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COMPLETING LORENTZ VIOLATING MASSIVE GRAVITYAT HIGH ENERGIESD. Blas a, S. Sibiryakov a;b;*aCERN Theory division, CH-1211 Geneva 23, SwitzerlandbInstitut de Théorie des Phénomènes Physiques, EPFL, CH-1015 Lausanne, SwitzerlandInstitute for Nulear Researh of the Russian Aademy of Sienes117312, Mosow, RussiaReeived November 11, 2014Theories with massive gravitons are interesting for a variety of physial appliations, ranging from osmologialphenomena to holographi modeling of ondensed matter systems. To date, they have been formulated ase�etive �eld theories with a uto� proportional to a positive power of the graviton mass mg and muh smallerthan that of the massless theory (MP � 1019 GeV in the ase of general relativity). In this paper, we present anultraviolet ompletion for massive gravity valid up to a high energy sale independent of the graviton mass. Theonstrution is based on the existene of a preferred time foliation ombined with spontaneous ondensationof vetor �elds. The perturbations of these �elds are massive and below their mass, the theory redues to amodel of Lorentz violating massive gravity. The latter theory possesses instantaneous modes whose onsis-tent quantization we disuss in detail. We brie�y study some modi�ations to gravitational phenomenologyat low-energies. The homogeneous osmologial solutions are the same as in the standard osmology. Thegravitational potential of point soures agrees with the Newtonian one at distanes small with respet to m�1g .Interestingly, it beomes repulsive at larger distanes.Contribution for the JETP speial issue in honor of V. A. Rubakov's 60th birthdayTo Valery Rubakov, Teaher and ColleagueDOI: 10.7868/S00444510150301801. INTRODUCTIONCan gravity be mediated by a massive tensor �eld?This straightforward question has generated a lot ofontroversy sine it was �rst formulated by Fierz andPauli [1℄. The situation is remarkably di�erent fromthe ase of gauge interations mediated by vetor �elds,where the Higgs mehanism provides a lear-ut way togive mass to the vetor bosons within a weakly oupledtheory. The di�erenes fall into two ategories. First,a generi Lorentz invariant theory with massive spin-2�elds (gravitons) presents instabilities in the setor ofadditional polarizations appearing in the massive, asopposed to massless, ase � the �Goldstone� setor.These instabilities arise around realisti bakgrounds*E-mail: sergey.Sibiryakov�ern.h

and endanger the onsisteny of the theory even at lowenergies [2, 3℄. It was �rst realized by Rubakov [4℄ thatthese problems an be avoided by breaking the Lorentzinvariane. This approah has lead to the formulationof a lass of Lorentz violating (LV) massive gravities asonsistent e�etive �eld theories (EFTs) [5℄ (see [6℄ forreview). An alternative way to improve the behaviorof the Goldstone setor while preserving the Lorentzinvariane has been found in [7℄ and onsists in a judi-ious hoie of the ouplings for the interations of themassive gravitons (see, e. g., [8, 9℄) for reviews). It hasbeen argued [10, 11℄ that this tuning might be stableunder quantum orretions, but it is not lear at themoment if there is any symmetry behind.The seond di�erene between massive spin-2 andspin-1 theories lies in their di�erent behavior at highenergies. The interations in the Goldstone setor ofmassive gravity beome strong and the perturbation578



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Completing Lorentz violating massive gravity : : :theory breaks down at a ertain uto� sale1) �low de-pending on the graviton mass mg . In the limit of van-ishing mass, this sale goes down to zero and, insteadof reovering the massless ase, the theory eases toexist. In fat, the same is also true for a pure theoryof massive vetor �elds with non-abelian interation.However, in the latter ase the ultraviolet (UV) om-pletion is known in the form of the Higgs mehanismwhih makes the theory renormalizable by adding ahandful of new degrees of freedom (Higgs bosons). Im-portantly, in the resulting theory, the massless limit isperfetly smooth and orresponds to the restoration ofthe spontaneously broken gauge symmetry2).No suh mehanism has been found so far for mas-sive gravity3). Of ourse, in this ase one annot insiston an embedding into a fully UV omplete theory �the massless theory being non-renormalizable anywaywith the uto� at the Plank mass MP � 1019 GeV(see, however, Se. 3.1). Still, it makes sense to searhfor a setup, whose uto� would be independent of thegraviton mass and as lose to the Plank sale as pos-sible. To preserve the analogy with the Higgs meha-nism, the embedding theory must ontain only a �nitenumber of new degrees of freedom ompared to mas-sive gravity itself4), these degrees of freedom must beweakly oupled and the limit mg ! 0 must be regular.The goal of this work is to present a setup ful�lling theabove requirements.The reasons for pursuing this endeavor are notmerely aademi. First, massive gravity is a very natu-ral andidate for an infrared (IR) modi�ation of gen-eral relativity (GR) [14℄. Suh modi�ations are aninteresting playground to look for alternatives to theosmologial onstant as the soure of osmi aeler-ation (see, e. g., [15℄). The aeleration may be gener-1) Throughout the paper, we identify the uto� with the strongoupling sale of the perturbation theory around the Minkowskibakground. In the setup of [7℄, the sale of strong oupling maybe raised in urved spae-time due to the Vainshtein mehanism(see the disussion in [9℄). However, the validity of the orre-sponding bakgrounds is under debate [12℄.2) From a purist's viewpoint, no symmetry is broken in theHiggs mehanism, gauge invariane being just a redundany inthe desription. However, we allow ourserves this abuse of ter-minology beause of its lear intuitive meaning.3) Exeptions are theories in AdS where the mass of the gravi-ton an appear due to non-trivial onditions at the time-likeboundary [13�15℄. However, these onstrutions rely heavily onthe peuliar properties of the AdS geometry. In partiular, theresulting graviton mass is always parametrially smaller than theinverse AdS radius.4) This exludes the known theories with massive spin-2 �elds,suh as Kaluza�Klein models or string theory: both imply thepresene of an in�nite tower of new degrees of freedom withmasses of order �low .

ated at the level of the bakground (new ontributionto the Friedmann equation) or of perturbations (weakeror repulsive gravitational potential at distanes largerthan m�1g ). It is fair to say that none of these pos-sibilities have been satisfatory implemented so far inonrete models. In any event, any andidate to explainosmi aeleration should have a ompletion at highenergies, whih is important for preditions related tothe early universe or very dense objets. This an alsoallow to understand the relevane of ertain tunings ofthe IR parameters. We will see how a onrete ultra-violet ompletion an have nontrivial onsequenes atvery large distanes.Massive gravity has also been disussed in the on-text of the gauge/gravity orrespondene [16, 17℄. Var-ious phases of massive gravity may be useful to desribedi�erent phenomenology at strong oupling. In par-tiular, it was reently realized that LV massive grav-ity is relevant for the desription of systems with bro-ken translational invariane [18, 19℄. The ompletionof the theory to smaller distanes on the gravity sideyields aess to the operators of higher dimensions inthe strongly oupled �eld theory5).Finally, the theory of massive gravity is relatedto the spontaneous breaking of spae-time symme-tries [5; 20℄. This is an appropriate language to de-sribe di�erent states of matter within the EFT frame-work [21, 22℄. One an speulate that the Higgs meh-anism for massive gravity will be relevant to desribethe phase transitions in suh systems.In this paper, we will fous on the LV massive grav-ity of [4, 5℄. Our main motivation for this hoie isthe already mentioned validity of this theory as a low-energy EFT, whose struture is proteted by symme-tries. Besides, the fundamental role of Lorentz in-variane in quantum gravity has been questioned re-ently [23℄. It is interesting to explore if massive grav-ity an be naturally embedded in this framework6). Wewill assume that at the fundamental level the violationof Lorentz invariane is minimal and amounts to theexistene of a preferred foliation of spae time [23, 25℄.It is worth noting that the presene of superluminalpropagation [26�28℄ in the seemingly Lorentz invariantmassive gravity of [7℄ makes a Lorentz invariant Wilso-nian UV ompletion of this theory problemati [29℄.Thus, even in this ase, the UV ompletion (if any) islikely to be Lorentz violating.The paper is organized as follows. In Se. 2, webrie�y summarize the formalism of LV massive gravity5) We thank Riardo Rattazzi for the disussion of this point.6) See [24℄ for an early attempt in this diretion.579 13*



D. Blas, S. Sibiryakov ÆÝÒÔ, òîì 147, âûï. 3, 2015and de�ne the phase that we will onsider. In Se. 3, weintrodue the UV ompletion that allows pushing theuto� of the theory to values lose to MP . We analyzethe bakground solutions of the theory in Se. 4 andshow that the LV massive gravity of Se. 2 appears inthe IR limit. Setion 5 is devoted to the analysis of thedegrees of freedom in the theory at di�erent sales. Wealso disuss in some detail the quantization of instan-taneous modes present in the LV massive gravity andtheir relation to a ertain type of non-loality along thespatial diretions. First results in phenomenology arepresented in Se. 6. We onlude with the summaryand disussion in Se. 7.2. LORENTZ VIOLATING MASSIVE GRAVITYWe will now brie�y review the onstrution of LVmassive gravity. We will formulate these theories in alanguage loser to the symmetry breaking mehanismby introduing Stükelberg �elds [5; 20℄. This formula-tion is useful to understand many features of the theo-ries, in partiular the strong oupling sale.We fous on the setup where Lorentz invariane isbroken down to the subgroup of spatial rotations [4℄.To desribe this situation, let us onsider four salarStükelberg �elds, �0, �a, a = 1; 2; 3, with internalSO(3) symmetry ating on the indies a, oupled to themetri in a ovariant way. Additional symmetries mustbe imposed on this setor to protet it from patholo-gies [5℄. We start by requiring invariane under theshifts7) of �0, �0 7! �0 + onst; (1a)and the �0-dependent shifts of �a,�a 7! �a + fa(�0); (1b)where fa are arbitrary funtions. We assume thatin the stationary state the Stükelberg �elds a-quire oordinate-dependent vauum expetation values(VEVs), �0 = �20 t; �a = �2xa: (2)These VEVs break the produt of 4-dimensional di�eo-morphisms and the internal symmetries of Stükelberg�elds down to the diagonal subgroup onsisting of thetime shifts, t 7! t+ onst; (3a)time-dependent shifts of the spatial oordinates,xa 7! xa + fa(t); (3b)7) We start from the simple �0-shifts to make ontat with [5℄.Later on, we will promote them to a larger symmetry, seeEq. (14).

and SO(3) spatial rotations. A simple Lagrangianthat obeys the imposed symmetries and admits theVEVs (2) has the form8)LS = LS1 + LS2;LS1 = 18�40 �(���0)2 � �40�2� �04�40 �(���0)2��40��� Xa P�����a���a + 3�4! ; (4a)LS2 = � 18�4 Xa;b �P�����a���b + �4Æab�2 ++ �8�4  Xa P�����a���a + 3�4!2 ; (4b)where �0, � are dimensionless onstants andP�� = g�� � ���0���0g�����0���0 ; (5)is the projetor on the subspae orthogonal to the gra-dient of �0 whih ensures invariane under (1b).To understand the physial ontent of the theory,let us onsider small �utuations of the metri and ex-pand to the quadrati order inh�� � g�� � ��� :Using general ovariane, we an identify the oordi-nates with the Stükelberg �elds, as in (2). In otherwords, we work in the gauge, where the �elds �0, �ado not �utuate; we all it �unitary gauge�. Then, thequadrati Lagrangian takes the formL(2)S = �408 h200 � �4�04 h00haa �� �48 habhab + �4�8 h2aa; (6)where the summation over repeated indies is under-stood. This is preisely a mass term for the metriperturbation. In partiular, the graviton (the helii-ty-2 omponent) aquires the massmg = �2MP ; (7)where MP is the Plank mass. Note that the termh0ah0a whih is missing in (6) ompared to the mostgeneral expression [4℄ is forbidden by the residual sym-metry (3b). The quadrati Lagrangian of the form (6)appears also in bimetri theories [30, 31℄.8) This Lagrangian is not the most general one, but it is suf-�ient for our purposes, as it reprodues all possible mass termsfor the metri whih are allowed by the symmetries (1).580



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Completing Lorentz violating massive gravity : : :Let us return from the unitary gauge to the ovari-ant Lagrangian (4) whih is more suitable to study thenon-linear properties. Importantly, in the ase when�0, � are muh smaller than MP , we an deouple themetri �utuations and onentrate on the Stükelberg�elds, as if they were living in �at spae-time. We write�0 = �20t+  0; �a = �2xa +  a (8)and obtainLS = ( _ 0)22 + �0�2�20 _ 0�a a � �a b�a b4 �� 1� �4 (�a a)2 + Lint �� 0�20 ; � a�2 � ; (9)where the last term stands for the derivative intera-tions of ubi and higher orders. By power-ounting,the strength of these interations grows with the in-rease of energy or momentum and the theory breaksdown at the sale � = minf�0; �g: (10)Comparing with (7), we onlude that the uto� isbounded from above,� < �2 �pmgMP : (11)Atually, this onlusion is not related to the spei�form of the Lagrangian (4). As disussed in [5℄, �2provides an absolute upper bound on the uto� in ageneral massive gravity theory formulated in terms ofthe metri and Stükelberg �elds only9). Thus, the the-ory does not admit a smooth limit mg ! 0.From the quadrati part of (9), we read o� that alinear ombination of  0 and the longitudinal part of a has degenerate dispersion relation!2 = 0: (12)This presents a potential danger, as in non-trivial bak-grounds the r.h.s. of the dispersion relation an beomenegative leading to an instability. In Ref. [5℄, it wassuggested to lift the degeneray by adding to the La-grangian quadrati terms with higher derivatives as inthe ghost ondensate model [33℄. In the next setion,we will take a di�erent route and embed the �eld �0into the khronometri model [25℄.The rest of the modes in (9) � the transverse partof  a and the longitudinal omponent of  a linearly in-dependent from  0 � obey the equations of the form9) The uto� is even lower, � < �3 � (m2gMP )1=3, if onerestrits to the Lorentz invariant theories [20, 32℄.

�k2 = 0; (13)where �k is the absolute value of the three-momentum�ki. Thus, for any non-zero spatial momentum thesemodes must vanish implying that there are no propa-gating degrees of freedom assoiated with  a. The sym-metry (1b) ensures that this property is preserved uponinlusion of higher-order operators [5℄ and in urvedbakgrounds [34℄. Therefore the theories based on thesymmetries (1) present a lass of well-de�ned EFTs10).3. GOING BEYOND �2: INGREDIENTS3.1. The �eld �0There are two natural ways to deal with the �eld�0 to omplete the previous ations to energies higherthan (10). First, as we mentioned above, the degen-eray of the dispersion relation (12) an be lifted byadding higher derivative terms as in the ghost onden-sate [33℄. This theory is still an e�etive theory with auto� of order �0, but sine this is independent of themass of the graviton, this sale an be quite high. Phe-nomenologial bounds set the onstrain �0 . 10 MeV.It was argued in Ref. [35℄ that these bounds an be re-laxed by the non-linear dynamis whih may push theupper limit on �0 to 100 GeV. This still remains muhbelow the Plank sale. The way to raise the uto�of the theory to (almost) Plankian was proposed inRef. [36℄. It uses the embedding of the ghost onden-sate into the khronometri model [25℄ and requires theintrodution of a new degree of freedom � khronon �at a sale below �0. One ould use this strategy here.However, it is more eonomial to use the seondoption and identify the Stükelberg �eld �0 diretlywith the khronon, thus keeping only a single degree offreedom in this setor. In this ase, the symmetry (1a)is extended to the full reparameterization invariane,�0 7! f0(�0); (14)for an arbitrary monotonous funtion f0. This largersymmetry forbids the terms present in (4a). Instead,the Lagrangian must be onstruted using the unit ve-tor u� � ���0pg�����0���0 (15)invariant under the symmetry (14). The most generalLagrangian with the lowest number of derivatives, andthus dominant at low energies, reads [25℄10) A subtle issue of the proper treatment of the non-propaga-ting modes at the quantum level will be disussed in Se. 5.3.581



D. Blas, S. Sibiryakov ÆÝÒÔ, òîì 147, âûï. 3, 2015Lkh = �M2P2 �R+ �r�u�r�u� ++ �(r�u�)2 + �u�u�r�u�r�u��; (16)where we have also inluded the standard GR ation;�, �, � are dimensionless oupling onstants. This anbe ombined with (4b) to give an ation of LV massivegravity. We note that in the unitary gauge11) (2) theLagrangian (16) gives rise only to terms with deriva-tives of the metri perturbations and thus does notontribute to the mass term for h�� . The latter re-dues to Lmass = ��48 habhab + �4�8 h2aa: (17)This an be understood as the onsequene of the time-reparameterization invarianet 7! f0(t); (18)whih, being now a residual symmetry in the unitarygauge, forbids any ontributions ontaining h00 with-out derivatives. This version of massive gravity wasonsidered in Ref. [37℄.The Lagrangian (16) ontains higher derivatives ofthe �eld �0 and one may be worried that this an leadto pathologies (ghosts or gradient instabilities). In fat,this does not happen, as the extra derivatives at in thespatial diretions. This property beomes expliit inthe gauge where the time oordinate is identi�ed with�0 as in the �rst equation of (2). We note, that thisidenti�ation still leaves the free hoie of the spatialoordinates, so it should not be onfused with the uni-tary gauge where all oordinates are �xed. We will allthis partial gauge �xing ADM gauge. The ation of thekhronometri model takes the formSkh = M2P2 Z dt d3xpN�(1� �)KijKij �� (1 + �)K2 + (3)R+ ���iNN �2�; (19)where we used the Arnowitt�Deser�Misner (ADM) de-omposition for the metri,ds2 = dt2 � ij(dxi +N idt)(dxj +N jdt); (20)the extrinsi urvature of the onstant-time sliesKij = 12N ( _ij �riNj �rjNi); K = ijKij ; (21)and denoted (3)R the three-dimensional urvature on-struted from the metri ij . Apart from the symme-try (18), this ation is invariant under time-dependentspatial di�eomorphisms11) Beause of the invariane (14), the hoie of the onstant�20 in the �rst formula of (2) is now arbitrary and unrelated tothe parameters of the theory.

xi 7! ~xi(x; t): (22)We will refer to the group onsisting of the transforma-tions (18) and (22) as foliation-preserving di�eomor-phisms (FDi�). Clearly, the ation (19) leads to equa-tions of motion whih are seond order in time deriva-tives. We will work in the ADM gauge from now on.The hoie � = � = � = 0orresponds to GR and the restoration of the full dif-feomorphisms-invariane. However, the limit �, �,� ! 0 is not smooth. At any non-zero values of �,�, � the theory propagates in addition to the helii-ty-2 gravitons a single heliity-0 mode (khronon). Thelatter has linear dispersion relation; in the ase �, �,� � 1 (whih is the relevant one for phenomenology),it reads12) [25℄ !2 = � + �� k2: (23)Due to the non-linear interations of the khrononpresent in (19), the model has a uto��kh �MP minnp�;p�;p�o : (24)Phenomenologial onsiderations put upper bounds on�, �, � [25, 38, 39℄ and hene onstrain the uto� tobe somewhat smaller than the Plank sale,�kh . 1015GeV: (25)Still, this is well above virtually any sale that an ap-pear in the astrophysial or osmologial ontext13).Furthermore, it is known how to omplete the a-tion (19) beyond �kh by embedding it into the Ho°avagravity [23, 40℄. The latter presents a power-ountingrenormalizable theory. However, due to the tehnialomplexity, the question about its renormalizability inthe strit sense and UV behavior still remains open(see Refs. [41, 42℄ addressing this issue in restrited set-tings). In these irumstanes, a autious reader mayprefer to take modest attitude and view the khrono-metri model as an EFT with the uto� (24), whih issu�ient for the purposes of this work.Finally, let us mention the following peuliarity ofthe ation (19). As desribed in Ref. [25℄, it leads to aertain type of instantaneous interations mediated by12) This relation gets modi�ed � in partiular, the khrononaquires a mass gap � when the ation (19) is oupled to theother setors needed to reprodue the massive gravity, see Se. 6below.13) In the appliations unrelated to astrophysis, suh as non-relativisti holography or desription of solids, the parameters �,�, � are a priori onstrained only by the stability requirements,that are mild, and the sale �kh an be as high as MP .582



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Completing Lorentz violating massive gravity : : :a non-propagating mode. The latter is similar to thenon-propagating modes of massive gravity disussed inSe. 2. We will study the instantaneous modes in moredetail in Se. 5.3.3.2. The �elds �a and their oupling to HiggsvetorsNext we onsider the triplet of Stükelberg �eldsinvariant under �a 7! �a + fa(t); (26)whih is nothing but the symmetry (1b) in the ADMgauge. We want a Lagrangian that admits the oor-dinate-dependent VEVs (2), but at the same time isUV omplete past the sale �. This preludes from in-troduing any self-interation of the Stükelberg �eldsinvolving the sale �. Then the simplest option is tohoose the Lagrangian to be quadrati in �a. To re-spet the symmetry (26), it must depend only on thespatial derivatives of these �elds,S� = Z dt d3xpN�� 12ij�i�a�j�a�: (27)This does not introdue any new strong oupling sale.However, without any further interations, this La-grangian is not enough to provide non-zero gravitonmass. Though the on�guration�a = �xais a solution of the equations following from (27) for anyonstant �, it introdues non-vanishing energy densityand pressure whih make the universe expand14). Aswill beome lear in the Se. 4, in this ase the gener-ated mass will derease with time and will asymptot-ially vanish. Time varying masses an be interesting(see, e. g., [34℄) but are not the aim of this paper. Togive onstant graviton mass, the VEVs in an expandinguniverse must grow proportionally to the sale fator,�a / a(t)xa;whih is not a solution of the �eld equations implied by(19) and (27). We have to add more ingredients.Consider a triplet of vetor �elds with purely spa-tial omponents V ia . These transform as vetors underthe di�eomorphisms preserving the foliation strutureof the ADM gauge, whih at on the i-index. Besides,they form the fundamental representation of a globalinternal SO(3) ating on the index a. We do not as-sume any gauge invariane assoiated to these vetors.To avoid strong oupling, we fous on Lagrangians14) These density and pressure annot be aneled by any bareosmologial onstant.

whih are renormalizable in �at spae-time. By thestandard power-ounting, they an ontain the deriva-tives of V ia only quadratially and up to quarti terms inthe potential. The generi Lagrangian satisfying theseproperties and invariant under FDi�� SO(3) readsSV = Z dt d3xp ��N� 12N2 ( _V ia �N jrjV ia + V jarjN i)2 �� 212 (riV ja )2 � 222 (riV ia )2 �� {14 (V iaV jb ij �M2V Æab)2 �� {24 (V iaV ja ij � 3M2V )2�; (28)where 1, 2, {1, and {2 are dimensionless ouplingsand we have hosen the overall onstant in the potentialto have vanishing vauum energy (we will shortly intro-due a osmologial onstant term in a di�erent part ofthe ation). For larity, we have omitted non-minimalinterations with the metri, suh as (3)RijV iaV ja and(3)RV iaV ja ij , whih vanish in Minkowski spae-time.These terms would make the analysis more umber-some without hanging it qualitatively.When M2V > 0, the vetors develop VEVs,V ia =MV Æia; (29)whih break the produt SO(3) � SO(3) of spatialand internal rotations down to the diagonal subgroup,f. [43�46℄. Below the sale � p{MV , the dynamis isdesribed by the �-model orresponding to this patternof symmetry breaking with the oset spae de�ned byV iaV jb ij =M2V Æab: (30)As the vetor VEVs introdues an additional soure ofLorentz symmetry breaking, it is natural to expet thatthe phenomenologial onstraint on the sale MV willbe similar to that of �kh, Eq. (25). Notie, however,that MV is not related to the uto� and an be muhlower than �kh without jeopardizing the validity of thetheory.Finally, we omplete our Lagrangian with a termmixing the vetors and the Stükelberg �elds,SV � = Z dt d3xpN�mAV ia�i�a � V0�: (31)This mixing operator has dimension 3 and thus is just arelevant deformation of the previous ation. It does nota�et the UV properties of the theory, in partiular, itdoes not introdue any new UV uto�, and the param-eter mA an be arbitrarily small without enounteringany singularity. We are going to see that in IR this583



D. Blas, S. Sibiryakov ÆÝÒÔ, òîì 147, âûï. 3, 2015oupling leads to the generation of the VEVs (2) with�2 = mAMV and the graviton mass (7). The last termin (31) represents a osmologial onstant and an betuned to anel the negative vauum energy that wouldbe generated otherwise (see below). We note that it istehnially natural to take the parameter mA to bemuh smaller than the other sales of the theory as itis proteted from large quantum orretions by the dis-rete symmetry15) �a 7! ��a. In what follows we willassume the hierarhy of sales,MP & �kh &MV � mA: (32)It is worth stressing that this hierarhy is not requiredby the internal onsisteny of the theory. For exam-ple, one ould onsider instead mA � MV . However,assuming (32) makes the physial piture partiularlytransparent.4. GENERATION OF VEVs IN EXPANDINGBACKGROUNDSLet us now show that the onstrution of the pre-vious setion gives rise to the VEVs for the �elds �aof the desired form. We assume a homogeneous andisotropi ansatz with spatially �at metri allowing fora general osmologial evolution,N(t); ij = a2(t)Æij ; V ia = MVa(t)Æia;�a = �(t)xa: (33)Substituting this ansatz into the equations of motionobtained from putting together the ations (19), (27),(28) and (31), we obtain16)3M2H2 � 3�22a(t)2 + 3�2�a(t) � V0 = �mat; (34a)2M2 _H + 3M2H2 � �22a(t)2 ++ 2�2�a(t) � V0 = �pmat; (34b)where �2 = mAMV (35)15) A similar argument is used to protet the small ouplingbetween a time-like vetor �eld and an ordinary massless salarin the tehnially natural dark energy model of [47℄.16) The simplest way to derive these equations is to substituteansatz (33) into the ation and perform variation with respet tothe free funtions N(t) and a(t) afterwards. Note, however, thatit would be inorret to vary this ation with respet to � as theorresponding variation Æ�a = Æ�xa would not be bounded atspatial in�nity.

and M2 �M2P�1 + � + 3�2 �� M2V2 (36)is the �osmologial Plank mass�. In Eqs. (34) we �xedthe gauge N = 1 and assumed that the universe is�lled with matter with energy density �mat and pres-sure pmat. Taking the derivative of (34a) and using theenergy onservation in the matter setor,_�mat + 3H(�mat + pmat) = 0; (37)we obtain the following equation for �,_�(�� �2a(t)) = 0: (38)This has two branhes of solutions. On the branh� = onst the VEVs of the Stükelberg �elds atuallydisappear with time. Indeed, the invariant quantityij�i�a�j�a = 3�2a(t)2dereases as the universe expands. Besides, we will seeshortly that this branh is unstable at late times when-ever � 6= 0. The other branh is� = �2a(t): (39)It orresponds to onstant strength of the Stükelberg�elds' gradients and is stable. In this latter ase theosmologial equations (34) redue to the form,3M2H2 = �mat + V0 � 3�42 ; (40a)2M2 _H + 3M2H2 = �pmat + V0 � 3�42 : (40b)We see that in this phase � produes a negative shift ofthe osmologial onstant to a smaller value. In whatfollows we will assume that this ontribution is aneledby the bare osmologial onstant,V0 = 3�42 ; (41)so that the Minkowski spae-time is a solution in theabsene of matter. This is just the usual �ne-tuning ofthe osmologial onstant.5. HIERARCHY OF EFTs AND THEGRAVITON MASS5.1. Phases with massive gravitonsTo understand the e�et of the mixing term (31) onthe spetrum of the theory let us study small perturba-tions. As before, we work in the ADM gauge and �rst584
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Fig. 1. Relevant energy sales in the theory and the number of propagating degrees of freedom in eah setor at di�erentsales. Retangles represent the energy sales at whih a setor gets UV ompleted (we do not make any assumptions aboutthe UV ompletion of the khronon and spin-2 setors, but Ho°ava gravity [23℄ would be a natural option). Rhomboids markthe sales below whih a setor loses all its propagating degrees of freedom. The khronon mass mkh will be derived in Se. 6(see Eq. (83)). Note that nothing happens at the sale � � �2 whih sets the uto� in the original EFT formulation ofmassive gravityfous on the phase with a vauum from the branh ofsolutions (39). To simplify the analysis, we freeze outthe perturbations in the khronometri setor by send-ing MP and �kh to in�nity while keeping MV and mA�nite. For the perturbations of the vetors and theStükelberg �elds we write,V ia =MV Æia + via; �a = �2xa +  a: (42)If we are interested in energies below p{MV , we anadopt the �-model desription. Inserting (42) in theonstraint equation (30) yieldsvia = Aia � AjiAja2MV +O(A3); (43)where Aia is an antisymmetri matrix,Aia +Aai = 0:Substituting this into the Lagrangian, we obtainL�+LV � = �(�i a)22 �m2A2 AjaAja+mAAia�i a: (44)The seond term gives mass of order mA to the anti-symmetri perturbations Aia. Below this sale the per-turbations of the vetors an be integrated out om-pletely. From (44), we �ndAia = 12mA (�i a � �a i); (45)whih substituted bak into (44) gives (up to a totalderivative)L� + LV � = ��i a�i a4 � (�a a)24 : (46)

This oinides with the third and fourth terms (with� = 0) of the quadrati Stükelberg Lagrangian (9)arising in massive gravity. The �massless� �elds  a anbe interpreted as the Goldstone bosons for the brokensymmetries FDi� � SO(3)! SO(3)diag :Reall that sine we are dealing with LV theories, theounting and properties of suh �elds are di�erent fromthe Lorentz invariant ase, see, e. g., [48�50℄. In thesame spirit, the vetor �elds Aia that have been in-tegrated out an be interpreted as the �Higgs� �eldsregularising the bad behaviour of the Goldstone se-tor at energies above mA. Given the previous results,we expet that the graviton in this model will aquirethe mass (7). For the ase MP � MV , the vetorand graviton masses are well separated and at energiesmA � E � mg the dynamis is well desribed by theEFT for the Stükelberg �elds. The hierarhy of var-ious sales in the theory and the orresponding EFTdesriptions are summarized in Fig. 1.Alternatively, we an work in the unitary gauge and�x  a = 0 at the expense of allowing for the �utua-tions of the metriN = 1 + n; N i; ij = Æij + hij : (47)The relevant part of the Lagrangian takes the formL� + LV � = �4�� aa2 + V aaMV � 32�: (48)585



D. Blas, S. Sibiryakov ÆÝÒÔ, òîì 147, âûï. 3, 2015The solution of the onstraint (30) now readsvia = Aia�MV2 hai�AjiAja2MV �Ajihja4 �Ajahji4 ++ 3MV8 hjihja +O(A3; h3): (49)Substituting this formula and the expressionij = Æij � hij + hikhkj +O(h3) (50)into (48), we obtain at the quadrati levelL� + LV � = �m2A2 AiaAia � �48 hiahia: (51)The �rst term again gives mass to the antisymmetriperturbations, while the seond expliitly provides themass term for heliity-2 graviton. As we are going tosee in Se. 6, it also gives mass to the khronon (seeEq. (83)). Note that we obtain only one of the twostrutures for the metri mass term allowed by the sym-metries, f. (17). This a onsequene of the assumptionMV � mA whih implies that the symmetri part ofthe vetor �utuations is muh heavier (with the massof order p{MV ) than the antisymmetri part. Thisrenders the parameter � in (17) suppressed by the ra-tiom2A={M2V whih we negleted in the above analysis.Were we to make a di�erent assumptionMV � mA, wewould obtain both terms of (17) with omparable oef-�ients. Finally, if instead of the khronometri settingone used the ghost ondensate for the �0-setor, whihin the ADM gauge amounts to promoting all ouplingsin the ation to funtions of the lapse N [25℄, one wouldbe able to reprodue also the other terms in the gen-eral Lagrangian (6) of the massive gravity disussed inSe. 2. 5.2. Other phases?In the previous setion, we foused on branh (39)of the bakground solutions. However, as notied be-fore, equation (38) also admits a seond branh_� = 0: (52)On this branh, the e�et of the Stükelberg gradients(if non-zero initially) deays with time in an expandinguniverse. For ompleteness we now analyze the smallperturbations around this branh. We write�a = �xa +  a; (53)with � = onst and take the Friedmann�Robertson�Walker (FRW) form for the metri. We again work inthe deoupling limit MP ;�kh ! 1, so that the met-ri �utuations are frozen. Below the sale p{MV the

�utuations of the vetors are restrited to the anti-symmetri part Aia. Expanding the relevant part ofthe ation to quadrati order we obtainSV+S�+SV � = Z dt d3x�a32 ( _Aia)2�a2�21(�iAja)2 ++ 22(�iAia)2 + (�i a)2�� a2mA�2MV (Aia)2 ++ a2mAAia�i a�: (54)Restriting to the modes with frequenies muh higherthan the Hubble rate, we an neglet the terms withderivatives of the sale fator in the equations of mo-tion. This yields� �Aia + 21a2 �2jAia + 22a2 �j�[iAja℄ � mA�MV aAia ++ mAa �[i a℄ = 0; (55a)�2i  a � amA�iAia = 0; (55b)where the square brakets stand for the antisym-metrization of indies. Let us perform the Fouriertransform and onentrate on the transverse modes a = e(�)a  (�); Aia = �kie(�)a � �kae(�)i�k A(�); (56)where e(�)i , � = 1; 2, are unit polarization vetors or-thogonal to the three-momentum �ki. Substituting thisinto Eqs. (55) and eliminating  (�) we obtain�!2��21+222 � �k2a2�mAMV ��a��22 ��A(�) = 0; (57)where we used �2 de�ned in (35). We see that whenever� < �2a=2 the mode is tahyoni. In partiular, thetrivial on�guration of the Stükelberg �elds �a = 0 isunstable. Furthermore, in an expanding universe �2a=2will exeed any onstant value of � and the instabilitywill set in at late times. Thus, we onlude that in anexpanding universe this branh is unstable and we donot onsider it any more in this paper.5.3. Quantum treatment of instantaneousmodesWe have argued above that the onstruted modelis a valid quantum theory up to the sale (24). We havebased this laim on the saling argument borrowed fromrelativisti theories, so it is worth taking a loser lookat it to hek if it is not spoiled by Lorentz violation.To get a �avor of the potential problems, we onsiderthe instantaneous modes �a. Let us �rst swith o� theirmixing with the vetors by settingmA = 0 and performtheir perturbative quantization using the path integralformalism. From (27) one reads o� the propagator,586
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δab, (58)φawhere we denoted the spatial part of a four-vetor p� == (p0; �pi) by the bar. This propagator does not dependon the frequeny p0. The �elds �a ouple to the metriand ontribute into the e�etive ation for the pertur-bations hij . For example, the one-loop ontributioninto the quadrati part ishij p+ qq �Z d3�q(2�)3 �qi�qk(�q + �p)j(�q + �p)l�q2(�q + �p)2 :hkl = 14hij(p)hkl(�p)Z dq02� � (59)This expression ontains two types of divergenes. Theintegral over the spatial momentum an be regulatedby subtrating a �nite number of loal ounterterms.However, the whole ontribution will still be in�nite be-ause of the overall divergent integral over q0. We notethat this divergene has non-polynomial dependene onthe external spatial momentum �pi and therefore is non-loal in spae. On the other hand, it does not dependon p0 and hene is loal in time. Thus it an be regu-lated by introduing a spatially non-loal ountertermin the bare ation. Though unusual, suh ountertermsdo not spoil the validity of the theory. In partiular,the diagram (59) does not ontain any imaginary partand thus the orresponding ounterterm does not vio-late unitarity.One may objet that allowing for non-loality, evenrestrited to only spatial dimensions, introdues an in�-nite freedom in the hoie of the bare ation. However,we now argue that there is a natural hoie of oun-terterms for the diagrams where, like in Eq. (59), adivergent integral over the loop frequeny ompletelyfatorizes out of a frequeny-independent part. Thisonsists in aneling these diagrams altogether. In thepresent ase this would mean that all loop diagramsontaining the instantaneous �elds �a must be put tozero. Two arguments support this presription. First,the integrals over frequeny diverge linearly and thusvanish identially in dimensional regularization. Se-ond, we an appeal to the anonial quantization. Inthis formalism, the �elds �a are subjet to seond-lassonstraints whih fore them to vanish. Indeed, as theation does not depend on the time-derivative of these

�elds, the anonial momenta onjugate to them vanishtrivially, while the �elds themselves obey the equationri(Nri�a) = 0: (60)Supplemented by the vanishing boundary onditions atspatial in�nity it fores17) �a = 0. In the anonial ap-proah suh onstrained degrees of freedom must beeliminated from the start, even prior to quantization,implying that they ompletely drop o� from the quan-tum theory18).There is a way to implement the above presriptionwithin the path integral approah without introdu-ing non-loal ounterterms from the start. One notiesthat the overall result of integration over �a is a fator� det(iij�i�j)��3=2 (61)in the partition funtion. This an be aneled byadding to the system three real bosoni �elds ~�a andthree omplex fermioni �elds �a with the ation,S~�� = Z dt d3xpN �� �� 12ij�i ~�a�j ~�a � ij�i�a�j ��a�: (62)Integrating out these �remover� �elds multiplies thepartition funtion by,�det(iij�i�j)�3� det(iij�i�j)�3=2 = �det(iij�i�j)�3=2; (63)whih preisely ompensates (61). The expression (63)orresponds to the spatially non-loal ounterterms dis-ussed above.Turning on mA makes the situation less trivial.However, given that mixing (31) is a relevant deforma-tion it learly annot spoil the UV onsisteny of thetheory. A omprehensive analysis of the quantum prop-erties of the theory introdued in Se. 3 is beyond thesope of this paper. Instead, we illustrate the expetedbehavior in a toy model ontaining a salar and a ve-tor without any VEVs in an external non-dynamialmetri (we assume Ni = 0),17) Multiplying (60) by �a and integrating over the three-di-mensional spae we obtain0 = Z d3x�ari(Nri�a) = �Z d3xNri�ari�a:As the lapse funtion is non-zero everywhere, one onludes thatri�a = 0 and hene �a vanishes due to the boundary onditions.18) There is no modi�ation of the anonial struture for theremaining �elds as in the ase at hand Dira and Poisson braketsare idential.587



D. Blas, S. Sibiryakov ÆÝÒÔ, òîì 147, âûï. 3, 2015S = Z dt d3xpN�ij _V i _V j2N2 � jkriV jriV k2 �� 12ij�i��j�+mAV i�i�� M2V2 ijV iV j�: (64)For simpliity, we have retained only one of the gradi-ent terms for the vetor putting the oe�ient in frontof it to 21 = 1. As before, there are two ways to pro-eed. In the anonial approah, we have to solve forthe �eld � before quantization,� = mA(riV i + aiV i)klrkrl + alrl ; (65)where ai � N�1�iN: (66)Substituting this into (64), we obtain a non-loal ationwhih depends only on V i,S = Z dt d3xpN�ij _V i _V j2N2 � jkriV jriV k2 �� M2V ijV iV j2 � (riV i + aiV i)�� m2A2(klrkrl + akrk) (rjV j + ajV j)�: (67)The Dira braket remains idential to the anonialommutator. One observes that the limit mA ! 0 issmooth and orresponds to restoration of loality. Asnon-loality is purely spatial, it does not, in priniple,present an obstrution to anonial quantization.However, in pratie it is very inonvenient to workwith the non-loal ation (67). It is more e�ient touse the path integral approah and retain � as a quan-tum �eld. Assuming that the metri is lose to �at, weobtain from (64) the propagators for � and V i,� p� ppV i V j = �Æij � �pi�pj�p2 � i�p20 � �p2 �M2V +� = � i�p2 + im2A�p2(p20 � �p2 �M2V +m2A) ;V i = �mA�pi�p2(p20 � �p2 �M2V +m2A) ;+ �pi�pj�p2 ip20 � �p2 �M2V +m2A :
(68a)(68b)(68)To avoid luttered formulas, we will set MV = mA inwhat follows. This does not a�et the UV propertiesof the theory. We onsider again diagram (59). Nowit ontains three ontributions. The �rst one omes

from the produt of the �rst terms in propagator (68a)and, as before, is eliminated by adding to the path in-tegral the �elds ~�, � with ation (62). Besides, thereare ontributions oming from the ross-produt of thetwo terms in (68a),� m2A2 hij(p)hkl(�p) Z dq0d3�q(2�)4 �� �qi�qk(q + �p)j(�q + �p)l�q2(q20 � �q2)(�q + �p)2 ; (69)as well as from the square of the seond term,m4A4 hij(p)hkl(�p) Z dq0d3�q(2�)4 �� �qi�qk(�q + �p)j(�q + �p)l�q2(q20 � �q2)(�q + �p)2((q0 + p0)2 � (�q + �p)2) : (70)The divergenes in these expressions an be removedby genuinely loal ounterterms. We onsider, for ex-ample, Eq. (69). Introduing Feynman parameters weobtainZ dq0d3�q(2�)4 �qi�qk(�q+�p)j(�q + �p)l�q2(q20��q2)(q+p)2 = 2 1Z0 dx1px1 1�x1Z0 dx2 �� Z dq00d3�q(2�)4 �qi�qk(�q + �p)j(�q + �p)l(q002 � �q2 � 2�q�px2 � �p2x2)3 ; (71)where in the last integral we resaled the loop fre-queny. The integral over the four-momentum on ther.h.s. has the standard form and its divergent part isa polynomial in momenta �p. It is straightforward tohek that the integration over Feynman parametersdoes not ontain any additional divergenes. Thus, weonlude that the overall divergene of (71) is loal bothin time and spae. Similar reasoning applies to (70).One may worry that a divergene in the Feynmanparameters an appear in the diagrams that ontainthe loop frequeny in the numerator of the integrand,beause then more powers of the Feynman parametersdesend into the denominator. Let us show that thisdoes not happen. We onsider the diagram arising fromthe interations given by the �rst and the third termsin (64),hij p+ qq hkl = m2a2 hij(p)hkl(�p)Z dq0d3�q(2�)4 ��Z q0(q0 + p0)�qi�qk(�q + �p)j(�q + �p)l�q2(q20 � �q2)(�q + �p)2((q0 + p0)2 � (�q + �p)2) : (72)
588



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Completing Lorentz violating massive gravity : : :Passing to the Feynman parameterization, we obtainZ dq0d3�q(2�)4 q0(q0 + p0)�qi�qk(�q + �p)j(�q + �p)l�q2(q20 � �q2)(�q + �p)2((q0 + p0)2 � (�q + �p)2) == 6 1Z0 dx1 1�x1Z0 dx2 1�x1�x2Z0 dx3 Z dq0d3�q(2�)4 �� q0(q0 + p0)�qi�qk(�q + �p)j(�q + �p)l�(x1 + x2)q20 + 2q0p0x2 + p20x2 � �q2 � 2�q�p(x2 + x3)� �p2(x2 + x3)�4 : (73)Upon resaling of the loop frequeny,q0 7! q00 = q0=px1 + x2;the most singular ontribution in the integral overFeynman parameters is proportional to (x1 + x2)�3=2whih is again integrable. At the heuristi level thisan be understood as follows. The divergenes in theintegrals over Feynman parameters are usually asso-iated to the infrared (or ollinear) divergenes, whihare absent in our ase beause original expressions (69)and (72) are IR safe.By extending the above reasoning to other diagramsin model (64) the reader will easily onvine herself thatthe only lass of divergenes that require (spatially)non-loal ounterterms are those where all propagatorsin a given loop are equated to the �rst term in (68a).These divergenes are independent of mA and are ex-atly aneled by the remover �elds ~�, � with ation(62). Furthermore, this anellation persists upon mak-ing the metri hij dynamial and allowing it to prop-agate in the loops. Thus, it is natural to onjeturethat no matter how ompliated a diagram is (see anexample in Fig. 2), it will require only loal ountert-erms after addition of similar diagrams with the �elds~� and �.So far we have disussed only the instantaneousmodes assoiated with the Stükelberg �elds �a of mas-sive gravity. The dynamis of these �elds is relativelysimple: they enter UV ation (27), (31) quadratiallyand do not ontain any propagating degrees of freedom.This allowed us to eliminate all unusual non-loal diver-genes appearing due to these �elds by adding the �re-mover� setor ~�a, �a with simple ation (62). However,as pointed out in Ref. [25℄, another soure of instanta-

neous interations is the khronon �eld �0. Here the sit-uation appears to be more ompliated: the khronondesribes, besides the instantaneous mode, a genuinepropagating degree of freedom and, furthermore, en-ters the ation non-linearly. This produes di�ultieswith the quantization whih are intrinsi of Ho°ava (orkhronometri) proposal. We plan to address them else-where. For now, we just point out that the disussionof this setion suggests that a onsistent quantizationof the theory exists. Indeed, in the deoupling limitthe propagator of the khronon has the form similar tothe seond term in (68a) [25℄. We have seen that thedivergenes assoiated with suh propagators an beremoved by loal ounterterms.6. MODIFICATION OF THE NEWTON's LAWHaving addressed the theoretial onsisteny of themodel, we now study its immediate phenomenologialonsequenes. Let us onsider the gravitational �eld ofa point mass M� at a �xed position xi = 0. We willfous on the weak �eld (linear) regime and assume theminimal oupling of the metri to the matter setor; thelatter is justi�ed by the phenomenologial onstraintson deviations from the Lorentz invariane [51℄. Thereare two important hanges with respet to the massivegravity phase (3) desribed in [5, 52℄. First, at any ener-gy, the role of the Stükelberg �eld �0 is played by thekhronon. Seond, the theory is de�ned also above theenergy �2, whih an have experimental onsequenesat relevant short distanes, e. g., in the early universeor in very dense stars. We will only onsider the largedistane modi�ation in this setion.589
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Fig. 2. Generi diagram with instantaneous modes andgravitons propagating in the loops. Summing it withthe diagrams of the same topology where the di�erentsubsets of the �-loops are replaed by those of ~� and� will remove all non-loal divergenesWe work in the unitary gauge19), and restrit thevetor �elds to oset spae (30). We onsider the salarpart of the perturbations. The expansion around theMinkowski bakground to linear order readsN = 1 + '; (74a)Ni = �iB; (74b)ij = Æij � 2�Æij � �i�j� �	� 2�i�j� E; (74)V ia =MV Æia + �iaj�jC ++MV�Æia � �i�a� �	+MV �i�a� E; (74d)where we have used the linear part of Eq. (49). Usingexpression (51) and expanding khronometri and ve-tor Lagrangians (19) and (28) to quadrati order, weobtain20)19) Reall that it is onsistent to �rst �x the unitary gauge andtake the variation of the ation afterwards [53℄.20) We remind that � is de�ned in (35).

L(2)sal = M2P2 �(1� �)(�2 _	2 + 4	 �E + 4	� _B)�� (�+ �)(2 _	 + _E +�B)2 ��2	�	+4'�	+�(�i')2�+M2V2 �2 _	2+( _E+�B)2�� 4(21 + 22)(�i	)2�+ (�i _C)2 � 21(�i�kC)2 �� �4	2 � �42 E2 �m2A(�iC)2 � 'M�Æ(x): (75)We see that the pseudosalar mode C ompletely de-ouples and has the dispersion relation!2 = 21�k2 +m2A: (76)For the other omponents, we obtain the set of equa-tions,2M2P�	� �M2P�'�M�Æ(x) = 0; (77a)2M2P (1+�) _	+�M2P (�+�)�M2V �( _E+�B) = 0; (77b)�M2P (1+�+2�)�M2V ��	+M2P (1+�)( �E+� _B)���M2P�2M2V (21+22)��	��4	+M2P�' = 0; (77)2M2P (1 + �) �	 + �M2P (�+ �)��M2V �( �E +� _B)� �4E = 0: (77d)Combining the seond and fourth equations, we �ndE = 0; �B = � 2M2P (1 + �)M2P (�+ �)�M2V _	: (78)Substituting this into Eq. (77) and using (77a) to ex-press ', we �nd the equation for the single variable 	,� �M2P M2P (2 + 3�� �)�M2VM2P (�+ �)�M2V �	 ++ 2M2P�1� �2��	� �4�	 =M�Æ(3)(x); (79)where we have assumed�; �; �;MV =MP � 1and kept only up to the �rst subleading order in theseparameters.Let us momentarily put the soure to zero,M� = 0.Then (79) redues to the wave equation for the heliity-0 graviton mode � the khronon. To the leading order,its dispersion relation reads!2 = �k2��+�� � M2V�M2P �+ �42M2P ��+��M2VM2P �: (80)590



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Completing Lorentz violating massive gravity : : :One makes two observations. First, the veloity of thekhronon, kh =s�+ �� � M2V�M2P ; (81)gets renormalized ompared to the pure khronometritheory (see Eq. (23)) due to the VEVs of the vetor�elds. The requirement that the veloity square re-mains positive puts an upper bound,MV < MPp�+ �: (82)This ondition is automatially satis�ed within our as-sumptions (32). Seond, the khronon aquires a massgap, mkh = �2MPs�+ �2 � M2V2M2P ; (83)whih is parametrially smaller than the mass of gravi-ton (7). This is in striking ontrast to the ase of [5℄where the Stükelberg �eld �0 remains massless. Itis worth stressing that the appearane of gap (83) isan IR phenomenon and depends only on the proper-ties of the Stükelberg setor �0, �a at energies belowmA. Thus one expets it to be a universal property ofmassive gravities where this setor obeys the symme-tries (1b), (14).Next, we restore the soure in (79) and fous onstati on�gurations. We �nd	 = �GNM�r exp(�mkhr=kh); (84)where we have introdued the Newton's onstant,GN � 18�M2P (1� �=2) : (85)Clearly, the gravitational �eld has a Yukawa-type be-havior. Finally, from (77a) we obtain the Newton'spotential' = �GNM�r �1� 2��1� exp(�mkhr=kh)�� : (86)This potential is plotted in Fig. 3. One observes thatit markedly deviates from the Newtonian potential ofgeneral relativity. The most striking feature is thatthe gravitational fore beomes repulsive at distanesr > 1=mg. At large distanes, the potential goes tozero. This is di�erent from the ase of massive gravitieswith gapless �eld �0 [5℄, where the gravitational poten-tial generially presents linear growth with distane21)21) This growth may be ut by non-linearities of the model[5, 54, 55℄ or by non-stationary evolution of the bakground [34℄.Also, it is absent if the oe�ients in the mass term (6) satisfyertain relations [5, 52℄.
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Fig. 3. The shape of the Newton potential in the mas-sive gravity model in this paper. The gravitational forebeomes repulsive at distanes larger than the inversegraviton mass[34; 52℄. Note also that there is no van Dam�Velt-man�Zakharov (vDVZ) disontinuity [56, 57℄: in thelimit � ! 0 the potentials ', 	 redue to their GRexpressions.To understand the behavior of the Newton potentialin more detail, we expand the exponent atr � khm�1kh = �p�mg��1 :At these distanes the khronon mass is irrelevant andone expets the potential to oinide with the resultsexisting in the literature. We obtain' = GNM� "�1r +r 2�mg � m2gr2 + : : :# ; (87)where dots stand for the terms that are suppressed bythe powers of the ombination p�mgr. The seondterm in brakets gives a onstant shift of the Newtonpotential whih drops o� from the observables involv-ing only distanes r . 1=mg. The third term givespreisely the linear ontribution disussed in [34; 52℄.Note that for our model this ontribution is repulsive.The potential reahes a maximum at r = p2=mg where'max =p2=�GNM�mg :For the validity of the linearized approximation 'maxmust be muh smaller than one. This translates intothe ondition that the graviton mass must be smallerthan the inverse Shwarzshild radius of the soure mul-tiplied by p�. Unless � is extremely small, this ondi-tion is not very restritive.591



D. Blas, S. Sibiryakov ÆÝÒÔ, òîì 147, âûï. 3, 2015Stronger phenomenologial onstraints ome fromthe requirement that the gravitational �eld of loalizedsoures should not signi�antly deviate from the stan-dard form at astrophysial sales. The Solar Systemtests put a limit on the di�erene between the two grav-itational potentials ' and 	. In the post-Newtonianframework this is traditionally parameterized by theratio  � 	=' and the urrent onstraint (measured atthe orbit of Saturn by the Cassini satellite) reads [58℄ � 1 = (2:1� 2:3) � 10�5: (88)From expressions22) (84), (87), we obtain the formulafor  in our model at distanes shorter than inversekhronon mass,  = 1� (mgr)22 : (89)This gives an upper bound mg < 4 � 10�17 m�1 �� 120 p�1. A tighter limit omes from the gravita-tional �eld of galaxies. The requirement that it mathesthe standard expression impliesmg . (1 Mp)�1: (90)It is likely that yet stronger bounds an be obtainedfrom the large sale struture and the osmi mirowavebakground (CMB). We leave this analysis for future.It would be also interesting to explore if the gravita-tional repulsion found above an be ative at the os-mologial sales and lead to aelerated expansion ofthe universe. Note that this mehanism of aelerationwould rely ruially on the presene of inhomogeneities,as the homogeneous FRW ansatz does not exhibit anyself-aelerated behavior (see Se. 4).Before losing this setion, let us mention that aomplementary way to onstrain the graviton mass isby looking diretly at the modi�ations in the heliity-2 setor. These have onsequenes for radiation andpropagation of gravity waves [52, 59, 60℄. Having amore omplete theory allows to put these studies on the�rm ground in the situations with harateristi salessmaller than ��12 , suh as in�ation and reheating.7. SUMMARY AND DISCUSSIONIn this paper, we have proposed an embedding ofLorentz violating massive gravity above the sale �2 �� pmgMP . The proposed theory has a high uto�sale only a few orders of magnitude below the Plankmass and independent of the mass of the graviton.22) We subtrat the onstant piee from (87).

At high energies the theory possesses a large symme-try FDi� � SO(3) whih is spontaneously broken atlower energy to a diagonal global SO(3) subgroup23).This pattern of symmetry breaking is realized by atriplet of spae-like vetor �elds whih develop non-zero VEVs and play the role of the �Higgs� �elds. Aruial tehnial role is played by a quadrati mixingbetween the vetors and the Stükelberg �elds �a ofmassive gravity. One the vetors aquire VEVs, thismixing fores the Stükelbergs to develop oordinate-dependent pro�les, whih eventually translates into thegraviton mass. This means that no non-linear intera-tions in the Stükelberg setor are required to do thisjob and one an restrit to purely quadrati ation forthe �elds �a, thus eliminating any strong oupling fromthis setor. This mehanism is reminisent of the pro-posal for the (partial) UV ompletion of the ghost on-densate model [36; 47℄ where a mixing between a time-like vetor aquiring a VEV and a massless salar foresthe latter to evolve in time.The graviton mass in the model is proportional tothe produt of the vetor VEVs and the oe�ient infront of the vetor-Stükelberg mixing. Thus, it van-ishes both if the vetor VEVs disappear (in the un-broken phase) or if the mixing is swithed o�. Theation stays regular in the limit of vanishing mass andtherefore one expets all observable quantities, with thequantum orretions inluded, to behave smoothly inthis limit. In this sense, our mehanism is analogousto the Higgs mehanism of gauge theories. It is worthstressing that in our model the mixing between the ve-tor and Stükelberg �elds is proteted by a disretesymmetry �a 7! ��a and thus a small oe�ient infront of it is tehnially natural. This implies that thegraviton mass is stable under quantum orretions.We analyzed the struture of the theory at di�erentenergies and expliitly veri�ed the expetation that newdegrees of freedom, besides those of pure massive grav-ity, must exist below the sale �2. Indeed, we foundthat ertain omponents of the vetor �elds propagateat these energies. These degrees of freedom have a massgap whih is parametrially smaller than �2, but stillbigger than mg . It would be interesting to work outthe onsequenes of these new light degrees of freedomfor phenomenology.We also found that the heliity-0 omponent of thegraviton, whih in our model is identi�ed with thekhronon of the khronometri model, aquires a massparametrially lower than mg . This has important im-23) Notie that Lorentz invariane is broken expliitly all theway up to the uto�.592



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Completing Lorentz violating massive gravity : : :pliations for the gravitational potentials of loalizedsoures: unlike previous models of LV massive gravity,in our ase the potentials fall of exponentially at largedistanes. Remarkably, the shape of the Newton po-tential is not monotonous. It grows from negative val-ues at short distanes, hanges sign, reahes a positivemaximum at r = p2m�1g and then dereases towardsr ! 1. This implies that the gravitational fore be-omes repulsive at r > p2m�1g . This property maylead to a rih phenomenology whih we leave for futurestudies. An interesting question is whether the gravi-tational repulsion between the inhomogeneities presentin the universe an provide the aelerated expansionat reent epoh, despite the fat that for the stritlyhomogeneous ansatz our model does not exhibit anyself-aeleration.A subtle theoretial aspet of our model, inheritedfrom the e�etive theory of LV massive gravity, is thepresene of instantaneous interations. We have ad-dressed the issue of quantization of the instantaneousmodes and argued that it an be performed onsis-tently. We also pointed out that in the anonial for-malism the instantaneous modes must be interpreted asa ertain type of non-loality along the spatial dimen-sions. To make the disussion onise, we foused onsimpli�ed toy models. A more omprehensive study ofthis topi is de�nitely required owing to its importanefor LV proposals for quantum gravity [23, 25℄.Another open question left for future researh isto understand how the strong oupling of LV massivegravity manifests itself at the level of Feynman dia-grams and how it is aneled by the new degrees offreedom appearing in our model (see [32, 61℄ for relatedworks in the Lorentz invariant ontext). This mayshed light on possible generalizations of the mehanismproposed in this paper to other IR modi�ations ofgravity, suh as multi-metri theories and the Lorentzinvariant setup of [7℄. In partiular, it would beinteresting to prove at the diagrammati level the(im)possibility of a Lorentz invariant Wilsonian UVompletion of the latter setup.We are grateful to Denis Comelli, Sergei Dubovsky,Maxim Pospelov, and Mikhail Ivanov for useful dis-ussions. We also thank Claudia de Rham and Gre-gory Gabadadze for useful omments on the draft. S. S.is grateful to the Perimeter Institute for hospitalityduring this work. Researh at Perimeter Institute issupported by the Government of Canada through In-dustry Canada and by the Provine of Ontario throughthe Ministry of Eonomi Development & Innovation.
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