148, âûï. 6 (12), 2015auray of ~ times the additional vetor of the reip-roal lattie. It an be veri�ed, however, that in thease of a simple eletron spetrum (one minimum inthe enter of the Brillouin zone), the onservation lawis given by Eq. (6).2. INTERACTION OF AN ION BEAM WITHELECTRONS OF A NANOSTRUCTUREFor simpliity, we assume the width of the beam tobe onstant (atually, it may slightly vary in the ourseof beam propagation). Then we an write the distribu-tion of the ions within the beam asFP = N(2�~)3Æ(Px)Æ(Py)Æ(Pz � P ); (14)where N is the ion onentration.The ollision term of the Boltzmann equation for1D eletrons and 3D ions in the Born approximation isgiven by��fnp�t �oll � Iff; Fg = Z VRd3P(2�~)3 Z VRd3q(2�~)3 �� 2�~ jhp; n;PjU jp+ qz ; n;P� qij2 �� Æ(�np +EP � �n;p+qz �EP�q)�� [fnp(1�fn;p+qz )FP�fn;p+qz(1�fnp)FP�q℄ ; (15)where �n(p) = �n(0) + p2=2m: (16)Here, n is the number of the hannel, i. e., of the mini-band of 1D transverse quantization (aording to theassumption made above, this number does not hangein the ourse of eletron transitions), q is the trans-ferred (quasi)momentum, andU = 21 + � eeIjR� rj (17)desribes the Coulomb interation of an ion with aharge eI and an eletron in the wire, with � being thedieletri onstant of the wire. For the matrix elementin Eq. (15), we havehp; n;PjU jp+ qz ; n;P�qi = ZVr d3r ZVR d3R �n(r?)��	�P 2eeIL(1+�)jr�Rj n(r?)	P�q exp� iqzz~ � : (18)

BeauseZ dZdzLjr�Rj exp� iqz(z � Z)~ � == 2K0� jqz jj�r?j~ � ; (19)where j�r?j �p(x�X)2 + (y � Y )2;we an writehp; n;PjU jp+ qz ; n;P� qi == 4eeI(1 + �)VR Z dR? Z dr?j n(r?)j2 �� exp�� iq?R?~ �K0(jqz jj�r?j=~): (20)The Boltzmann equation for eletrons isv �fnp�z = ���fnp�t �oll ; (21)where v = d�npdp = pm (22)is the eletron veloity.To alulate the urrent in the wire, we iterate theBoltzmann equation for the eletrons of the wire inthe term desribing ollisions between eletrons of thewire and ions. In the zeroth approximation, we anhoose the eletron distribution funtion in the olli-sion term to be the equilibrium one. In what follows,fnp � fF (�np � �) is assumed, where fF is the Fermidistribution funtion and � is the Fermi level. The �rstiteration of Eq. (21) gives the nonequilibrium part ofthe distribution funtion in the form�fnp = ��z � L2� 1vnp Iff; Fg (23)with the two signs orresponding to p > 0 and p < 0.Here, Iff; Fg is a shorthand notation for the ollisionterm. Using the partile onservation property of thesattering integralXn Z dp Iff; Fg = 0; (24)we obtain the drag urrent Jd in the form (f. Ref. [17℄)Jd = �2eLXn 1Z0 dp2�~Iff; Fg: (25)1140



ÆÝÒÔ, òîì 148, âûï. 6 (12), 2015 Drag of ballisti eletrons by an ion beamWith the distribution funtion given by Eq. (14), wehaveJd = �2eNV2RLXn 1Z0 dp2�~ Z d3q(2�~)3 �� 2�~ njhp; n; PezjU jp+ qz; n; Pez � qij2 ��Æ(�np+EPez��n;p+qz�EPez�q)fnp(1�fn;p+qz )�� jhp; n; Pez + qjU jp+ qz ; n; Pezij2 �� Æ(�np +EPez+q � �n;p+qz �EPez )�� fn;p+qz(1� fnp)o ; (26)where ez is the unit vetor along the z axis. In the �rstterm in the integrand, we hange q ! �q and shiftthe integration variable p by qz . ThenJd = �2eNV2RLXn Z d3q(2�~)3 qzZ0 dp2�~ �� 2�~ jhp; n; Pez + qjU jp+ qz ; n; Pezij2 �� Æ(�np +EPez+q � �n;p�qz �EPez )�� fn;p�qz (1� fnp); (27)and hene the drag urrent isJd = �J0 2MSRm�2~2 Xn Z dqz qzZ0 dp fn;p�qz(1� fnp)�� Z dq?g(q?; jqzj)�� Æ �q2? � q2z �Mm � 1�+ 2qz �Mpm + P�� :Here, we introdueJ0 = e(2eeI)2LNmSR(1 + �)2�~3and a dimensionless quantity g(q?; jqzj) aording toS2Rg(q?; jqz j) = ����Z dR?dr? exp�� iq?R?~ � �� j n(r?)j2K0� jqz jj�r?j~ �����2 ; (28)where SR is the ross-setional area of the ion beam.We obtain

Jd = J0 2MSRm�2~2 Xn 1Z0 dqz qzZ0 dp fn;p�qz(1� fnp)�� Z dq?g(q?; qz)���Æ �q2? � q2z �Mm � 1�+ 2qz �Mpm � P�� �� Æ �q2? � q2z �Mm � 1�+ 2qz �Mpm + P��� : (29)2.1. Linear responseIn the linear response regimeV � T=pnF ; where pnF =p2m[�� �n(0)℄; (30)the di�erene of Æ-funtions in Eq. (29) an be ex-panded as (we again take into aount that M=m� 1)Æ �q2? � q2zMm + 2qz �Mpm + P���� Æ �q2? � q2zMm + 2qz �Mpm � P�� == m2M jqzj �Æ� mq2?2Mqz � qz2 + p+mV � �� Æ� mq2?2Mqz � qz2 + p�mV �� == mV mM jqzj ��pÆ� mq2?2Mqz � qz2 + p� :Then the integration by parts givesJd = J0 2SR�2~2mV Xn 1Z0 dqzqz qzZ0 dp Z dq?g(q?; qz)�� Æ� mq2?2Mqz � qz2 + p� ��pfn;p�qz (1� fnp): (31)Using��pfn;p�qz(1� fnp) = (1� fnp)�� Æ(qz � p� pnF ) + fn;p�qzÆ(p� pnF ); (32)we haveJd = J0 4SR�2~2mV Xn 1ZpnF dqz Z dq?g(q?; qz)�� �Æ�q2z � 2pnF qz + mq2?M � (1� fn;qz�pnF ) ++ Æ�q2z � 2pnF qz � mq2?M � fn;pnF�qz� : (33)1141



V. L. Gurevih, M. I. Muradov ÆÝÒÔ, òîì 148, âûï. 6 (12), 2015Eliminating the Æ-funtions yieldsJd = J0 2SR�2~2mV Xn Z dq? ���g(q?; pnF + p1)1�fn;p1p1 +g(q?; pnF + p2)fnp2p2 � ;where p1 = pp2nF �mq2?=M and p2 == pp2nF +mq2?=M . The expression for Jd anbe simpli�ed asJd = J0 4SR�2~2mV ��Xn 1pnF Z dq? g(q?; 2pnF )exp (q2?=2MT ) + 1 : (34)If the ion beam ross setion is of a irular formwith radius a, we haveg(q?; 2pnF ) = �2~J1(aq?=~)aq? �2K20 �2pnF d~ � ; (35)where J1(x) is the Bessel funtion of the �rst order andd is the distane between the entral lines of the ion �uxand the wire.Below, we disuss the speial ase whereg(q?; 2pnF ) is independent of q? in more detail.For instane, this is the ase ifpMT � ~=a: (36)Then we obtainJd = J0 4a2 ln 4~2 MT VvF K20 �2pF d~ � ; (37)where vF = pF =m is the Fermi veloity andJ0 = e(2eeI)2LNma2(1 + �)2~3 : (38)In the opposite ase wherepMT � ~=a; (39)the drag is independent of temperature. For the valuesM = 10�22 g (Ga), T = 4 K, and a = 10�5 m, thisinequality an easily be satis�ed. Then, we haveJd = J0 8VvF K20 �2pF d~ � : (40)It is interesting to alulate the ratio Jd=JI in thisase: JdJI = eeI 32(eeI)2Lm(1 + �)2�~3vF K20 �2pFd~ � : (41)

Here, we an use Eqs. (10) and (11) for K0(s).For an estimate, we assume the values L = 10�4 m,m = 7 � 10�29 g, vF = 2 � 107 m/s, � = 10, andpF d=~ = 2, whene K20 (2pFd=~) = 1:3 � 10�4. Then,for JI = 10�8 A, we have Jd = 2 � 10�9 A and theorresponding drag voltageVd � 20�V: (42)Naturally, if JI inreases, Vd also inreases in pro-portion to JI . 2.2. Nonlinear aseWe onsider the simplest ase of low temperaturesassuming that V � T=pF : (43)In our further alulation, we assume that T = 0.Then, the integration due to the Fermi funtions inEq. (29) is restrited and we obtain (the �rst or theseond Æ-funtion ontributes for V > 0 and V < 0,respetively, and therefore the drag urrent hanges itssign with V , as it should)Jd = J0 a2�~2 Xn 0� 2pnFZpnF dqzqz qzZpnF dp ++ 1Z2pnF dqzqz qzZqz�pnF dp1AZ dq?g(q?; qz)�� Æ �p�mV � qz2 �1� mM �+ mq2?2qzM � :The result valid forV < vF =2 (44)is Jd = J0 a2�~2 Xn Z dq?� �4PpnF � q2?��� p+Zp� dqzqz g(q?; qz); (45)where � is the step funtion andp� = pnF �mV +q(pnF �mV )2 �mq2?=M(other ases are onsidered in Appendix A).For V � vnF , the integration variable qz is in theviinity of 2pnF and we have1142



ÆÝÒÔ, òîì 148, âûï. 6 (12), 2015 Drag of ballisti eletrons by an ion beamJd = J0 a22�~2 Xn Z dq?� �4PpnF � q2?����4mVpnF � mM q2?p2nF � g(q?; 2pnF ): (46)Equation (46) an be substantially simpli�ed ifg(q?; 2pnF ) is independent of q?; this is the ase ifthe ion �ux ross setion harateristi width a obeysthe inequality pPpnF a=~� 1: (47)Then, Jd = J1Xn g(2pnF ); (48)where J1 = J0 (2mV )2a22~2 Mm : (49)This expression is valid for V > 0, i. e., when theion �ux is direted �to the right�. Then, the momen-tum transferred to the eletron system in the wire isalso direted to the right and the urrent (sine e < 0)�ows in the opposite diretion regardless of the sign ofthe dragging ion harge.Assuming that the distane d between the ion �uxand the wire is muh larger than the harateristiross-setional length of the wire and the �ux, we anwrite g(q?; 2pnF ) � K20 �2pnF d~ � (50)and Jd = J1Xn K20 �2pnFd~ � : (51)Using approximation (11) for the funtion K0, we ob-tain Jd = J1Xn 1knF d exp(�4knF d); (52)where knF = pnF =~.In the ase apPpnF =~� 1, we haveJd = 4J0MV Xn 1pnF K20 �2pnF d~ � (53)and therefore the drag urrent is a linear funtion of V .
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468
(Jd=J0)� 103 12
Fig. 2. Drag urrent dependene on the ion beam ve-loity for two parameter values k2F d = 3 (urve 1 )and k2F d = 3:2 (urve 2 ). We take v2F = kv1F andk = 3=2. The �rst peak orresponds to V=v2F == 1=2k (i. e., V=v1F = 1=2) and the seond peak(to the right) orresponds to V=v2F = 1=2. Here,J0 = e(2eeI)2LNma2=(1 + �)2~33. CONCLUDING REMARKSWe have developed a theory of Coulomb drag ofeletrons in a 1D ballisti nanostruture by an ionbeam. This provides an example of drag of quasipar-tiles of a nanostruture by partiles of the beam. Itis worth mentioning that suh a beam may onsist notonly of heavy ions but also of free eletrons. The freeeletron mass is usually bigger than the e�etive massof ondution eletrons, and hene the approximationsadopted in our alulation, M � m, may remain validin this ase.The experimental setup should permit varying theveloity V within rather wide limits. We see, however,that to ahieve a large drag e�et, we should hoosethe value of V near vnF =2 (Fig. 2). Here, we wishto note that this veloity is preferred regardless of theion beam shape or the distane from the nanostruture(see Appendix B). This means in partiular that theion beam drag may be a useful tool in nanostruturespetrosopy. APPENDIX AEvaluation of the drag urrent for variousratios � = V=vFWe introdue the dimensionless parameters� = mV=pnF = V=vnF1143



V. L. Gurevih, M. I. Muradov ÆÝÒÔ, òîì 148, âûï. 6 (12), 2015and b = mq2?=p2nFMand write q instead of q(1�m=M) in the argument ofthe Æ-funtion,Jd = J0Xn �pnFa~ �2 �� 1� 0� 2Z1 dq qZ1 dp+ 1Z2 dq qZq�1 dp1A��1q Z dq?g(pnFq?; pnF q)Æ�p���q2+ b2q� ; (A.1)where J0 = e(2eeI)2LNma2=(1 + �)2~3:For � < 1=2, we obtainJd = J0Xn �pnFa~ �2 1� Z dq?�(4�� b)�� A+(�;b)ZA+(��;�b) dq g(pnFq?; pnF q)q ; (A.2)where A�(�; b) = 1 + ��p(1 + �)2 � b.If 1=2 < � < 1, we obtainJd = J0Xn �pnFa~ �2 1� Z dq? ��8><>:�(2��1�b) A+(�;b)ZA+(��1;b) dq +�(b�2�+1)�(4��b)�� A+(�;b)ZA+(��;�b) dq9>=>; g(pnFq?; pnF q)q : (A.3)We do not give the expliit expressions for larger valuesof V=vF here, but present a simple expression for thedrag urrent valid for ~=a� mVpM=m:Jd = 4J0 1Z� dzz K20 �2pF zd~ ���(�exp� ([z � �℄2 � 1)p2F2mT �+ 1��1 �� �exp� ([z + �℄2 � 1)p2F2mT �+ 1��1) : (A.4)

This expression redues to Eq. (40) and Eq. (53) in theorresponding limit ases. For mV � T=vF , the dif-ferene of the Fermi funtions restrits the integrationregion suh that we haveJd = 4J0 1+�Z1�� dzz K20 �2pF zd~ � (A.5)for � < 1=2 andJd = 4J0 1+�Z� dzz K20 �2pF zd~ � (A.6)for � > 1=2. The drag urrent alulated aord-ing to these simple formulas pratially oinides withthat alulated from the exat expressions, presentedin Fig. 2 for N = 2.APPENDIX BPreferred veloity of the beamWe introdue the notationj = Jd�2~22J0SRm: (B.1)We di�erentiate Eq. (29) with respet to mV and de-termine the sign of the derivative. In the integrand, wethen obtain the sum of Æ-funtions,� ddp �Æ�q2?mM � q2z + 2qz(p�mV )� ++ Æ�q2?mM � q2z + 2qz(p+mV )�� : (B.2)We integrate over p by parts to obtaindjdV = 1Z0 dqz Z dq?g(q?; qz)�� qzZ0 dp �Æ�q2?mM � q2z + 2qz(p�mV )� ++ Æ �q2?m=M � q2z + 2qz(p+mV )� ��� ddp [fn;p�qz(1� fn;p)℄�� 1Z0 dqz Z dq?g(q?; qz)(1� fqz)�� �Æ�q2?mM + q2z � 2qzmV � ++ Æ�q2?mM + q2z + 2qzmV �� : (B.3)1144



ÆÝÒÔ, òîì 148, âûï. 6 (12), 2015 Drag of ballisti eletrons by an ion beamWe reall the strong Fermi degeneray of the eletronsystem, suh that 1� f0 = 0, f0 = 1. Using Eq. (32),we then havedjdV = 1Z2pnF dqz Z dq?g(q?; qz)�� �Æ�q2?mM + q2z � 2qz(pnF +mV )� ++ Æ�q2?mM + q2z � 2qz(pnF �mV )��� 1ZpnF dqz �� Z dq?g(q?; qz)Æ�q2?mM + q2z � 2qzmV � : (B.4)We again use the relation fqz�pnF = 1 for qz > pnF andtake into aount that V > 0, whih implies that thelast Æ-funtion in Eq. (B.3) does not ontribute. Theseond Æ-funtion in the �rst integral in the previousexpression does not ontribute as well, and we arriveat djdV = I+ � I�;where we introdue the notationI+ = Z dq? 1Z2pnF dqzg(q?; qz)�� Æ�q2?mM + q2z � 2qz(pnF +mV )� ; (B.5)I� = Z dq? 1ZpnF dqzg(q?; qz)�� Æ�q2?mM + q2z � 2qzmV � : (B.6)If V=vnF < 1=2, we obtainI+ = Zq2?<4MpnFV dq?g(q?; q1)2p(pnF +mV )2 �mq2?=M ; (B.7)whereq1 = pnF +mV +q(pnF +mV )2 �mq2?=M;and I� = 0, and the drag urrent is an inreasing fun-tion of the beam veloity V .The integral I� takes nonzero values only ifV=vnF > 1=2. If V=vnF < 1, we haveI� == Zq2?<MpnF (2mV�pnF )=m dq?g(q?; q2)2p(mV )2�mq2?=M ; (B.8)where q2 = mV +q(mV )2 �mq2?=M:In this region, I� beomes larger than I+ (the latter be-ing pratially zero due to the exponential dependene
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