УПРАВЛЯЕМЫЕ МАГНИТНЫМ ПОЛЕМ ПОВЕРХНОСТНЫЕ ЭЛЕКТРОМАГНИТНЫЕ СОСТОЯНИЯ В СИСТЕМЕ ГРАФЕН – АНТИФЕРРОМАГНИТНЫЙ ФОТОННЫЙ КРИСТАЛЛ

Ю. О. Аверков^{*}, С. И. Тарапов, В. М. Яковенко, В. А. Ямпольский

Институт радиофизики и электроники им. А. Я. Усикова Национальной академии наук Украины 61085, Харьков, Украина

Поступила в редакцию 30 июня 2014 г.

Теоретически исследованы поверхностные электромагнитные состояния (ПЭМС) в терагерцевом частотном диапазоне на графене с линейным законом дисперсии носителей заряда, помещенном в антиферромагнитный фотонный кристалл. Элементарная ячейка такого кристалла состоит из слоев немагнитного диэлектрика и одноосного антиферромагнетика, легкая ось которого параллельна слоям кристалла. Постоянное магнитное поле направлено параллельно легкой оси антиферромагнетика. Получено выражение, связывающее частоты ПЭМС с параметрами структуры. Решена задача о возбуждении ПЭМС внешней электромагнитной волной ТЕ-поляризации и построены зависимости коэффициента прохождения от величины постоянного магнитного поля и концентрации носителей заряда. Показано, что эти зависимости существенно отличаются от случая обычного двумерного электронного газа с квадратичным законом дисперсии электронов. Таким образом, по положению пиков коэффициента прохождения, связанных с резонансным возбуждением ПЭМС, можно определить характер закона дисперсии носителей заряда в двумерном электронном газе.

DOI: 10.7868/S004445101504014X

1. ВВЕДЕНИЕ

Известно, что графен представляет собой двумерную аллотропную форму углерода с кристаллической решеткой подобной по своей структуре медовым сотам [1]. Элементарная ячейка такой решетки представляет собой правильный шестиугольник, в вершинах которого расположены атомы углерода. Графен можно рассматривать в качестве основной структурной единицы других аллотропных форм углерода — фуллеренов [2], являющихся нульмерными объектами, квантовых нанотрубок [3] — одномерных объектов и, наконец, трехмерных графитов, представляющих собой стопки графенов, связанных между собой слабыми ван-дер-ваальсовыми силами. Теоретическое описание структуры энергетических зон графена с указанием на его полуметаллические проводящие свойства было выполнено еще в 1947 г. [4]. Однако первые графеновые пленки были получены лишь спустя почти 60 лет путем многократного механического расщепления высокоори-

*E-mail: yuriyaverkov@gmail.com

ентированного пиролитического графита [5]. Уникальность работы [5] заключается еще и в том, что она доказала принципиальную возможность существования правильных термодинамически стабильных двумерных кристаллов, отрицавшуюся в течение длительного времени (см., например, работу [6] и цитированную в ней литературу).

Главным отличием электронных свойств графена от свойств «обычного» двумерного электронного газа (ДЭГ) (например, тонкой металлической или полупроводниковой пленки) состоит в том, что графен — это полуметалл с нулевым перекрытием зон. Валентная зона и зона проводимости графена касаются в двух точках (так называемые дираковские точки) зоны Бриллюэна. Вблизи этих точек зависимость энергии носителей заряда от импульса линейна, а сами носители заряда являются безмассовыми киральными дираковскими фермионами [7–9]. Скорость движения фермионов в графене приблизительно в 300 раз меньше скорости света в вакууме. Дираковский характер носителей заряда в графене делает возможным, например, наблюдать целый ряд уникальных эффектов, таких как аномальный квантовый эффект Холла (при комнатной температуре) [8], парадокс Клейна [10–12], эффект Ааронова – Бома [13], андерсоновская локализация [14], кулоновская блокада [15] и др. В сильных магнитных полях в графенах могут возникать экситонные щели [16] и формироваться вигнеровские кристаллы [17]. Бинарные графеновые слои могут проявлять как ферромагнитные, так и антиферромагнитные свойства [18].

Описанные выше необычные физические свойства графена обусловлены внутренними квантовомеханическими особенностями самого графена и, соответственно, проявляются тоже на квантовом уровне. В то же время квантовомеханические особенности транспортных свойств графена отражаются и на его «вполне классических» электродинамических характеристиках. Так, в работе [19] предложена концептуальная модель когерентного источника терагерцевого излучения, основанная на эффекте инверсионной заселенности электронами уровней в валентной зоне графена вследствие межзонных переходов, вызванных взаимодействием электронов в валентной зоне с поверхностными плазмонами на графене. В работе [20] обнаружен гигантский эффект Парселла для элементарного диполя, расположенного на поверхности метаматериала, состоящего из чередующихся графеновых и диэлектрических слоев. Указано, что обнаруженный эффект может быть использован для существенного увеличения интенсивности источников терагерцевого излучения. Высокая подвижность электронов в графене (до $10^6 \text{ см}^2/\text{B} \cdot \text{c} [21]$) позволяет создать на его основе активные плазмонные интерферометры, фотодетекторы, работающие в диапазонах частот от терагерц до видимого излучения и обладающие экстремально высоким быстродействием, малыми значениями управляющего напряжения, малой потребляемой мощностью и очень компактными размерами [22].

В работе [23] была предсказана способность графена поддерживать распространение ТЕ-поляризованных поверхностных электромагнитных волн. Физической причиной такой способности является линейный закон дисперсии электронов проводимости вблизи дираковской точки, а необходимым условием — отрицательная мнимая часть результирующей проводимости графена.

Настоящая работа посвящена теоретическому изучению свойств поверхностных электромагнитных состояний (ПЭМС), локализованных вблизи графена, и их отличию от свойств ПЭМС вблизи ДЭГ с квадратичным законом дисперсии электронов. Напомним, что ПЭМС — это однородные вдоль поверхности электромагнитные колебания с нулевым тангенциальным волновым числом. Амплитуды полей таких колебаний экспоненциально убывают при удалении от границы раздела сред. Возможность существования таких состояний была впервые отмечена в работах [24, 25]. В этих же работах впервые была проведена аналогия между ПЭМС и таммовскими электронными состояниями [26], а также выполнены эксперименты по возбуждению ПЭМС. Практический интерес к ПЭМС связан с возможностью использования таких состояний и структур, в которых они реализуются, для создания резонансных оптических фильтров [27], поляритонных лазеров [28] и устройств оптической логики [29]. На сегодняшний день выполнено большое количество теоретических и экспериментальных исследований свойств ПЭМС на границах плазмоподобной среды (ΠC) и фотонного кристалла (ΦK) [27, 30, 32–37], а также на границе раздела сред двух ФК [30-32, 38].

ПЭМС на границе искусственной ПС и ФК в гигагерцевой области частот были впервые экспериментально исследованы в работе [34]. Влияние постоянного магнитного поля на свойства ПЭМС на границе ПС и диэлектрического ФК теоретически изучено в [36]. Свойства ПЭМС на границе магнитного и диэлектрического ФК, а также в структуре ПС-феррит-диэлектрический ФК в постоянном магнитном поле были детально проанализированы в [37, 38]. Дисперсионные свойства ПЭМС в структуре, состоящей из конечного числа периодически чередующихся графеновых и диэлектрических слоев, были исследованы в [39]. Было установлено, в частности, что эти свойства существенным образом зависят от толщин крайних диэлектрических слоев, ограничивающих исследованную структуру.

В недавней работе [40] теоретически исследованы дисперсионные характеристики электромагнитных волн ТМ- и ТЕ-типов, локализованных вблизи графена, внедренного в диэлектрический ФК. Показана возможность существования этих волн в одном и том же частотном диапазоне, в отличие от случая, когда графен находится в однородном диэлектрическом окружении (например, в вакууме [23]). Установлено, что начиная с ИК-области спектра, где мнимая часть результирующей проводимости графена становится отрицательной, в первой запрещенной зоне ФК появляется локализованная ТЕ-мода, несмотря на несимметричное диэлектрическое окружение графена. Проведен сравнительный анализ глубин локализации электромагнитного поля ТМ- и ТЕ-мод вблизи графена в сантиметровом, терагерцевом и ИК-диапазонах, а также изучено возбуждение соответствующих мод внешней электромагнитной волной в конечной структуре ФК-графен-ФК.

В отличие от [40], в настоящей работе теоретически исследованы спектральные свойства ПЭМС на графене, находящемся в антиферромагнитном ФК во внешнем постоянном магнитном поле. Основное внимание уделено анализу магнитополевых зависимостей спектра пропускания конечной структуры антиферромагнитный ФК-ДЭГ-антиферромагнитный ФК, качественно различающихся для ДЭГ с линейным и квадратичным законами дисперсии. Нами показано, в частности, что поведение зависимостей положений пиков коэффициента пропускания, соответствующих возбуждению ПЭМС, в запрещенной зоне ФК от концентрации носителей заряда в ДЭГ качественно близко к поведению соответствующих зависимостей для энергии Ферми. Принципиально новым, на наш взгляд, результатом настоящей работы является указание на то, что свойства ПЭМС в антиферромагнитных ФК, а также эффекты резонансного возбуждения этих состояний внешней электромагнитной волной могут эффективно управляться внешним постоянным магнитным полем. Например, нами показано, что исследуя магнитополевую зависимость спектра пропускания антиферромагнитного ФК с внедренным в него ДЭГ, можно определить тип закона дисперсии носителей заряда в ДЭГ — линейный (для графена) или квадратичный (например, для тонкой графитовой пленки, металла или полупроводника).

Для возбуждения ПЭМС на графене необходимо, чтобы частоты соответствующих колебаний не были намного меньше, чем импульсная частота ν релаксации электронов, которая вследствие влияния подложки является довольно большой величиной (например, для обычного, «неподвешенного» графена $\nu \sim 10^{13} \text{ c}^{-1} [41, 42]$). Этому условию удовлетворяют терагерцевые и более высокие частоты. Поэтому наиболее подходящим материалом для формирования магнитного ФК являются антиферромагнетики, резонансные частоты в которых могут лежать в области субмиллиметрового диапазона электромагнитного спектра [43]. Мы рассматриваем случай низких температур — значительно ниже точки Нееля *T_N*. Необходимые численные расчеты выполнены на примере антиферромагнитного дифторида железа FeF₂ с $T_N \approx 78$ K [44] при гелиевых температурах.

2. ПОСТАНОВКА ЗАДАЧИ И ОСНОВНЫЕ УРАВНЕНИЯ

Систему координат выберем так, чтобы ось y была направлена вдоль нормали к слоям антиферро-

Рис.1. Геометрия задачи (АФК — антиферромагнитный фотонный кристалл)

магнитного ФК, а внешнее постоянное магнитное поле **H**₀ было направлено вдоль оси *z* (рис. 1). Элементарная ячейка антиферромагнитного ФК состоит из антиферромагнетика и немагнитного диэлектрика с толщинами слоев соответственно d_1 и d_2 . Период структуры антиферромагнитного ФК равен $d = d_1 + d_2$. Графен расположим в плоскости y = Nd, т.е. на границе между (N – 1)-й и N-й ячейками антиферромагнитного ФК. На рис. 1 для большей наглядности графен схематически показан в виде слоя конечной ширины. Антиферромагнетик является непроводящим и описывается диэлектрической проницаемостью ε_1 и тензором магнитной проницаемости μ . Немагнитный диэлектрик описывается диэлектрической проницаемостью ε_2 . Легкая ось антиферромагнетика параллельна оси z, т. е. вектору **H**₀. Рассмотрим геометрию Фойгта, когда электромагнитная волна распространяется в плоскости xy перпендикулярно легкой оси антиферромагнетика и, соответственно, направлению постоянного магнитного поля. Выберем ТЕ-поляризованную волну с компонентами полей $\mathbf{E} = (0, 0, E_z)$ и $\mathbf{H} = (H_x, H_y, 0)$. Будем полагать, что величина постоянного магнитного поля меньше некоторого критического значения *H*_{sf}, при котором в антиферромагнетике происходит спин-флоп-переход [45]. Также будем пренебрегать диссипативными потерями в слоях антиферромагнитного ФК.

Уравнения Максвелла для полей в области антиферромагнетика записываются следующим образом:

$$\operatorname{rot} \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}, \quad \operatorname{div} \mathbf{B} = 0, \tag{1}$$

$$\operatorname{rot} \mathbf{H} = \frac{\varepsilon_1}{c} \frac{\partial \mathbf{E}}{\partial t}, \quad \operatorname{div} \mathbf{E} = 0, \tag{2}$$

где векторы **B** и **H** связаны друг с другом соответствующим материальным уравнением. Задав поля электромагнитных волн в виде

$$\mathbf{E}_{\ell} = \mathbf{E}_{0\ell} \exp\left[i(k_x x + k_{\ell y} y - \omega t)\right], \quad \ell = 1, 2, \quad (3)$$

это материальное уравнение можно записать в виде $B_j = \mu_{jk} H_k$, где тензор μ определяется следующим выражением [44, 45]:

$$\boldsymbol{\mu} = \begin{pmatrix} \mu & i\mu_a & 0\\ -i\mu_a & \mu & 0\\ 0 & 0 & 1 \end{pmatrix}, \quad (4)$$

$$\mu = 1 + \frac{\omega_m \omega_a}{\omega_1^2 - \omega_+^2} + \frac{\omega_m \omega_a}{\omega_1^2 - \omega_-^2},$$
 (5)

$$\mu_a = \frac{\omega_m \omega_a}{\omega_1^2 - \omega_+^2} - \frac{\omega_m \omega_a}{\omega_1^2 - \omega_-^2},\tag{6}$$

где $\omega_m = 4\pi\gamma M_0, \, \omega_a = \gamma H_a, \, \omega_{\pm} = \omega \pm \gamma H_0,$

$$\omega_1 = \gamma \sqrt{H_a (2H_{ex} + H_a)} \,, \tag{7}$$

 γ — гиромагнитное отношение, M_0 — подрешеточная намагниченность, H_a и H_{ex} — эффективные поля анизотропии и обмена. Заметим, что критическое поле H_{sf} , при котором в антиферромагнетике происходит спин-флоп-переход, определяется выражением

$$H_{sf} = \sqrt{2H_a H_{ex}} \,. \tag{8}$$

Из уравнений Максвелла (1) и (2) получаем следующие выражения для компоненты E_z электрического и компонент H_x и H_y магнитного полей:

$$E_z = A_1 \exp(ik_{1y}y) + A_2 \exp(-ik_{1y}y), \qquad (9)$$

$$H_x = \frac{c}{\omega} \left[a_1 A_1 \exp(ik_{1y}y) - a_2 A_2 \exp(-ik_{1y}y) \right], \quad (10)$$

$$H_y = -\frac{c}{\omega} \left[b_1 A_1 \exp(ik_{1y}y) - b_2 A_2 \exp(-ik_{1y}y) \right], \quad (11)$$

где

$$a_1 = \frac{\mu k_{1y} + i\mu_a k_x}{\mu^2 - \mu_a^2}, \quad a_2 = \frac{\mu k_{1y} - i\mu_a k_x}{\mu^2 - \mu_a^2}, \quad (12)$$

$$b_1 = \frac{\mu k_x - i\mu_a k_{1y}}{\mu^2 - \mu_a^2}, \quad b_2 = -\frac{\mu k_x + i\mu_a k_{1y}}{\mu^2 - \mu_a^2}, \quad (13)$$

$$k_{1y} = \sqrt{\frac{\omega^2}{c^2}} \varepsilon_1 \mu_{eff} - k_x^2, \quad \mu_{eff} = \frac{\mu^2 - \mu_a^2}{\mu}.$$
 (14)

В выражениях (9)-(11) и последующих выражениях для полей будем опускать множитель $\exp[i(k_x x - \omega t)].$

В области немагнитного диэлектрика ($\mu_2 = 1$) уравнения Максвелла описываются формулами (1), (2), в которых вектор **В** заменяется на вектор **H**, диэлектрическая проницаемость ε_1 заменяется на ε_2 , а выражения для полей имеют вид

$$E_z = C_1 \exp(ik_{2y}y) + C_2 \exp(-ik_{2y}y), \qquad (15)$$

$$H_x = \frac{ck_{2y}}{\omega} \left[C_1 \exp(ik_{2y}y) - C_2 \exp(-ik_{2y}y) \right], \quad (16)$$

$$H_y = -\frac{ck_x}{\omega} \left[C_1 \exp(ik_{2y}y) + C_2 \exp(-ik_{2y}y) \right], \quad (17)$$

$$k_{2y} = \sqrt{\frac{\omega^2}{c^2}} \varepsilon_2 - k_x^2 \,. \tag{18}$$

Используя подход, развитый в работе [46] для описания таммовских связанных состояний на поверхности кристалла, представим поля в области y > Nd в виде суперпозиции падающей и отраженной волн:

$$E_{\Sigma,z}^{(R)}(y) = A_{in} E_{z,in}^{(R)}(y) \exp\left[-ik(y - Nd)\right] + A_r E_{z,r}^{(R)}(y) \exp\left[ik(y - Nd)\right], \quad (19)$$

$$H_{\Sigma,x}^{(R)}(y) = A_{in} H_{x,in}^{(R)}(y) \exp\left[-ik(y - Nd)\right] + A_r H_{x,r}^{(R)}(y) \exp\left[ik(y - Nd)\right], \quad (20)$$

где k — блоховское волновое число [47], первые слагаемые в формулах (19), (20) соответствуют полям падающей на границу y = Nd волны, а вторые слагаемые — полям отраженной от границы y = Nd волны. Верхний индекс «R» означает, что поля относятся к области справа от плоскости y = Nd графена. Константа A_{in} считается заданной, а константа A_r подлежит определению из граничных условий. Поля прошедшей волны (в области y < Nd — области с индексом «L») запишем в виде

$$E_{z}^{(L)}(y) = A_{tr} E_{z,tr}^{(L)}(y) \exp\left[-ik(y - Nd)\right], \qquad (21)$$

$$H_x^{(L)}(y) = A_{tr} H_{x,tr}^{(L)}(y) \exp\left[-ik(y - Nd)\right], \qquad (22)$$

где константа A_{tr} подлежит определению из граничных условий. Выражения для полей $E_{z,in}^{(R)}(y)$, $E_{z,r}^{(R)}(y)$, $H_{x,in}^{(R)}(y)$, $H_{x,r}^{(R)}(y)$ и $E_{z,tr}^{(L)}(y)$, $H_{x,tr}^{(L)}(y)$ приведены в работе [37].

Поля в антиферромагнитном ФК удовлетворяют блоховскому соотношению

$$\begin{pmatrix} E_z \left[(N+1) d \right] \\ H_x \left[(N+1) d \right] \end{pmatrix} = \exp(\pm ikd) \begin{pmatrix} E_z (Nd) \\ H_x (Nd) \end{pmatrix}$$
(23)

и условию трансляции [47]

$$\begin{pmatrix} E_z \left[(N+1) d \right] \\ H_x \left[(N+1) d \right] \end{pmatrix} = \mathbf{M}^{(TE)} \begin{pmatrix} E_z (Nd) \\ H_x (Nd) \end{pmatrix}, \quad (24)$$

где $\mathbf{M}^{(TE)}$ — матрица распространения ТЕ-волны, $\cos(kd) = (M_{11}^{(TE)} + M_{22}^{(TE)})/2$ [47]. Положим Im k > > 0. В этом случае знак «плюс» в показателе экспоненты в выражении (23) будет соответствовать волне, распространяющейся в положительном направлении оси y, а знак «минус» — волне, распространяющейся в отрицательном направлении оси y.

Условия (23) и (24) позволяют установить связь между компонентами электрического и магнитного полей на границе y = Nd в двух эквивалентных видах:

$$E_z(Nd) = \frac{\exp(\pm ikd) - M_{22}^{(TE)}}{M_{21}^{(TE)}} H_x(Nd), \qquad (25)$$

$$E_z(Nd) = \frac{M_{12}^{(TE)}}{\exp(\pm ikd) - M_{11}^{(TE)}} H_x(Nd).$$
(26)

Из условий непрерывности тангенциальных компонент электрического и магнитного полей на границах слоев ФК находим следующие выражения для компонент матрицы $\mathbf{M}^{(TE)}$:

$$M_{11}^{(TE)} = \left[\cos(k_{1y}d_1) + \frac{\mu_a k_x}{\mu k_{1y}}\sin(k_{1y}d_1)\right]\cos(k_{2y}d_2) - \frac{(\mu k_{1y})^2 + (\mu_a k_x)^2}{\mu k_{1y}k_{2y}(\mu^2 - \mu_a^2)}\sin(k_{1y}d_1)\sin(k_{2y}d_2), \quad (27)$$

$$M_{12}^{(TE)} = \frac{i\omega}{c} \frac{\mu^2 - \mu_a^2}{\mu k_{1y}} \sin(k_{1y}d_1) \cos(k_{2y}d_2) + \frac{i\omega}{ck_{2y}} \left[\cos(k_{1y}d_1) - \frac{\mu_a k_x}{\mu k_{1y}} \sin(k_{1y}d_1) \right] \times \sin(k_{2y}d_2), \quad (28)$$

$$M_{21}^{(TE)} = \frac{ick_{2y}}{\omega} \left[\cos(k_{1y}d_1) + \frac{\mu_a k_x}{\mu k_{1y}} \sin(k_{1y}d_1) \right] \times \\ \times \sin(k_{2y}d_2) + \frac{ic}{\omega} \frac{(\mu k_{1y})^2 + (\mu_a k_x)^2}{\mu k_{1y}(\mu^2 - \mu_a^2)} \times \\ \times \sin(k_{1y}d_1) \cos(k_{2y}d_2), \quad (29)$$

$$M_{22}^{(TE)} = -\frac{k_{2y}(\mu^2 - \mu_a^2)}{\mu k_{1y}} \sin(k_{1y}d_1) \sin(k_{2y}d_2) + \left[\cos(k_{1y}d_1) - \frac{\mu_a k_x}{\mu k_{1y}} \sin(k_{1y}d_1)\right] \cos(k_{2y}d_2). \quad (30)$$

Запишем граничные условия в плоскости графена:

$$E_{\Sigma,z}^{(R)}(Nd) = E_z^{(L)}(Nd), \qquad (31)$$

$$H_{\Sigma,x}^{(R)}(Nd) - H_x^{(L)}(Nd) = -\frac{4\pi}{c} \,\sigma E_z^{(L)}(Nd), \qquad (32)$$

где σ — проводимость графена, представляющая собой сумму внутризонной σ^{intra} и межзонной σ^{inter} проводимостей [48]. Для вырожденного электронного газа, когда $k_BT \ll E_F$ (где k_B — постоянная Больцмана, T — температура, E_F — энергия Ферми), проводимости σ^{intra} и σ^{inter} , согласно [48], определяются следующими выражениями:

$$\sigma^{intra} = \frac{ie^2 E_F}{\pi \hbar^2 (\omega + i\nu)},\tag{33}$$

$$\sigma^{inter} = \frac{e^2}{4\hbar} \left[\theta(\hbar\omega - 2E_F) - \frac{i}{2\pi} \ln \frac{(\hbar\omega + 2E_F)^2}{(\hbar\omega - 2E_F)^2 + (2k_BT)^2} \right], \quad (34)$$

$$E_F = \hbar \nu \sqrt{\pi n}, \qquad (35)$$

где $\nu = 10^8$ см/с, n — концентрация носителей заряда в графене, $\theta(x)$ — функция Хэвисайда [49]. Матрица распространения при переходе через плоскость графена имеет вид

$$\mathbf{M}^{(G_r)} = \begin{pmatrix} 1 & 0\\ \\ -\frac{4\pi\sigma}{c} & 1 \end{pmatrix}.$$
 (36)

Найдем френелевский коэффициент прохождения волны в область y < Nd. Обращение в нуль знаменателя этого коэффициента соответствует возбуждению поверхностной электромагнитной волны (при $k_x \neq 0$). Следовательно, приравняв нулю знаменатель френелевского коэффициента прохождения электромагнитной волны, получим дисперсионное уравнение для поверхностных электромагнитных волн. При $k_x = 0$ это уравнение описывает свойства ПЭМС в рассматриваемой структуре.

Удовлетворив граничным условиям (31), (32), получим следующее выражение для френелевского коэффициента прохождения t_F поверхностных электромагнитных волн в область y < Nd:

$$t_F = \frac{\sin(kd)}{\sin(kd) - \frac{2\pi i\sigma}{c} M_{12}^{(TE)}}.$$
 (37)

Следовательно, дисперсионное уравнение для таких волн имеет вид

$$\sin(kd) = \frac{2\pi i\sigma}{c} M_{12}^{(TE)}.$$
(38)

В дальнейшем анализ свойств ПЭМС в присутствии постоянного магнитного поля будем проводить путем численного решения уравнения (38) при $k_x = 0$.

Рассмотрим исследуемую структуру с числом элементарных ячеек 2N и расположенным в центре структуры графеном, помещенную в немагнитный диэлектрик с проницаемостью ε_d . Выражение для энергетического коэффициента прохождения D_{2N} электромагнитной волны, падающей на такую структуру со стороны положительных значений y, определяется следующим выражением:

$$D_{2N} = \frac{2}{F_{11} + F_{22} - \frac{ck_{dy}}{\omega} F_{12} - \frac{\omega}{ck_{dy}} F_{21}},$$
 (39)

где
$$k_{dy} = \sqrt{\varepsilon_d \omega^2 / c^2 - k_x^2},$$

$$\mathbf{F} = \left(\mathbf{M}^{(TE)}\right)^N \mathbf{M}^{(Gr)} \left(\mathbf{M}^{(TE)}\right)^N.$$
(40)

3. ЧИСЛЕННЫЙ АНАЛИЗ УРАВНЕНИЯ ДЛЯ ПЭМС

Выполним численный анализ уравнения (38) при $k_x = 0, \nu = 0$ и построим зависимости частот ПЭМС от величины внешнего магнитного поля. Введем в рассмотрение безразмерную частоту $\Omega = \omega/\omega_0$, где $\omega_0 \approx 0.995\omega_1$. Выберем следующие материальные параметры сред, составляющих антиферромагнитный ФК. В качестве антиферромагнитной среды выберем дифторид железа (FeF₂) [44]: $\varepsilon_1 \approx 5.5, \omega_1 \approx \approx 1.6 \cdot 10^{12} \text{ c}^{-1}, \gamma \approx 3.15 \cdot 10^6 \text{ c}^{-1} \cdot \text{K} \text{З}^{-1}, H_a \approx 200 \text{ kS}, H_{ex} \approx 540 \text{ KS}, H_{sf} \approx 465 \text{ KS}, M_0 \approx 560 \text{ Гс. В качестве немагнитного диэлектрика выберем кварцевое стекло с <math>\varepsilon_2 \approx 3.8$ [50]. Температуру структуры положим равной T = 4.2 K, что значительно ниже температуры Нееля.

На рис. 2 приведены зависимости $\Omega(H_0)$ (кривые 1, 2) для $d_1 = d_2 = 0.45 c/\omega_0$ и концентрации электронов в графене $n = 10^{12}$ см⁻² ($E_F \approx 1350$ K). Заштрихованные области на рис. 2 соответствуют разрешенным зонам антиферромагнитного ФК, а светлые области — запрещенным зонам антиферромагнитного ФК. Кривая 1 расположена в первой запрещенной зоне, а кривая 2 — в третьей запрещенной зоне. Кривая 3 соответствует условию $|\mu_{eff}| \to \infty$, а

Рис.2. Зависимость безразмерной частоты ПЭМС от величины постоянного магнитного поля

кривая 4 — условию $\mu_{eff} = 0$. В области между кривыми 3 и 4 имеем $\mu_{eff} < 0$, $\operatorname{Re}(k_{1y}) = 0$. Из рис. 2 видно, что с ростом номера запрещенной зоны характер зависимости $\Omega(H_0)$ качественно меняется. Использование антиферромагнитного ФК в качестве среды, окружающей плоскость графена, позволяет регистрировать возбуждение ПЭМС на фиксированной частоте при нормальном падении на структуру внешней электромагнитной волны путем изменения величины постоянного магнитного поля.

4. ЧИСЛЕННЫЙ АНАЛИЗ ПОЛЕВОЙ ЗАВИСИМОСТИ КОЭФФИЦИЕНТА ПРОХОЖДЕНИЯ

Проанализируем зависимости энергетического коэффициента прохождения D_{2N} от величины внешнего магнитного поля H_0 при $k_x = 0$ и $\varepsilon_d = 1$ для различных значений концентраций n носителей заряда в графене.

На рис. З приведены зависимости $D_{2N}(H_0)$ для антиферромагнитного ФК с N = 10, $d_1 = d_2 =$ $= 0.45c/\omega_0$, $\Omega = 1$, $\nu = 10^{13}$ с⁻¹ для различных значений *n*. Возбуждению ПЭМС соответствуют пики *A* и *B*. Видно, что с ростом концентрации носителей заряда пик ПЭМС смещается в глубь запрещенной зоны, его величина уменьшается, а сам пик становится более размытым. Последнее обстоятельство связано с достаточно большим значением частоты релаксации ν . Заметим, что величину концентрации *n* можно изменять путем приложения к графену затворного напряжения [5].

Рис. 3. Зависимость $D_{2N}(H_0)$ для $n = 10^9$ см⁻² (кривая 1), 10^{11} см⁻² (2), $5 \cdot 10^{11}$ см⁻² (3)

Предположим, что в центре исследуемой структуры находится ДЭГ, закон дисперсии носителей заряда в котором может быть как линейным (графен), так и квадратичным (например, полупроводник). В первом случае проводимость проводящего слоя описывается формулами (33), (34), а во втором — формулой Друде для вырожденного электронного газа:

$$\sigma^D = \frac{ie^2 E_F^D}{\pi \hbar^2 (\omega + i\nu)}, \quad E_F^D = \frac{\pi \hbar^2 n}{m}, \tag{41}$$

где n, m и E_F^D — концентрация, эффективная масса и энергия Ферми электронов в ДЭГ. Для электронного газа с квадратичным законом дисперсии носителей заряда уравнение, описывающее свойства ПЭМС, и выражение для коэффициента прохождения определяются формулами (38) и (39), в которых величину σ надо заменить на σ^D .

Проанализируем зависимость значений постоянного магнитного поля H_{peak} , соответствующих пикам ПЭМС, от величины концентрации носителей заряда для ДЭГ с линейным и квадратичным законами дисперсии носителей заряда. На рис. 4 приведены зависимости $H_{peak}(n)$ и зависимости $E_{F}(n)$, $E_F^D(n)$ для антиферромагнитного ФК с $N = 10, d_1 =$ $= d_2 = 0.45 c/\omega_0, \Omega = 1, \nu/\omega_0 \ll \Omega$ и $m = 0.013 m_0$ (полупроводник InSb, m₀ — масса свободного электрона). На рис. 4 кривая 1 соответствует зависимости $H_{peak}(n)$ для ДЭГ с линейным законом дисперсии электронов, кривая 2 — зависимости $H_{peak}(n)$ для ДЭГ с квадратичным законом дисперсии электронов, кривая 3 — зависимости $E_F(n)$, а кривая 4 — зависимости $E_F^D(n)$. Линия 5 соответствует концентрации электронов в ДЭГ $n_{tr} \approx 4.1 \cdot 10^{11} \text{ см}^{-2}$, при кото-

Рис. 4. Зависимости положений пиков, соответствующих возбуждению ПЭМС, и энергии Ферми от *n* для ДЭГ с линейным и квадратичным законами дисперсии электронов

рой выполняется равенство $E_F = E_F^D$. Из рис. 4 видно, что поведение зависимости $H_{peak}(n)$ для ДЭГ с линейным законом дисперсии электронов качественно близко к поведению зависимости $E_F(n) \propto \sqrt{n}$, а поведение зависимости $H_{peak}(n)$ для ДЭГ с квадратичным законом качественно близко к поведению зависимости $E_F^D(n) \propto n$. Это означает, что по поведению зависимости $H_{peak}(n)$ можно указать качественный характер закона дисперсии электронов в ДЭГ. Заметим, что в области значений $n < n_{tr}$ выполняется неравенство $\operatorname{Im} \sigma > \operatorname{Im} \sigma^D$, а в области значений $n > n_{tr}$ — неравенство $\operatorname{Im} \sigma < \operatorname{Im} \sigma^D$. Заметим также, что для выбранных параметров графена и частоты $\Omega = 1$ выполняется условие Im $\sigma > 0$. При учете реальных потерь в графене (когда величина отношения ν/ω_0 больше или порядка частоты Ω) поведение рассмотренных выше зависимостей качественно сохраняется, но область значений *n*, при которых наблюдаются пики ПЭМС, ограничена интервалом 10^9 см⁻² < $n < 5 \cdot 10^{11}$ см⁻².

На рис. 5 приведены распределения квадратов модулей комплексных амплитуд электрического и магнитного полей ПЭМС, а также распределение энергетического коэффициента прохождения вдоль исследуемой структуры с графеном при $k_x = 0, N = 10, d_1 = d_2 = 0.45c/\omega_0, \Omega = 1, \nu = 10^{13} \text{ c}^{-1}, n = 10^{12} \text{ см}^{-2}, \varepsilon_d = 1$. Волна падает на структуру со стороны ячейки с номером 20, а графен находится в плоскости y = 10d. Из рис. 5 видно, что огибающие величин $|E_z|^2$ и $|H_x|^2$ (кривая 1 на рис. 56) начинают убывать в глубь структуры сразу с 20-й ячейки, а не растут по мере приближения к плос-

Рис. 5. Распределения $|E_z(y)|^2$ (a) и $|H_x(y)|^2$ (б, кривая 1), D_{2N} (б, кривая 2) вдоль структуры при N = 10

кости графена, как это имеет место для распределения полей ПЭМС в окрестности границы раздела сред ПС–ФК (или двух различных ФК) (см., например, [30,32]). Это обстоятельство связано с большим значением частоты ν . Следствием больших диссипативных потерь электромагнитного поля в плоскости графена является примерно шестикратное скачкообразное уменьшение величины D_{2N} (кривая 2 на рис. 56) при y = 10d.

5. ЗАКЛЮЧЕНИЕ

В настоящей работе теоретически исследован спектр ПЭМС в терагерцевом частотном диапазоне вблизи графена, помещенного в антиферромагнитный ФК в присутствии постоянного магнитного поля. Получены соотношение, связывающее частоты ПЭМС с параметрами графена и антиферромагнитного ФК, и выражение для коэффициента прохождения электромагнитной волны через исследуемую структуру с конечным числом элементарных ячеек. Выполнено сравнение зависимостей положений максимумов коэффициента прохождения от магнитного поля и концентрации носителей заряда в ДЭГ как с линейным, так и с квадратичным законами дисперсии электронов. Установлено, что поведение этих зависимостей качественно согласуется с поведением зависимостей энергий Ферми от концентрации носителей заряда в ДЭГ с соответствующим законом дисперсии электронов. Это означает, что с помощью анализа зависимостей положений коэффициента прохождения от магнитного поля и концентрации

носителей заряда в ДЭГ можно сделать вывод о характере закона дисперсии этих носителей.

ЛИТЕРАТУРА

- A. H. Castro Neto, F. Guinea, N. M. R. Peres et al., Rev. Mod. Phys. 81, 109 (2009).
- W. Andreoni, in *Physics and Chemistry of Materials with Low-Dimensional Structures*, ed. by F. Levy and E. Mooser, Springer (2000), Vol. 23, p. 448.
- R. Saito, G. Dresselhaus, and M. S. Dresselhaus, *Physical Properties of Carbon Nanotubes*, Imperial College Press, London (1998), p. 259.
- 4. P. R. Wallace, Rev. Mod. Phys. 71, 622 (1947).
- K. S. Novoselov, A. K. Geim, S. V. Morozov et al., Science 306, 666 (2004).
- J. C. Meyer, A. K. Geim, M. I. Katsnelson et al., Nature Lett. 446, 60 (2007).
- A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).
- K. S. Novoselov, A. K. Geim, S. V. Morozov et al., Nature 438, 197 (2005).
- Y. Zhang, Y. W. Tan, H. L. Stormer et al., Nature 438, 201 (2005).
- M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nature Phys. 2, 620 (2006).
- V. V. Cheianov, V. I. Fal'ko, and B. L. Altshuler, Science **315**, 1252 (2007).

- 12. C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).
- P. Recher, B. Trauzettel, A. Rycerz et al., Phys. Rev. B 76, 235404 (2007).
- 14. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson et al., Phys. Rev. Lett. 97, 016801 (2006).
- F. Sols, F. Guinea, and A. H. Castro Neto, Phys. Rev. Lett. 99, 166803 (2007).
- V. P. Gusynin, V. A. Miransky, S. G. Sharapov et al., Phys. Rev. B 74, 195429 (2006).
- 17. C.-H. Zhang and Y. N. Joglekar, Phys. Rev. B 75, 245414 (2007).
- 18. N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B 72, 174406 (2005).
- 19. F. Rana, IEEE Trans. on Nanotechnol. 7, 91 (2008).
- 20. I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov et al., Phys. Rev. B 87, 075416 (2013).
- A. S. Mayorov, D. C. Elias, M. Mucha-Kruczynski et al., Science 333, 860 (2011).
- 22. A. N. Grigorenko, M. Polini, and K. S. Novoselov, Nature Photonics 6, 749 (2012).
- 23. S. A. Mikhailov and K. Ziegler, Phys. Rev. Lett. 99, 016803 (2007).
- **24**. А. А. Булгаков, В. Р. Ковтун, Опт. и спектр. **56**, 769 (1984).
- 25. A. A. Bulgakov and V. R. Kovtun, Sol. St. Comm. 56, 781 (1985).
- 26. I. E. Tamm, Phys. Z. der Sowjetun. 1, 733 (1932).
- 27. M. E. Sasin, R. P. Seisyan, and M. A. Kaliteevski, Superlattices and Microstructures 47, 44 (2010).
- 28. A. Kavokin, I. Shelykh, and G. Malpuech, Appl. Phys. Lett. 87, 261105 (2005).
- 29. И. Иорш, П. В. Паничева, В. А. Словинский и др., Письма в ЖТФ 38, 104 (2012).
- 30. A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin et al., Phys. Rev. B 74, 045128 (2006).
- 31. T. Goto, A. V. Dorofeenko, A. M. Merzlikin et al., Phys. Rev. Lett. 101, 113902 (2008).
- 32. А. П. Виноградов, А. В. Дорофеенко, А. М. Мерзликин и др., УФН 180, 249 (2010).

- 33. F. G. Bass and A. P. Tetervov, Phys. Rep. 140, 237 (1986).
- 34. D. P. Belozorov, M. K. Khodzitsky, and S. I. Tarapov, J. Phys. D 42, 055003 (2009).
- 35. Ю. О. Аверков, Н. Н. Белецкий, В. М. Яковенко, Радиофиз. и электрон. (Харьков) 2(16), 40 (2011).
- 36. Ю. О. Аверков, Н. Н. Белецкий, С. И. Тарапов и др., Радиофиз. и электрон. (Харьков) 3(17), 48 (2012).
- 37. Ю. О. Аверков, С. И. Тарапов, А. А. Харченко и др., ФНТ 40, 856 (2014).
- 38. S. I. Tarapov and D. P. Belozorov, ΦΗΤ 38, 766 (2012).
- 39. D. Smirnova, P. Buslaev, I. Iorsh et al., Phys. Rev. B 89, 245414 (2014).
- 40. Yu. O. Averkov, V. M. Yakovenko, V. A. Yampol'skii, and Franco Nori, Phys. Rev. B 90, 045415 (2014).
- 41. Y.-W. Tan, Y. Zhang, K. Bolotin et al., Phys. Rev. Lett. 99, 246803 (2007).
- 42. X. Hong, K. Zou, and J. Zhu, Phys. Rev. B 80, 241415 (2009).
- 43. А. С. Боровик-Романов, Лекции по низкотемпературному магнетизму, МГУ, Москва (2010), с. 48.
- 44. F. Lima, T. Dumelow, E. L. Albuquerque et al., J. Opt. Soc. Amer. B 28, 306 (2011).
- 45. Е. А. Туров, А. В. Колчанов, В. В. Меньшенин и др., Симметрия и физические свойства антиферромагнетиков, Физматлит, Москва (2001), с. 131.
- 46. И. М. Лифшиц, С. И. Пекар, УФН 56, 531 (1955).
- 47. Ф. Г. Басс, А. А. Булгаков, А. П. Тетервов, Высокочастотные свойства полупроводников со сверхрешетками, Наука, Москва (1989), с. 23.
- 48. Л. А. Фальковский, ЖЭТФ 133, 663 (2008).
- **49**. М. Абрамовиц, И. Стиган, Справочник по специальным функциям, Наука, Москва (1979), с. 807.
- 50. А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др., Физические величины: Справочник, Энергоатомиздат, Москва (1991), с. 549.