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We implement a UV regularization of the bosonic string by truncating its mode expansion and keeping the
regularized theory “as diffeomorphism invariant as possible”. We compute the regularized determinant of the 2d
Laplacian for the closed string winding around a compact dimension, obtaining the effective action in this way.
The minimization of the effective action reliably determines the energy of the string ground state for a long
string and/or for a large number of space-time dimensions. We discuss the possibility of a scaling limit when

the cutoff is taken to infinity.
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1. INTRODUCTION

A modern formulation of string theory is based on
the Polyakov path integral [1], where the worldsheet
metric gqop(w) and the target-space position XH(w),
w = 1,...,d, of the string worldsheet are treated as
independent variables. Thanks to the diffeomorphism
invariance, the metric can be diagonalized, g,;, = €9d4p,
by choosing the conformal gauge. The remaining path
integration over the so-called Liouville field ¢ decouples
on the mass shell for the bosonic string in d = 26, the
critical dimension. Due to this decoupling, the results
in d = 26 reproduce those obtained in the early 1970s
using the operator formalism. For d # 26, the path
integral over ¢ has to be taken into account and plays
an important role for the consistency of the theory.

The path integral over the target-space string coor-
dinates (and ghosts) is Gaussian and results in a de-
terminant of the 2d Laplace—Beltrami operator with
proper boundary conditions imposed. For an open
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string with fixed ends, these are Dirichlet boundary
conditions, for which the determinant was computed
in [2,3]. The result is given by the conformal anomaly
and determines the effective action for the Liouville
field p. The path integral over ¢ can be consistently
treated [4] order by order in the inverse string length
and/or in the limit of a large number of space—time di-
mensions d, where the WKB expansion around the sad-
dle points applies. Of special interest in this approach
is the ground-state energy as a function of the string
length R, which is given by the well-known Alvarez—
Arvis spectrum [5, 6]. Tt reveals a tachyonic singularity
at distances R < Ry, with —1/R2 being the tachyon
mass squared. For larger distances, this quantity is
well-behaved.

The conformal factor does not appear in the classi-
cal string. However, as was pointed out by Polyakov [1],
the computation of 2d determinants requires a UV cut-
off like A%,/g in the parameter space!). This follows
from the diffeomorphism invariance and results in the
conformal anomaly, which decouples in the effective ac-
tion as A — oco. The dependence of the cutoff on the

1) We recall that /g = e¥ in the conformal gauge.
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metric is of crucial importance for the consideration in
this paper.

The emergence of a tachyonic excitation of the
string is seen clearly in the zeta-function regularization,
where the sum over oscillators (the stringy modes) is
computed as

1

1o (1)

Y n=¢(-1)=

This negative value is the result of an analytic contin-
uation from positive values of the argument of the zeta
function, for which the sum is convergent. Of course,
the sum of positive numbers in Eq. (1) is infinite and
the negative value emerges after the subtraction of an
infinity as was illustrated in detail by one of the first
calculations [7]. In this paper, we investigate how the
sums over the stringy modes (like in Eq. (1)) can be
consistently regularized, maximally preserving the dif-
feomorphism invariance.

One regularization of this kind is the so-called dy-
namical triangulation (DT) [8], where the intrinsic ge-
ometry of the parameter space (defined by the metric
Jap(w)) is approximated by a set of equilateral trian-
gles of side a. The summation over triangulations is
done independently of the integration over the target-
space coordinates associated, for instance, with the ver-
tices of the triangles. In this sense, DT discretizes the
Polyakov string. DT provides the conceptual founda-
tion for matrix-model solutions of the so-called non-cri-
tical string theory. However, for the real bosonic string
theory with d > 2, DT also provides an interesting
result. In DT, the renormalized mass excitations and
the renormalized string tension are by definition non-
negative and it was shown in [9] that if we keep the
lowest mass excitation finite as the cutoff a — 0, the
string tension scales to infinity. With this otherwise
very successful regularization, it thus seems impossible
to obtain a bosonic string with a finite tachyonic mass
and a finite string tension.

In this paper, we want to make contact with the DT
result mentioned using a standard continuum regular-
ization of the bosonic string, namely, truncating the
string mode expansion. We consider a closed string
winding once around a compact dimension of length R
and propagating a (Euclidean) time T'. We generically
consider a string whose length is larger than the inverse
tachyon mass (if present for the regularized string). We
therefore expect a stable ground state and compute its
mass as a function of the string length R. This deter-
mines the string tension as the energy per a unit length
and should provide us with information about the mass

537

of the lowest state (usually, the tachyon) from the be-
havior of the energy at small R. We then search for a
scaling regime, where the two quantities may or may
not remain finite in the limit of an infinite cutoff.

In Secs. 2 and 3, we introduce the string regulariza-
tion by a truncation of the mode expansion and com-
pute the regularized determinant of the 2d Laplacian
for a wr X wg rectangle in the parameter space. We use
the Dirichlet boundary condition along the T-axis and
periodic boundary conditions along the R-axis. This
gives an effective action of the regularized string. We
demonstrate how the Liischer term emerges using this
regularization. In Sec. 4, we argue that the reparame-
terization invariance favors No = NgT'/R for the num-
bers of modes Ny and Npg along the respective T- and
R-axes.

The effective action computed this way depends on
the ratio wp/wg. There are two cases where this pa-
rameter can be reliably determined by minimizing the
effective action: small a’/R? and large d. They are
considered in Secs. 5 and 6. In Sec. 5, we first recall
the situation in the classical limit and then analyze the
one-loop (semiclassical) correction that determines the
renormalization of the string tension. In Sec. 6, we
derive the equation which minimizes the effective ac-
tion at large d. The minimized effective action contains
terms of all orders in a'/R?, and we find the effective
action in both the large-R and the small-R limit. We
show that, at a finite cutoff, the tachyonic singularity
is present for positive values of the bare string tension
Ky, but is absent for a range of negative values of Kj.
We find that there exists a critical (negative) value K,
such that if the bare string tension Ky approaches K,
from above, it is possible to have a renormalized string
tension K that stays finite as the cutoff A — oo, but
in this case the lowest mass excitation does not scale
but goes to infinity. However, there also exists a value
K., K, < K. <0, such that if Ky approaches K, from
below, the lowest mass can be kept finite for the cutoff
A — 00, but in this case the “renormalized” string ten-
sion goes to infinity as A%2. This situation seems very
similar to what is observed using DT as a regulariza-
tion.

2. REGULARIZED STRING MODE
EXPANSION

We consider a closed string winding one time
around a compact dimension of length R. We impose
Dirichlet boundary condition along the T-axis and peri-
odic boundary condition along the R-axis. We consider
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an wr X wg rectangle in the parameter space mapped
onto a T' X R rectangle in the target space with 0 and
R identified along the R-axis.

The one-loop effective action can be computed as
the determinant of the 2d Laplacian in the conformal
gauge with the above boundary conditions imposed on
the wr X wg rectangle. The Laplacian is

Lo 2
=5 (0r +93), (2)

where p = RT /wrwr, and we have

where we want to think about @ = 7/A as a UV lattice-
like cutoff similar to the lattice cutoff @ in DT. For large
wr > wg, we replace the sum over m by the integral
over the “momentum” = = 7mm/wy:

trlog(—Aa?) = T
WRWTAQ

xZ/dxlog{ z? + (271'11)2 T 2}. (4)

To regularize this divergent expression, we integrate
over x from 0 to X, where the upper limit of the inte-
gration is introduced to provide a UV cutoff, which cuts
off mode numbers m larger than Xwr /7. In Sec. 4, we
relate it to the A introduced above. To perform the
integral, we use the relation

/

drlog(z® 4+ y°) = X [log(X? +y*) — 2] +

+ 2y arctan 57 (5)
Y
where y = 2mn/wgr. As X — oo, in the right-hand side,
we recover the term |y| familiar from the zeta-function
regularization.
The remaining sum over n can be evaluated by us-
ing Plana’s summation formula

L0+ 3 )Z/dwf(w)+

L1t = =it

e2nt _ 1 ’

+z'/oo (6)

0
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which holds whenever f(z) is analytic for Re z > 0.
The first term in the right-hand side of Eq. (6) re-
sults in the integral

X v
/dm/dylogm +9?) =
o v

Y X
= (3X?4Y?) arctan }+(X2+3Y2) arctan v +

+2XY [log(X2 +Y2) —3] — g(X2 +Y2). (7)

Here, Y is a UV mode sum cutoff along the wg axis in
the same way as X was along the wr axis.

3. LUSCHER TERM FROM THE MODE
EXPANSION

The second integral in the right-hand side of Eq. (6)
is convergent and therefore does not depend on the cut-
off Y. Substituting

X xsy>0 7w

yarctan — ——— 5Y (8)
and using
o 1
/dteZﬂ't 1~ 24’ (9)
0
we finally obtain
trlog(—Aa?) = OJ;:;R {(?)X2 +Y?) x
Y X
x arctan — + (X% + 3Y?) arctan v+
2
2XY |log (X2 +V2)“RTL ) 3| -
#2XY flog (2 47928
T Twr
- (X?+Y?)p——. (10
5+ =250 (10)

The last term in the right-hand side is nothing but the
Liischer term. It comes from the second term in the
right-hand side of Eq. (6), that is, from the difference
between the sum and the integral in the first term in
the right-hand side of Eq. (6). The rest of the terms
in (10) comes from the integral. This demonstrates how
the Liischer term emerges when we use truncation of
the mode expansion as our regularization.

4. THE CHOICE OF THE CUTOFF

Equation (10) above is derived when the mode ex-
pansion is truncated at the number of modes Ny =
= wrX/mand Ng = wrY/w, as one would do in a box.
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However, the box is here a “parameter spacetime box”,
and it becomes important to choose X and Y such that
the reparameterization invariance be preserved as much
as possible. Using the zeta-function regularization, we
find that the ground-state energy of a given choice of
wr and wg only depends on the ratio wr/wg.

In our case, the relation between X, Y, and the
cutoff A should be derived taking the boundary met-
ric T'/wr along the T-axis and R/wpg along the R-axis
into account. Following Polyakov’s idea [1] to choose
the cutoff for the chosen parameterization as A /g, we
arrive at

x=La v=Li (1)

It follows from these relations that the one-loop effec-
tive action depend only on the ratio wy/wg, like for
the zeta-function regularization.

The DT regularization also favors relation (11). Us-
ing the DT regularization, we attach a random lat-
tice with the lattice spacing a at the boundary of the
physical domain, i.e., the boundary with the length
T and R. Hence, physical wavelengths smaller than
a should not actually be allowed in the determinant
calculation. When we calculate the determinant, we
have dz = 7/ky, kym = mn/wp. Hence, dx = wr/m.
However, we have to scale the coordinate z to a phy-
sical @pp, = (T'/wr) x. Thus, dx,, > a results in n <
< Nr=T/a,i.e, X = (T/wr) A, A = 7/a. Similarly
Y =(R/wr)AorY = (Rwr/Twr) X.

5. SEMICLASSICAL EXPANSION IN o’

Because o' o I, the semiclassical WKB expansion,
which is an expansion in £, also becomes an expansion
in a'. Since o' has the dimension of length?, the actual
expansion parameter is a//R%. Accordingly, the bare
string tension is

1

Ko = (12)

IR

A renormalization of K already occurs at the order 7.
The lowest mass appears only at higher orders.

5.1. Classical limit

By minimizing the quadratic action

(

we obtain T'/wr = R/wg classically. This implies that
we can choose

R2

+ WRWT,
w

Ko
2

T2

2
wrp

Sy = — (13)
R
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wr = T, WRr = R. (14)
A possible constant factor between wp, wg and T, R
does not affect the renormalized constants calculated
below. Classically, we therefore have X =Y = A,
but as we see below, this is not true when we include

quantum corrections.

5.2. Order h

If we use Eq. (14) in formula (10), we obtain the
one-loop effective action

Sy =

d—2
RTA? |log(27?) + g - 3] -

2
m(d—-2) T

———=—. (15

e 7 (15

In principle, we have to use generic corrections of the
order o' to Eq. (14) when substituting wy and wg into

classical action (13). Therefore, we write

ai

=R+ —.
WR + R

wr =T, (16)
However, this additional term cancels when substituted
in Eq. (13), and is important only at the next order,
where a; is determined by the minimization of the ac-
tion.

Adding (13) and (15), we obtain the finite result

m(d-2)T

So+ S = KRT — 6 R

(17)

if we use the additive renormalization of the string ten-
sion

K=K,-K,, (18)

where (following the lattice and DT terminology), we
set

d—2,, ™ N
52 A [3— B —log(2m )],

K, = (19)
which is the critical value of the string tension for the
given regularization. The physical, renormalized string
tension K is then obtained when the bare string tension
Ky approaches K, from above.

6. MINIMIZING THE ENERGY AT LARGE d

In the preceding section, the minimization should
be performed order by order in the semiclassical expan-
sion, i. e., the small o’ or large Ko expansion. However,
there exists another expansion, the large-d expansion
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[5], where the path integral is expanded around a sad-
dle point and where an infinite set of o’ corrections is
included even to the leading order.
Substituting (11) in Eq. (10) with a = 7 /A, we ob-
tain
Ky

- R2
S’0+5’1:—(wR+—>T+
2 WR

dAzT WR R 2
+—27r2 {R [log<<7+ﬁ>ﬂ' ) —3] +

1 R2 WR 1 R2
+ = | wp+3— arctanwai 3wp+— ) X

2 WR WR
R R? dT
X arctan — — T WR + — _ e (20)
WR 4 WR 6wR

for wpr = T > R. A saddle point is reached when wg
satisfies the equation

o dm dA?
(w%—R2)B0+?+W X

X (w% - 3R2) arctan %‘Q + (Bwﬁ - R2) X

R =,, 5
tan — — — — =0. (21
X arc aan 5 (wp — R )] 0. (21)
The usual Alverez—Arvis behavior
- _ 5 wd
E = IXowR, WR = R 3[(0 (22)

is reproduced from Eqs. (20) and (21) for A = 0.

6.1. Large R

Equation (21) can be solved in the limit of long
strings (i.e., large R), leading to

wr=R— d ! -
BT 6R[Ko + dA2(r — 2)/47]
2d? 1

 T2R3 [Ko + dAN2(m — 2) /4?2
33 [Ko + dA?(3m — 4) /127
_ 1 [Ko + dN(r — 4)/ f] O(RT) (23)
432 [Ko + dA2(m — 2)/472]" R®

and

E(R) = { o+ B [1og(27r2) + g - 3] } R-

272
_md _ w*d _
6R  T2[Ko+ dA*(m — 2)/47%|R?
w3 d?

 432[Ko + dA2(m — 2)/47?2R5
LA 5K A% (15m—28) /1272
i d[5Ko+dA*(15m—28)/ 471'] O (R). (24)
10368 [Ko+dA?(r—2) /472" R

In both expansions, we keep the terms that show a de-
viation from the expansion of the standard square-root
expression (22).

It is seen from Eq. (24) that we cannot simul-
taneously renormalize all orders of the 1/R expan-
sion. If the string tension is renormalized according
to Eqs. (18) and (19)?), the dimensional coefficients at
the next orders (that are related to the mass of the
lowest state) remain A-dependent. This shows some si-
milarity to DT, except that insisting on the mass renor-
malization there leads to a string tension that cannot
be renormalized (it becomes infinite as the cutoff is re-
moved).

6.2. Small R

For small R (short strings), Eq. (21) can also be
analyzed.

For A = 0 (the zeta-function regularization), the ex-
act solution (22) shows the appearance of the tachyon,
namely, when wg ceases to be real for

wd
R < ‘/ﬁ' (25)

If we simply set R = 0 in Eq. (21), the coefficient in
front of A? would vanish and the situation would be
like that for the zeta-function regularization.

However, for the distances R ~ 1/A and for
|Ko| ~ A%, we have R\/|Ky|/d ~ 1, and hence all terms
in Eq. (21) are of the order of unity and therefore re-
main important for such small R. Nevertheless, the
equation can be numerically solved for both positive
and negative values of K.

In Fig. 1, we plot the solution for wg versus R ob-
tained in the units of 1/A for Ky = dA? by using Math-
ematica. The solution looks similar to that in Fig. 1
for other positive values Ko ~ dAZ2.

We see from Fig. 1 that the solution looks quali-
tatively similar to that in Eq. (22). The solution no
longer exists for small values of R ~ 1/A, as already
mentioned. We may assume that this is associated with
a tachyon of the mass ~ A.

For negative values of Ky, the situation is different.
We see from expansion (23) that it no longer applies
for K near the critical value

B dA?(m — 2)

K. =
472

= —0.0289169dA2. (26)

2) The string tension is the same as at one loop because the
large- R limit is always semiclassical, because the expansion is in
o /R2.
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Fig.1. Plot of the solution of Eq. (21): wg versus R Fig. 3i.n t:I:tu::ift:hoef slo/lxtlf(;r: 22 ict‘i.vc(az;g: :RKversus R
in the units of 1/A for positive Ko & 0 ¢
wr : : : : as is prescribed by the exact formula for the solution
150 - of Eq. (21) at R = 0. This branch emerges whenever
K is negative. For the old branch, which corresponds
to expansion (23), the tachyonic instability at R ~ 1/A
exists as it does for positive values of K. However, this
100 instability goes to infinity (in the units of 1/A) as K
i ’ approaches critical value (26) from above. This may
imply that the tachyon mass scales as Ky — K. + 0.
This old branch disappears for Ky < K, given by
Eq. (26). The solution exists for all R > 0. At large R,
50 L i it is given by expansion (23), but now wgr > R instead
of wgp < R, as it was for Ky > K.. The dependence of
the solution of Eq. (21) for wr on R is plotted in Fig. 3
for Ky near
dA%[3 — /2 — log(2n>
O CL 1 1 [ IX’* = [ 7T/2 2 Og( T )] =
T
0 50 100 150 .
R = —0.0786963dA?, (28)

Fig.2. Plot of the solution of Eq. (21): wgr versus R
in the units of 1/A for negative Ky > K.

The solution for wr versus R is plotted in Fig. 2 in the
units of 1/A for Ky = —0.028dA2. Tt looks similar for
other negative Ky > K,. It can be seen from the figure
that a new branch emerges that starts from

| md
WR = 3[(07

(27)
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the value for which the right-hand side of Eq. (18) van-
ishes. Figure 3 is drawn quantitatively for Ko = K,.
This is the value for which K remains finite as A — oo,
as is discussed below. The solution for wg in terms of A
looks similar to that in Fig. 3 for other negative values
Ky < K.

We see from the figure that the solution always ex-
ists, while wgp ~ 1/A for R = 0, as is prescribed by
the exact formula (27) for the solution of Eq. (21) at
R = 0. We may assume that this situation corresponds
to the case where there is no tachyon in the spectrum,
like for DT.
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If Ky approaches K. from below, Ky — K.—0, then
the lowest mass is apparently not tachyonic and scales.
In this limit, the “renormalized” string tension (18) is
a positive constant times A2, since K, < K., and does
not scale. It goes to infinity as A — oo in complete
analogy with the situation for DT in [9]: no tachyon
and no scaling of the string tension.

7. CONCLUSION

We have shown that the regularization of the
bosonic string by truncating the mode expansion is
feasible and that the spectrum of the regularized string
depends on the regularization procedure. In our case
Np = NpT/R, which maximally preserves the diffeo-
morphism invariance, the results seem to be somewhat
similar to DT for a certain range of the negative bare
string tension: the absence of the tachyon and no
scaling behavior of the string tension, which remains
~ A%, There exists a (negative) critical value of the
bare string tension, for which the mass of the lowest ex-
citation scales as A — oo, but the renormalized string
tension does not. For a certain negative value of the
bare string tension, there exists only a simple scaling
limit as A — oo, coinciding with the semiclassical spec-
trum.

We benefited many times from useful discussions
with Valery Rubakov, in particular, on the subject of
this paper.

J. A. recalls: T first met Valery when he visited
the Niels Bohr Institute for a couple of month in 1984
together with Vadim Kuzmin. We had a wonderful
collaboration resulting in an article about hypothetical
techni-baryons as nontopological solitons in a techni-
color theory. But the most delightful memories from
this collaboration are not about physics but about the
discussions we had about life and society. We were of-
ten working at late night in the basement of the Niels
Bohr Institute (we were doing some numerical work and
that was where the computer terminals were in these
old days). Some time after the midnight, Vadim would
come down to us and say: “time to stop working, young
guys”, and he would bring three glasses and a bottle of
vodka, and we would discuss all kind of topics, some of
them quite surprizing for Valery. He understood soon
that he had been somewhat mis-informed about how a
society like the Danish one was structured. In partic-
ular, T remember a long discussion we had about the
Danish health care system. Valery continued asking
and asking and in the end he said: “I see, I understand

now that it can be organized that way, and be equally
good for both the poor and the rich” (which is perhaps
not entirely true ...). The openness with which he re-
ceived the new information and the way he corrected
his view after critically judging on whether the infor-
mation was reliable impressed me immensely. If only
people in general could judge new cultures the way he
did we would live in a better world.

Y. M. recalls: T intersected once with Valery at Fer-
milab in 1989, where he was giving an honorable col-
loquium (a week after the one given by Steven Hawk-
ing). Before his colloquium, we played volleyball with
other members of the Theory Department, including
the head, Bill Bardeen. At some point, Bill said to
Valery that he should probably go now to a special
lunch with some important people in connection with
his colloquium. “No”, replied Valery, “I have canceled
it because of the volleyball game”. Our team led by
Bill finally lost to the team led by Valery. Bill then
formulated: “Whatever Valery does, he does it well”.

Our best wishes for the jubilee!
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