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1. INTRODUCTION

Valery Rubakov has a remarkably broad area of sci-
entific interests, ranging from the theory of fundamen-
tal interactions to cosmology. To the volume in honor
of Valery’s 60th birthday, we contribute a paper that
gives hints on a possible unification of such seemingly
different concepts of quantum field theory (QFT) as
conserved currents in lower dimension and free fields in
higher dimension. Although such an identification now
sounds natural in the context of the AdS/CFT cor-
respondence [1-3], the particular realization suggested
in this paper goes beyond the standard setup that al-
lows interpreting current interactions of 4d fields of all
spins, including the usual fields of spins 0 < s < 2, in
terms of a linear system mixing free conformal fields in
four and six dimensions. In fact, part of this work has
been presented some time ago at a seminar headed by
Rubakov, after which we had a stimulating discussion
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with Valery on whether it is possible to make fields in
space—times of different dimensions directly interact in
relativistic field theory. Since then, we have obtained
more evidence, including that presented in this paper,
that this is not only possible but also can eventually
drive us to a better understanding of fundamental con-
cepts of QF T, including the very concept of space-time.
Hence, we believe that this paper is appropriate for the
volume in honor of Valery Rubakov.

Specifically, we consider field equations for massless
fields of all spins in a four-dimensional anti-de Sitter
space in the lowest order in interactions accounting for
the contribution of conserved currents built from bilin-
ears of the same set of massless fields. The problem is
analyzed in the framework of the covariant first-order
unfolded formulation underlying the known formula-
tion of nonlinear massless field equations [4, 5] (see
also [6] for more details and references). Our goal is
to clarify the structure of current interactions in the
nonlinear higher-spin (HS) theory that describes inter-
actions of massless fields of all spins in four dimensions.

Technically, our approach is based on the corre-
spondence between fields and currents elaborated in [7],
where Sp(2M )-invariant field equations corresponding
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to rank-r tensor products of the Fock (singleton) rep-
resentation of Sp(2M) were studied. These equations
were shown to describe localization on “branes” of dif-
ferent dimensions embedded into the generalized space—
time M ;s with matrix coordinates
XAB = xBA A B=1,...,M

(see [8-11]). For M = 4, the indices A,B =1,... ,4
can be interpreted as Majorana spinor indices of the
four-dimensional Minkowski space, while the space M,
is ten dimensional. Minkowski space is a subspace of
M, with local coordinates ' in the two-component
spinor notation®. The relation to the tensor notation
is

apf’ _ n_af’
= "o’

where agﬁl (n=0,1,2,3) are four independent Hermi-
tian 2 X 2 matrices.

The conserved currents built from bilinears of the
rank-one fields in M s were shown in [7] to obey the
field equations of rank-two fields in M ;. More gen-
erally, it was shown that products of r rank-one fields
obey the rank-r field equations. On the other hand, a
rank-r field in M s was interpreted as a “compactifica-
tion” of an “elementary” rank-one field in M, ;. This
correspondence is in the spirit of the AdC/CFT corre-
spondence [1-3], with a field in the higher-dimensional
(bulk) space—time identified with a current in a lower-
dimensional (boundary) space-time. We believe that
this phenomenon has far-reaching consequences, par-
tially discussed already in [10]. In particular, from this
perspective, the very notion of the space—time dimen-
sion acquires dynamical origin [11,12].

Genuine massless fields in d = 4 are rank-one fields
in the ten-dimensional space M, [10]. Tt was shown
in [7, 13] that for M = 4, the realization of a rank-two
field in terms of bilinears of rank-one fields gives rise
to the full list of conformal gauge-invariant conserved
currents of all spins in four dimensions [14], which gen-
eralize the so-called generalized Bell-Robinson currents
constructed by Berends, Burgers, and van Dam [15].

On the other hand, a rank-two field in M, can
be identified with an elementary rank-one field in Mg
that gives rise to usual conformal fields in six dimen-
sions [9, 11, 16], which, in accordance with the gen-
eral results in [17, 18], are the mixed-symmetry fields

D) (Un)primed indices from the beginning of the Greek al-
phabet take two values a,f3 1,2 and o,p’ 1,2
The two-component indices are raised and lowered as follows:
A = aO‘BAB, Ay = aﬁaAB, where eg, = —2£43, €12 = 1, and
analogously for primed indices.
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described by various two-row rectangular Young dia-
grams. We note that the idea that currents realized as
bilinears of elementary fields behave as fields in higher
dimension is not new and was discussed, for example,
in [19, 20] (also see the references therein). However,
in the framework of HS theories that describe infinite
towers of massless fields of all spins, this idea can be
given a particularly neat realization.

This correspondence suggests the idea that the cur-
rent interaction in four dimensions can be interpreted
as a mixture between linear rank-one and rank-two
fields in My, where the latter field is only assumed to
satisfy the rank-two unfolded field equations. This im-
plies that the seemingly nonlinear interaction of mass-
less fields in four dimensions with the currents (that
can be constructed from the same fields) results from
a solution of the linear problem that describes a gluing
between rank-one and rank-two fields in the unfolded
dynamic approach. As mentioned above, an interest-
ing interpretation of this system is that it mixes mass-
less fields in four space—time dimensions with confor-
mal fields in six space—time dimensions interpreted as
currents in the four-dimensional space.

In this paper, we show how this works in practice.
Namely, we present a linear unfolded system of equa-
tions that glues the unfolded equations of rank-one and
rank-two fields in such a way that, after realizing the
rank-two fields in terms of bilinears of the rank-one
fields, the usual field equations for massless fields re-
ceive corrections that just describe the contribution of
currents to the field equations. It is interesting to note
that the same mechanism brings Yukawa interactions to
the field equations of massless fields of spins 0 and 1/2.

The rest of the paper is organized as follows. In
Sec. 2, we recall the unfolded form of 4d free HS field
equations in AdS; proposed in [21, 22] and their flat
limit. In Sec. 3, the constructions in [7, 13] of con-
served currents in the flat space is recalled and its gen-
eralization to AdSs is given. The nontrivial current
deformation of the rank-one unfolded system with the
rank-two unfolded system is presented in Sec. 4. In
Sec. 5, it is shown in detail how the deformed unfolded
equations affect the form of dynamical equations for
massless fields, bringing currents to their right-hand
sides. Section 6 contains a summary of the obtained
results and a discussion of further research directions.
Appendices A, B, C, and D collect technical details of
the calculations.
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2. PRELIMINARIES

2.1. Higher-spin gauge fields in AdS,

In this section, we recall the unfolded form of 4d
free HS field equations proposed in [21, 22]. Tt is based
on the frame-like approach to HS gauge fields [23, 24],
where a spin-s HS gauge field is described by the set of
one-forms

Way .. Qg,a =dx" Wnoaj.. g, Qg k-l'l :2(8_]-)7

and the set of zero-forms Ca,. 4,55 (7)
2s along with their conjugates
The HS gauge

Coi..anpl.., (T) With m —n = 2s.
fields are self-conjugate

Wai...ap,B)...8, = WBi...B1,a)...al -

This set is equivalent to the real one-form w4, . Ag(a1ys
symmetric in the Majorana spinor indices A =1, .. .4,
that carries an irreducible module of the AdS; symme-
try algebra sp(4, R) ~ 0(3,2).

The AdSy space is described by the Lorentz con-
nection w®?, w* 5" and vierbein e®®' Together, they
form an sp(4,R) connection w”P = wPB4 that satisfies
the sp(4, R) zero-curvature conditions

RAB

RAB =, = dw”B + w° Awc?, (2.1)

where the indices are raised and lowered by an sp(4, R)
invariant form C4p = —Cpga:

Ap = A'Cup, A* =C"BAp,
CacCBC =68, 22)
In terms of Lorentz components

w?PB = (wo‘ﬁ,walﬁl,/\eo‘ﬁl),

where A\~! is the AdS, radius, the AdSs equations (2.1)
take the form
Ras =0, Ruapg =0, Raw =0, (2.3)
where
Rapg = dwag + wo” A wgy + A2 ea‘il A eger, (2.4)
Rargr = dWarpr +War™ Agioy + N €l, A e,
Rog = deqsr +wo" Aeyp + m,‘;' A €enst (2.5)

The unfolded equations of motion of a spin-s mass-
less field are [22]

r r 2
—a'B

HW ——
oy™ oyP’

D“w(y, glr) = C(0,7]z) +

2

0
HeP
* Oy OyP

C(y,0lx), (2.6)
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D" C(y,jlz) =0, (2.7)
where
HP =2 nef, H” N (2.8)
y® and gﬁ' are auxiliary commuting conjugate

two-component spinor variables, the 1-form w(y, g|x)
has the form

D" Warangrys, @Yy X
m,n>0

w(y,ylr) =

g g

with n4+m = 2(s—1) (for s > 1). The 0-form C'(y, y|z)
has the form

Cw.gle) = > Coroansrys,, (@Y .y X

m,n>0
x g0 ..y

with n —m = 2s; C(y,J|r) is complex conjugate to
C(y,7lx), and

D*w(y,glz) = D w(y, ylz) —

' 0 0
e (g2 9 " _
Ae (ya 557 + oga ) w(y,glr),  (29)
(D*)* =0,
D" C(y, glw) = D*C(y, glz) +
’ 82
Byl + = J 2.1
+Ae (yaw + ayaay6’> Cly,glz),  (2.10)
(D™)* =0,

where the Lorentz covariant derivative DL is

0

— <w yaw +w
Here, 25" = x”a;‘{ﬁl are Minkowski coordinates where
cr;'{ﬁ’ are four Hermitian 2 x 2 matrices.

As explained in [22, 25, 26], the dynamical massless
fields are

e C(z) and C(z) for two spin-zero fields,

e O, (z) and C (x) for a massless spin-1/2 field,
+_ (z) for an integer spin-s > 1

® Woy..as-1,a)...al _
massless field,

0
TR Ay, glz). (2.11
y 6175’> (v, glz). (2.11)

o Wy, (x) and its complex con-

’ ’
e300 g g

jugate  wq, . 3/z(a/:) for a half-integer

’ 1
g 1/2,007 0

spin-s > 3/2 massless field.
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All other fields are auxiliary, being expressed in terms
of derivatives of the dynamical massless fields by
Eqgs. (2.6) and (2.7).

Equations (2.7) are independent of (2.6) for spins
s =0 and s = 1/2 and partially independent for s =1,
but become consequences of (2.6) for s > 1. Equa-
tions (2.6) express the holomorphic and antiholomor-
phic components of the spin-s > 1 zero-forms C'(y, y|z)
via derivatives of the massless field gauge one-forms
described by w(y,g|x). This identifies the spin-s > 1
holomorphic and antiholomorphic components of the
zero-forms C(y, y|z) with the Maxwell tensor, the on-
shell Rarita—Schwinger curvature, the Weyl tensor, and
their HS generalizations. In addition, Eqs. (2.6) impose
the standard field equations on the spin-s > 1 massless
gauge fields. The dynamical equations for s < 1 are
contained in Egs. (2.7).

2.2. o_-cohomology

In the unfolded dynamics approach, dynamical
fields, their differential gauge symmetries (i.e., those
that are not Stueckelberg (i. e., shift) symmetries), and
differential field equations (i. e., those that are not con-
straints) are characterized by the so-called o_-cohomo-
logy.

We briefly recall the o_-cohomology analysis fol-
lowing [26]. A space Vy where zero-forms C' and C are
valued is endowed with the grading Gy

1 0
il — B
G0_2(n+n)7 n=y 8y67
y 5 (2.12)
This gives
D" = Db 4+ \o™ + o', (2.13)
where
ot = oo’ 0 ol — eaa’ i,
ST Gyeage T T beber
We have
[Go,dtwi] — :Edtw:t,
[Go, DF] =0,
(crtwi)2 =0.

A space Vi where one-forms w are valued, is en-
dowed with the grading G,

1
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This gives
D* = D" — \g?? — Ao, (2.15)
where
0 =p_On—n—2)+p_0(f—n—2),
/; ( ) +7-6( ) (2.16)
ol =p 0(n—n)+p_0(n—n),
’ a ! 8
— paB T 55— 0B
_=e€ a Yypr, _ =€ —3r Ya
g g7 P g7 Y (2.17)
O(m) =1(0), m >0 (m <0).

We have
[Gl,Uad:I:] — :Edad:t,

[G1,DE] = 0.
Although p_ and p_ do not anticommute,

(0°%)% = 0

because

(p-)*=(p_)*=0
and the step functions guarantee that the parts of o_
associated with p_ and p_ act in different spaces.
We set

o_ =0t 4 5%, (2.18)

tw ad

"w-acts on zero-forms while %% acts on one-
forms. Then the cohomology of o_ determines the
dynamical content of the relevant dynamical system.
Namely, from the level-by-level analysis of Eqs. (2.6)
and (2.7), it follows that all fields that do not belong to
Ker o_ are auxiliary, being expressed by (2.6) and (2.7)
via derivatives of the lower-grade fields. (For more de-
tails, see, e.g., [6, 26].) In the case of massless fields,
the nontrivial cohomology of o_ is concentrated in the
subspaces with G; = 0 and £+1/2 [26]. In particular,
the nontrivial cohomology of H%(os_) appears in the
subspaces of grades G; = 0 or 1/2, where o_ acts triv-
ially because of the step functions in (2.16).

Field equations contained in the sector of (p + 1)-
form curvatures are characterized by HPT!(o_), which
describes those parts of the generalized curvatures
that contain nontrivial gauge-invariant combinations of
derivatives of dynamical fields. Since massless equa-
tions for bosons and fermions are respectively of the
second and first order, the respective cohomologies have
levels two and one. As anticipated, there are as many
nontrivial field equations as components of the Frons-
dal fields. In particular, in the bosonic case, dynamical
equations for a spin-s field are described by traceless

where o
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symmetric tensors of ranks s and s — 2 (for s > 2).
For example, in the case of gravity, these include the
traceless part of the Ricci tensor and the scalar cur-
vature. In this paper, we only consider conformal HS
currents that are generated by generalized HS stress
tensors that in the tensor notation are described by
traceless tensors. This means that we here study only
those current deformations of the massless field equa-
tions that contribute to the rank-s traceless part of the
HS field equations.

2.3. Flat limit

To take the flat limit, it is necessary to perform cer-
tain rescalings. For this, it is useful to introduce the
notation [26] Ay and Ag such that the spectrum of the
operator

is positive on A, (y,7|x), negative on A_(y,y|z), and
zero on Ag(y,y|x). With the decomposition

Aly,ylr) = Ay (y,7lz) + A-(y, 7lz) +

+A0(y,§|x), (2'19)

the rescaled fields are introduced as follows:

Ay, gle) = AL A3y, A 2gle)+A_ (A" 2y, Aigla)+
+ Ag(A2y, A" Eglz),  (220)

Ay, glr) = AL A2y, \ogl2) + A_(A2y, A=) +
+ AO(A%y,/\%|x).
We note that

For the rescaled variables, the flat limit A — 0 of the ad-
joint and twisted adjoint covariant derivatives in (2.9)
and (2.10) gives

DY A(y,ylz) = DY A(y, ylz) —

: 0
— o8 [y, g
e (ya g7 - W dle) +

o _ - _
; Twyng+<y,y|x>) . (221)

D'A(y,glx) = D"(y,glz) +

?  :

+€QBIW (y, glx). (

2.22)

The flat limit of the unfolded massless equations follows
from (2.6) and (2.7) via the substitution of D and
e of Minkowski space and the replacement of D¢
and D" with D% and DYy. The resulting field equa-
tions describe free HS fields in Minkowski space. We
stress that the flat limit prescription in (2.20), which
may look somewhat unnatural in the two-component
spinor notation, is designed just to give rise to the the-
ory of Fronsdal [27] and Fang and Fronsdal [28] (for
more details, see [26]).

We note that although the contraction A — 0 with
rescaling (2.20) is consistent with the free HS field equa-
tions, it turns out to be inconsistent in the nonlinear
HS theory because negative powers of A survive in the
full nonlinear equations upon rescaling (2.20), not al-
lowing the flat limit in the nonlinear theory. This is
why the Minkowski background is unreachable in the
nonlinear HS gauge theories in [4, 5, 29].

2.4. Unfolded equations in matrix spaces My

As observed in [10], massless equations (2.7) can be
promoted to a larger space M, with matrix coordinates
XAB = XBA by extending system (2.7) to

dXAB 9 + A
OXAB — gy A9y B

) CL(Y|X)=0, (2.23)

where the “4” sign is introduced for the future conve-
nience. This extension makes the Sp(8) symmetry of
the tower of massless fields of all spins, observed orig-
inally by Fronsdal [8], geometrically realized on a La-
grangian Grassmannian, which was shown in [8] to be a
minimal Sp(8) invariant space that contains Minkowski
space as a subspace. (We note that it was also observed
in [9] that the tower of 4d massless fields of all spins is
naturally realized in My.)

That Sp(8) is a symmetry of both systems (2.7)
and (2.23) follows from the general property of unfolded
equations that any subalgebra in End V', where V is the
module where zero-forms C' are valued, forms a symme-
try of the free system (for more details, see, e.g., [26]
and the references therein). The Lie algebra sp(8) is
the algebra of various bilinears of Y and 9/0Y* that
act on the space V of functions C(Y). The conformal
algebra su(2,2) is the subalgebra of sp(8) spanned by
those bilinears that commute to the helicity operator

0

r 0
— — a7
H=y 5 55 € o0(),

e (2.24)

which associates helicities of fields to its eigenvalues.
More precisely, the centralizer of H in sp(8) is

su(2,2) @ u(l),
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where u(1) is generated by H while su(2,2) is the con-
formal algebra. Thus, in the zero-form sector, massless
equations of fields of different spins are conformal.

System (2.23) extends the 4d massless equations in
Minkowski background formulated in Cartesian coor-
dinates to My. Its extension to an AdS-like version
of My, which is the group manifold Sp(4) [10], is also
available [30] in any coordinate system. We note that
more recently, the one-form sector of HS equations (2.6)
was also extended to My in [26]. By general properties
of unfolded equations, Eqs. (2.23) are equivalent to the
flat limit of 4d HS equations (2.7). Interesting details
of this correspondence were worked out in [11, 16].

In Ref. [7], Eq. (2.23) was extended to so-called
rank-r systems of the form

dXAB 9 +pid o X
oxAB ~ 1" yidgyiB

x CL(Y]|X) =0,

(2.25)

wherei,j =1,...,r and n¥ = 5? is some nondegener-
ate metric. The following comments on the properties
of higher-rank systems are most relevant to the analysis
in this paper.

Higher-rank systems inherit all symmetries of the
lower-rank system from which they are built simply
because they correspond to the tensor product of the
lower-rank representation of one symmetry or another.
In particular, this means that higher-rank systems are
conformal once the underlying lower-rank systems are.

In the basis where % is diagonal, higher-rank equa-
tions (2.25) are satisfied by the products of rank-one
fields

CT(ViIX) = O (V1|X)Co (V] X) ... Co(Y,|X). (2.26)

The rank-r systems in M, can further be extended
to a rank-one system (2.23) in the larger space M,
with coordinates X gB by reinterpreting the twistor co-
ordinates:

YASYA A=1,...,rM. (2.27)
The diagonal embedding of M, into M, is
X{AP =X = . = XAP = x"B, (2.28)

On the other hand, as shown in [9, 11, 16|, the
rank-one fields in M s with higher M describe con-
formal fields in diverse space—time dimensions. In par-
ticular, a rank-one field in Mg describes all conformal
fields in the six-dimensional Minkowski space. This
implies that conformal currents in four space—time di-
mensions, which were shown in [13] to be described

by rank-two fields in My, are equivalent to conformal
fields in six space—time dimensions. More precisely, we
should say that the 4d currents are dual to the 6d con-
formal fields. The reason is that the space of states of
higher-dimensional fields is represented by the product
of C_ fields in (2.23) while the currents are represented
by the product of Cy and C'_, where C'y and C_ re-
spectively describe particles and anti-particles, i. e., the
space of single-particle states and its dual®). In this pa-
per, we loosely identify the currents with the fields.

Now we are in a position to explain how rank-two
equations give rise to conserved currents, considering
the reduction of M, to the usual Minkowski space for
simplicity.

3. CONSERVED CURRENTS

3.1. Minkowski case

The reduction of the rank-two field equations in [13]
to Minkowski space gives

DfsJ(y*, g |2) =
= [ DL 4 e _r +
Oytredy—~F'
& + -+
+ g ) ) 00 =0 (3.)

We say that J(y*,7*|z) that satisfies Eq. (3.1) is a
rank-two current field. Introducing basis three-forms

’ 1 ! r
HY = —geo‘a: AePY A egd (3.2)
and using the relations
’ ! 1 /el r
P AHY = 1670‘6” S ener ANH (3.3)
it is easy to verify that the three-forms
0
Q (J)=H* —— x
() =Hew S
x =2 I 7l . (34
oy« yt=g+=0
OZCYI 8
QL (J)=H Byt X
X 7 (T, gt ) , (3.5)
oyte yE=g+=0

2) Strictly speaking, this interpretation requires an additional
factor of i in the second term in (2.23), omitted in this paper.
For more details on these issues, we refer the reader to [13].
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6 _90 _
By ag+o
9 0 + o+
9,70 ay—a’> J(y=, 7% |x)

Oy (J) = 1 <

3.6
yE=g*=0 (3.6)
are closed if J(y*, g% |z) satisfies (3.1).
To define symmetry parameters that produce more
conserved currents, we consider the adjoint covariant
derivative

, 0
L _

Dle =D +eo‘B (U_QW_FU_BI W ), (37)

resulting from D%, by the substitution

0 ' 0

y—a - = ’ g—a — T 4= ’
6’[147,1 81.1,,0/ (3 8)
—u L —u .
ay_a —Q 8g_a/ —Q

which formally coincides with the “half Fourier trans-
form” in [13]. Since covariant derivative (3.7) is of the

first order, the space of regular solutions of the equation
D??2ﬂ(y+vg+7u—vﬂ—|x) =0 (39)

forms a commutative algebra Py;. Evidently, Py is
generated by the elementary solutions

u-ps YT _,xaﬁra,‘ﬁ' ’ (3.10)
i g, §T —a27%u_g.
By the substitution inverse to (3.8),
U_o — 3 a_a, U_qr — ,a_a,,
4 % , (3.11)
dua TV B VT

the algebra Py, is mapped to the algebra Ry of differ-
ential operators (¢ _g,& g, T, ET®") generated by

0 - 0
f—a - Wv g—ﬁ’ - Wa
0
ta _ o B
— ’ ’ 8
+o _ 4o _ Bo
5 € ay,ﬁ
Since any
77(5*67576’7 £+a b ngo/) € Rfl
satisfies (3.9), it follows that
Dy J(y*, 5% |e) =
=0= DYy (&) J(y™, 7" 12)) =0. (3.13)

Hence, the three-form

9 90
Oy~ dg—«
x1(&,€) T (y*, 7% |2)

yE=g*=0

QnJ) = H
(3.14)

is closed. Thus, any element of Ry, generates a con-
servation law. As explained in more detail in [13], R
matches the space of HS global symmetry parameters
in [14].

The relation with the usual currents is based on
the fact that Eq. (3.1) is solved by the bilinear expres-
sion [7]

Jy=g5le) =Co(y +y =, 0" + 7 |7) x

xC_(y" -y, gyt =y lz) (3.15)

in rank-one fields C(yg|z) that solve the rank-one
equations

82

DYCy(yyle) £ e ———
Lyale) £ 5

Ci(yyle) =0, (3.16)
which coincide with the Minkowski reduction of
Eq. (2.23) and, up to a sign, with the flat limit
of Eq. (2.7). The resulting currents reproduce the
lower-spin and HS conserved currents built from
massless fields, originally obtained in [15].

The change of minuses to pluses in the “half Fourier
transform” (3.8) gives another set of operators

9
Xto = Wv X+8" = W’
r 0
X—a — y—a — xaﬁ W’ (317)
X—a' — g—a' _..Ba’ d
6y+5

that commute to D, in (3.1) and hence also generate

symmetry parameters and conserved currents. Gen-
erally, the following set of closed three-forms can be
written with an arbitrary parameter g(&, &, x, X):

09
Oy~ gy~

x 9(&E . V)T (yE, 75 |2)

0 _(gJ) = H*

)
yt=y*=0

oo
Dyt ot

x 9(&E x0T (yE, 75 |2)

0 (g]) =H"

b
y*t=y*+=0
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' 0 0 0 0
T )

dy= o+ dy+e Oy
x 9(&.& ) (™, 5 |e)

yE=g+=0

However, most of these forms turn out to be exact,
giving rise to zero charges. As shown in the forthcom-
ing publication [31], in both the Minkowski and AdS4
cases, nontrivial charges (i. e., current cohomology) are
fully represented by the closed three-forms

r 0 0 .
oo = _Z H, — H
H 6y7a 8@70/ 17(6757 1 2) X

x J(yE, 55| z)

TS0 (3
0 0 _ ’
HH oyte Wﬁ(xwvfﬂ — H») x

x J(y*, g% |z)

b
y*F=y*+=0
where

.0 .0
H; = yI% —— — 7@ —
iy dyie y e

We note that
(Hl - HQ)J == 4(h+ - h_)J
for the bilinear currents J in (3.15) with the fields C+

of helicities h4.

3.2. AdS,

In the case of AdSy, the rank-two unfolded equa-
tions, i.e., “current equations”, are

DY J(y*, 75 |z) =0, (3.19)
where
Déw = DL + /\eaﬁl <y+a Yy gty a @7+6r +
02 92
. (3.20
T aytaog 7 T oy e ) (320

Again, current equations (3.19) imply that, being eval-
uated at

three-forms (3.4)—(3.6) are closed.

3.2.1. The Howe-dual algebra

To classify different solutions of rank-two equation
(3.19), we observe that the operators

82
f-‘r = y+”y; T a4, ——
oayt'y,,
0? )
fo=- —+y7 5,
Oy dyy ! (3.21)
0 0 r 0
. - o
fo=y g +y gV e
_g—al 9
6gial7
and
gr =yro L gre O
Oy~ oy~—"’
. 0 . 0
9-=y"5 5 =g -
_ o, ta 9 —+a' 9 —a 9 ( . )
Jo =Yy 8y+a+y agte Y 8y——a
__70/ —6
U

commute to Di¥. These operators form two mutually
commuting sly algebras with the nonzero commutation
relations

[f+, f-1= fo, [fo,f£]=£2fx;

[9+,9-1= g0, [90,9+] = +2g+.

The algebras of operators (3.21) and (3.22) are respec-
tively referred to as vertical “sl, and horizontal "sls.
The Cartan operator fy € Usly in (3.21) is referred to
as the rank-two helicity operator.

It is easy to see that

62
oy oy

Hoo f- Jy*, 5%) =

1 02
= _—d(H"——
2/\d( Oy—dy—>F %

x J(y*, g% |2)

yF=g+=0

Y
yi:yi:O)

o (3.23)

x J(y*, g )

Hoza'

yi:yizo =
82

——— X

oy 0y

< J(y*, y*|x)

- —%d(ﬁ“'ﬁ'

b
yt=g* :0)

557
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if J satisfies Eq. (3.19). We recall that the two-forms

Ho8 and A" are defined in (2.8), while the three-
form 1 is defined in (3.2).

The system of equations (3.19) decomposes into a
set, of subsystems associated with different elements of

hsly BV sly-modules realized by rank-two fields. Let

Y=yt o, Y=7"F o (3.24)

Any polynomial P(y*) can be represented in the form
k _
Z yr o Zz+k)y+oz(m)y oz(lc)7

.o m,k . .
where multispinors C™"™ are symmetric. It is easy

a(m-+k)
to see that

0? (Yn Cn,’mJi: +a(m) 7&(1@)) _
8y§8y+7 a(m+k)y Y -

=nn+1+m+k) Y"1 Cn mf )y+°‘(m)y_°‘(k).

It follows from this relation that lowest vectors Fj,
of the vertical Ysly in (3.21), which satisfy the equation
f—Fn =0, have the form

1

Va3

where f™(y, 7, Y) is an arbitrary function that satisfies
the conditions
62
8y+78y_

0 mi = (3.26)
(y”ayﬂﬁ-y - 7)f (v,9,Y) =
=m f™(y,y,Y).

We note that Fy,(y,7,Y,Y) (3.25) satisfies the eqution

fm(y7g7 ?) = 07

oy 8 Ja oYy

where the derivatives with respect to Y and y are
treated as independent.

Since f 4+ = f—, highest vectors are complex conju-
gate to the lowest ones. Therefore, the singlets Fi,
of the vertical Ysly in (3.21) have the form

Fom(,5,Y,Y) =

1
Yy - (3.2
. 9) Z Axmimm 20

n>0

where polynomials s™(y,q) satisfy Eq. (3.26) along
with the conjugate conditions
82
7+,y[ — S
oY+t 0y,

5

s+ Wa,)s (4,7) = ms™ (y.7).

It is easy to see that the lowest vectors F_ and hig-
hest vectors F of the horizontal "sl, in (3.22) have the
form

F_ (y_vg_a (y+oz g_ﬁ' + y_Oz g+3'))7

Fe(ytot, ey s +y auts)),

while the "sl, singlets are
G et s +y ol s),

where F. and G are arbitrary functions of their argu-
ments.

We note that f, and the algebra "sl5 in (3.22) com-
mute to D%f», while the flat limit of the operators f.
gives the mutually commuting operators

0? 0?

fepn=—7—0— f—flz—Wa

) 3.28
6y+u g;, ( )

which commute to Dﬁ}l’b.

3.2.2. Symmetry parameters of AdSs currents

Proceeding as in the Minkowski case in finding sym-
metry parameters of AdSy currents, we have to solve
the equation

D3yt gt us,u|z) =0, (3.29)
a aB’ a _ 8
D2d o DL —|—Ae 6 <_y+a6ﬂ76’ —y_,’_B/ 6/“*& +
n 1o} L 0 )
U—n 57 U—_pg —F—
> Yyth B oy ra )

where D44 is again related to D5 via (3.8).

As in the Minkowski case, the space of solutions
of the first-order system of partial differential equa-
tions (3.29) forms a commutative algebra that has two
gradings

G+ —— (y+a

1 o . D
G_ = 5 (’U,_a/ 6u7a +y ag+a,> .

558
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Since the compatibility of Eq. (3.29) is guaranteed
by flatness condition (2.3), the space of solutions of
(3.29) is isomorphic to the space of arbitrary func-
tions of yT,y T, u_ i, i.e, E(yT,yT,u_,ii_|v) is re-
constructed via its values at any given point x = zg.
Since Eq. (3.29) is homogeneous in the variables
yt, 9T, u_,u_, its solutions can also be chosen to be
homogeneous. Moreover, it suffices to find a complete
set of solutions that have minimal grades with respect
to both gradings in (3.30) and are therefore linear ei-
ther in y™ and @_ or in u_ and §+.

For this, we introduce Killing spinors ¢?(z) and
%' (z) that satisfy the equations

DYe(z) + Ae® sz (2)

e p (3.31)
D"s” (x) + Ae*" ¢ (x) =

Let a basis of this system be formed by four in-
dependent pairs of spinors (c.?(z),s.” (z)) and
(carP(2),507 (2)) labeled by indices a = 1,2 and
a’ = 1,2. For example, basic solutions of (3.31) can
be chosen to obey the following initial conditions at
=0

¢’ (0) = 8.7,

ca?(0) = 0,

SaBI (0) = 07
s (0) = 6.7

From these conditions, it follows that

P (2) =527 (2), 87 (2) = ca®(2).

A particular form of solutions ¢,?(z), sa? (2), ca?(z),

Sar P’ (z) depends on a chosen coordinate system.
Evidently, the fundamental solutions

0a(u_, gt z) = e’ (T)u_y + saw ()7,

ealyt i—|r) = cap(x)y™ + 5.7 (2)ip, (3.3
0w (i, y ) = 5% (@)i_g + carn(2)y Y,
f (@t ulz) = swp (@)7"7 + e (2)u_gp

generate a commutative algebra Pygqg of solutions
of (3.29) of the form

0 (T, gt u_,i_|x) = P(0a,€a, 0ar, Ear)- (3.33)

As in the Minkowski case, substitution (3.11) maps
Pags to the commutative algebra R 445 of differential
operators generated by?)

93(67,g+|1‘), Ga(era 57|1‘)a

Bar (0, y"|2), € (gh,0_|z). (3.34)

3) 84+ and O4 are a shorthand notation for 8/85F and 8/dy*.

559

Again, it follows that
DY (n J(y*,5*|x)) =0

if n € Ragqs and J(y*, y*|z) satisfies (3.19).

The commutative algebra Raqs of the current
parameters is a representation of the vertical Ysly
in (3.21). In particular,

[Qa(a—ag+|x)af+] = ea(y+,5_|x),

[Ga (er? 57|l‘) ) f+] =0,
[ (0,5 |2), f1] = B (0,5 |),
[Oar (0=, yT|2), f+] = 0, ete.

On the other hand, parameters (3.34) are highest vec-
tors of the horizontal "sly in (3.22):

[Qa (8,,g+|1‘),g+] = [Ga (y+,5,|l'),g+] =
= [Ea’ (8,,gj+|1‘),g+] = [@a’ (5,,y+|l‘),g+] = 07

while g_ € "sl; maps them to new parameters,

[0a(0—, 7" |2),9-]1 = 0a (04,7 |2),

[ealy™, 0-12),9-] = —€a(y™, O4|w), ete. (3.35)

which follow from the original ones via exchange of
pluses and minuses.

Since "sl, commutes to D5, the new oscillators also
commute to D5, The full list of covariantly constant
spinors can be packed into the form

—nn

Qar s (336)

nn
Qa

where n = 4+, — and n = +, — are the respective in-
dices of the doublet representations of Ysly and "sls.
Namely,

Qa(a—7g+|x) = _Q:__a
Oa (5,,y+|l‘) = §;+7

0a (04,y7|2) =0, T,

=of ™,

€a (y+75—|x)
€a (g+,6,|1‘) = _52_1_7
Ea’ (g_a 8+|x) = E;_a
0. (01,57 |2) = 07 75 ealy,04lz) = 07 .

Since all oscillators (3.36) are covariantly constant,
they have z-independent commutation relations
nmEkﬁé‘ga,

et =1.

[an Qmﬁ]ZE
S (3.37)
nmskné_ﬁ,a,’

[0fF, o™ =
In fact, as is explained in more detail in [31], covariantly
constant spinors (3.36) are related to supergenerators
of (conformal) SUSY.
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The full set of parameters belongs to the space P of
arbitrary functions of oscillators (3.36). This space is
much bigger than the space of HS global symmetry pa-
rameters. Asis shown in [31], most of the currents asso-
ciated with elements of P are exact and hence generate
no nontrivial charges, while the nontrivial currents are
represented by the current cohomology in (3.18). (We
note that the ambiguity in the dependence on H; — H,
in (3.18) with ¢ and y replaced by ¢ and & (3.36), re-
spectively, is physically trivial, expressing the ambigu-
ity in the normalization of the rank-one fields in for-
mula (3.15).)

To introduce currents bilinear in rank-one fields, it
is convenient to consider the operators D4 that differ
from D™ (2.10) by a sign in front of A, such that the
corresponding rank-one equations are

D'Cy(y,glx) = D*Cx(y,glz) +

) s, (339

+ )\eaﬁ’( yg!
yozin + 8:[/0[8@6,

Analogously to the Minkowski case, for any parameter
7 € Raas, Eq. (3.19) is solved by the bilinears

Jy=gtle) =nCrly™ +y~, 9" + 7 |2) x

xCO_(y" —y g -7 |x) (3.39)
of rank-one fields Cy (V2y,v2y|7)
Eq. (3.38).

Now we are in a position to consider a deformation
of the system (2.6), (2.7) combined with rank-two equa-
tions (3.19). We show in particular that upon bilinear
substitution (3.15), the constructed deformed system
leads to the Maxwell equations with a nonzero current
and to the linearized Einstein equations with a nonzero
stress tensor.

that solve

4. CURRENT DEFORMATION

To describe the current interactions of 4d mass-
less fields, we look for a nontrivial deformation of the
combination of rank-one and rank-two unfolded sys-
tems (2.6), (2.7), and (3.19). The form of the defor-
mation is fixed by its formal consistency. The problem
is solved in two steps. First, we consider the zero-form
sector to find a gluing of the rank-two current module
to the rank-one Weyl module. The result is presented
in Sec. 4.1, while the details of the derivation are given
in Appendix A. Second, the result for the gluing in the
one-form sector is presented in Sec. 4.2, and the details
are given in Appendices B, C, and D.

560

4.1. Current deformation in the zero-form
sector

The deformation in the zero-form sector is indepen-
dent of that in the one-form sector. On the other hand,
because of the C-dependent part of Eq. (2.6), the form
of the deformation in the zero-form sector affects the
deformation in the one-form sector.

The most general consistent deformation of
Eq. (2.7) by rank-two fields has the form

thC’(y,gﬂx) + e'm’F(./\/'i,Ni)yjagjar X
x J(y=, 7| v)

_I_
yt=g+=0

+ eaalq)(-/\/jzaﬁi)gja’aja X
x I(y™, 7" |2)

=gt

yE=y*=0

0, (4.1)
where D' is defined in (2.10), and J(y*,7*) and
I(y*,y*) are rank-two fields satisfying unfolded field
equations (3.19). The form of the gluing operators F
and @ is determined by the consistency of Eq. (4.1) an-
alyzed in detail in Appendix A, which is the condition
that the application of D to (4.1) leads to the identity
0 = 0 if the current fields J(y*,7*|z) and I(y*,7%|2)
satisfy the current equation. Here, we use the notation

sz = yaaiom
Ni=7"0sar

alb; =atby —a"b_,
’ ’ (4.2)

The final result is

F(Ng,Ny) = Z Zan,mgmm_n(]\/’ivﬁi)a (4.3)

m>0n=0

(I)(-/\/ﬂ:aﬁzl:) = Z an,m§n’min(]\/ﬂ:aﬁﬂ:)a (44)

m>0n=0

where a,,, and by, are arbitrary coefficients and

§n (Ve W) = (W)™ (V)™
(N N+ N_N)™
szm m!(m+ng +n_+ 1)1’
§en (Ve Ve) = (V)™ (V)" x
> (NN + N N)™

[ I
o m!l(m +ng +n_ +1)!

(4.5)

As shown in Appendix D, the fields of the form
J = f_J and T = f,I' give a D-exact deforma-
tion (4.1), which can be removed by a local field redef-
inition.
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We note that functions (4.5) can be expressed via
the regular Bessel functions (see, e.g., [32])

Iy oGy~ e
Te1 (22%) = = ; s (6
as follows:
Fnm (V)" (Vo)™

(ﬁ+ N_+N_ J\/+) (n+m+1)/2
x Tnsmit (2(N+ N_+N_ N+)1/2).

To see the origin of the ambiguity associated with
the coefficients ay, ., and by, ,, we use the relations

[fo, Nl = =N, [fo, N&] = Ny,

[90, N+] =FN4, [go, N+] = £Ng, (47)
[9+, N&] = =Nz, [95, Nx] =0,
[92, N+] =Nz, [g5, N1] =0,

whence it follows that
g, Ny N+ N /\/+] = [QO,N+N’7 -|-W,/\/’+] =

= [/ NN + X N =0, (19)

— _n_gn_;_—l—l,n_—l7

3]
g, 37m] = —nygremtnes,
5]

]

Here, f, and g, are respectively generators of Vsl
Eq. (3.21) and "sly Eq. (3.22).

On the other hand, the J and I-dependent terms
in (4.1) are invariant under the action of fy and g; on
the variables y= and §* simply because the result is
zero at y* = §+ = 0. (However, this is not the case for
the operators f, which contain second derivatives in
y* and §*.) This means that the action of the rank-two
helicity operator fy on the gluing functions is equiva-
lent up to a sign to their action on J and I, respectively
shifted to F2, because

[fo,0 a0jar] = 207 a0jary  [for I a0 Oja) = =20 0 Ojar-

12 JKBT®, Beim. 3

For example,

0= (fo8" "y aljor J (yF, 75 |2) )

yE=g+=0

= (2 — k — n)3k7nyja5ja’ J(yi7 gi|x)

yt=y*=0

+ Sk,nyjozgja’ fOJ(yia gi|x)

(4.10)

yF=g+=0

Analogously, the action of the horizontal operators
g; on the gluing functions is equivalent up to a sign to
their action on J and I because the operators 7 agja/
and their complex conjugate 7/, 9, are invariant un-
der "sly, for example,

0= (g:t Sk’nyjagjoz’ X
x J(y*, gt ) -
W57 )| e

= [gi,gk,n] yjozgjoz’ X
x J(y*, 7 |e)

yt=y*=0
+gk’nyja5ja’g:tj(yiagi|x) T )
yr=y =0

0= (gogkmyjagja’ X
x J(y*, 5" x))

(4.11)

yt=y*=0
= (_k + n)gk’nyjagja’ X

< J(y*, g |z) +

yt=g*=0

+3k7nyja6ja’90 J(yiy gi |)

yF=g+=0

Since ¢(f,g)J and (f,g)I satisfy the rank-two
equation and therefore provide new conserved currents
for any functions ¢(f, g)J and ¥ (f, g)I, the general de-
formation (4.1) realizes a representation of gl, formed
by fo and "sly. The application of fy and g; to
the deformation transforms the coefficients as finite-
dimensional spin-3(n + k) representations of gl,. In-
deed, deformation (4.1) for a spin s rank-one field with
currents obeying

fol* t=2(s=1)J" 1,

fo[ﬁsJﬁl = —2(3 - 1)[75+1, (412)
is

2s
D“”Cs(y,gﬂx)—keo‘a' Z am,QngQs—m (Nivﬁi) %

m=0

X yjagja' J(SZ_sl—Zm) (y:ﬂ:’g:tm.) = 07 (413)

yt=g*=0
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2s
DT (g, glo) e D ampsF™ " (W, o)

m=0
X P ot QeI iy (0, 75 [) =0

yt=g+=0

(4.14)
for s > 0 and

thC’O(y,g|x) + eaa'ao’ogo,o (-/\/ﬂ:aﬁzl:)yjagja’ X
X J o (=, 75| x)

yE=y+=0
+ eaal a070§070 (szaﬁi)gja’aja X

X 11(0)(yi7gi|x)

0, (4.15)

=g+=0

yE

- p
for s = 0. Here, J(k)

P /4
90 (k) =k Ity

satisfies the relations

Jo € h5[27

and a; ; are arbitrary coefficients.

Since the deformation coefficients form finite-
dimensional gl,-modules, it suffices to consider the
problem for any element of these modules. In Sec. 4.2
and in the examples in Sec. 5, we consider “"s[,-highest
deformations” with

_ 50 = _ 50 =
Um,2s—m = 5ma0,2sa Am,2s—m = 6ma0,2s- (416)

For the future convenience, we set
ap,2s = do,gs =2s + 1.

To define the flat limit of the deformed equa-
tions (4.13), (4.14), and (4.15), it is necessary to intro-
duce appropriate A-dependent coefficients of the added
deforming terms. It is evident that the terms

' P
e Srm,2s—myjaajal %

noys— + -+
X (f+) J(281,2m)(y Y |SU) JE—gE—o (417)
and
eaargm’287mgja’aja %
=\l £ o
X () oy 0|, (418)

require some coefficient a(A\™) to yield the coefficient
a(1) after rescaling (2.20) in the flat limit A — 0.

4.2. Current deformation in the one-form
sector

Since zero-forms contribute to the right-hand sides
of Egs. (2.6), their formal consistency in the presence

562

of deformation (4.1) requires an appropriate deforma-
tion in the one-form sector. Since the analysis of the
deformation in the one-form sector is more complicated
due to the gauge ambiguity, instead of considering the
problem in full generality, we use an appropriate ansatz
that not only guarantees the formal consistency but
also gives rise to the correct current deformation of the
dynamic equations.

The problem is considerably simplified by using the
9[2 = fo U h5[2

symmetry acting on the gluing coefficients in (4.3) and
(4.4) of deformation (4.1). Indeed, it allows us to first
find the deformation in the one-form sector in the par-
ticular case of "sl, highest-weight coefficients of the
form (4.16) in (4.1) and then extend the result to ar-
bitrary gluing coefficients by the action of "sl, on the
gluing functions.

Here, we present the final results of the “highest-
weight” deformation. Details of their derivation are
quite complicated and are presented in Appendices B
and C.

First, for a given spin s, we introduce “seed current
fields” Jh, s that solve Eq. (3.19) and obey the condi-
tions

fo Ins(E, 7% |2) = 20 o s (v, 75 |2),

90Tn,s (W, TF|2) = =28 T s (yF, 775 2), (19
where f from (3.21) is the rank-two helicity operator,
go from (3.22) is the Cartan operator of "sly, h = 0 for
integer s and h = £1/2 for half-integer s. The reality
condition requires that J, s = 7,11’3 .

Given an integer spin s > 2 and a seed current field
Jo,s, the deformed equation in the one-form sector is

@ B _alﬁl o o _ B
D (y,glz) — H " 0003 C(0,9|z) —
— HY%9,05C(y,0lz) =

s—2 s—k—2 ,/— \s+k
o 5 (V) W)
=H 68_aa_3k (s+k‘)' X
=0

X (ff)k Jo,s |y:l::y:l::0 +

~ ~ s—2 ./\/7 s+k Nf s—k—2
o O

k=0
< (f1)" To.s | jimyimgs  (4:20)

iy

where fi € Usls.
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The associated deformation in the zero-form sector
is

thc(yv g|$) + A(QS + 1)eﬂ613'0,23y]'a6j6’ %
s—1
x<f+) Jo,s |yi:gi:0 =0,
tha(yv Q|JU) + )\(28 + 1)eﬂ61§0,238jug]'6’ %

() Bl

(4.21)

where § %% and § ©?* are defined in (4.5).

Given a half-integer spin s = [+ 1/2 and seed cur-
rent fields J41 5, the deformed equation in the one-form
sector is

D*(y, gle) = B 7 0005 T(0, 5l2) +
+ H9,05C(y,0]x) +
1—2 l—k—2 == \Il+1+Fk
N TR W)
af (
i 8‘0‘8‘5{2 (I+1+k) 8

k=0
N )l 1— k(N_)l+k
.7 1s+Z l+k
X (ff)k jl,s}|yi_gi_0 +
-1 l+k(N )l*kfl

a’a—ﬁ’{ i

O(’aﬁ’

+F

— I(1+E)!
(1-2) I+1+k I—k—2
k (M) (Vo)
x (f+) ‘7‘173+k220 (I+1+Fk)! x

X(f+)kj1,s}|yi:gi:0- (4.22)
The associated deformation in the zero-form sector is
D™ O (y, glz) + M\(2s + 1)6“313072@7Cy %
x Qg { (f+)lil\71,s +
+ %(f+)l¢771,s} |yi:gi:0 =0,
th@(y,gﬂx) +A(2s + 1)eu6’§0,2s %
X 6ju@7j6’ { (ff)l_ljfl,s +

A A

(4.23)

We note that these deformations are nontrivial if
the seed current fields Jy s in (4.19) are such that

jh,s(yiagi|x)| 7& 0

Y+=54+=0

5. CURRENT CONTRIBUTION TO
DYNAMICAL EQUATIONS

We explain how the deformed unfolded equations af-
fect the form of dynamical equations for massless fields.
To obtain the usual current interactions, the rank-two
fields should be realized as bilinears in massless fields,

Jo=C4 (y+ +y~. 9" +17“rv) X

x C (y+ A ?T‘x), (5.1)

where C’i(%y, %gﬂx) solve rank-one equations (3.38).
For the future convenience, we use the decompositions

Aly*, 7" ) = Z ATy g ),
(5.2)
B(y,ylx) = Z B™™(y,ylx),
where
0 0 _
+5 —B m,m(, £ & _
(y 9,78 TV ay—B)A (=, 7~ |x)
= mA™™ (y*, gF|x),
0 : 0 _
—+83 ——f m,m(, £ ~+ —
(y 557 TV —ag,ﬁ,)A (™, y%x)
= mA™™ (y*, 7 |x),
0
B_~ m,m _ m,m
(v75,3) ™" 0 k) = mB™" (5, ),
G
B m,m = — 7y R
(y @6,)3 (y,ylzr) = mB™™ (y, ylr)

5.1. Spin zero

Using (4.12), we consider J such that foJ = 2J.
Equation (4.15) with

ap,0 = Go,0 =1
gives

DY 10 C(0,0|2) + ACfha (0,0]z) =0, (5.3)
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D* 401 Cppr(0,0]z) + ACaparp (0, 0[z) +
+ A6a1676a60(0,0|x) -

s > _
2 8y+38y—a

02 4
- W)J(y 012)| s s =
Sy (-
2 \9ytsog—
2 N=
- W)J(O,y Lol ———
Hence,

DL D' C(0,0]z) =
2
g
Oyt ady=*
Ot o Oy~

From (5.1), we obtain

= 4A?C(0,0]z) — I(y*,0]z) —

JO,7%|z). (5.4)

DL, D" C(0,0]z) = 4\>C(0,0|z) +

oo’

+4C 4o (2)0 - () + 4C 1 a(2)C-*(2). (5.5

Remarkably, in the spin-zero sector, the proposed
unfolded construction just reproduces Yukawa interac-
tion since Cyq(x) are dynamical spin-1/2 fields. We
note that a C? deformation, which one might naively
expect in the spin-zero sector, does not appear in agree-
ment with the fact that the construction in this paper
is conformal, while the C? deformation is not conformal
in four dimensions.

5.2. Spin 1/2
Let foJJ = J. Equations (4.13) and (4.14) with
A, 25—m = Gm,2s—m = 259n
give
D" 10 C(0,0]2) + ACpaar (0,0]) +

0 —=, __
+ENQWJ(O7y |x)|37_:0:07

F— _ (5.6)
D" (o Cp (0,0|z) + AC oy (0,0|z) +
9] _
+6”IQIWJ(y ,0|1‘)|y—:0 =0.
It follows from (5.6) that
L o 0 = __
D" 40 C (070|x)_2ﬁ‘](07y |2)|g-=0 =0,

y (5.7)

— 0
D o C® (0,0|x)—2WJ(y_,O|x)|y7:0 =0.

Substituting the bilinear .J and J from (5.1) built from
fermions and bosons gives

DL o C*(x) = V2O, (2)T _(z) +
+V20, (2)C o (2) =0,

Dl aa T (2) = V2Cia(x)O_(z) +
+V2C (2)C_o(z) =0,

(5.8)

which is the Yukawa interaction in the spin-1/2 sector.

5.3. Maxwell equations

Let foJ = 0. Then the reality condition requires
that J = J. Equation (2.6) still has the form

_a’B’_

D¥%(x) = H " Corp(x) + HPCpp(z). (5.9)

This identifies for Cy5(2) and Cor g () involve selfdual
and anti-selfdual parts of the Maxwell field strength.
The consistency conditions of (5.9) imply the Bianchi
identities

D (HPCop(z) + A’ Corp(2)) =0.  (5.10)

Deformed equation (4.21) for s =1 at y = ¢ = 0 gives

D¥ 0 Clu(0,0]2) + ACryaar (0,0]z) +
2

* (o Gy

J(yi,gilm))Iyi:gi:0 =0. (5.11)

J(y*, 75|x) +

te,. O

va ag_ar ay—“
It follows from (5.11) that in accordance with decom-
positions (5.2),

82
D0, (0,0 BA\—— x
K ( |l‘) + 8g_a ay_y
x JU(yE gF|z) = 0. (5.12)
By virtue of (5.12) along with the identities
HB A ekt — conqyBr + eﬁuq_lau”
—O/BI ’ o ’ o ’ (513)
H A eht — & W uB _eﬁﬂ}[ﬂa’
we have

HaﬁeVV’DLVV’ Cozﬁ (l‘) = QHBVIDLQV’Oaﬁ =
2

= —6\HP ————
Oy—Boy—v

TH y*, g ).

Analogously,

2

a/ﬁr I [)'1/’
H "~ D*Cyp = 6A\H" ———
# (@) dy=Poy=v

Byt o).
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Hence, it follows that, as anticipated, Bianchi identities
(5.10) are respected and

a _afﬁf_
Dt (H BCus(a) —H ca,ﬁr(x)) =
82

= —12AHY ——
I ay—ﬁay—”“]

MyE gtle). (5.14)

This just reproduces the Maxwell equations with a
nonzero current.

For J in (5.1
respectively have

) built from scalars and spinors, we

sy o° J
dy—Boy—'

x HBY' (—C_(x)

R

O )04 () 50O (1))

Byt gt

9
OzBV'

T (y*, g |e) =
—1_ 5, _
= M Oy (@) (),
which are the standard expressions for spin-one cur-

rents.

5.4. Spin 3/2

Using decomposition (5.2), from Eq. (4.22), we have

DLW (0, 9) — )\eBB’gjgr w"(y,0lz) =
0

o=+

= F(M’ﬁ’ L?(O, ;l]|x) + 2HaB:ljBI
oy> 0yP

X

82

2,1 _
X gy agy e W),

(5.15)

’ 6 —
D ! 0(y, 0lz) — Ae? WW“OJ(O,@/I@ =

62 —a' B
=H" ——— 2H "y ——
8yo(é,‘ygc(y,0|96)+ Y 5,5

82
).

1,2, + -
X ag_arag_ﬁrj_ (y 7y (516)

Substituting

ik _ LaB, ik
whk = @B ik s,

n (5.15) and (5.16), we obtain spin-3/2 massless equa-
tions in AdSy in the form

DE g™ f(0,7) -
_ 0 :
—\ys 8y5°~)170a6 (y,0lz) =

Sy il T2t g )
oy 8" dy—edy BT ’ ’

DLﬁB’wl’Oﬁoz’ (y’0|l‘) -
9 018 ) Al —
~ Mgz e (0 3l) =

0 0?
— 9,8
oy By

(5.17)

T (yE, 7 |).

Substituting the bilinear current J, = J_ from (5.1)
gives

0 /
FDLaB’WoJozB (07g) +
0
A gy Cav (v, 0l) =

—01

V2 (= C304(0,02)T%, (0,0[2) -

—Cfifiy( Ol )Ci’2(070|w)) +(+ & ),
(5.18)
1,08
ay o (y,0l) +
0
Aﬁw(’%a, (0.51) =
= V3( = Th2a (0,02) 22 (0,0[1)

— C0ar (0,0[2)T24 (0,0[2) ) + (+ 4 -).

This is the Rarita—Schwinger equation with the super-
current built from a scalar and a spinor.

5.5. Spin two

In the case s = 2, it follows from conditions (4.19)
and (4.12) that fo jo =0 and

I —4) Ty, 7 |)| =0.

(v 0oty v=r1=0

From Eq. (4.20), we hence obtain
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82
2
Oy 0ys
82
“HY ——
3 g9y~
+ o+
X Jo(y™=, ¥ |1')|yi:gi:0+
9? 7 )2
ey V)
X jo(yi737i|x)|yi

Dy (y, glo) =T C(0,ylz) +

HYB

C(y,0[x) +

1—a6 (N_)2 %

1
~He
T3

i (5.19)

In accordance with decompositions (5.2), this gives

D b (y, glz) = Ae® g

+ ey, — (5.20)

0
oys’

D*w™?(0,7) = Ae®? g 8yaw1’1(y,ylx> +

2 J—

ag o7 C 0 alw) +

o 0?
8y~ 0y 7 Dy Dy

x T2 (v, 7t ),

o' B
Ha
+ ay°

+ Haﬁgal gﬁr

(5.21)

(5.22)

Introducing
. ;o
whk — paB wJ,kaﬁ,,

from Eq. (5.20) we obtain

w057 (y,0lz) +

_ _ 0
D 55!&)1 156 (y,y|$) = /\yﬁ’a 3

0 0,2 3

+ A\ys

_ 0
DY 5w 950 (y, ylz) = Mg 6y5w27065' (y,0]z) +

028

+ \ys 3 (0,9lx). (5.24)

oys’
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Equation (5.21) gives (omitting the arguments)

82
D ’ B gegf 2 X
BB UJ B =y Yy 83]70"63]*5'
& 2,2 9 /
X ———— T + A\yp L1 .68 5.25
dy—Boy—B Jo Ys &ygw B ( )
DLBB’W27OBB’ —
82 62
— 0,8 2,2
y y 8y_aay_6 8:&_3’8@_6, ‘70 +
0
+ Ayﬁwwl’lﬁﬁh (526)

Equations (5.23) and (5.24) express the Lorentz
connection w?? and w®? via derivatives of the vierbein
whl, while Eqs. (5.25) and (5.26) contain the Bianchi
identities for Eq. (5.20),

82

_9 B (0.72) =
55 95" (0, 9lz)

L 0,2
D*gpw™"s

82

= oy

vv! w27 (y70|x)

(5.27)

and the linearized Einstein equations

02 o
a2 ™" (0.91e) -
82
_2)\7 1,1
070y
5 52
oy Oy —Pay

s (Y, ylr) =

=2
oy~

TS yE gt ), (5.28)

which contain the contribution of the stress tensor.
Substituting the bilinear 7y from (5.1) gives the lin-
earized Einstein equations

& L 0,2 3’ ~
WD sarw " (0,9) —

o 0
Wa—ﬁw

_2( +aa 00| ) —a'a’
+C . (0,0)2)C _a,(o 0|z) +
0

(0,0[2)T2000 (0,0]) + (+ & =)

1,1 _

Bv' (y7 :lj|$)

—02

(0,0]z) +

OOO

+aa!
with the stress tensor of massless fields of spins 0, 1/2
and 1 (we recall that C}3, (0,0[z) and 60_2 1o (0,0]2)
describe the selfdual and anti-selfdual combinations of
the spin-one field strength).
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5.6. Higher spins
5.6.1. Integer spins

For any integer s > 2 and a real seed current field
Jo = Jo, we should obtain equations for the compo-
nents waa' ™" of

W™ = e woar ™"
In particular, for
m=s—1—k, n=s—-1+k k=-1,0,1
and with decomposition (5.2) for w, it follows

from (4.20) that

’ 8
D by, gla) = Ae? ﬂﬁ’@”s’w(y»ﬂlx) +

+ /\e‘wlya w2 (y, glx), (5.29)

19}
oy?'

DLw* 2 (y, glz) = Ne™? Yo gum Wby, glz) +
’ 8 —a'p’ 82
)\ af’ ~ , s+1,s—3 H _ X
+ Ae yﬁ 8yaw (y | )+ 8g—a’ag—ﬁ’
1 S /77 \S5—2 ,rs5,8 —
X ;(./\/7) (./\/’7) ;70’ (yiayi|x)7 (530)
D w25 (y, glz) = Xe®? G —w* ™1y, gle) +
. 0
\eB N s—3,s+1(, = H __ ~
+ Ae" "y agﬁrw (y,ylx) + By*aﬁy*‘a
1 s—2 S 8.8 _
xS W) V) T ). (5.31)
Hence it follows that (omitting the arguments)
eMM,eVV’DL fws_Ls_lyu’ — Aeaﬁleyyrgﬁl %
« 8yawss 2,/”’ _I_)\eCYB yaa 5 572’51,,,/7 (532)
euu'em/'DL ’ws,sf2yyl —
0
_ aB s—1,5—1 ,
= e yaa 5 w v+
aB d s+1 s—3
+ Xe yﬁl Dy ’ v+
—a'p 2 1 — \s—2
Y G g W2 V)T (533)

0

euureyy’Dﬁ ws_27swf — Aeaﬁr:ljgr aya ws—l,s—l +
+ \e®B 0¥ y WS 38t ,+Ha3872 %
aa [7” vv 6yiaay76
1 _9
x ST (VL) T (530)
Therefore,
L s—1,5—1 p' ~ 0 s,5—2 '
Dau,w TR = Ay 8yaw TR
+)\yaa B/ S 2’8056 9
(5.35)
D B’ws 1,s71uBI — /\1175' ayaws,sf2cvﬁl +
0
—|—A . s 2,5« '
ya 8?6
L s,5—2 u' 9 s—1,5—1 '
Dau’w B2 R = /\yaagﬁ,w DR
0 )
+)\g316 aws+1’s_3aB N
Y (5.36)
Dﬁﬁrws 2su _ )‘yﬁ'a — W™ Ls—laﬁl +
0
_'_/\ . Wi 3,s+1la ,
Dé‘ulw572,saur = )\gﬁl 8ya ws*1’871061 +
6 ’
+ )‘yaa B/ s 3’s+1a6 +
82 1 s—2 S ,+5.8
+ W ;(./\/’7) (N,) jo R (5.37)
L $,8=2pn 9 s—1,5—1la
Duﬁlw B = /\yaww B’ +
0 +1,5—3
+ Ay,@l aya ws s ozB, +
82 1 S /w7 \s—2
+— —(N_) (N_ 5. (5.38
oy b oy—- 3!( )N (5:38)

Substituting the bilinear Jy from (5.1) gives
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’ 8 ’
Délulws—Z,sau — )\gﬁl ayaws—Ls—laﬁ +

6 ’
+ )\ya s73,s+1a6 +

oyb’

2 §—2 /4= s
LP W)
Qy—ady— s!

D DI (cA R A

x O (—y_ g | +cc)|y =0’ (5.39)
DL §,8—=2 p  __ A 9 s—1l,s—1la
w,w B = yaww B’ +
+ )\gﬁl 86aws+1,573a6, +
LR W) W)
Ay=—h' dy=~k' s!
x> (e - o) x
P, ntm=s—p
X C’ﬁmﬁm( —y_, - |x) + cc) |y_:y_:0' (5.40)

To obtain the dynamical spin-s equations with the
current corrections, it remains to project out the terms
that contain w*® 3+ and w13, This is achieved
by contracting the free indices in (5.39) with y®y* and
in (5.40) with %' 45 . The resulting equations describe
the contribution of HS currents in [15] to the right-hand
sides of Fronsdal’s equations in AdSy.

That the currents do not contribute to Eqs. (5.36) is
a manifestation of conformal invariance of the currents,
which, being traceless, cannot contribute to the trace
part of the Fronsdal equations contained in Eq. (5.36).

5.6.2. Half-integer spins

Using decomposition (5.2
obtain from (4.22) that

), for a half-integer s, we

568

DLl Lol gy, gla) =

_aB, Y [s]—2,[s]+1 _
= A" Yoz (,ylz) +
, 0
+ e gy — Wl (g gl +
U3 5a (v, yl)
2 [s]=1 7 \Is]
e 0O
Oy—>0y-~ [s] [s]!
x T E g ), (5.41)
DELHA g, gl) =
= 2™ gz WLy, i) +
ey =21y i) +
agﬁl b
[S] [s]-1
S Ll L
0y-0y-~' [s] [s]!
x JEVEI E g ), (5.42)
where -
Jr=J-.
Hence (omitting the arguments),
J IR C R C N W RN S R E F
QL @ Oéa_[jw @
+ A\ 88 Wbl =1 8" 4
2 N [s]-1 N [s]
+ 9 ( ) ( ) j—i[-SH_L[S]’ (5_43)
dy-~dy-° [s][s]!
DL lsl-Llsle ,, — 9 [s]-2,[s]+ 1
MBIW B = yaww B’ +
— a s|,[s]—1la
+Ay5,ayaw[“] 5, (5.44)

9
DLl My, = A 2l i ze

0
N g aolfl =151
+ Ay 557 TWw g+
0 (W)W )[s] A
5.45
+agﬁ’6g,6 BiE VA , (5.45)
’ 8 ’
L s],[s]— O\ s ,[8]—
Dauw[][] I _/\yﬁ,ay w18 2a6 +
0
+ MWamomwlfImLB A (546
Yo g5 (5.46)
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Substituting the bilinear

T+ = Cy (y—+yr, 5-+51|2) C— (y+—y-, 51—y |2)

and

I =T

from (5.1) gives

DcLyu w[s]il’[s]aﬂl = Ma 856’“)[8]72’[8”1(16’ +
0 , 0?2
A ar [s][s]-1_B
+AYs 8yaw +8y—°‘8y—a x
I [s]-1 ol [s]
@

[s][s]!

X (C’_’ﬁ"“’"(y,, g-|z) x

>

P, n+m=[s]—p
X Cm717+m

|x +
+Cm’p+m (y—,y- |x

X Py =g f0))|, e (54T)
Dl bty = gy, O lsbisima
9 0
-tfsla, O
+/\y°‘6g5’w g+ 5P 057 X
ElVarvd s]—1
§ (./\/_)[](./\/_)H .
[s][s]!
I DI (e (AR B
p, wtm=[s]-p
X Cli+mm(—y_,—gj_|x +
+ T (g5 |)
N GRS B ) | CRD

Projecting out the terms that contain the extra
fields wls!=20s1+1 and WwlI+LII=21 by respectively con-
tracting the free indices with y®y® and 7 7 , we ob-
tain the Fang-Fronsdal field equations [28] in AdSy
with the conformal currents in the right-hand sides.

6. CONCLUSION

In this paper, the unfolded equations for free mass-
less fields of all spins are extended to current interac-
tions. The resulting equations have linear form where
the currents are realized as the rank-two linear fields
discussed in [7]. More precisely, the construction in [7]
deals with conformal currents built from 4d massless
fields. Correspondingly, in this paper, we describe in-
teractions of massless fields with conformal currents.
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We have checked in detail how usual current interac-
tions for lower spins as well as their generalization to
the HS sector are reproduced. Remarkably, the same
system reproduces Yukawa interactions in the sector of
spins zero and half.

More precisely, the set of currents that results from
the construction in [13] is infinitely degenerate, with
most of the currents being exact, describing no charge
conservation. However, the infinite set of currents of a
given spin contains one member that involves a mini-
mal number of derivatives of the constituent fields and
is not exact. In this respect, the set of currents result-
ing from our construction is analogous to that consid-
ered recently in the case of any dimension in [33], which
is also infinitely degenerate (however, our construction
contains HS currents built from fields of different inte-
ger and half-integer spins, while only the HS currents
built from a scalar field were considered in [33]). We
stress that exact currents may also play a nontrivial
role in the interacting theory: the difference is that
nontrivial currents (elements of the current cohomol-
ogy) describe minimal HS interactions, while the exact
currents (also known as improvements) describe non-
minimal HS interactions of the anomalous magnetic
moment type, which may also be important in the full
interacting HS theory.

The analysis in this paper is performed in the
AdSy background. The unfolded machinery makes is
technically as simple as that in the Minkowski case.
This should be compared with other approaches to the
analysis of HS conserved currents in the AdS back-
ground [34-37]. (We note that the case of AdS; was
considered in [38, 39].)

An interesting problem for the future is to see how
the results in this paper are reproduced by the full
nonlinear system of equations of motion that is known
for HS fields both in AdS, [4] and in AdSy [5] (see
also reviews [6,25]). This may help to reach better
understanding of the full nonlinear problem and al-
low interpreting interactions as a linear problem that
involves fields that can be interpreted either as free
fields in higher dimensions or as currents in AdSj.
It should be noted, however, that to proceed along
this direction, it is necessary to extend our results to
the case of non-gauge-invariant HS currents built from
HS gauge connection one-forms rather than from the
gauge-invariant generalized Weyl zero-forms like the
generalized Bell-Robinson tensors in [15]. The com-
plication is that currents of this type, like, e.g., the
stress tensor built from HS gauge fields, are not gauge
invariant, as was pointed out in [40]. In fact, it is this
property that leads to peculiarities of the HS interac-
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tions [41], which require additional interactions with
higher derivatives and a nonzero cosmological constant
to restore the gauge invariance [29]. It would be in-
teresting to see how this works within the approach
presented in this paper.

One of the conclusions of this paper is that within
the unfolded dynamics approach, at least some of the
interactions can be interpreted in terms of free fields
in higher dimensions. The remarkable feature of the
unfolded approach is that it makes it easy to put field
theories in different dimensions on the same footing.
The only source of nonlinearity comes from the real-
ization of higher-dimensional fields as bilinears in the
lower-dimensional ones, as in Eq. (3.15). We note that
from this perspective, the results in this paper are
somewhat reminiscent of the correspondence between
pairs of massless fields in two dimensions and sources
of massless fields in four dimensions observed in [42]. It
would be interesting to reconsider the analysis in [42]
in the framework of the unfolded machinery. Also, it
is interesting to extend our analysis to dynamical sys-
tems in different dimensions. In particular, in accor-
dance with the results in Ref. [11], 3d conformal cur-
rents should be identified with 4d massless fields and 6d
conformal currents should be identified with 10d con-
formal fields.

More generally, it is tempting to further elaborate
the interpretation of the obtained results in the context
of the AdS/CFT correspondence. Moreover, we believe
that the further analysis of HS gauge theories within
the unfolded approach may help to understand the
origin of the remarkable interplay between space—times
of different dimensions suggested by the AdS/CFT
correspondence [1-3] but going beyond the standard
AdS/CFT interpretations of HS theories [43-51]. The
results in this paper indicate that HS theories, which
involve infinite towers of massless fields associated
with infinite-dimensional HS symmetries, suggest
that the usual space—time picture we are used to
work with results from localization of an infinite
dimensional space by virtue of chosen dynamical
systems as discussed in Ref. [11]. We also interpret
the results in this paper as further evidence in favor of
the idea of an infinite chain of dualities that relate the
spaces My with different M, as suggested in Ref. [10].
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cussions. M. V. is grateful for the hospitality at The-
ory Division of CERN, where a considerable part of
this work was done, and acknowledges a partial support
from the Alexander von Humboldt Foundation Grant
PHYS0167. This research was supported in part by

570

the RFBR grant Ne(08-02-00963. The extension of the
original version of the paper by the evaluation of the
symmetry parameters of AdS; currents in Sec. 3.2.2
and the trivial gluings in Appendix D was supported by
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APPENDIX A

Weyl sector gluing operators

In Sec. 4, we introduced the gluing operators, poly-
nomial in the operators . and N4 in (4.2). Here, we
present the details of the derivation.

The following simple properties of an arbitrary
function G (N4, N'3) are used below:

0
;Y

0
N, Q(N’i,Ni)

|- 2

[%,g(/\/i,Ni)] =

(G N2) | = 5 G (Ve V),

0
aJu

G(Ne, Ny,

[}W,gwﬁ,m)]
(A.1)

{Q(Niaﬁﬂ:)agju 8./\/]

0 — 0
W—jg(Ni,Ni)Wa

yE=g+=0

GWNL, N F

g(-/\/’jzvﬁi) kazF

VFE(y™").

0
= y"a—Nk (A-2)

For the future convenience, we introduce a set of func-

yt=y*=0

tions

S (N, Ny) =

<D

m>0

(V)™ (V)"
Ny N+ N_N)™
m!(m+ny +n_ + K)V

(A.3)

which have useful properties

0
ON +

{K +Na——
* a3 =

(355
= (I( - 1)31\’+1n+7n_ + SI\’n-hn_ .

ONLON _
We note that the function "+~ used through out
the paper coincides with §;™+"-. Functions (A.3)
are related to the regular Bessel functions Ii(x) (see,
e.g., [32]) as
Fr"" (N, N
(W)™ (V)™

SKnJr,n,

= N$3K+ln+’n7 ,

3’1\ s = S’I\ nJﬁni )
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ONa } (A4)

= fn++n_+K (N+ N_+N_ ./\/+),
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fe(r) = r=F21,(2r1/2).

The deformed conformal equations are of the form

D + et GEB]

kut/’J

0, (A.5)

yE=g+=0

where B;?W, are bilinear in Oq, 4%, Ohar, PP with
J, k= {+, -}, namely,

—k K
B]' aal =Y a’ajou

Bkj aal = akaaja’a

BY hor = ¥ 00jo
j aa aYja’,
T (A.6)
aad =Y ol al

G, (./\/'i,ﬁi) are some gluing operators, D is the
rank-one twisted covariant derivative (2.10), and the
rank-two current field .J(y*,7*) satisfies the current
equation (3.19). The system of equations (3.19) de-
composes into a set of subsystems associated with dif-
ferent elements of Vsly-modules realized by bilinear op-
erators B, in (A.6).
The consistency condition for Eq. (A.5)

(Hﬁ"agl/’[)" _I_Hl/’ﬁ’glla) { (yozg[)” +6a56’)G§:Biuu’ —
— G;?Bilwl (y+a U gty o §+5r + 8,a5+5/ +

+04ad-g) PI* 5 ) J=0 (A7)

yt=gt=
imposes restrictions on the gluing operators G, ana-
lyzed below. Evidently, Eq. (A.7) decomposes into a
set of subsystems characterized by different eigenval-
ues of the rank-two helicity operator fo in (3.21). We
begin with the simpler Minkowski case, and then show
that the obtained solution also works in AdSy.

A.1. Minkowski case

We first consider “sl, highest element B}“‘m, in
(A.6), which satisfies the relation

]:231?

joal*

[f()v Bfaa’

In this case, the flat limit of Eq. (A.7) gives along
with (A.2),

eua' eaﬁl <8a(§g/quj5j,,l — qujng/ X

X (0_abyps + a+a5_3,)) x

+ —+ _
< J= gt L =0 (A8)
where
N
FJ = G7. A9

571

Hence, by virtue of (A.1), we have
0

— \pi_
o)
~ Ny FIO_ = N-Fidy,0 )i =0, (A.10)

HB <6u/ {2-!—./\/’1(

HPy o d;H (5u’ 0, F — FI x
X (0D + aﬂé_u,)) =0. (A.11)

This gives the following conditions for F* in (A.9):

{2 +NI\’%K}§§: ~N_F* =0,
{2+NK%K}§NL: - Ny F~ =0,
{2} (5 + ) -
~N_F~ =N, F" =0, (A.12)
%F* + %F‘ =0,
> >
<a/v+aaﬁ_ * aN_aam —1)F =0,
> 2
(aN?am * 8N+(98N_ ~1)F" =0,

Elementary straightforward analysis shows that F*
have form (A.9), i.e.,

j

+
= 8_/\/iGi

E ny,n—
anJr,n,Sl + )

ng, n—>0

Gy =-Gf =0

(A.13)

The corresponding deformation, i.e., the second term
in the left-hand side of Eq. (A.5), is

E ng,n_
an+,n_3’1 X

ny, n_>0

kBB

X (y+u5+5’ - yiugfﬁ’)‘] ) (A.14)
yr=y*=0
where a,, ,_ are arbitrary coefficients. We note that
the ambiguity in the coefficients a,_ ,_ isin accordance
with the ambiguity of contributions of different spin
fields to the currents.

For the complex conjugate ﬁma/ satisfying

[an kaaoz’] = _2ﬁpaa’a
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the gluing operators G, are

CHESCEEEDY

G, =-G =0,

where an, n_ are arbitrary coefficients and

is complex conjugate to Fx"+ "~ in (A.3). The corre-
sponding deformation is

X G, 8, , ., (A.16)

i:gi:()
where we use the notation
a’b; = atby —a"b_.

We note that the operators yi;gjgr and gﬁ,ﬁj” in defor-
mations (A.14) and (A.16) are invariant under "sl,.

It is also not difficult to see that deformation (A.5)
with the remaining B® in (A.6) satisfying

[anBa] =0

is trivial, i.e., can be removed by a local field redefini-
tion (in other words, it is D}-exact on solutions of the
current equation).

A.2. AdS

In the AdSy case, the gluing coefficients remain the
same as in the Minkowski case. For example, we con-
sider By of the form y*#9, 3 —y~#9_z found above.
Equation (A.7) then gives

(Huagu’ﬁ' + HH'B’EW) +
o+ {0uBrya F B = Yo F By (0-p sy + 04,0-) +
+ yugu’yaFjgjﬁ’ - yoszgjﬁ’ (y;r Y o+ y;:’ g:’ ) } X

=0. (A.17)

X J i,*ix
W5 L,

We can see that (A.17) holds if F*(Ny, N 1) satisfy
conditions (A.12) and the relation

v {1 - (a%, afu * a% ajav_ ) o35 x

+ 4+ _
TS| L,
d g
_yayugﬁlul{a/\/’,F++—6j\/’+F } X
gt = Al
TS| . =0 (A18)

which holds by virtue of (A.12). Hence, the deforma-
tion of the form (A.14) remains consistent in the AdSy
case as well. The complex conjugate case is analogous.
Analogously to the Minkowski case, it is not diffi-
cult to see that the consistent deformed equations (A.5)
with B obeying
[fo,B"] =0

are trivial (D?-exact) for any current field .J.

APPENDIX B

Spin-s > 2 one-form sector

Since zero-forms contribute to the right-hand sides
of Egs. (2.6), their formal consistency in presence of
deformation (4.1) requires an appropriate deformation
in the one-form sector,

DYy (y, glz) = 7’ Do 05 C (0, F|z) +
+ H*9,05C(y,0]x) +
—a' B —= v _
+H Ga’B’(szvNi) Z(yivyi|x)|y:!:
+ HGos(Ne, N 1) T (y*, 55 2) |

gt

=gt=
yizyi:() (Bl)
for some gluing operators Gos and G5 and current
fields Z and J with V4. and NV defined in (4.2).

Let s > 2. (The case s = 3/2 is special and is
considered in Appendix C.)

Since the "sl, in (3.22) acts on current fields 7 and
7 and hence on the gluing functions, it is convenient
to require that Gos and G/ be highest vectors with
respect to "sly, by setting

Gap = 8,,13,5(;571 (/\/’,,N,),

A —s—1 — (BQ)

Ga’ﬁ’ =8—a’8—B’G (N—vN—)v
where G*~ and G° * are some degree-2(s — 1) homo-
geneous polynomials in A_ and A'_, to match the fact
that the one-forms w are degree-2(s — 1) homogeneous
polynomials in y and 7.
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Taking the form of the "sly highest-weight defor-
mation in the zero-form sector into account, namely,
Eqs. (4.13) and (4.14) with

— _ _ <0
Am,2s—m = Am,2s—m = 6ma0,287

and setting
ap,2s = 2s+1

for definiteness, we can see that the consistency condi-
tion for Eq. (B.1) imposes the following conditions on
the current fields J, J, J, and Z:

_ +
yE=y+=0

pad (Fo/ﬁ’@a,g, W.N.) Z(yi,gji|$)|
+ HQBGQB (N—vﬁ—) j(yiagikc) |yi:gi:0)

(B.3)

yt=y*=0

Substituting (B.2) in (B.3), and using (3.19) and (5.13)
along with the evident identities

G(N,,W,)(a,vap s )j|yi_yi =0,

(-/\/ N )( ’6+ f+)I|y:l::g:l::0507

where f_ and f, are generators of "sly, we obtain

A —s—1 —s—1
Aa_aa_gr( J\/_WG T+G fT+
s—1 s—1 _
A aw—_G J =G j)|yi:yi:0_
1 _
= @m0l X

(B.4)

This equation can be easily solved by the ansatz
as—l _ (W7)2572, GS,1 _ (./\/’7)2872_
As shown in Appendix D, currents of the form

J=-\2s—2)f T, T=-\2s—2)If.Z, (B.5)

which solve (B.4), lead to a trivial deformation in the
zero-form sector and hence to a trivial deformation in
the one-form sector.

The proper strategy is to start with some “seed cur-
rent field” j(l) under the conditions

foduy =20 - )Ty (B.6)

573

with some integer [ in the interval 2 < [ < 25 — 2.
Setting

s—1 _ ]'
G J = G(l) (1 = 7(1 — 1)! X

(./\/’7)!71672 (W7)257l+k
(25— 1+ k)!

-2

k=0

1

2s—1-1) ~
(N_)Zs—l—k—2

(+ k)

—s—1 —s—1
G I=Goy To=

(2s—1-2)

XD

k=0

=)

(f+)* T (B.8)

in Eq. (B.4), we obtain

(N_)QS—Q
(28 2)1(2s—1-1)!
(

AHP' 9,05

(f+)2s_l_1 j(l) -
)
(25 —2)!(1 — 1)

17 )|

solve (B.9). The resulting deformed equations are

D*(y, ylo)—H
82
dy “8 &
x Z

x (f_)*

+ 7

HP

Cly,0lz) =

)l k— 2(N )ZS—l-‘rk
@s — 1+ M0 1)

‘7(l) |yi:gji:0 +
0 0 y
5y g7
(N )l+k (W )28—l—k—2
TR (2s—1=1)

X (f+)kj(l) |yi:gi:0 (B.10)

(25—1-2)

<D

k=0

X



0. A. Gelfond, M. A. Vasiliev

MWKITD, Tom 147, Bhm. 3, 2015

and

D" C(y,jlx) +

A(2s +1) “
(2s—1—1)!

X (f+)2s_l_1 j(l) |y:l::g:l::0 =0,
D" C(y, jlz) + €% 5,205 5 x

A2s+1 =
ﬁ (ff)l ! t7(l)|yi:gi:0 =0,

+ M 310’25%5]'3/

(B.11)

0,2s

where §1”%% is given by (A.3) with ny =0, n_ = 2s.

As shown in Appendix D, the final result is inde-
pendent of the choice of j(,). Namely, up to D%-exact
one-forms and DW-exact zero-forms, the final result
remains the same upon the identification

_ 1 _
T4y = mf+~7(1)~

On the other hand, in the flat limit, this procedure
works properly only for |l —s| < % For this reason, for-
mulas (4.20) and (4.22) were presented for [l —s| < 1/2
with the following identifications of the current fields
Jhs in (4.19):

= (5) for integer s
jO,s (8 — 1)' g s
= (B.12)
T(sx1) .
Jx1,s i+;  for half-integer s.
(s —3)!

We note that for any G(N_, N _) with N_ and N'_
defined in (4.2) and an arbitrary integer m > 0

(ad (0-0d_sGN_ N-) (£)") -
=00 5GIN N )(f) (-9)") %
X Jos| soyig =0 (B.13)

because g_ (3.22) is zero at y* = §= = 0 and [f,, gs] =
= 0 by virtue of (3.21), (3.22) (recall that ad,(y) =
= [z,y]). The complex conjugate formula is analogous.

Since Gop and @aw in (B.2) are highest "sly-vec-
tors, ady® (Gap) and ad)’ (Gurpr) in the zero-form sec-
tor reproduce the current deformations of the dynam-
ical equations, associated with arbitrary gluing coeffi-
cients in (4.3) and (4.4).

As an application of this mechanism, we observe
that Eq. (B.13) implies that the deformation

D (y, gla) — B 8a'86'C(0, g|z) —
— H*9,05C(y,0]z) = (=1)™H* x

s—2 s—k—2 /4= \s+k
% ad;n_ (aoz@BZ (N—) (N—) > %
k=0

(s +k)!

k me’ 8
x (f-) j078|y:l::g:!::0 +(-1)™H X

5s—2 s+k /47 \s—k—2
X ad;n_ (50/56! Z (N—) (N—) > %

= (s + k)!

X (f+)k *70’3|yi:gi:0 (B14)

is consistent for any m > 0. By virtue of (4.21), the
associated deformations in the zero-form sector are

Dt“’C(y,g|x) + A(2s + 1)6“6130’23(1;3'&5]'3, X

X (f+)s_1 (gf)m Jo,s |yi:yi:0 =0,

D™ C(y, glz) + A(2s + 1)e®F T 020,457 51 x
s—1 m
X (f*) (g*) jO,S |yi:gﬂ::0 =0.

Since

g_i = —9+,
the reality conditions require considering the horizontal
algebra sl spanned by

9+ =119+, g- =:1—ig—, go-

Therefore, according to (4.9) and (4.11), the deformed
equations in the zero-form sector can be rewritten as
P A(—=1)™ (28 + 1)!
thC(y,gﬂx) + eaﬁ ( Z) ('3 + ) %
m!

PR s—1
XFMHE Ty (B (f+) Xy ———
(B.15)
B S\ (2 !
D" C(y, ylx) + e’ % 8

p— j 871
X Fm2mY. i o (f_) Jo,s | yegrmg = 0

which gives the general result that all zero-form gluing
operators (4.3) and (4.4) are relevant, which allows us
to conclude that formulas (B.14) contain all possible
nontrivial current deformations of integer-spin fields in
the one-form sector.

The case of half-integer spins is analogous.
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APPENDIX C

Spin-3/2 one-form sector

The case s = 3/2 is special. We seek for solution
of (B.3) in the form

J = j(1)7 7= .7(71)7 j(l) = xi(fl)v (C.1)

where
foTx1y = £ (1)
Setting

—1/2

/2 _ —
G Ga/B/ —_—

220 .0 5N, Bl g N,

and substituting (C.1) in (B.4), we obtain
Aa_ag_gr ( - N_.i(,l) + ./\/’_f+\i(71) +

+ N-Toy =N f-T) )|y —gio =
0Dy (NI -N_T}

yE=g*+=0
As a result, the expressions

J= AT+ A f+ Ty, T = A -y+A f-Ta) (CA)

solve Eq. (C.3) and the deformed equation is

DY (y, glz) = B 8095 C(0, glz) +
+ H*9,05C(y,0]x) +
+ H*39_o,0_sN _ x
X ‘7(1) |yi:yi:0 +

+ B 00 b g N_T | (C.5)

yE=g*=0"

This result coincides with (4.22) at s 3/2 under
the convention that all terms containing Z,::lo( ..)or

Z,lg:Q(. ..) are zero.

APPENDIX D

D.1. Trivial gluings

Here, we identify a class of currents that upon sub-
stitution in Eqs. (4.1) do not lead to a nontrivial defor-
mation of the massless field equations, being removable
by a local field redefinition. Also, deformation (4.20)
in the one-form sector is shown to be insensitive to a
particular choice of the seed current field j(l) in (B.6).

575

D.2. Trivial gluings in the zero-form sector

Using the relations
./\/+87a - ./\/76+a = y76+78,a - y76,78+a =
= yvaanrﬁa*B = Yo 6+56*B

and taking properties (A.4) of Fx"+ "= (N1, 1) into
account, for any Minkowski current field J¢;, we obtain

th nyn— g
s150 1] e oo

— _euﬁ Fy - (y+u 5+6’_y_# 5*6’)f*fl‘]fl

k)
yt=y*=0

where
fopi==04,0"
(see (3.28)). Analogously, for any AdS current field J,

yt=y*=0

X (y+u Ot — Y ou 5*6’) f-J

AletngnJr,n, J _euﬁ'glrur,n, %

(D.1)

)
yE=g*+=0

where
fo==04,07 + 5 g

(see (3.21)).
Therefore, the equation

D“"C(y,mx) +6“6131n+’n— %

X (Y u0rp —y~u0-p) f-T =0

yE=y*=0

(D.2)

follows from a local field redefinition of the twisted
equation

D™ (C(y, glw) — A7 Fo"+ " x

J(y*, 7+ =0.
TSI L

(D.3)

The same is true in the flat limit. Complex conjugate
formulas are analogous.

D.3. Trivial gluings in the one-form sector

We let Ag;(J(;)) denote the deformation term in the
right-hand side of (B.10) and show that the deforma-
tion

Dooy(y. gle) T —& B0.51) -
Yy 7 577057 C 07
5_ 0
- WC(y,OIx) =
=Ag 41 (f+j(l)) —(2s—1-1)Ay, (j(l)) , (D4)
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where j(l) with [ > 2 satisfies Eq. (B.6), is trivial. We
consider

QO =2"1e"9_,0_p5 x

2 l=k—2 25—I+k
W) )
ngl (25 — 1+ k)!(1)!

Straightforwardly, we can show that

(f)" " T

D) — As’[+1 (f+k7(l)) = —(QS—I—I)AS’[ (kﬁ([)) +
./\—/;_ 25—2
% () x
(25 = 2)!1(1)!
X ti(l)|yj::gj::0‘ (D5)
Proceeding as in Appendix B, we can see that the cor-

responding deformation in the zero-form sector is pro-
portional to

+H 0 _0d_p

S0 S (f) Ty | e —ge o (D.6)
Since | > 1, Eq. (D.6) can be rewritten as
§00’2sf72-7\(;|yi:?§:{::0 (D.7)

for some current field % By virtue of Eq. (D.1), this
implies that zero-form deformation (D.6) is trivial, re-
sulting from a local field redefinition. It remains to
observe that the one-form deformation is indeed trivial
by virtue of (D.5).
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