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We study the classical dynamics of a completion of pure AdSs gravity, whose only degrees of freedom are
boundary gravitons and long strings. We argue that the best regime for describing pure gravity is that of
“heavy” strings, for which back-reaction effects on the metric must be taken into account. We show that once
back-reaction is properly accounted for, regular finite-energy states are produced by heavy strings even in the
infinite-tension limit. Such a process is similar to, but different from, nucleation of space out of a “bubble of

nothing”.
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1. INTRODUCTION AND SUMMARY

This paper is dedicated to Valery Rubakov on the
occasion of his 60th birthday. Valery has been a pio-
neer and a master in understanding the role of nonper-
turbative solutions of field equations in quantum field
theory. This paper is devoted to a particular case of
soliton dynamics. Although limited in scope, we be-
lieve that it contains some results worth reporting. We
hope that its readers will consider it also a worthy trib-
ute to Valery’s work.

Pure gravity in three dimensions does not propagate
local degrees of freedom, as a simple counting argument
shows: six of the 12 Hamiltonian degrees of freedom of
the 3D graviton g,, are removed by gauge invariances
and the remaining ones are removed by 343 constraints
that follow from Einstein’s equations. Hence, 3D grav-
ity does not propagate gravitational waves. In the pres-
ence of a negative cosmological constant, pure gravity
still exhibits a nontrivial dynamics, because there exist
boundary gravitons [1] and black hole solutions [2]. The
Einstein—Hilbert action of pure gravity with a negative
cosmological constant —1/1% is

_ 1 3 2
Seg = 1671'G/d T/ g(R+l2).

Boundary gravitons exist because the asymptotic
metric of 3D anti de Sitter space (AdS) is preserved by

(1)
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a set of diffeomorphisms that act nontrivially on the
boundary. Specifically, the condition of being asymp-
totically AdSs; means that the metric has the form [1]

g = —12 /1> + O(1), gig = O(1),

Gtr = O(’I‘iS), Grr = l2/"°2 + O(T‘74),
gro = O(r_g)v Jop = 1“2 + O(]-)

These boundary conditions are preserved by diffeomor-
phisms with the asymptotic form

¢ =) + 9] +
08 ) + 02 g + 00,

¢ = 1) = o)) -
@ £+ @) - B2 gl )] + 00,
& = {0, f(@h) +0-g™ )] + 06 )

(2)

(3)

The allowed diffeomorphisms are parameterized by two
arbitrary functions f(z) and g(x7), each depending
on only one of the two boundary light-cone coordinates
(x* =t/l+ ¢). The time t and the angular coordinate
¢ ~ ¢+ 21 parameterize the AdS; boundary, while r
is its radial coordinate. The boundary is at r = oo and
204 =10/0t £0/0¢.

The classical Poisson brackets associated with
asymptotic diffecomorphisms (3) define two Virasoro al-
gebras with the same central charge ¢ = 3[/2G [1];
therefore, after quantization, the Hilbert space of any
quantum gravity with the same asymptotics (whether
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pure or with matter) must fall into unitary represen-
tations of the Virasoro algebras. This purely kinemat-
ical fact has a deep consequence if we further assume
that quantum gravity on AdSs is dual to a 2D confor-
mal field theory (CFT) [3]. Modular invariance of the
CFT, discreteness of the spectrum, and the existence
of an SI(2,C)-invariant state with conformal weights
A = A = 0 then imply that the asymptotic density of
states at levels (A, A) is [4]

d(A,A) = e’ =exp <27r\/m+ 271'\/05/6) . (4)

Rotating black-hole solutions for pure 3D AdS gra-
vity (2) do exist [2]. Their metric depends on two pa-
rameters: the mass M and the angular momentum .J.
The metric is [2]

ds® = —N2dt? + N72dr? + r2(N%dt + do)?,

2 16G2.J2 4 (5)
N = —gam+ = 4 JC T  e _ 4GT
2 2 72
After the identification
c Ml+J - c Ml—-J
A — = A —_— =
+ 24 2 7 + 24 2 7

Cardy formula (4) matches the Bekenstein-Hawking
formula for the entropy of rotating black holes [5]

S = SBH = 27T’I‘h/4G,
rn = WAGM + 4G/MZ = J2JE.

The result in Ref. [5] is general. In particular, it
does not depend on the matter content of the AdSs
bulk theory. Amusingly, pure gravity seems to defy
general formulas (4) and (6). Indeed, as noticed in [6],
the asymptotic dynamics of Eq. (1) is described by a
Liouville action. Upon quantization, the Liouville the-
ory becomes an unusual conformal field theory because
of two features. The first is that its spectrum does
not include an SI(2,C) invariant state. Instead, physi-
cal states obey the “Seiberg bound” A, A > (¢ —1)/24
[7]. The second is that physical states are only plane-
wave normalizable, because the spectrum of the Liou-
ville theory is continuous. These properties are well
established in consistent quantizations of Liouville the-
ory at ¢ > 1[8§].

The reduction of pure gravity to a boundary Liou-
ville theory is most easily proven by writing Einstein—
Hilbert action (1) in terms of two Si(2,R) Chern—
Simons theories [9]

(6)

Sewr = Scsk[A] = Scsi[A], k=1/4G. (7
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With t* denoting the three SI(2, R) generators in the
fundamental representation, the Chern—Simons action
is

k 2
ScsklA] = ETr / <A/\dA+ gA/\A/\A) +
M

+ boundary terms. (8)
The gauge potentials A and A are related to the
dreibein e® and spin connection w® by

a A =A% (9)

ea
-7
Some of the equations of motion derived from (7) are
constraints. In the gauge A_ = A, = 0, when the
3D space is topologically the product of a 2D disc D
and the real line R, they imply that A, = U 'dU and
A = V14V, with U (V) being an SI(2, R)-valued
function of r,z™ (r,z~). With the solution of the
constraints substituted in the Chern—Simons action,
the bulk terms disappear and the action reduces to
a boundary term. This term is the 2D chiral Wess—
Zumino action [10, 11]. Further constraints, following
from the requirement that A and A give an asymptoti-
cally AdS metric, reduce the Wess—Zumino action to a
Liouville action [6].

An attentive reader should have noticed an unwar-
ranted assumption here. We assumed that the 3D
space was topologically global AdSs to arrive at a Li-
ouville action. In the presence of black holes, i. e., hori-
zons, or of time-like singularities associated with point-
like particles in the bulk, the action at the r 00
boundary must be supplemented with other terms at
the inner boundary/horizon. A possible interpreta-
tion of these terms is that they describe the states
of the AdS3 quantum gravity, more precisely, the pri-
mary states in each irreducible representation (irrep) of
the Virasoro x Virasoro algebra acting on the Hilbert
space of quantum AdSs; gravity!). The role of the
boundary Liouville theory would then be simply to de-
scribe the Virasoro descendants in each irrep (cf. [12]).
In this interpretation, other information is needed to
determine the spectrum of primary operators.

One hint that pure gravity could nevertheless have
the same spectrum of primaries as the Liouville the-
ory comes from canonical quantization of pure gravity.

DThe “constrain first” Hamiltonian formalism was used in [11]
to study the effect of point-like insertions and nontrivial topology
for compact-group Chern—Simons theories.
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Already in the 1990s, it was shown that the wave func-
tions obtained by quantizing the SI(2, R) Chern-Si-
mons theory are Virasoro conformal blocks [13]. Two
S1(2, R) Chern—Simons actions are combined into the
action of pure gravity, and hence the Hilbert space
of pure gravity must be (a subspace of) the product
of each Chern—Simons Hilbert space. In a forthcom-
ing publication, we will argue that the pure-gravity
Hilbert space is the target space of conformal field theo-
ries with continuous spectrum and obeying the Seiberg
bound [14] (cf. [15]). Assuming from now on that this
result holds, we conclude that pure gravity in AdSs
should contain states that can reach the boundary at a
finite cost in energy, since states confined to the inte-
rior of the AdS space have a discrete spectrum. Then
one natural question to ask is: what are those states?

The mass of such states must be large in AdS units:
MI > 1, otherwise gravity could not be called “pure”
in any sense. The states cannot be massive particles,
which cannot reach the AdS boundary. Indeed, there is
only one natural candidate for such states: they must
be long strings. These states have already been invoked
as a possible solution to certain problems of the parti-
tion function of Euclidean pure gravity in [16].

The rest of this paper is devoted to studying the
effect of long strings in AdS3 gravity. Section 2 sum-
marizes known features of long strings in the probe ap-
proximation, which holds when back-reaction on the
metric and quantum string dynamics effect can both
be neglected. This happens when the string tension T'
is in the range [ 2 < T < G171, Section 3 describes
the case of “light” strings, which were studied in detail
in [17]: T <172, Tt is a regime where back-reaction can
be neglected, but quantum effects cannot. This is an
interesting case, but far from pure gravity, as we will ar-
gue using some results in Ref. [17]. Section 4 studies the
“heavy” string case, T' > G~'~!, when back-reaction
cannot, be neglected. We argue that this regime is best
suited to describe a pure gravity theory containing BTZ
black holes and no states below the Seiberg bound. We
further show that in order to recover the mass gap pre-
dicted by the Seiberg bound, the string tension must be
Planckian, T = O(G~?) > G~'[~'. This is the limit
T — oo, which is nonsingular thanks to back-reaction
effects. Finite-mass BTZ states arise via a process sim-
ilar to nucleation of the universe out of a “bubble of
nothing”?.

2) Differently from the quantum nucleation case, the process
under consideration here is a classical one, in which the initial
state contains a long string approaching the boundary in the re-
mote past. This is good, because up-tunnelling from a bubble of
nothing [18] is forbidden in the AdS space [19].

11 ZKSBT®, Beim. 3

2. LONG STRINGS IN THE PROBE
APPROXIMATION

If short-string dynamics and back-reaction are neg-
ligible, as it happens when the string tension is in the
intermediate range [72 < T < G~'I7!, the effects of
long strings can be described in the probe approxima-
tion. The long string probe is located at the radial po-
sition r = R(¢) and its classical action is made of two
terms [20]. One is proportional to the area spanned by
the string world-sheet ¥, and the other is proportional
to the volume enclosed by the world-sheet:

q

S =TA®) - %

V(%). (10)
The second term requires coupling the string to an an-
tisymmetric two-form. The world-sheet action of the
string thus acquires a term

S:...+q/dX“/\dX”BW. (11)
b))

The two-form B is analogous to the Kalb—Ramond form
of fundamental strings. It has the gauge invariance
B — B + dA and its bulk action is

Sp=-1/12 / HAxH, H =dB. (12)

AdSs

This action does not propagate any degree of freedom
in three dimensions. Hence, the bulk theory in the
presence of the form B is still pure gravity, but with
a cosmological constant that depends on the value of
the field strength H. The field strength is quantized in
units of ¢, the two-form charge of the string [21, 22].

The asymptotic value of string action (10) is best
written in terms of a redefined radial coordinate ¢,
the induced world-sheet metric h, and the world-sheet
scalar curvature R [20] as

S:Tﬂ/d% h %

D
(1-q)e**  (99)> ¢R R 5,
x[ 1t Tt 4+O(e ), (13)
r/l =e? +e PpRI* + Oe 2%). (14)

To reach the boundary with finite energy, we must set
g=1. At ¢ =1, Eq. (13) becomes the Liouville action.
Its central charge is c;, = 1+ 127T12. Quantum effects
can be neglected in the semiclassical regime for the Li-
ouville theory, that is, when ¢; > 1, and hence when
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T > 172, Crossing the brane, the cosmological con-
stant changes and so does the central charge ¢ = 31/2G.
If we call [; the AdS radius outside the brane and [_
the radius inside, the central-charge change is

3. 3

2G 2G

Ac = cp ~ 127TI% (15)
Back-reaction effect can be neglected when Ac/c < 1,
and hence when T < G~'~'. This inequality on the
other hand implies that the energy gap between the
vacuum and the long-string states, given by the Seiberg
bound with ¢ = ¢y, is

c—1

12 7

cr, —

1
= 7TI?
T

FE =

Therefore, the theory contains states with energy well
below the BTZ black hole threshold. It is therefore
doubtful whether we can call gravity plus strings in
the regime [ 2 < T < G~ “pure”.

The most obvious method for increasing the gap is
to make T > G~'/~! and take full account of the back-
reaction. This is done in Sec. 4. In the next section,
we examine a more exotic possibility. Namely, we study
the dynamics of light strings with the tension T < [~2.
Although a theory with strings of tension smaller than
the AdS scale contain a large number of light states,
maybe it could still bear resemblance to pure gravity
if these states decouple in the limit as the string cou-
pling constant goes to zero. In next section, we use the
results in [17] to argue against this possibility.

3. LIGHT STRINGS AND THE ABSENCE OF
BTZ STATES

Strings in AdS; with background NS forms can be
studied to all orders in o' =12 = 1/27T. In particular,
exact expressions for the generators of the target-space
Virasoro algebras can be found [23]. The low-tension
region s 2 [ may seem quite the opposite of pure grav-
ity, since it contains an abundance of light degrees of
freedom. One exotic possibility is to decouple all the
unwanted states by sending the string coupling con-
stant gs to zero. Because g2 = G/l [23], decoupling
means that we are sending [y — oo while keeping G and
[ finite with [/G > 1. The last condition guarantees
that the AdS space is still macroscopic and concepts
such as a black hole, metric, and so on are meaningful.
The first condition may decouple stringy excitations,
leaving only BTZ states.

To check if decoupling is actually possible, we must
parameterize our theory in terms of quantities that re-
mains valid beyond the point-particle limit. Therefore,
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instead of the ratio I/l we should use the level k of the
S1(2, R) world-sheet current algebra and use the target-
space central charge ¢ instead of [/G. In the semiclas-
sical, point-particle limit, k = [2/I? and ¢ = 31/2G.

It was argued in [17] that a sharp phase transition
occurs at k = 1. For k > 1, the asymptotic density of
states at high energy is dominated by BTZ black holes
and the target-space theory has an SI(2, R) x SI(2, R)
invariant vacuum. For k < 1, neither the vacuum
nor the BTZ black hole states are normalizable. The
asymptotic density of states is dominated by weakly
coupled long strings. The first property agrees with
expectations from canonical quantization of pure grav-
ity and its similarities with the Liouville theory. The
second property seems to contradict the fact that BTZ
black holes are the only primary states in pure gravity.
Nevertheless, it could be that at & < 1, weakly coupled
long strings are just BTZ states in disguise.

The last possibility seems unlikely and in any case
a better argument exists against the decoupling limit.
The problem arises because in a conformal field the-
ory where the lowest conformal weight of a physical
primary operator is not A = 0, but some A,, > 0,
the effective central charge appearing in Cardy’s for-
mula (4) is cegf = ¢ — 24A,, [4]. The Seiberg bound
A > (¢—1)/24 then tells us that in “Liouville-like” pure
gravity, cepr = 1.

On the other hand, it was found in [17] that the
effective target-space central charge for the long string

gas is?)
Ceff =
| 697%(2—1/k) for type-II superstings, (16)
| 6g72(4—1/k) for bosonic strings.
Setting c.¢r = 1, we have
- 1/2+ O(g?) for type-II superstings, (17)
| 1/4+0(g?) for bosonic strings.

On the other hand, the target-space central charge
is [17]

.

Hence, in both cases g; — 0 implies ¢ — oo, while we
want to keep ¢ > 1 but finite.

695k
6952 (k + 2)

for type-II superstings,
o (18)
for bosonic strings.

3) Type-II and heterotic superstings were studied in [17]. For-
mulas for the bosonic string are the same as those for the right-
moving sector of the heterotic string.
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If we had tried to keep ¢ finite in the limit g5 — 0,
we would have also run into a contradiction because
ce £ would have become either negative or larger than c.
Both these possibilities are forbidden in unitary CFTs.

4. HEAVY LONG STRINGS

In the regime 7' > G~'17', the metric is deformed
by the back-reaction of the string. The process that
can lead to formation of massive point-like particles or
a BTZ black hole is the collapse of a long string ar-
bitrarily close to the boundary of AdS; in the remote
past. This is what we examine at the classical level
in this section. The collapse of shells of matter with
various equations of state was considered in [24].

We first consider the collapse of a shell of matter
with rotational symmetry (which is a closed string in
two space dimensions) arriving from a radial position
arbitrarily close to the boundary of an asymptotically
AdS space in the remote past. Inside the shell, the met-
ric is pure AdSs and outside is that of a nonrotating
BTZ black hole. The metrics inside and outside a shell
with a world-sheet ¥ are

r2 r2 -1
ds® = — <1+17_> dt2_+(1+l7_> dr? +de*

2
ds’ = — <—8GM + %) . + (19)
+

P2\
+ <—8GM + ﬁ) dry + do7 .
Here, the subscript — is used for variables defined in-
side the shell and + for those outside it. If the string
has no angular motion, we can define the “proper time”

by moving on the world-sheet at a fixed ¢ and param-
eterize ¥ as

ds3 = —dr® + (R(7))? d¢?, (20)

where R(7) is the radius of the string.

The discontinuity of the extrinsic curvature Kf]c-
across the shell is related to the stress—energy tensor
of the string S;; on ¥ by the so-called Israel boundary
conditions; precisely,

Vi —i; = 8nGSyj, 7;7 = K,»f — gy K= (21)

It is convenient to study the string dynamics using
a comoving frame, spanned by the proper time and
(1/R)94. In such a frame, S;; = diag(T, —T'), and the
discontinuity in 'yij;f, which we call 75, is

1 d
VTT:_E(B+_B—)7 700:E(5+_B—)' (22)
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Here,

B = /2 —8GM. + R2/I3,

R(r) is the position of the string, and M_ = —1/8G.

Although we can easily solve the single equation ob-
tained from (21) and (22) exactly, examining its asymp-
totic behavior is sufficient for our purpose:

. R2 . R2
87GTR = \/Rz—l—l-l-lT—\/Rz—SGM—}—lT =
+

(L 1yp L 220 _
- <1_ l+>R+2R [ +8GML )+ R ~11)] +

+O(R™?). (23)

The leading-order term tells us that the string ten-
sion should be

8nGT = 1. i (24)
- s
If the tension differs from this value, the string either
cannot reach the boundary or reaches it with infinite
radial speed. Equation (24) is the generalization to
heavy strings of the condition ¢ = 1 in Sec. 2. We call
a T obeying Eq. (24) the critical tension and the string
with such tension, a critical string.

For a critical string to exist, we must have [, > 1[_,
since T is positive. Then the subleading-order term in
asymptotic behavior (23) gives us an interesting bound
on the mass of the collapsing string:

1

M>-—
SGM 2 — e,

(25)

We can understand this mass bound better by ex-
pressing it in AdS units. At this point, we have two
length scales, [+ and [_, both of which can be used to
convert energies into dimensionless quantities. The ra-
dius of the asymptotically AdS metric outside the shell
is [y, and therefore, if we want to relate bulk energies
to CFT weights, we have to use [ as our unit of lenght.

To compare with CFT and with Sec. 2, it is conve-
nient to redefine the AdS; energy as E' = E + 1/8G.
The vacuum energy then vanishes, all masses are posi-
tive, and the mass bound becomes

M,l+ > l+ 87TGTl+ _ Ct 87TGTI+

e e, e bk SN
8G 1+8rGTl, 12 1+ 8rGTl, (26)

The mass bound approaches zero as we send 8GT'l
to zero, and therefore the tensionless limit cannot be
related to the boundary Liouville theory obtained in
Sec. 2.

11*



J. Kim, M. Porrati

MKITD, Tom 147, Bom. 3, 2015

If 8GM'ly > 1, on the other hand, we have a finite
mass gap

4

My 2 —
+N127

(27)
where ¢, = 3l1/2G. This agrees with the Seiberg
bound in a theory with a large central charge ¢ > 1,
which is needed for classical geometry to make sense.

If we insist that this mass bound be equal to the
Seiberg bound, we find 87GT1; = ¢4 —1. This implies
that the tension is of the order of unity in Planck units:
TG? ~ 1.

We also have [_ ~ G from critical tension condition
(24). Therefore, we are considering a process where a
long string with large tension is nucleated at the bound-
ary from an AdSs with the Planckian curvature. Al-
though similar to the nucleation of an AdS “bubble of
nothing” [18,19], the process is different. It is not a
quantum transition but a classical process: the collapse
of a long string located at the boundary at past infin-
ity. It is only thanks to the back-reaction effects that
the two “infinities” involved in the process, 1/I_ ~ 1/G
and T ~ 1/G?, cancel to give a finite result.

Therefore, for TG? ~ 1, long strings can produce
the right mass spectrum, consisting only of BTZ black
holes. Moreover, the large tension ensures that no un-
wanted low-energy states are added to “pure” gravity.

We argued that long strings could account for BTZ
black holes, but our attention was limited to nonrotat-
ing ones. We want to conclude this section with some
comment on the rotating BTZ case. Inspired by the
preceding consideration, we are tempted to use long
strings to explain rotating BTZ black holes through
the collapse of a shell formed by a rotating long string.
We next show that this is impossible, as long as the
world-sheet stress energy tensor S;; is diagonal. The
simplest case to analyze is the rotating BTZ black hole
with a string rotating at a constant angular velocity
and a fixed radius R. This case suffices to show the
general problem that one encounters even in a more
general setting.

We suppose that inside the shell, we have pure AdSs
as before, but the outside metric is

dsi = —N2dt3_+N72d7‘_2,_+7‘_2,_(N¢dt++d¢+)2a
2 16022 4 28
]W:_MM+%+6%J7JWZ %( (28)
il ri i

We note that ds? is diagonal, while ds? is not. To com-
pute v;;, however, the induced metrics on the world-
sheet ¥ must be the same, i.e., (ds? )|z = (ds1)]s.
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One way to accomplish this is to use the coordinate
system spanned by

(e7)r = (£_,0,0),
(e+)‘l' = (t.JrvOaQ;Jr)a

where R is the radius of the string and & denotes the
derivative of x with respect to the proper time 7.

This means that outside the world-sheet, we use
a rotating frame with a constant angular velocity
w = ¢ /t;, which, in general, may be different, from
that of the string. Both bases given in Eq. (29) are
orthonormal if

(e7)o = (0,0,1/R),
(e")o = (0,0,1/R),

. 1 . 1 4
t_=~—, t+—~—, W = G2J (30)
B- B+ R
Here,
~ R?2  16G2J3
By = \/—SGMi + E TR
with M_ = —1/8G, J_ =0, and J; = J. In these co-

ordinate systems, we find that the extrinsic curvatures
are

d - 4G J+
Kt =— Kt =_——=
R O
1 -~
Ki=——p..
X99 Rﬂﬂ:
We note that these equations give 7,9 = —4G.J/R>.

Since the origin of this term is the angular momentum
of the BTZ black hole, we cannot make it vanish by
giving radial dynamics to the string. As long as we
consider a physical configuration with angular symme-
try, radial dynamics and rotations are the only motions
we can introduce at the classical level. This suggests,
therefore, that we have to relax the string equation of
state p = —p = T to explain rotating BTZ states. In
fact, when the equation of state is p = —p, the string
stress—energy tensor S]’: is diagonal in any coordinate
frame, whether rotating or not.

One way to set p # —p is by exciting degrees of
freedom on the string. One such degree of freedom,
the radial coordinate R, is always present, but others
may exist, as they do in fundamental strings.

One amusing agreement between long strings with
the equation of state p = —p and the Liouville theory is
that the latter contains only primaries with equal left
and right conformal weights A = A [8]. Since BTZ
states must be primaries of the would-be CFT dual,
such equality implies the vanishing of the BTZ angular
momentum.

At this point, the relation between long strings
and rotating black holes is still unclear. It is possible
that we would need a completely different description
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for states giving rise to rotating black holes by grav-
itational collapse. However, nothing so far seems to
forbid excited strings to produce rotating BTZ black
holes. In any case, production of BTZ black holes by
long-string collapse already showed intriguing features
and it is well worth more study.
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