
ÆÝÒÔ, 2015, òîì 147, âûï. 3, ñòð. 578�594 

 2015
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Institute for Nu
lear Resear
h of the Russian A
ademy of S
ien
es117312, Mos
ow, RussiaRe
eived November 11, 2014Theories with massive gravitons are interesting for a variety of physi
al appli
ations, ranging from 
osmologi
alphenomena to holographi
 modeling of 
ondensed matter systems. To date, they have been formulated ase�e
tive �eld theories with a 
uto� proportional to a positive power of the graviton mass mg and mu
h smallerthan that of the massless theory (MP � 1019 GeV in the 
ase of general relativity). In this paper, we present anultraviolet 
ompletion for massive gravity valid up to a high energy s
ale independent of the graviton mass. The
onstru
tion is based on the existen
e of a preferred time foliation 
ombined with spontaneous 
ondensationof ve
tor �elds. The perturbations of these �elds are massive and below their mass, the theory redu
es to amodel of Lorentz violating massive gravity. The latter theory possesses instantaneous modes whose 
onsis-tent quantization we dis
uss in detail. We brie�y study some modi�
ations to gravitational phenomenologyat low-energies. The homogeneous 
osmologi
al solutions are the same as in the standard 
osmology. Thegravitational potential of point sour
es agrees with the Newtonian one at distan
es small with respe
t to m�1g .Interestingly, it be
omes repulsive at larger distan
es.Contribution for the JETP spe
ial issue in honor of V. A. Rubakov's 60th birthdayTo Valery Rubakov, Tea
her and ColleagueDOI: 10.7868/S00444510150301801. INTRODUCTIONCan gravity be mediated by a massive tensor �eld?This straightforward question has generated a lot of
ontroversy sin
e it was �rst formulated by Fierz andPauli [1℄. The situation is remarkably di�erent fromthe 
ase of gauge intera
tions mediated by ve
tor �elds,where the Higgs me
hanism provides a 
lear-
ut way togive mass to the ve
tor bosons within a weakly 
oupledtheory. The di�eren
es fall into two 
ategories. First,a generi
 Lorentz invariant theory with massive spin-2�elds (gravitons) presents instabilities in the se
tor ofadditional polarizations appearing in the massive, asopposed to massless, 
ase � the �Goldstone� se
tor.These instabilities arise around realisti
 ba
kgrounds*E-mail: sergey.Sibiryakov�
ern.
h

and endanger the 
onsisten
y of the theory even at lowenergies [2, 3℄. It was �rst realized by Rubakov [4℄ thatthese problems 
an be avoided by breaking the Lorentzinvarian
e. This approa
h has lead to the formulationof a 
lass of Lorentz violating (LV) massive gravities as
onsistent e�e
tive �eld theories (EFTs) [5℄ (see [6℄ forreview). An alternative way to improve the behaviorof the Goldstone se
tor while preserving the Lorentzinvarian
e has been found in [7℄ and 
onsists in a judi-
ious 
hoi
e of the 
ouplings for the intera
tions of themassive gravitons (see, e. g., [8, 9℄) for reviews). It hasbeen argued [10, 11℄ that this tuning might be stableunder quantum 
orre
tions, but it is not 
lear at themoment if there is any symmetry behind.The se
ond di�eren
e between massive spin-2 andspin-1 theories lies in their di�erent behavior at highenergies. The intera
tions in the Goldstone se
tor ofmassive gravity be
ome strong and the perturbation578
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ertain 
uto� s
ale1) �low de-pending on the graviton mass mg . In the limit of van-ishing mass, this s
ale goes down to zero and, insteadof re
overing the massless 
ase, the theory 
eases toexist. In fa
t, the same is also true for a pure theoryof massive ve
tor �elds with non-abelian intera
tion.However, in the latter 
ase the ultraviolet (UV) 
om-pletion is known in the form of the Higgs me
hanismwhi
h makes the theory renormalizable by adding ahandful of new degrees of freedom (Higgs bosons). Im-portantly, in the resulting theory, the massless limit isperfe
tly smooth and 
orresponds to the restoration ofthe spontaneously broken gauge symmetry2).No su
h me
hanism has been found so far for mas-sive gravity3). Of 
ourse, in this 
ase one 
annot insiston an embedding into a fully UV 
omplete theory �the massless theory being non-renormalizable anywaywith the 
uto� at the Plan
k mass MP � 1019 GeV(see, however, Se
. 3.1). Still, it makes sense to sear
hfor a setup, whose 
uto� would be independent of thegraviton mass and as 
lose to the Plan
k s
ale as pos-sible. To preserve the analogy with the Higgs me
ha-nism, the embedding theory must 
ontain only a �nitenumber of new degrees of freedom 
ompared to mas-sive gravity itself4), these degrees of freedom must beweakly 
oupled and the limit mg ! 0 must be regular.The goal of this work is to present a setup ful�lling theabove requirements.The reasons for pursuing this endeavor are notmerely a
ademi
. First, massive gravity is a very natu-ral 
andidate for an infrared (IR) modi�
ation of gen-eral relativity (GR) [14℄. Su
h modi�
ations are aninteresting playground to look for alternatives to the
osmologi
al 
onstant as the sour
e of 
osmi
 a

eler-ation (see, e. g., [15℄). The a

eleration may be gener-1) Throughout the paper, we identify the 
uto� with the strong
oupling s
ale of the perturbation theory around the Minkowskiba
kground. In the setup of [7℄, the s
ale of strong 
oupling maybe raised in 
urved spa
e-time due to the Vainshtein me
hanism(see the dis
ussion in [9℄). However, the validity of the 
orre-sponding ba
kgrounds is under debate [12℄.2) From a purist's viewpoint, no symmetry is broken in theHiggs me
hanism, gauge invarian
e being just a redundan
y inthe des
ription. However, we allow ourserves this abuse of ter-minology be
ause of its 
lear intuitive meaning.3) Ex
eptions are theories in AdS where the mass of the gravi-ton 
an appear due to non-trivial 
onditions at the time-likeboundary [13�15℄. However, these 
onstru
tions rely heavily onthe pe
uliar properties of the AdS geometry. In parti
ular, theresulting graviton mass is always parametri
ally smaller than theinverse AdS radius.4) This ex
ludes the known theories with massive spin-2 �elds,su
h as Kaluza�Klein models or string theory: both imply thepresen
e of an in�nite tower of new degrees of freedom withmasses of order �low .

ated at the level of the ba
kground (new 
ontributionto the Friedmann equation) or of perturbations (weakeror repulsive gravitational potential at distan
es largerthan m�1g ). It is fair to say that none of these pos-sibilities have been satisfa
tory implemented so far in
on
rete models. In any event, any 
andidate to explain
osmi
 a

eleration should have a 
ompletion at highenergies, whi
h is important for predi
tions related tothe early universe or very dense obje
ts. This 
an alsoallow to understand the relevan
e of 
ertain tunings ofthe IR parameters. We will see how a 
on
rete ultra-violet 
ompletion 
an have nontrivial 
onsequen
es atvery large distan
es.Massive gravity has also been dis
ussed in the 
on-text of the gauge/gravity 
orresponden
e [16, 17℄. Var-ious phases of massive gravity may be useful to des
ribedi�erent phenomenology at strong 
oupling. In par-ti
ular, it was re
ently realized that LV massive grav-ity is relevant for the des
ription of systems with bro-ken translational invarian
e [18, 19℄. The 
ompletionof the theory to smaller distan
es on the gravity sideyields a

ess to the operators of higher dimensions inthe strongly 
oupled �eld theory5).Finally, the theory of massive gravity is relatedto the spontaneous breaking of spa
e-time symme-tries [5; 20℄. This is an appropriate language to de-s
ribe di�erent states of matter within the EFT frame-work [21, 22℄. One 
an spe
ulate that the Higgs me
h-anism for massive gravity will be relevant to des
ribethe phase transitions in su
h systems.In this paper, we will fo
us on the LV massive grav-ity of [4, 5℄. Our main motivation for this 
hoi
e isthe already mentioned validity of this theory as a low-energy EFT, whose stru
ture is prote
ted by symme-tries. Besides, the fundamental role of Lorentz in-varian
e in quantum gravity has been questioned re-
ently [23℄. It is interesting to explore if massive grav-ity 
an be naturally embedded in this framework6). Wewill assume that at the fundamental level the violationof Lorentz invarian
e is minimal and amounts to theexisten
e of a preferred foliation of spa
e time [23, 25℄.It is worth noting that the presen
e of superluminalpropagation [26�28℄ in the seemingly Lorentz invariantmassive gravity of [7℄ makes a Lorentz invariant Wilso-nian UV 
ompletion of this theory problemati
 [29℄.Thus, even in this 
ase, the UV 
ompletion (if any) islikely to be Lorentz violating.The paper is organized as follows. In Se
. 2, webrie�y summarize the formalism of LV massive gravity5) We thank Ri

ardo Rattazzi for the dis
ussion of this point.6) See [24℄ for an early attempt in this dire
tion.579 13*



D. Blas, S. Sibiryakov ÆÝÒÔ, òîì 147, âûï. 3, 2015and de�ne the phase that we will 
onsider. In Se
. 3, weintrodu
e the UV 
ompletion that allows pushing the
uto� of the theory to values 
lose to MP . We analyzethe ba
kground solutions of the theory in Se
. 4 andshow that the LV massive gravity of Se
. 2 appears inthe IR limit. Se
tion 5 is devoted to the analysis of thedegrees of freedom in the theory at di�erent s
ales. Wealso dis
uss in some detail the quantization of instan-taneous modes present in the LV massive gravity andtheir relation to a 
ertain type of non-lo
ality along thespatial dire
tions. First results in phenomenology arepresented in Se
. 6. We 
on
lude with the summaryand dis
ussion in Se
. 7.2. LORENTZ VIOLATING MASSIVE GRAVITYWe will now brie�y review the 
onstru
tion of LVmassive gravity. We will formulate these theories in alanguage 
loser to the symmetry breaking me
hanismby introdu
ing Stü
kelberg �elds [5; 20℄. This formula-tion is useful to understand many features of the theo-ries, in parti
ular the strong 
oupling s
ale.We fo
us on the setup where Lorentz invarian
e isbroken down to the subgroup of spatial rotations [4℄.To des
ribe this situation, let us 
onsider four s
alarStü
kelberg �elds, �0, �a, a = 1; 2; 3, with internalSO(3) symmetry a
ting on the indi
es a, 
oupled to themetri
 in a 
ovariant way. Additional symmetries mustbe imposed on this se
tor to prote
t it from patholo-gies [5℄. We start by requiring invarian
e under theshifts7) of �0, �0 7! �0 + 
onst; (1a)and the �0-dependent shifts of �a,�a 7! �a + fa(�0); (1b)where fa are arbitrary fun
tions. We assume thatin the stationary state the Stü
kelberg �elds a
-quire 
oordinate-dependent va
uum expe
tation values(VEVs), �0 = �20 t; �a = �2xa: (2)These VEVs break the produ
t of 4-dimensional di�eo-morphisms and the internal symmetries of Stü
kelberg�elds down to the diagonal subgroup 
onsisting of thetime shifts, t 7! t+ 
onst; (3a)time-dependent shifts of the spatial 
oordinates,xa 7! xa + fa(t); (3b)7) We start from the simple �0-shifts to make 
onta
t with [5℄.Later on, we will promote them to a larger symmetry, seeEq. (14).

and SO(3) spatial rotations. A simple Lagrangianthat obeys the imposed symmetries and admits theVEVs (2) has the form8)LS = LS1 + LS2;LS1 = 18�40 �(���0)2 � �40�2� �04�40 �(���0)2��40��� Xa P�����a���a + 3�4! ; (4a)LS2 = � 18�4 Xa;b �P�����a���b + �4Æab�2 ++ �8�4  Xa P�����a���a + 3�4!2 ; (4b)where �0, � are dimensionless 
onstants andP�� = g�� � ���0���0g�����0���0 ; (5)is the proje
tor on the subspa
e orthogonal to the gra-dient of �0 whi
h ensures invarian
e under (1b).To understand the physi
al 
ontent of the theory,let us 
onsider small �u
tuations of the metri
 and ex-pand to the quadrati
 order inh�� � g�� � ��� :Using general 
ovarian
e, we 
an identify the 
oordi-nates with the Stü
kelberg �elds, as in (2). In otherwords, we work in the gauge, where the �elds �0, �ado not �u
tuate; we 
all it �unitary gauge�. Then, thequadrati
 Lagrangian takes the formL(2)S = �408 h200 � �4�04 h00haa �� �48 habhab + �4�8 h2aa; (6)where the summation over repeated indi
es is under-stood. This is pre
isely a mass term for the metri
perturbation. In parti
ular, the graviton (the heli
i-ty-2 
omponent) a
quires the massmg = �2MP ; (7)where MP is the Plan
k mass. Note that the termh0ah0a whi
h is missing in (6) 
ompared to the mostgeneral expression [4℄ is forbidden by the residual sym-metry (3b). The quadrati
 Lagrangian of the form (6)appears also in bimetri
 theories [30, 31℄.8) This Lagrangian is not the most general one, but it is suf-�
ient for our purposes, as it reprodu
es all possible mass termsfor the metri
 whi
h are allowed by the symmetries (1).580



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Completing Lorentz violating massive gravity : : :Let us return from the unitary gauge to the 
ovari-ant Lagrangian (4) whi
h is more suitable to study thenon-linear properties. Importantly, in the 
ase when�0, � are mu
h smaller than MP , we 
an de
ouple themetri
 �u
tuations and 
on
entrate on the Stü
kelberg�elds, as if they were living in �at spa
e-time. We write�0 = �20t+  0; �a = �2xa +  a (8)and obtainLS = ( _ 0)22 + �0�2�20 _ 0�a a � �a b�a b4 �� 1� �4 (�a a)2 + Lint �� 0�20 ; � a�2 � ; (9)where the last term stands for the derivative intera
-tions of 
ubi
 and higher orders. By power-
ounting,the strength of these intera
tions grows with the in-
rease of energy or momentum and the theory breaksdown at the s
ale � = minf�0; �g: (10)Comparing with (7), we 
on
lude that the 
uto� isbounded from above,� < �2 �pmgMP : (11)A
tually, this 
on
lusion is not related to the spe
i�
form of the Lagrangian (4). As dis
ussed in [5℄, �2provides an absolute upper bound on the 
uto� in ageneral massive gravity theory formulated in terms ofthe metri
 and Stü
kelberg �elds only9). Thus, the the-ory does not admit a smooth limit mg ! 0.From the quadrati
 part of (9), we read o� that alinear 
ombination of  0 and the longitudinal part of a has degenerate dispersion relation!2 = 0: (12)This presents a potential danger, as in non-trivial ba
k-grounds the r.h.s. of the dispersion relation 
an be
omenegative leading to an instability. In Ref. [5℄, it wassuggested to lift the degenera
y by adding to the La-grangian quadrati
 terms with higher derivatives as inthe ghost 
ondensate model [33℄. In the next se
tion,we will take a di�erent route and embed the �eld �0into the khronometri
 model [25℄.The rest of the modes in (9) � the transverse partof  a and the longitudinal 
omponent of  a linearly in-dependent from  0 � obey the equations of the form9) The 
uto� is even lower, � < �3 � (m2gMP )1=3, if onerestri
ts to the Lorentz invariant theories [20, 32℄.

�k2 = 0; (13)where �k is the absolute value of the three-momentum�ki. Thus, for any non-zero spatial momentum thesemodes must vanish implying that there are no propa-gating degrees of freedom asso
iated with  a. The sym-metry (1b) ensures that this property is preserved uponin
lusion of higher-order operators [5℄ and in 
urvedba
kgrounds [34℄. Therefore the theories based on thesymmetries (1) present a 
lass of well-de�ned EFTs10).3. GOING BEYOND �2: INGREDIENTS3.1. The �eld �0There are two natural ways to deal with the �eld�0 to 
omplete the previous a
tions to energies higherthan (10). First, as we mentioned above, the degen-era
y of the dispersion relation (12) 
an be lifted byadding higher derivative terms as in the ghost 
onden-sate [33℄. This theory is still an e�e
tive theory with a
uto� of order �0, but sin
e this is independent of themass of the graviton, this s
ale 
an be quite high. Phe-nomenologi
al bounds set the 
onstrain �0 . 10 MeV.It was argued in Ref. [35℄ that these bounds 
an be re-laxed by the non-linear dynami
s whi
h may push theupper limit on �0 to 100 GeV. This still remains mu
hbelow the Plan
k s
ale. The way to raise the 
uto�of the theory to (almost) Plan
kian was proposed inRef. [36℄. It uses the embedding of the ghost 
onden-sate into the khronometri
 model [25℄ and requires theintrodu
tion of a new degree of freedom � khronon �at a s
ale below �0. One 
ould use this strategy here.However, it is more e
onomi
al to use the se
ondoption and identify the Stü
kelberg �eld �0 dire
tlywith the khronon, thus keeping only a single degree offreedom in this se
tor. In this 
ase, the symmetry (1a)is extended to the full reparameterization invarian
e,�0 7! f0(�0); (14)for an arbitrary monotonous fun
tion f0. This largersymmetry forbids the terms present in (4a). Instead,the Lagrangian must be 
onstru
ted using the unit ve
-tor u� � ���0pg�����0���0 (15)invariant under the symmetry (14). The most generalLagrangian with the lowest number of derivatives, andthus dominant at low energies, reads [25℄10) A subtle issue of the proper treatment of the non-propaga-ting modes at the quantum level will be dis
ussed in Se
. 5.3.581



D. Blas, S. Sibiryakov ÆÝÒÔ, òîì 147, âûï. 3, 2015Lkh = �M2P2 �R+ �r�u�r�u� ++ �(r�u�)2 + �u�u�r�u�r�u��; (16)where we have also in
luded the standard GR a
tion;�, �, � are dimensionless 
oupling 
onstants. This 
anbe 
ombined with (4b) to give an a
tion of LV massivegravity. We note that in the unitary gauge11) (2) theLagrangian (16) gives rise only to terms with deriva-tives of the metri
 perturbations and thus does not
ontribute to the mass term for h�� . The latter re-du
es to Lmass = ��48 habhab + �4�8 h2aa: (17)This 
an be understood as the 
onsequen
e of the time-reparameterization invarian
et 7! f0(t); (18)whi
h, being now a residual symmetry in the unitarygauge, forbids any 
ontributions 
ontaining h00 with-out derivatives. This version of massive gravity was
onsidered in Ref. [37℄.The Lagrangian (16) 
ontains higher derivatives ofthe �eld �0 and one may be worried that this 
an leadto pathologies (ghosts or gradient instabilities). In fa
t,this does not happen, as the extra derivatives a
t in thespatial dire
tions. This property be
omes expli
it inthe gauge where the time 
oordinate is identi�ed with�0 as in the �rst equation of (2). We note, that thisidenti�
ation still leaves the free 
hoi
e of the spatial
oordinates, so it should not be 
onfused with the uni-tary gauge where all 
oordinates are �xed. We will 
allthis partial gauge �xing ADM gauge. The a
tion of thekhronometri
 model takes the formSkh = M2P2 Z dt d3xp
N�(1� �)KijKij �� (1 + �)K2 + (3)R+ ���iNN �2�; (19)where we used the Arnowitt�Deser�Misner (ADM) de-
omposition for the metri
,ds2 = dt2 � 
ij(dxi +N idt)(dxj +N jdt); (20)the extrinsi
 
urvature of the 
onstant-time sli
esKij = 12N ( _
ij �riNj �rjNi); K = 
ijKij ; (21)and denoted (3)R the three-dimensional 
urvature 
on-stru
ted from the metri
 
ij . Apart from the symme-try (18), this a
tion is invariant under time-dependentspatial di�eomorphisms11) Be
ause of the invarian
e (14), the 
hoi
e of the 
onstant�20 in the �rst formula of (2) is now arbitrary and unrelated tothe parameters of the theory.

xi 7! ~xi(x; t): (22)We will refer to the group 
onsisting of the transforma-tions (18) and (22) as foliation-preserving di�eomor-phisms (FDi�). Clearly, the a
tion (19) leads to equa-tions of motion whi
h are se
ond order in time deriva-tives. We will work in the ADM gauge from now on.The 
hoi
e � = � = � = 0
orresponds to GR and the restoration of the full dif-feomorphisms-invarian
e. However, the limit �, �,� ! 0 is not smooth. At any non-zero values of �,�, � the theory propagates in addition to the heli
i-ty-2 gravitons a single heli
ity-0 mode (khronon). Thelatter has linear dispersion relation; in the 
ase �, �,� � 1 (whi
h is the relevant one for phenomenology),it reads12) [25℄ !2 = � + �� k2: (23)Due to the non-linear intera
tions of the khrononpresent in (19), the model has a 
uto��kh �MP minnp�;p�;p�o : (24)Phenomenologi
al 
onsiderations put upper bounds on�, �, � [25, 38, 39℄ and hen
e 
onstrain the 
uto� tobe somewhat smaller than the Plan
k s
ale,�kh . 1015GeV: (25)Still, this is well above virtually any s
ale that 
an ap-pear in the astrophysi
al or 
osmologi
al 
ontext13).Furthermore, it is known how to 
omplete the a
-tion (19) beyond �kh by embedding it into the Ho°avagravity [23, 40℄. The latter presents a power-
ountingrenormalizable theory. However, due to the te
hni
al
omplexity, the question about its renormalizability inthe stri
t sense and UV behavior still remains open(see Refs. [41, 42℄ addressing this issue in restri
ted set-tings). In these 
ir
umstan
es, a 
autious reader mayprefer to take modest attitude and view the khrono-metri
 model as an EFT with the 
uto� (24), whi
h issu�
ient for the purposes of this work.Finally, let us mention the following pe
uliarity ofthe a
tion (19). As des
ribed in Ref. [25℄, it leads to a
ertain type of instantaneous intera
tions mediated by12) This relation gets modi�ed � in parti
ular, the khronona
quires a mass gap � when the a
tion (19) is 
oupled to theother se
tors needed to reprodu
e the massive gravity, see Se
. 6below.13) In the appli
ations unrelated to astrophysi
s, su
h as non-relativisti
 holography or des
ription of solids, the parameters �,�, � are a priori 
onstrained only by the stability requirements,that are mild, and the s
ale �kh 
an be as high as MP .582



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Completing Lorentz violating massive gravity : : :a non-propagating mode. The latter is similar to thenon-propagating modes of massive gravity dis
ussed inSe
. 2. We will study the instantaneous modes in moredetail in Se
. 5.3.3.2. The �elds �a and their 
oupling to Higgsve
torsNext we 
onsider the triplet of Stü
kelberg �eldsinvariant under �a 7! �a + fa(t); (26)whi
h is nothing but the symmetry (1b) in the ADMgauge. We want a Lagrangian that admits the 
oor-dinate-dependent VEVs (2), but at the same time isUV 
omplete past the s
ale �. This pre
ludes from in-trodu
ing any self-intera
tion of the Stü
kelberg �eldsinvolving the s
ale �. Then the simplest option is to
hoose the Lagrangian to be quadrati
 in �a. To re-spe
t the symmetry (26), it must depend only on thespatial derivatives of these �elds,S� = Z dt d3xp
N�� 12
ij�i�a�j�a�: (27)This does not introdu
e any new strong 
oupling s
ale.However, without any further intera
tions, this La-grangian is not enough to provide non-zero gravitonmass. Though the 
on�guration�a = �xais a solution of the equations following from (27) for any
onstant �, it introdu
es non-vanishing energy densityand pressure whi
h make the universe expand14). Aswill be
ome 
lear in the Se
. 4, in this 
ase the gener-ated mass will de
rease with time and will asymptot-i
ally vanish. Time varying masses 
an be interesting(see, e. g., [34℄) but are not the aim of this paper. Togive 
onstant graviton mass, the VEVs in an expandinguniverse must grow proportionally to the s
ale fa
tor,�a / a(t)xa;whi
h is not a solution of the �eld equations implied by(19) and (27). We have to add more ingredients.Consider a triplet of ve
tor �elds with purely spa-tial 
omponents V ia . These transform as ve
tors underthe di�eomorphisms preserving the foliation stru
tureof the ADM gauge, whi
h a
t on the i-index. Besides,they form the fundamental representation of a globalinternal SO(3) a
ting on the index a. We do not as-sume any gauge invarian
e asso
iated to these ve
tors.To avoid strong 
oupling, we fo
us on Lagrangians14) These density and pressure 
annot be 
an
eled by any bare
osmologi
al 
onstant.

whi
h are renormalizable in �at spa
e-time. By thestandard power-
ounting, they 
an 
ontain the deriva-tives of V ia only quadrati
ally and up to quarti
 terms inthe potential. The generi
 Lagrangian satisfying theseproperties and invariant under FDi�� SO(3) readsSV = Z dt d3xp
 ��N� 12N2 ( _V ia �N jrjV ia + V jarjN i)2 �� 
212 (riV ja )2 � 
222 (riV ia )2 �� {14 (V iaV jb 
ij �M2V Æab)2 �� {24 (V iaV ja 
ij � 3M2V )2�; (28)where 
1, 
2, {1, and {2 are dimensionless 
ouplingsand we have 
hosen the overall 
onstant in the potentialto have vanishing va
uum energy (we will shortly intro-du
e a 
osmologi
al 
onstant term in a di�erent part ofthe a
tion). For 
larity, we have omitted non-minimalintera
tions with the metri
, su
h as (3)RijV iaV ja and(3)RV iaV ja 
ij , whi
h vanish in Minkowski spa
e-time.These terms would make the analysis more 
umber-some without 
hanging it qualitatively.When M2V > 0, the ve
tors develop VEVs,V ia =MV Æia; (29)whi
h break the produ
t SO(3) � SO(3) of spatialand internal rotations down to the diagonal subgroup,
f. [43�46℄. Below the s
ale � p{MV , the dynami
s isdes
ribed by the �-model 
orresponding to this patternof symmetry breaking with the 
oset spa
e de�ned byV iaV jb 
ij =M2V Æab: (30)As the ve
tor VEVs introdu
es an additional sour
e ofLorentz symmetry breaking, it is natural to expe
t thatthe phenomenologi
al 
onstraint on the s
ale MV willbe similar to that of �kh, Eq. (25). Noti
e, however,that MV is not related to the 
uto� and 
an be mu
hlower than �kh without jeopardizing the validity of thetheory.Finally, we 
omplete our Lagrangian with a termmixing the ve
tors and the Stü
kelberg �elds,SV � = Z dt d3xp
N�mAV ia�i�a � V0�: (31)This mixing operator has dimension 3 and thus is just arelevant deformation of the previous a
tion. It does nota�e
t the UV properties of the theory, in parti
ular, itdoes not introdu
e any new UV 
uto�, and the param-eter mA 
an be arbitrarily small without en
ounteringany singularity. We are going to see that in IR this583
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oupling leads to the generation of the VEVs (2) with�2 = mAMV and the graviton mass (7). The last termin (31) represents a 
osmologi
al 
onstant and 
an betuned to 
an
el the negative va
uum energy that wouldbe generated otherwise (see below). We note that it iste
hni
ally natural to take the parameter mA to bemu
h smaller than the other s
ales of the theory as itis prote
ted from large quantum 
orre
tions by the dis-
rete symmetry15) �a 7! ��a. In what follows we willassume the hierar
hy of s
ales,MP & �kh &MV � mA: (32)It is worth stressing that this hierar
hy is not requiredby the internal 
onsisten
y of the theory. For exam-ple, one 
ould 
onsider instead mA � MV . However,assuming (32) makes the physi
al pi
ture parti
ularlytransparent.4. GENERATION OF VEVs IN EXPANDINGBACKGROUNDSLet us now show that the 
onstru
tion of the pre-vious se
tion gives rise to the VEVs for the �elds �aof the desired form. We assume a homogeneous andisotropi
 ansatz with spatially �at metri
 allowing fora general 
osmologi
al evolution,N(t); 
ij = a2(t)Æij ; V ia = MVa(t)Æia;�a = �(t)xa: (33)Substituting this ansatz into the equations of motionobtained from putting together the a
tions (19), (27),(28) and (31), we obtain16)3M2
H2 � 3�22a(t)2 + 3�2�a(t) � V0 = �mat; (34a)2M2
 _H + 3M2
H2 � �22a(t)2 ++ 2�2�a(t) � V0 = �pmat; (34b)where �2 = mAMV (35)15) A similar argument is used to prote
t the small 
ouplingbetween a time-like ve
tor �eld and an ordinary massless s
alarin the te
hni
ally natural dark energy model of [47℄.16) The simplest way to derive these equations is to substituteansatz (33) into the a
tion and perform variation with respe
t tothe free fun
tions N(t) and a(t) afterwards. Note, however, thatit would be in
orre
t to vary this a
tion with respe
t to � as the
orresponding variation Æ�a = Æ�xa would not be bounded atspatial in�nity.

and M2
 �M2P�1 + � + 3�2 �� M2V2 (36)is the �
osmologi
al Plan
k mass�. In Eqs. (34) we �xedthe gauge N = 1 and assumed that the universe is�lled with matter with energy density �mat and pres-sure pmat. Taking the derivative of (34a) and using theenergy 
onservation in the matter se
tor,_�mat + 3H(�mat + pmat) = 0; (37)we obtain the following equation for �,_�(�� �2a(t)) = 0: (38)This has two bran
hes of solutions. On the bran
h� = 
onst the VEVs of the Stü
kelberg �elds a
tuallydisappear with time. Indeed, the invariant quantity
ij�i�a�j�a = 3�2a(t)2de
reases as the universe expands. Besides, we will seeshortly that this bran
h is unstable at late times when-ever � 6= 0. The other bran
h is� = �2a(t): (39)It 
orresponds to 
onstant strength of the Stü
kelberg�elds' gradients and is stable. In this latter 
ase the
osmologi
al equations (34) redu
e to the form,3M2
H2 = �mat + V0 � 3�42 ; (40a)2M2
 _H + 3M2
H2 = �pmat + V0 � 3�42 : (40b)We see that in this phase � produ
es a negative shift ofthe 
osmologi
al 
onstant to a smaller value. In whatfollows we will assume that this 
ontribution is 
an
eledby the bare 
osmologi
al 
onstant,V0 = 3�42 ; (41)so that the Minkowski spa
e-time is a solution in theabsen
e of matter. This is just the usual �ne-tuning ofthe 
osmologi
al 
onstant.5. HIERARCHY OF EFTs AND THEGRAVITON MASS5.1. Phases with massive gravitonsTo understand the e�e
t of the mixing term (31) onthe spe
trum of the theory let us study small perturba-tions. As before, we work in the ADM gauge and �rst584
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Fig. 1. Relevant energy s
ales in the theory and the number of propagating degrees of freedom in ea
h se
tor at di�erents
ales. Re
tangles represent the energy s
ales at whi
h a se
tor gets UV 
ompleted (we do not make any assumptions aboutthe UV 
ompletion of the khronon and spin-2 se
tors, but Ho°ava gravity [23℄ would be a natural option). Rhomboids markthe s
ales below whi
h a se
tor loses all its propagating degrees of freedom. The khronon mass mkh will be derived in Se
. 6(see Eq. (83)). Note that nothing happens at the s
ale � � �2 whi
h sets the 
uto� in the original EFT formulation ofmassive gravityfo
us on the phase with a va
uum from the bran
h ofsolutions (39). To simplify the analysis, we freeze outthe perturbations in the khronometri
 se
tor by send-ing MP and �kh to in�nity while keeping MV and mA�nite. For the perturbations of the ve
tors and theStü
kelberg �elds we write,V ia =MV Æia + via; �a = �2xa +  a: (42)If we are interested in energies below p{MV , we 
anadopt the �-model des
ription. Inserting (42) in the
onstraint equation (30) yieldsvia = Aia � AjiAja2MV +O(A3); (43)where Aia is an antisymmetri
 matrix,Aia +Aai = 0:Substituting this into the Lagrangian, we obtainL�+LV � = �(�i a)22 �m2A2 AjaAja+mAAia�i a: (44)The se
ond term gives mass of order mA to the anti-symmetri
 perturbations Aia. Below this s
ale the per-turbations of the ve
tors 
an be integrated out 
om-pletely. From (44), we �ndAia = 12mA (�i a � �a i); (45)whi
h substituted ba
k into (44) gives (up to a totalderivative)L� + LV � = ��i a�i a4 � (�a a)24 : (46)

This 
oin
ides with the third and fourth terms (with� = 0) of the quadrati
 Stü
kelberg Lagrangian (9)arising in massive gravity. The �massless� �elds  a 
anbe interpreted as the Goldstone bosons for the brokensymmetries FDi� � SO(3)! SO(3)diag :Re
all that sin
e we are dealing with LV theories, the
ounting and properties of su
h �elds are di�erent fromthe Lorentz invariant 
ase, see, e. g., [48�50℄. In thesame spirit, the ve
tor �elds Aia that have been in-tegrated out 
an be interpreted as the �Higgs� �eldsregularising the bad behaviour of the Goldstone se
-tor at energies above mA. Given the previous results,we expe
t that the graviton in this model will a
quirethe mass (7). For the 
ase MP � MV , the ve
torand graviton masses are well separated and at energiesmA � E � mg the dynami
s is well des
ribed by theEFT for the Stü
kelberg �elds. The hierar
hy of var-ious s
ales in the theory and the 
orresponding EFTdes
riptions are summarized in Fig. 1.Alternatively, we 
an work in the unitary gauge and�x  a = 0 at the expense of allowing for the �u
tua-tions of the metri
N = 1 + n; N i; 
ij = Æij + hij : (47)The relevant part of the Lagrangian takes the formL� + LV � = �4�� 
aa2 + V aaMV � 32�: (48)585
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onstraint (30) now readsvia = Aia�MV2 hai�AjiAja2MV �Ajihja4 �Ajahji4 ++ 3MV8 hjihja +O(A3; h3): (49)Substituting this formula and the expression
ij = Æij � hij + hikhkj +O(h3) (50)into (48), we obtain at the quadrati
 levelL� + LV � = �m2A2 AiaAia � �48 hiahia: (51)The �rst term again gives mass to the antisymmetri
perturbations, while the se
ond expli
itly provides themass term for heli
ity-2 graviton. As we are going tosee in Se
. 6, it also gives mass to the khronon (seeEq. (83)). Note that we obtain only one of the twostru
tures for the metri
 mass term allowed by the sym-metries, 
f. (17). This a 
onsequen
e of the assumptionMV � mA whi
h implies that the symmetri
 part ofthe ve
tor �u
tuations is mu
h heavier (with the massof order p{MV ) than the antisymmetri
 part. Thisrenders the parameter � in (17) suppressed by the ra-tiom2A={M2V whi
h we negle
ted in the above analysis.Were we to make a di�erent assumptionMV � mA, wewould obtain both terms of (17) with 
omparable 
oef-�
ients. Finally, if instead of the khronometri
 settingone used the ghost 
ondensate for the �0-se
tor, whi
hin the ADM gauge amounts to promoting all 
ouplingsin the a
tion to fun
tions of the lapse N [25℄, one wouldbe able to reprodu
e also the other terms in the gen-eral Lagrangian (6) of the massive gravity dis
ussed inSe
. 2. 5.2. Other phases?In the previous se
tion, we fo
used on bran
h (39)of the ba
kground solutions. However, as noti
ed be-fore, equation (38) also admits a se
ond bran
h_� = 0: (52)On this bran
h, the e�e
t of the Stü
kelberg gradients(if non-zero initially) de
ays with time in an expandinguniverse. For 
ompleteness we now analyze the smallperturbations around this bran
h. We write�a = �xa +  a; (53)with � = 
onst and take the Friedmann�Robertson�Walker (FRW) form for the metri
. We again work inthe de
oupling limit MP ;�kh ! 1, so that the met-ri
 �u
tuations are frozen. Below the s
ale p{MV the

�u
tuations of the ve
tors are restri
ted to the anti-symmetri
 part Aia. Expanding the relevant part ofthe a
tion to quadrati
 order we obtainSV+S�+SV � = Z dt d3x�a32 ( _Aia)2�a2�
21(�iAja)2 ++ 
22(�iAia)2 + (�i a)2�� a2mA�2MV (Aia)2 ++ a2mAAia�i a�: (54)Restri
ting to the modes with frequen
ies mu
h higherthan the Hubble rate, we 
an negle
t the terms withderivatives of the s
ale fa
tor in the equations of mo-tion. This yields� �Aia + 
21a2 �2jAia + 
22a2 �j�[iAja℄ � mA�MV aAia ++ mAa �[i a℄ = 0; (55a)�2i  a � amA�iAia = 0; (55b)where the square bra
kets stand for the antisym-metrization of indi
es. Let us perform the Fouriertransform and 
on
entrate on the transverse modes a = e(�)a  (�); Aia = �kie(�)a � �kae(�)i�k A(�); (56)where e(�)i , � = 1; 2, are unit polarization ve
tors or-thogonal to the three-momentum �ki. Substituting thisinto Eqs. (55) and eliminating  (�) we obtain�!2��
21+
222 � �k2a2�mAMV ��a��22 ��A(�) = 0; (57)where we used �2 de�ned in (35). We see that whenever� < �2a=2 the mode is ta
hyoni
. In parti
ular, thetrivial 
on�guration of the Stü
kelberg �elds �a = 0 isunstable. Furthermore, in an expanding universe �2a=2will ex
eed any 
onstant value of � and the instabilitywill set in at late times. Thus, we 
on
lude that in anexpanding universe this bran
h is unstable and we donot 
onsider it any more in this paper.5.3. Quantum treatment of instantaneousmodesWe have argued above that the 
onstru
ted modelis a valid quantum theory up to the s
ale (24). We havebased this 
laim on the s
aling argument borrowed fromrelativisti
 theories, so it is worth taking a 
loser lookat it to 
he
k if it is not spoiled by Lorentz violation.To get a �avor of the potential problems, we 
onsiderthe instantaneous modes �a. Let us �rst swit
h o� theirmixing with the ve
tors by settingmA = 0 and performtheir perturbative quantization using the path integralformalism. From (27) one reads o� the propagator,586



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Completing Lorentz violating massive gravity : : :
p

φb
= −

i

p̄2
δab, (58)φawhere we denoted the spatial part of a four-ve
tor p� == (p0; �pi) by the bar. This propagator does not dependon the frequen
y p0. The �elds �a 
ouple to the metri
and 
ontribute into the e�e
tive a
tion for the pertur-bations hij . For example, the one-loop 
ontributioninto the quadrati
 part ishij p+ qq �Z d3�q(2�)3 �qi�qk(�q + �p)j(�q + �p)l�q2(�q + �p)2 :hkl = 14hij(p)hkl(�p)Z dq02� � (59)This expression 
ontains two types of divergen
es. Theintegral over the spatial momentum 
an be regulatedby subtra
ting a �nite number of lo
al 
ounterterms.However, the whole 
ontribution will still be in�nite be-
ause of the overall divergent integral over q0. We notethat this divergen
e has non-polynomial dependen
e onthe external spatial momentum �pi and therefore is non-lo
al in spa
e. On the other hand, it does not dependon p0 and hen
e is lo
al in time. Thus it 
an be regu-lated by introdu
ing a spatially non-lo
al 
ountertermin the bare a
tion. Though unusual, su
h 
ountertermsdo not spoil the validity of the theory. In parti
ular,the diagram (59) does not 
ontain any imaginary partand thus the 
orresponding 
ounterterm does not vio-late unitarity.One may obje
t that allowing for non-lo
ality, evenrestri
ted to only spatial dimensions, introdu
es an in�-nite freedom in the 
hoi
e of the bare a
tion. However,we now argue that there is a natural 
hoi
e of 
oun-terterms for the diagrams where, like in Eq. (59), adivergent integral over the loop frequen
y 
ompletelyfa
torizes out of a frequen
y-independent part. This
onsists in 
an
eling these diagrams altogether. In thepresent 
ase this would mean that all loop diagrams
ontaining the instantaneous �elds �a must be put tozero. Two arguments support this pres
ription. First,the integrals over frequen
y diverge linearly and thusvanish identi
ally in dimensional regularization. Se
-ond, we 
an appeal to the 
anoni
al quantization. Inthis formalism, the �elds �a are subje
t to se
ond-
lass
onstraints whi
h for
e them to vanish. Indeed, as thea
tion does not depend on the time-derivative of these

�elds, the 
anoni
al momenta 
onjugate to them vanishtrivially, while the �elds themselves obey the equationri(Nri�a) = 0: (60)Supplemented by the vanishing boundary 
onditions atspatial in�nity it for
es17) �a = 0. In the 
anoni
al ap-proa
h su
h 
onstrained degrees of freedom must beeliminated from the start, even prior to quantization,implying that they 
ompletely drop o� from the quan-tum theory18).There is a way to implement the above pres
riptionwithin the path integral approa
h without introdu
-ing non-lo
al 
ounterterms from the start. One noti
esthat the overall result of integration over �a is a fa
tor� det(i
ij�i�j)��3=2 (61)in the partition fun
tion. This 
an be 
an
eled byadding to the system three real bosoni
 �elds ~�a andthree 
omplex fermioni
 �elds �a with the a
tion,S~�� = Z dt d3xp
N �� �� 12
ij�i ~�a�j ~�a � 
ij�i�a�j ��a�: (62)Integrating out these �remover� �elds multiplies thepartition fun
tion by,�det(i
ij�i�j)�3� det(i
ij�i�j)�3=2 = �det(i
ij�i�j)�3=2; (63)whi
h pre
isely 
ompensates (61). The expression (63)
orresponds to the spatially non-lo
al 
ounterterms dis-
ussed above.Turning on mA makes the situation less trivial.However, given that mixing (31) is a relevant deforma-tion it 
learly 
annot spoil the UV 
onsisten
y of thetheory. A 
omprehensive analysis of the quantum prop-erties of the theory introdu
ed in Se
. 3 is beyond thes
ope of this paper. Instead, we illustrate the expe
tedbehavior in a toy model 
ontaining a s
alar and a ve
-tor without any VEVs in an external non-dynami
almetri
 (we assume Ni = 0),17) Multiplying (60) by �a and integrating over the three-di-mensional spa
e we obtain0 = Z d3x�ari(Nri�a) = �Z d3xNri�ari�a:As the lapse fun
tion is non-zero everywhere, one 
on
ludes thatri�a = 0 and hen
e �a vanishes due to the boundary 
onditions.18) There is no modi�
ation of the 
anoni
al stru
ture for theremaining �elds as in the 
ase at hand Dira
 and Poisson bra
ketsare identi
al.587
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N�
ij _V i _V j2N2 � 
jkriV jriV k2 �� 12
ij�i��j�+mAV i�i�� M2V2 
ijV iV j�: (64)For simpli
ity, we have retained only one of the gradi-ent terms for the ve
tor putting the 
oe�
ient in frontof it to 
21 = 1. As before, there are two ways to pro-
eed. In the 
anoni
al approa
h, we have to solve forthe �eld � before quantization,� = mA(riV i + aiV i)
klrkrl + alrl ; (65)where ai � N�1�iN: (66)Substituting this into (64), we obtain a non-lo
al a
tionwhi
h depends only on V i,S = Z dt d3xp
N�
ij _V i _V j2N2 � 
jkriV jriV k2 �� M2V 
ijV iV j2 � (riV i + aiV i)�� m2A2(
klrkrl + akrk) (rjV j + ajV j)�: (67)The Dira
 bra
ket remains identi
al to the 
anoni
al
ommutator. One observes that the limit mA ! 0 issmooth and 
orresponds to restoration of lo
ality. Asnon-lo
ality is purely spatial, it does not, in prin
iple,present an obstru
tion to 
anoni
al quantization.However, in pra
ti
e it is very in
onvenient to workwith the non-lo
al a
tion (67). It is more e�
ient touse the path integral approa
h and retain � as a quan-tum �eld. Assuming that the metri
 is 
lose to �at, weobtain from (64) the propagators for � and V i,� p� ppV i V j = �Æij � �pi�pj�p2 � i�p20 � �p2 �M2V +� = � i�p2 + im2A�p2(p20 � �p2 �M2V +m2A) ;V i = �mA�pi�p2(p20 � �p2 �M2V +m2A) ;+ �pi�pj�p2 ip20 � �p2 �M2V +m2A :
(68a)(68b)(68
)To avoid 
luttered formulas, we will set MV = mA inwhat follows. This does not a�e
t the UV propertiesof the theory. We 
onsider again diagram (59). Nowit 
ontains three 
ontributions. The �rst one 
omes

from the produ
t of the �rst terms in propagator (68a)and, as before, is eliminated by adding to the path in-tegral the �elds ~�, � with a
tion (62). Besides, thereare 
ontributions 
oming from the 
ross-produ
t of thetwo terms in (68a),� m2A2 hij(p)hkl(�p) Z dq0d3�q(2�)4 �� �qi�qk(q + �p)j(�q + �p)l�q2(q20 � �q2)(�q + �p)2 ; (69)as well as from the square of the se
ond term,m4A4 hij(p)hkl(�p) Z dq0d3�q(2�)4 �� �qi�qk(�q + �p)j(�q + �p)l�q2(q20 � �q2)(�q + �p)2((q0 + p0)2 � (�q + �p)2) : (70)The divergen
es in these expressions 
an be removedby genuinely lo
al 
ounterterms. We 
onsider, for ex-ample, Eq. (69). Introdu
ing Feynman parameters weobtainZ dq0d3�q(2�)4 �qi�qk(�q+�p)j(�q + �p)l�q2(q20��q2)(q+p)2 = 2 1Z0 dx1px1 1�x1Z0 dx2 �� Z dq00d3�q(2�)4 �qi�qk(�q + �p)j(�q + �p)l(q002 � �q2 � 2�q�px2 � �p2x2)3 ; (71)where in the last integral we res
aled the loop fre-quen
y. The integral over the four-momentum on ther.h.s. has the standard form and its divergent part isa polynomial in momenta �p. It is straightforward to
he
k that the integration over Feynman parametersdoes not 
ontain any additional divergen
es. Thus, we
on
lude that the overall divergen
e of (71) is lo
al bothin time and spa
e. Similar reasoning applies to (70).One may worry that a divergen
e in the Feynmanparameters 
an appear in the diagrams that 
ontainthe loop frequen
y in the numerator of the integrand,be
ause then more powers of the Feynman parametersdes
end into the denominator. Let us show that thisdoes not happen. We 
onsider the diagram arising fromthe intera
tions given by the �rst and the third termsin (64),hij p+ qq hkl = m2a2 hij(p)hkl(�p)Z dq0d3�q(2�)4 ��Z q0(q0 + p0)�qi�qk(�q + �p)j(�q + �p)l�q2(q20 � �q2)(�q + �p)2((q0 + p0)2 � (�q + �p)2) : (72)
588
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aling of the loop frequen
y,q0 7! q00 = q0=px1 + x2;the most singular 
ontribution in the integral overFeynman parameters is proportional to (x1 + x2)�3=2whi
h is again integrable. At the heuristi
 level this
an be understood as follows. The divergen
es in theintegrals over Feynman parameters are usually asso-
iated to the infrared (or 
ollinear) divergen
es, whi
hare absent in our 
ase be
ause original expressions (69)and (72) are IR safe.By extending the above reasoning to other diagramsin model (64) the reader will easily 
onvin
e herself thatthe only 
lass of divergen
es that require (spatially)non-lo
al 
ounterterms are those where all propagatorsin a given loop are equated to the �rst term in (68a).These divergen
es are independent of mA and are ex-a
tly 
an
eled by the remover �elds ~�, � with a
tion(62). Furthermore, this 
an
ellation persists upon mak-ing the metri
 hij dynami
al and allowing it to prop-agate in the loops. Thus, it is natural to 
onje
turethat no matter how 
ompli
ated a diagram is (see anexample in Fig. 2), it will require only lo
al 
ountert-erms after addition of similar diagrams with the �elds~� and �.So far we have dis
ussed only the instantaneousmodes asso
iated with the Stü
kelberg �elds �a of mas-sive gravity. The dynami
s of these �elds is relativelysimple: they enter UV a
tion (27), (31) quadrati
allyand do not 
ontain any propagating degrees of freedom.This allowed us to eliminate all unusual non-lo
al diver-gen
es appearing due to these �elds by adding the �re-mover� se
tor ~�a, �a with simple a
tion (62). However,as pointed out in Ref. [25℄, another sour
e of instanta-

neous intera
tions is the khronon �eld �0. Here the sit-uation appears to be more 
ompli
ated: the khronondes
ribes, besides the instantaneous mode, a genuinepropagating degree of freedom and, furthermore, en-ters the a
tion non-linearly. This produ
es di�
ultieswith the quantization whi
h are intrinsi
 of Ho°ava (orkhronometri
) proposal. We plan to address them else-where. For now, we just point out that the dis
ussionof this se
tion suggests that a 
onsistent quantizationof the theory exists. Indeed, in the de
oupling limitthe propagator of the khronon has the form similar tothe se
ond term in (68a) [25℄. We have seen that thedivergen
es asso
iated with su
h propagators 
an beremoved by lo
al 
ounterterms.6. MODIFICATION OF THE NEWTON's LAWHaving addressed the theoreti
al 
onsisten
y of themodel, we now study its immediate phenomenologi
al
onsequen
es. Let us 
onsider the gravitational �eld ofa point mass M� at a �xed position xi = 0. We willfo
us on the weak �eld (linear) regime and assume theminimal 
oupling of the metri
 to the matter se
tor; thelatter is justi�ed by the phenomenologi
al 
onstraintson deviations from the Lorentz invarian
e [51℄. Thereare two important 
hanges with respe
t to the massivegravity phase (3) des
ribed in [5, 52℄. First, at any ener-gy, the role of the Stü
kelberg �eld �0 is played by thekhronon. Se
ond, the theory is de�ned also above theenergy �2, whi
h 
an have experimental 
onsequen
esat relevant short distan
es, e. g., in the early universeor in very dense stars. We will only 
onsider the largedistan
e modi�
ation in this se
tion.589
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Fig. 2. Generi
 diagram with instantaneous modes andgravitons propagating in the loops. Summing it withthe diagrams of the same topology where the di�erentsubsets of the �-loops are repla
ed by those of ~� and� will remove all non-lo
al divergen
esWe work in the unitary gauge19), and restri
t theve
tor �elds to 
oset spa
e (30). We 
onsider the s
alarpart of the perturbations. The expansion around theMinkowski ba
kground to linear order readsN = 1 + '; (74a)Ni = �iB; (74b)
ij = Æij � 2�Æij � �i�j� �	� 2�i�j� E; (74
)V ia =MV Æia + �iaj�jC ++MV�Æia � �i�a� �	+MV �i�a� E; (74d)where we have used the linear part of Eq. (49). Usingexpression (51) and expanding khronometri
 and ve
-tor Lagrangians (19) and (28) to quadrati
 order, weobtain20)19) Re
all that it is 
onsistent to �rst �x the unitary gauge andtake the variation of the a
tion afterwards [53℄.20) We remind that � is de�ned in (35).

L(2)s
al = M2P2 �(1� �)(�2 _	2 + 4	 �E + 4	� _B)�� (�+ �)(2 _	 + _E +�B)2 ��2	�	+4'�	+�(�i')2�+M2V2 �2 _	2+( _E+�B)2�� 4(
21 + 
22)(�i	)2�+ (�i _C)2 � 
21(�i�kC)2 �� �4	2 � �42 E2 �m2A(�iC)2 � 'M�Æ(x): (75)We see that the pseudos
alar mode C 
ompletely de-
ouples and has the dispersion relation!2 = 
21�k2 +m2A: (76)For the other 
omponents, we obtain the set of equa-tions,2M2P�	� �M2P�'�M�Æ(x) = 0; (77a)2M2P (1+�) _	+�M2P (�+�)�M2V �( _E+�B) = 0; (77b)�M2P (1+�+2�)�M2V ��	+M2P (1+�)( �E+� _B)���M2P�2M2V (
21+
22)��	��4	+M2P�' = 0; (77
)2M2P (1 + �) �	 + �M2P (�+ �)��M2V �( �E +� _B)� �4E = 0: (77d)Combining the se
ond and fourth equations, we �ndE = 0; �B = � 2M2P (1 + �)M2P (�+ �)�M2V _	: (78)Substituting this into Eq. (77
) and using (77a) to ex-press ', we �nd the equation for the single variable 	,� �M2P M2P (2 + 3�� �)�M2VM2P (�+ �)�M2V �	 ++ 2M2P�1� �2��	� �4�	 =M�Æ(3)(x); (79)where we have assumed�; �; �;MV =MP � 1and kept only up to the �rst subleading order in theseparameters.Let us momentarily put the sour
e to zero,M� = 0.Then (79) redu
es to the wave equation for the heli
ity-0 graviton mode � the khronon. To the leading order,its dispersion relation reads!2 = �k2��+�� � M2V�M2P �+ �42M2P ��+��M2VM2P �: (80)590
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ity of thekhronon, 
kh =s�+ �� � M2V�M2P ; (81)gets renormalized 
ompared to the pure khronometri
theory (see Eq. (23)) due to the VEVs of the ve
tor�elds. The requirement that the velo
ity square re-mains positive puts an upper bound,MV < MPp�+ �: (82)This 
ondition is automati
ally satis�ed within our as-sumptions (32). Se
ond, the khronon a
quires a massgap, mkh = �2MPs�+ �2 � M2V2M2P ; (83)whi
h is parametri
ally smaller than the mass of gravi-ton (7). This is in striking 
ontrast to the 
ase of [5℄where the Stü
kelberg �eld �0 remains massless. Itis worth stressing that the appearan
e of gap (83) isan IR phenomenon and depends only on the proper-ties of the Stü
kelberg se
tor �0, �a at energies belowmA. Thus one expe
ts it to be a universal property ofmassive gravities where this se
tor obeys the symme-tries (1b), (14).Next, we restore the sour
e in (79) and fo
us onstati
 
on�gurations. We �nd	 = �GNM�r exp(�mkhr=
kh); (84)where we have introdu
ed the Newton's 
onstant,GN � 18�M2P (1� �=2) : (85)Clearly, the gravitational �eld has a Yukawa-type be-havior. Finally, from (77a) we obtain the Newton'spotential' = �GNM�r �1� 2��1� exp(�mkhr=
kh)�� : (86)This potential is plotted in Fig. 3. One observes thatit markedly deviates from the Newtonian potential ofgeneral relativity. The most striking feature is thatthe gravitational for
e be
omes repulsive at distan
esr > 1=mg. At large distan
es, the potential goes tozero. This is di�erent from the 
ase of massive gravitieswith gapless �eld �0 [5℄, where the gravitational poten-tial generi
ally presents linear growth with distan
e21)21) This growth may be 
ut by non-linearities of the model[5, 54, 55℄ or by non-stationary evolution of the ba
kground [34℄.Also, it is absent if the 
oe�
ients in the mass term (6) satisfy
ertain relations [5, 52℄.

ϕ

ϕmax

0

r
√

2m−1

g m−1

kh

Fig. 3. The shape of the Newton potential in the mas-sive gravity model in this paper. The gravitational for
ebe
omes repulsive at distan
es larger than the inversegraviton mass[34; 52℄. Note also that there is no van Dam�Velt-man�Zakharov (vDVZ) dis
ontinuity [56, 57℄: in thelimit � ! 0 the potentials ', 	 redu
e to their GRexpressions.To understand the behavior of the Newton potentialin more detail, we expand the exponent atr � 
khm�1kh = �p�mg��1 :At these distan
es the khronon mass is irrelevant andone expe
ts the potential to 
oin
ide with the resultsexisting in the literature. We obtain' = GNM� "�1r +r 2�mg � m2gr2 + : : :# ; (87)where dots stand for the terms that are suppressed bythe powers of the 
ombination p�mgr. The se
ondterm in bra
kets gives a 
onstant shift of the Newtonpotential whi
h drops o� from the observables involv-ing only distan
es r . 1=mg. The third term givespre
isely the linear 
ontribution dis
ussed in [34; 52℄.Note that for our model this 
ontribution is repulsive.The potential rea
hes a maximum at r = p2=mg where'max =p2=�GNM�mg :For the validity of the linearized approximation 'maxmust be mu
h smaller than one. This translates intothe 
ondition that the graviton mass must be smallerthan the inverse S
hwarzs
hild radius of the sour
e mul-tiplied by p�. Unless � is extremely small, this 
ondi-tion is not very restri
tive.591
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al 
onstraints 
ome fromthe requirement that the gravitational �eld of lo
alizedsour
es should not signi�
antly deviate from the stan-dard form at astrophysi
al s
ales. The Solar Systemtests put a limit on the di�eren
e between the two grav-itational potentials ' and 	. In the post-Newtonianframework this is traditionally parameterized by theratio 
 � 	=' and the 
urrent 
onstraint (measured atthe orbit of Saturn by the Cassini satellite) reads [58℄
 � 1 = (2:1� 2:3) � 10�5: (88)From expressions22) (84), (87), we obtain the formulafor 
 in our model at distan
es shorter than inversekhronon mass, 
 = 1� (mgr)22 : (89)This gives an upper bound mg < 4 � 10�17 
m�1 �� 120 p
�1. A tighter limit 
omes from the gravita-tional �eld of galaxies. The requirement that it mat
hesthe standard expression impliesmg . (1 Mp
)�1: (90)It is likely that yet stronger bounds 
an be obtainedfrom the large s
ale stru
ture and the 
osmi
 mi
rowaveba
kground (CMB). We leave this analysis for future.It would be also interesting to explore if the gravita-tional repulsion found above 
an be a
tive at the 
os-mologi
al s
ales and lead to a

elerated expansion ofthe universe. Note that this me
hanism of a

elerationwould rely 
ru
ially on the presen
e of inhomogeneities,as the homogeneous FRW ansatz does not exhibit anyself-a

elerated behavior (see Se
. 4).Before 
losing this se
tion, let us mention that a
omplementary way to 
onstrain the graviton mass isby looking dire
tly at the modi�
ations in the heli
ity-2 se
tor. These have 
onsequen
es for radiation andpropagation of gravity waves [52, 59, 60℄. Having amore 
omplete theory allows to put these studies on the�rm ground in the situations with 
hara
teristi
 s
alessmaller than ��12 , su
h as in�ation and reheating.7. SUMMARY AND DISCUSSIONIn this paper, we have proposed an embedding ofLorentz violating massive gravity above the s
ale �2 �� pmgMP . The proposed theory has a high 
uto�s
ale only a few orders of magnitude below the Plan
kmass and independent of the mass of the graviton.22) We subtra
t the 
onstant pie
e from (87).

At high energies the theory possesses a large symme-try FDi� � SO(3) whi
h is spontaneously broken atlower energy to a diagonal global SO(3) subgroup23).This pattern of symmetry breaking is realized by atriplet of spa
e-like ve
tor �elds whi
h develop non-zero VEVs and play the role of the �Higgs� �elds. A
ru
ial te
hni
al role is played by a quadrati
 mixingbetween the ve
tors and the Stü
kelberg �elds �a ofmassive gravity. On
e the ve
tors a
quire VEVs, thismixing for
es the Stü
kelbergs to develop 
oordinate-dependent pro�les, whi
h eventually translates into thegraviton mass. This means that no non-linear intera
-tions in the Stü
kelberg se
tor are required to do thisjob and one 
an restri
t to purely quadrati
 a
tion forthe �elds �a, thus eliminating any strong 
oupling fromthis se
tor. This me
hanism is reminis
ent of the pro-posal for the (partial) UV 
ompletion of the ghost 
on-densate model [36; 47℄ where a mixing between a time-like ve
tor a
quiring a VEV and a massless s
alar for
esthe latter to evolve in time.The graviton mass in the model is proportional tothe produ
t of the ve
tor VEVs and the 
oe�
ient infront of the ve
tor-Stü
kelberg mixing. Thus, it van-ishes both if the ve
tor VEVs disappear (in the un-broken phase) or if the mixing is swit
hed o�. Thea
tion stays regular in the limit of vanishing mass andtherefore one expe
ts all observable quantities, with thequantum 
orre
tions in
luded, to behave smoothly inthis limit. In this sense, our me
hanism is analogousto the Higgs me
hanism of gauge theories. It is worthstressing that in our model the mixing between the ve
-tor and Stü
kelberg �elds is prote
ted by a dis
retesymmetry �a 7! ��a and thus a small 
oe�
ient infront of it is te
hni
ally natural. This implies that thegraviton mass is stable under quantum 
orre
tions.We analyzed the stru
ture of the theory at di�erentenergies and expli
itly veri�ed the expe
tation that newdegrees of freedom, besides those of pure massive grav-ity, must exist below the s
ale �2. Indeed, we foundthat 
ertain 
omponents of the ve
tor �elds propagateat these energies. These degrees of freedom have a massgap whi
h is parametri
ally smaller than �2, but stillbigger than mg . It would be interesting to work outthe 
onsequen
es of these new light degrees of freedomfor phenomenology.We also found that the heli
ity-0 
omponent of thegraviton, whi
h in our model is identi�ed with thekhronon of the khronometri
 model, a
quires a massparametri
ally lower than mg . This has important im-23) Noti
e that Lorentz invarian
e is broken expli
itly all theway up to the 
uto�.592
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ations for the gravitational potentials of lo
alizedsour
es: unlike previous models of LV massive gravity,in our 
ase the potentials fall of exponentially at largedistan
es. Remarkably, the shape of the Newton po-tential is not monotonous. It grows from negative val-ues at short distan
es, 
hanges sign, rea
hes a positivemaximum at r = p2m�1g and then de
reases towardsr ! 1. This implies that the gravitational for
e be-
omes repulsive at r > p2m�1g . This property maylead to a ri
h phenomenology whi
h we leave for futurestudies. An interesting question is whether the gravi-tational repulsion between the inhomogeneities presentin the universe 
an provide the a

elerated expansionat re
ent epo
h, despite the fa
t that for the stri
tlyhomogeneous ansatz our model does not exhibit anyself-a

eleration.A subtle theoreti
al aspe
t of our model, inheritedfrom the e�e
tive theory of LV massive gravity, is thepresen
e of instantaneous intera
tions. We have ad-dressed the issue of quantization of the instantaneousmodes and argued that it 
an be performed 
onsis-tently. We also pointed out that in the 
anoni
al for-malism the instantaneous modes must be interpreted asa 
ertain type of non-lo
ality along the spatial dimen-sions. To make the dis
ussion 
on
ise, we fo
used onsimpli�ed toy models. A more 
omprehensive study ofthis topi
 is de�nitely required owing to its importan
efor LV proposals for quantum gravity [23, 25℄.Another open question left for future resear
h isto understand how the strong 
oupling of LV massivegravity manifests itself at the level of Feynman dia-grams and how it is 
an
eled by the new degrees offreedom appearing in our model (see [32, 61℄ for relatedworks in the Lorentz invariant 
ontext). This mayshed light on possible generalizations of the me
hanismproposed in this paper to other IR modi�
ations ofgravity, su
h as multi-metri
 theories and the Lorentzinvariant setup of [7℄. In parti
ular, it would beinteresting to prove at the diagrammati
 level the(im)possibility of a Lorentz invariant Wilsonian UV
ompletion of the latter setup.We are grateful to Denis Comelli, Sergei Dubovsky,Maxim Pospelov, and Mikhail Ivanov for useful dis-
ussions. We also thank Claudia de Rham and Gre-gory Gabadadze for useful 
omments on the draft. S. S.is grateful to the Perimeter Institute for hospitalityduring this work. Resear
h at Perimeter Institute issupported by the Government of Canada through In-dustry Canada and by the Provin
e of Ontario throughthe Ministry of E
onomi
 Development & Innovation.
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