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The nonlinear collapse for a viscous generalized Chaplygin gas model (VGCG) is analyzed in the framework of
spherical top-hat collapse. Because the VGCG and baryons are essential to form the large-scale structure, we
focuse on their nonlinear collapse in this paper. We discuss the influence of model parameters o and (p on the
spherical collapse by varying their values and compare with the ACDM model. The results show that for the
VGCG model, smaller (o and larger o make the structure formation earlier and faster, and the collapse curves
of the VGCG model are almost coincident with those of the ACDM model when the model parameter « is less

than 1072,
DOI: 10.7868/50044451015040059

1. INTRODUCTION

In recent years, an increasing number of cosmologi-
cal observations suggest that our universe is filled with
an imperfect fluid that includes bulk viscosity in its
negative pressure; this pressure was dubbed the effec-
tive pressure, as was argued in [1,2]. Based on this
condition, viscous generalized Chaplygin gas models
[3-7] were extensively investigated as competitive mod-
els to be used in explaining the late-time accelerated
expansion of the universe. In these papers, the viscous
generalized Chaplygin gas (VGCG) model unified dark
energy and cold dark matter into a unique imperfect
dark fluid, which retains the property of simulating the
ACDM model well on the background level.

Usually, the bulk viscosity is chosen to be a density-
dependent or time-dependent function. A density-
dependent viscosity coefficient ¢ = (op™ is widely in-
vestigated in the literature, with (5 > 0 ensuring a
positive entropy in agreement of the second law of ther-
modynamics. In our previous work [4,5], we studied
the case m = 1/2, and obtained good results in line
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with the cosmic observations. If a model cannot de-
scribe the observed large-scale structure and the back-
ground evolution, it should be ruled out because of a
conflict among the cosmic observations and the theoret-
ical calculation, and the VGCG model is no exception.
Because the universe’s original perturbations are the
seed of the large-scale structure, investigating the evo-
lution of density perturbations of a realistic cosmolog-
ical model becomes very important. During this pro-
cess, the study of nonlinear perturbations is inevitable.
To the best of our knowledge, hydrodynamical / N-body
numerical simulation (see, e. g., [8-11]) is a cumbersome
task, which is typically used in dealing with a fully non-
linear analysis. Fortunately, there is a simple frame-
work to solve this issue. In [15], the nonlinear collapse
of a general Chaplygin gas model [16] was investigated
in the framework of spherical top-hat collapse. The
authors concluded that with increasing the value of «,
the growth of the structure becomes faster. In this pa-
per, we expand their work by considering bulk viscosity
in the general Chaplygin gas model (VGCG). Besides
the parameter a, we also analyze the effect of the bulk
viscosity (p on the structure formation in the VGCG
model with a spherically symmetric perturbation.

The paper is organized as follows. In Sec. 2, we give
a brief review of the VGCG model and present some
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basic equations for spherical top-hat collapse. Section 3
describes the method and main results. The conclusion
is presented in the last section.

2. THE BASIC EQUATIONS FOR SPHERICAL
TOP-HAT COLLAPSE IN THE VGCG
MODEL

In an isotropic and homogeneous universe, the ef-
fective pressure of a VGCG model [4, 5] is given in the
form [14-16]

—V3pvaca, (1)

PvGecG = ——
Pvaca

and the equaton of energy density is

PVGCG = PGCGO

LY R
1 -3¢ 1-v3¢

< (=@ V)

where B, = A/ chaaov a and (y are model parameters,
and we require that 0 < B; < 1 and (p < 1/\/§ We
can obtain the standard ACDM model when a = 0 and
(o = 0. By considering the VGCG as a unified compo-
nent and taking the assumption of a purely adiabatic
perturbations, it is easy to obtain the Friedmann equa-
tion

B

H2=H2{ 1—0Qy—Q, - Q [7 +
0 ( b r k) 1 - \/§<0
1/(14a)
. <1 _ L) a3(1+a>(1¢§co)] N
1-V3¢

+ a2+ Qa0 + Qka_z} , (3)
and the effective adiabatic sound speed for the VGCG:
Codeff = bveee _ —awesr — V'3 (o, (4)

pvaca

where wegp is the EoS of the VGCG in the form of

wepr =w— V3G =
B

T B, + (1 - By)a30+a) V3. (5)

Because of the negative values of weysr, a > 0 is re-
quired in order to ensure that the speed of sound is
nonnegative.

The spherical collapse (SC), which provides a way
to glimpse into the nonlinear regime of the perturba-
tion theory, was introduced first by Gunn and Gutt

1972 [17]. Following the assumption of a top-hat profile
(that the density perturbation is uniform throughout
the collapse), the evolution of the perturbation is only
time-dependent. In other words, we can omit the gra-
dients inside the perturbed region, as was done in [12].

In the spherical top-hat collapse (SCTH) model, the
equations for background evolution are

p=—3H(p+p), (6)
% = _g (pz + Spi)a (7)

and the basic equations in the perturbed region are

Pe = _3h(Pc + Pe)s (8)
7 4rG
T=" 5 (Pe: + 3pe ) 9)

2

where p. = p + dp and p. = p + dp are the perturbed
quantities, and h is related to H in the STHC frame-
work as

0
h=H+ — 10
+ (10)
where # = V - v is the divergence of the peculiar veloc-

ity v.
Hence, the equations for density contrast 6; =
= (0p/p); and O are [12,18]

5,’ = —SH(CEZ, — wz)él — []. + w; + (]. + cgi)éi]g, (].].)

. 62 2
f=-Hb— o - 47rGaZi:pi6i(1 +3c2), (12)

where the effective speed of sound is ¢2, = (6p/dp);,
where i stands for different energy components. Equa-
tions (11) and (12) can be rewritten in a form with the

scale factor a,

3.2

0
— 2
(5; = —E(cei—wi)éi—[1+wi+(1+cei)5i]—a2H, (13)
0 02 3H
r_ 7 _ 5. 2
0= o~ §i 8:(1+3¢2),  (14)

where we use the definition Q; = 87Gp;/3H>.

From the above equations, we can find that w,. and

c? are important quantities. The definition of the equa-

tion of state w. is

_PptOp  wepp 5 0
We = — Ce )
ptop 140 14

(15)

and the most important effective speed of sound is

5 _0p _pe—p
e

= _ = —qwesr — V3 Co. 16
5p " pe—p o 0 (16)
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Fig.1. The evolutions of density perturbations with re-
spect to the redshift for VGCG models, where the bulk
viscosity coefficient is fixed at (o = 0.000708. The thick,
dashed, dotted, thin grey solid, and grey dashed lines are
for « = 1,0.5,0.1,0.01,0 respectively, for baryons (a)
and the VGCG (b). The horizontal line 6 = 1 denotes
the limit of linear perturbation and the vertical parts of
curved lines are the collapse of the perturbed regions

3. THE METHOD AND RESULTS

To study the nonlinear evolution of the baryon and
VGCG perturbations in the framework of spherical top-
hat collapse, we perform a mathematical simulation via
the software Mathematica. In this process, we solve dif-
ferential equations (13) and (14) with the initial condi-
tions d4(z = 1000) = 3.5 - 1073, §,(z = 1000) = 1073,
and @ = 0, which are the conditions used in Ref. [12,19].

To show the influence of the model parameter a and
(o on the spherical collapse, we let the other relevant
cosmological model parameters take their central values
Hy =70.324 km -s~! - Mpc™1, Q4 = 0.954, Q; = 0.046,
and Bs; = 0.766, which were obtained in Ref. [4]. We
first investigate the impact of the parameter o on the
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Fig.2. The evolutions of w. and w, with respect to the

redshift z for VGCG models, where the thick, dashed,

dotted, grey solid and grey dashed curved lines are

for a = 1,0.5,0.1,0.01,0 respectively for w. (a) and
wq (D)

Table. Models for the STHC model, where the values

of « are small nonnegative values because of the con-

straint from background evolution. Note that model

“a" is identical to the ACDM model. The redshift z¢,

is the turnaround redshift when the collapse of the per-
turbed region begins

Model « ¢o By Zta
a 0 0 0.766 | 0.104
b 0.01 | 0.000708 | 0.766 | 0.128
c 0.1 | 0.000708 | 0.766 | 0.251
d 0.5 | 0.000708 | 0.766 | 0.667
e 1 0.000708 | 0.766 | 0.785
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Fig.3. The evolutions of density perturbations with
respect to the redshift for VGCG models, where the
model parameter is fixed at & = 0.035 and the thick,
dashed, dotted and grey solid curved lines are for
Co=1072,10"*,107", 0 respectively for baryons (a) and
the VGCG (b). The horizon line § = 1 denotes the limit
of linear perturbation and the vertical parts of the curved
lines are the collapse of the perturbed regions

nonlinear collapse. By fixing {, = 0.000708, which is
obtained in our previous work [4] and varying the model
parameter a = 1, 0.5, 0.1, and 0.01, we obtain the re-
sults shown in Table and in Figs. 1 and 2, where z, is
the turnaround redshift when the collapse of the per-
turbed region begins. We also plot the collapse curves
of the ACDM model using the grey dashed curves in
the two figures above to compare it with the VGCG
model. From these results, we can conclude that the
perturbations collapse earlier for the larger values of «;
furthermore, the collapse curves of the VGCG model
are almost coincident with those of the ACDM model
when the model parameter « is less than 1072. This
conclusion is the same as the result obtained in the
previous papers, such as Ref. [12,19].
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Fig.4. The evolutions of w. and w, with respect to the

redshift z for the VGCG model with a = 0.035, where

the thick, dashed, dotted, and grey solid curved lines are

for Co = 107%,107*,107°, 0 respectively for w. (a) and
wq ()

Next, we show the effect of (y on the evolution
of density perturbations in the VGCG model. Here,
we fix a = 0.035, which is borrowed from our previ-
ous work [4], and change the bulk viscosity values to
¢o = 0.001, 0.0001, 0.00001, and 0. The corresponding
evolutions of density perturbations of baryon matter
and the VGCG are shown in Fig. 3 and the evolution of
the EoS parameter is displayed in Fig. 4. In Fig. 3, the
horizontal line § = 1 denotes the linear perturbation
limit and the vertical parts of the curved lines stands
for the perturbed region collapse, whence we can con-
clude that the smaller bulk viscosity coefficient (y can
lead to the earlier collapse, that is to say, the larger the
value of (y is, the later the collapse occurs. Therefore,
this is the reason why the bulk viscosity coefficient (y
should not be too large.

From the analysis above, we can clearly understand
the impact of the model parameters (, and « on the
evolution of density perturbations. In addition, we can
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conclude that the influence of a is conspicuous as ex-
pected, because « is strongly linked with the effective
speed of sound of the perturbations.

4. CONCLUSION

We have discussed the structure formation of the
viscous generalized Chaplygin gas model in the spheri-
cal top-hat collapse framework. We studied the effects
of {, and a on the nonlinear perturbation evolution
via choosing their different values and compare with
the ACDM model. On the basis of the calculations
and analysis, we can conclude that large a and small
(o can lead to an earlier and faster collapse, and
when the model parameter « is less than 1072, the
collapse curves of the VGCG model almost overlap
with those of the ACDM model. In the next work,
we will try to study nonlinear collapse by using the
hydrodynamic/N-body numerical simulation.
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