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EXPLORING THE SPECTRUM OF REGULARIZED BOSONICSTRING THEORYJ. Ambjørn a;b*, Y. Makeenko a;
**aThe Niels Bohr Institute, Copenhagen UniversityDK-2100, Copenhagen, DenmarkbIMAPP, Radboud University6525, AJ, Nijmegen, The Netherlands
Institute of Theoreti
al and Experimental Physi
s117218, Mos
ow, RussiaRe
eived O
tober 20, 2014We implement a UV regularization of the bosoni
 string by trun
ating its mode expansion and keeping theregularized theory �as di�eomorphism invariant as possible�. We 
ompute the regularized determinant of the 2dLapla
ian for the 
losed string winding around a 
ompa
t dimension, obtaining the e�e
tive a
tion in this way.The minimization of the e�e
tive a
tion reliably determines the energy of the string ground state for a longstring and/or for a large number of spa
e�time dimensions. We dis
uss the possibility of a s
aling limit whenthe 
uto� is taken to in�nity.Contribution for the JETP spe
ial issue in honor of V. A. Rubakov's 60th birthdayDOI: 10.7868/S00444510150301551. INTRODUCTIONA modern formulation of string theory is based onthe Polyakov path integral [1℄, where the worldsheetmetri
 gab(!) and the target-spa
e position X�(!),� = 1; : : : ; d, of the string worldsheet are treated asindependent variables. Thanks to the di�eomorphisminvarian
e, the metri
 
an be diagonalized, gab = e'Æab,by 
hoosing the 
onformal gauge. The remaining pathintegration over the so-
alled Liouville �eld ' de
oupleson the mass shell for the bosoni
 string in d = 26, the
riti
al dimension. Due to this de
oupling, the resultsin d = 26 reprodu
e those obtained in the early 1970susing the operator formalism. For d 6= 26, the pathintegral over ' has to be taken into a

ount and playsan important role for the 
onsisten
y of the theory.The path integral over the target-spa
e string 
oor-dinates (and ghosts) is Gaussian and results in a de-terminant of the 2d Lapla
e�Beltrami operator withproper boundary 
onditions imposed. For an open*E-mail: ambjorn�nbi.dk**E-mail: makeenko�nbi.dk

string with �xed ends, these are Diri
hlet boundary
onditions, for whi
h the determinant was 
omputedin [2; 3℄. The result is given by the 
onformal anomalyand determines the e�e
tive a
tion for the Liouville�eld '. The path integral over ' 
an be 
onsistentlytreated [4℄ order by order in the inverse string lengthand/or in the limit of a large number of spa
e�time di-mensions d, where the WKB expansion around the sad-dle points applies. Of spe
ial interest in this approa
his the ground-state energy as a fun
tion of the stringlength R, whi
h is given by the well-known Alvarez�Arvis spe
trum [5, 6℄. It reveals a ta
hyoni
 singularityat distan
es R � R0, with �1=R20 being the ta
hyonmass squared. For larger distan
es, this quantity iswell-behaved.The 
onformal fa
tor does not appear in the 
lassi-
al string. However, as was pointed out by Polyakov [1℄,the 
omputation of 2d determinants requires a UV 
ut-o� like �2pg in the parameter spa
e1). This followsfrom the di�eomorphism invarian
e and results in the
onformal anomaly, whi
h de
ouples in the e�e
tive a
-tion as � ! 1. The dependen
e of the 
uto� on the1) We re
all that pg = e' in the 
onformal gauge.536
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trum of regularized bosoni
 string theorymetri
 is of 
ru
ial importan
e for the 
onsideration inthis paper.The emergen
e of a ta
hyoni
 ex
itation of thestring is seen 
learly in the zeta-fun
tion regularization,where the sum over os
illators (the stringy modes) is
omputed as 1Xn=1n = �(�1) = � 112 : (1)This negative value is the result of an analyti
 
ontin-uation from positive values of the argument of the zetafun
tion, for whi
h the sum is 
onvergent. Of 
ourse,the sum of positive numbers in Eq. (1) is in�nite andthe negative value emerges after the subtra
tion of anin�nity as was illustrated in detail by one of the �rst
al
ulations [7℄. In this paper, we investigate how thesums over the stringy modes (like in Eq. (1)) 
an be
onsistently regularized, maximally preserving the dif-feomorphism invarian
e.One regularization of this kind is the so-
alled dy-nami
al triangulation (DT) [8℄, where the intrinsi
 ge-ometry of the parameter spa
e (de�ned by the metri
gab(!)) is approximated by a set of equilateral trian-gles of side a. The summation over triangulations isdone independently of the integration over the target-spa
e 
oordinates asso
iated, for instan
e, with the ver-ti
es of the triangles. In this sense, DT dis
retizes thePolyakov string. DT provides the 
on
eptual founda-tion for matrix-model solutions of the so-
alled non-
ri-ti
al string theory. However, for the real bosoni
 stringtheory with d � 2, DT also provides an interestingresult. In DT, the renormalized mass ex
itations andthe renormalized string tension are by de�nition non-negative and it was shown in [9℄ that if we keep thelowest mass ex
itation �nite as the 
uto� a ! 0, thestring tension s
ales to in�nity. With this otherwisevery su

essful regularization, it thus seems impossibleto obtain a bosoni
 string with a �nite ta
hyoni
 massand a �nite string tension.In this paper, we want to make 
onta
t with the DTresult mentioned using a standard 
ontinuum regular-ization of the bosoni
 string, namely, trun
ating thestring mode expansion. We 
onsider a 
losed stringwinding on
e around a 
ompa
t dimension of length Rand propagating a (Eu
lidean) time T . We generi
ally
onsider a string whose length is larger than the inverseta
hyon mass (if present for the regularized string). Wetherefore expe
t a stable ground state and 
ompute itsmass as a fun
tion of the string length R. This deter-mines the string tension as the energy per a unit lengthand should provide us with information about the mass

of the lowest state (usually, the ta
hyon) from the be-havior of the energy at small R. We then sear
h for as
aling regime, where the two quantities may or maynot remain �nite in the limit of an in�nite 
uto�.In Se
s. 2 and 3, we introdu
e the string regulariza-tion by a trun
ation of the mode expansion and 
om-pute the regularized determinant of the 2d Lapla
ianfor a !T �!R re
tangle in the parameter spa
e. We usethe Diri
hlet boundary 
ondition along the T -axis andperiodi
 boundary 
onditions along the R-axis. Thisgives an e�e
tive a
tion of the regularized string. Wedemonstrate how the Lüs
her term emerges using thisregularization. In Se
. 4, we argue that the reparame-terization invarian
e favors NT = NRT=R for the num-bers of modes NT and NR along the respe
tive T - andR-axes.The e�e
tive a
tion 
omputed this way depends onthe ratio !T =!R. There are two 
ases where this pa-rameter 
an be reliably determined by minimizing thee�e
tive a
tion: small �0=R2 and large d. They are
onsidered in Se
s. 5 and 6. In Se
. 5, we �rst re
allthe situation in the 
lassi
al limit and then analyze theone-loop (semi
lassi
al) 
orre
tion that determines therenormalization of the string tension. In Se
. 6, wederive the equation whi
h minimizes the e�e
tive a
-tion at large d. The minimized e�e
tive a
tion 
ontainsterms of all orders in �0=R2, and we �nd the e�e
tivea
tion in both the large-R and the small-R limit. Weshow that, at a �nite 
uto�, the ta
hyoni
 singularityis present for positive values of the bare string tensionK0, but is absent for a range of negative values of K0.We �nd that there exists a 
riti
al (negative) value K�su
h that if the bare string tension K0 approa
hes K�from above, it is possible to have a renormalized stringtension K that stays �nite as the 
uto� � ! 1, butin this 
ase the lowest mass ex
itation does not s
alebut goes to in�nity. However, there also exists a valueK
, K� < K
 < 0, su
h that if K0 approa
hes K
 frombelow, the lowest mass 
an be kept �nite for the 
uto��!1, but in this 
ase the �renormalized� string ten-sion goes to in�nity as �2. This situation seems verysimilar to what is observed using DT as a regulariza-tion. 2. REGULARIZED STRING MODEEXPANSIONWe 
onsider a 
losed string winding one timearound a 
ompa
t dimension of length R. We imposeDiri
hlet boundary 
ondition along the T -axis and peri-odi
 boundary 
ondition along the R-axis. We 
onsider537
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tangle in the parameter spa
e mappedonto a T � R re
tangle in the target spa
e with 0 andR identi�ed along the R-axis.The one-loop e�e
tive a
tion 
an be 
omputed asthe determinant of the 2d Lapla
ian in the 
onformalgauge with the above boundary 
onditions imposed onthe !T � !R re
tangle. The Lapla
ian is� = 1� ��21 + �22� ; (2)where � = RT=!R!T , and we havetr log(��a2) = 1Xm=1 1Xn=�1 log("��m!T �2 ++ �2�n!R �2# !R!Ta2RT ) ; (3)where we want to think about a = �=� as a UV latti
e-like 
uto� similar to the latti
e 
uto� a in DT. For large!T � !R, we repla
e the sum over m by the integralover the �momentum� x = �m=!T :tr log(��a2) = !T� ��Xn Z dx log("x2 +�2�n!R �2# !R!Ta2RT ) : (4)To regularize this divergent expression, we integrateover x from 0 to X , where the upper limit of the inte-gration is introdu
ed to provide a UV 
uto�, whi
h 
utso� mode numbers m larger than X!T=�. In Se
. 4, werelate it to the � introdu
ed above. To perform theintegral, we use the relationXZ0 dx log(x2 + y2) = X �log(X2 + y2)� 2�++ 2y ar
tan Xy ; (5)where y = 2�n=!R. As X !1, in the right-hand side,we re
over the term �jyj familiar from the zeta-fun
tionregularization.The remaining sum over n 
an be evaluated by us-ing Plana's summation formula12f(0) + 1Xn=1 f(n) = 1Z0 d! f(!) ++ i 1Z0 dtf(it)� f(�it)e2�t � 1 ; (6)

whi
h holds whenever f(z) is analyti
 for Re z � 0.The �rst term in the right-hand side of Eq. (6) re-sults in the integralXZ0 dx YZ�Y dy log(x2 + y2) == (3X2+Y 2) ar
tan YX+(X2+3Y 2) ar
tan XY ++ 2XY �log(X2 + Y 2)� 3�� �2 (X2 + Y 2): (7)Here, Y is a UV mode sum 
uto� along the !R axis inthe same way as X was along the !T axis.3. LÜSCHER TERM FROM THE MODEEXPANSIONThe se
ond integral in the right-hand side of Eq. (6)is 
onvergent and therefore does not depend on the 
ut-o� Y . Substitutingy ar
tan Xy X�y>0�����! �2 y (8)and using 1Z0 dt te2�t � 1 = 124 ; (9)we �nally obtaintr log(��a2) = !T!R2�2 n(3X2 + Y 2) �� ar
tan YX + (X2 + 3Y 2) ar
tan XY ++ 2XY �log�(X2 + Y 2)!R!Ta2RT �� 3��� �2 (X2 + Y 2)o� �!T3!R : (10)The last term in the right-hand side is nothing but theLüs
her term. It 
omes from the se
ond term in theright-hand side of Eq. (6), that is, from the di�eren
ebetween the sum and the integral in the �rst term inthe right-hand side of Eq. (6). The rest of the termsin (10) 
omes from the integral. This demonstrates howthe Lüs
her term emerges when we use trun
ation ofthe mode expansion as our regularization.4. THE CHOICE OF THE CUTOFFEquation (10) above is derived when the mode ex-pansion is trun
ated at the number of modes NT == !TX=� and NR = !RY=�, as one would do in a box.538
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trum of regularized bosoni
 string theoryHowever, the box is here a �parameter spa
etime box�,and it be
omes important to 
hoose X and Y su
h thatthe reparameterization invarian
e be preserved as mu
has possible. Using the zeta-fun
tion regularization, we�nd that the ground-state energy of a given 
hoi
e of!T and !R only depends on the ratio !T =!R.In our 
ase, the relation between X , Y , and the
uto� � should be derived taking the boundary met-ri
 T=!T along the T -axis and R=!R along the R-axisinto a

ount. Following Polyakov's idea [1℄ to 
hoosethe 
uto� for the 
hosen parameterization as � 4pg, wearrive at X = T!T �; Y = R!R�: (11)It follows from these relations that the one-loop e�e
-tive a
tion depend only on the ratio !T =!R, like forthe zeta-fun
tion regularization.The DT regularization also favors relation (11). Us-ing the DT regularization, we atta
h a random lat-ti
e with the latti
e spa
ing a at the boundary of thephysi
al domain, i. e., the boundary with the lengthT and R. Hen
e, physi
al wavelengths smaller thana should not a
tually be allowed in the determinant
al
ulation. When we 
al
ulate the determinant, wehave Æx = �=km, km = m�=!T . Hen
e, Æx = !T =m.However, we have to s
ale the 
oordinate x to a phy-si
al xph = (T=!T )x. Thus, Æxph > a results in n << NT = T=a, i. e., X = (T=!T ) �, � = �=a. SimilarlyY = (R=!R) � or Y = (R!T =T!R) X .5. SEMICLASSICAL EXPANSION IN �0Be
ause �0 / ~, the semi
lassi
al WKB expansion,whi
h is an expansion in ~, also be
omes an expansionin �0. Sin
e �0 has the dimension of length2, the a
tualexpansion parameter is �0=R2. A

ordingly, the barestring tension is K0 = 12��0 : (12)A renormalization of K already o

urs at the order ~.The lowest mass appears only at higher orders.5.1. Classi
al limitBy minimizing the quadrati
 a
tionS0 = K02 �T 2!2T + R2!2R�!R!T ; (13)we obtain T=!T = R=!R 
lassi
ally. This implies thatwe 
an 
hoose

!T = T; !R = R: (14)A possible 
onstant fa
tor between !T , !R and T , Rdoes not a�e
t the renormalized 
onstants 
al
ulatedbelow. Classi
ally, we therefore have X = Y = �,but as we see below, this is not true when we in
ludequantum 
orre
tions.5.2. Order ~~~If we use Eq. (14) in formula (10), we obtain theone-loop e�e
tive a
tionS1 = d� 22�2 RT�2 hlog(2�2) + �2 � 3i�� �(d� 2)6 TR: (15)In prin
iple, we have to use generi
 
orre
tions of theorder �0 to Eq. (14) when substituting !T and !R into
lassi
al a
tion (13). Therefore, we write!T = T; !R = R+ a1K0R: (16)However, this additional term 
an
els when substitutedin Eq. (13), and is important only at the next order,where a1 is determined by the minimization of the a
-tion.Adding (13) and (15), we obtain the �nite resultS0 + S1 = KRT � �(d� 2)6 TR; (17)if we use the additive renormalization of the string ten-sion K = K0 �K�; (18)where (following the latti
e and DT terminology), weset K� = d� 22�2 �2 h3� �2 � log(2�2)i ; (19)whi
h is the 
riti
al value of the string tension for thegiven regularization. The physi
al, renormalized stringtensionK is then obtained when the bare string tensionK0 approa
hes K� from above.6. MINIMIZING THE ENERGY AT LARGE dIn the pre
eding se
tion, the minimization shouldbe performed order by order in the semi
lassi
al expan-sion, i. e., the small �0 or largeK0 expansion. However,there exists another expansion, the large-d expansion539



J. Ambjørn, Y. Makeenko ÆÝÒÔ, òîì 147, âûï. 3, 2015[5℄, where the path integral is expanded around a sad-dle point and where an in�nite set of �0 
orre
tions isin
luded even to the leading order.Substituting (11) in Eq. (10) with a = �=�, we ob-tainS0 + S1 = K02 �!R + R2!R�T ++ d�2T2�2 �R �log��!RR + R!R��2�� 3� ++ 12 �!R+3R2!R� ar
tan !RR +12 �3!R+R2!R��� ar
tan R!R � �4 �!R + R2!R��� �dT6!R (20)for !T = T � R. A saddle point is rea
hed when !Rsatis�es the equation�!2R �R2�K0 + d�3 + d�22�2 �� � �!2R � 3R2� ar
tan !RR + �3!2R �R2� �� ar
tan R!R � �2 �!2R �R2�� = 0: (21)The usual Alverez�Arvis behaviorE = K0!R; !R =rR2 � �d3K0 (22)is reprodu
ed from Eqs. (20) and (21) for � = 0.6.1. Large REquation (21) 
an be solved in the limit of longstrings (i. e., large R), leading to!R = R� �d6R 1[K0 + d�2(� � 2)=4�2℄ �� �2d272R3 1[K0 + d�2(� � 2)=4�2℄2 �� �3d3 �K0 + d�2(3� � 4)=12�2�432 [K0 + d�2(� � 2)=4�2℄4R5 +O �R�7� (23)andE(R) = �K0 + d�22�2 hlog(2�2) + �2 � 3i�R�� �d6R � �2d272[K0 + d�2(� � 2)=4�2℄R3 �� �3d3432[K0 + d�2(� � 2)=4�2℄2R5 ���4d4[5K0+d�2(15��28)=12�2℄10368 [K0+d�2(��2)=4�2℄4 R7+O �R�9� : (24)

In both expansions, we keep the terms that show a de-viation from the expansion of the standard square-rootexpression (22).It is seen from Eq. (24) that we 
annot simul-taneously renormalize all orders of the 1=R expan-sion. If the string tension is renormalized a

ordingto Eqs. (18) and (19)2), the dimensional 
oe�
ients atthe next orders (that are related to the mass of thelowest state) remain �-dependent. This shows some si-milarity to DT, ex
ept that insisting on the mass renor-malization there leads to a string tension that 
annotbe renormalized (it be
omes in�nite as the 
uto� is re-moved). 6.2. Small RFor small R (short strings), Eq. (21) 
an also beanalyzed.For � = 0 (the zeta-fun
tion regularization), the ex-a
t solution (22) shows the appearan
e of the ta
hyon,namely, when !R 
eases to be real forR <r �d3K : (25)If we simply set R = 0 in Eq. (21), the 
oe�
ient infront of �2 would vanish and the situation would belike that for the zeta-fun
tion regularization.However, for the distan
es R � 1=� and forjK0j � �2, we have RpjK0j=d � 1, and hen
e all termsin Eq. (21) are of the order of unity and therefore re-main important for su
h small R. Nevertheless, theequation 
an be numeri
ally solved for both positiveand negative values of K0.In Fig. 1, we plot the solution for !R versus R ob-tained in the units of 1=� for K0 = d�2 by using Math-emati
a. The solution looks similar to that in Fig. 1for other positive values K0 � d�2.We see from Fig. 1 that the solution looks quali-tatively similar to that in Eq. (22). The solution nolonger exists for small values of R � 1=�, as alreadymentioned. We may assume that this is asso
iated witha ta
hyon of the mass � �.For negative values of K0, the situation is di�erent.We see from expansion (23) that it no longer appliesfor K0 near the 
riti
al valueK
 = �d�2(� � 2)4�2 = �0:0289169d�2: (26)2) The string tension is the same as at one loop be
ause thelarge-R limit is always semi
lassi
al, be
ause the expansion is in�0=R2.540
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Fig. 1. Plot of the solution of Eq. (21): !R versus Rin the units of 1=� for positive K0
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Fig. 2. Plot of the solution of Eq. (21): !R versus Rin the units of 1=� for negative K0 > K
The solution for !R versus R is plotted in Fig. 2 in theunits of 1=� for K0 = �0:028d�2. It looks similar forother negative K0 > K
. It 
an be seen from the �gurethat a new bran
h emerges that starts from!R =r� �d3K0 ; (27)

0 5 10 15 20

R

0

5

10

15

20

ωR

Fig. 3. Plot of the solution of Eq. (21): !R versus Rin the units of 1=� for negative K0 < K
as is pres
ribed by the exa
t formula for the solutionof Eq. (21) at R = 0. This bran
h emerges wheneverK0 is negative. For the old bran
h, whi
h 
orrespondsto expansion (23), the ta
hyoni
 instability at R � 1=�exists as it does for positive values ofK0. However, thisinstability goes to in�nity (in the units of 1=�) as K0approa
hes 
riti
al value (26) from above. This mayimply that the ta
hyon mass s
ales as K0 ! K
 + 0.This old bran
h disappears for K0 < K
, given byEq. (26). The solution exists for all R � 0. At large R,it is given by expansion (23), but now !R > R insteadof !R < R, as it was for K0 > K
. The dependen
e ofthe solution of Eq. (21) for !R on R is plotted in Fig. 3for K0 nearK� = d�2[3� �=2� log(2�2)℄2�2 == �0:0786963d�2; (28)the value for whi
h the right-hand side of Eq. (18) van-ishes. Figure 3 is drawn quantitatively for K0 = K�.This is the value for whi
h K remains �nite as �!1,as is dis
ussed below. The solution for !R in terms of �looks similar to that in Fig. 3 for other negative valuesK0 < K
.We see from the �gure that the solution always ex-ists, while !R � 1=� for R = 0, as is pres
ribed bythe exa
t formula (27) for the solution of Eq. (21) atR = 0. We may assume that this situation 
orrespondsto the 
ase where there is no ta
hyon in the spe
trum,like for DT.541
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hesK
 from below,K0 ! K
�0, thenthe lowest mass is apparently not ta
hyoni
 and s
ales.In this limit, the �renormalized� string tension (18) isa positive 
onstant times �2, sin
e K� < K
, and doesnot s
ale. It goes to in�nity as � ! 1 in 
ompleteanalogy with the situation for DT in [9℄: no ta
hyonand no s
aling of the string tension.7. CONCLUSIONWe have shown that the regularization of thebosoni
 string by trun
ating the mode expansion isfeasible and that the spe
trum of the regularized stringdepends on the regularization pro
edure. In our 
aseNT = NRT=R, whi
h maximally preserves the di�eo-morphism invarian
e, the results seem to be somewhatsimilar to DT for a 
ertain range of the negative barestring tension: the absen
e of the ta
hyon and nos
aling behavior of the string tension, whi
h remains� �2. There exists a (negative) 
riti
al value of thebare string tension, for whi
h the mass of the lowest ex-
itation s
ales as � ! 1, but the renormalized stringtension does not. For a 
ertain negative value of thebare string tension, there exists only a simple s
alinglimit as �!1, 
oin
iding with the semi
lassi
al spe
-trum.We bene�ted many times from useful dis
ussionswith Valery Rubakov, in parti
ular, on the subje
t ofthis paper.J. A. re
alls: I �rst met Valery when he visitedthe Niels Bohr Institute for a 
ouple of month in 1984together with Vadim Kuzmin. We had a wonderful
ollaboration resulting in an arti
le about hypotheti
alte
hni-baryons as nontopologi
al solitons in a te
hni-
olor theory. But the most delightful memories fromthis 
ollaboration are not about physi
s but about thedis
ussions we had about life and so
iety. We were of-ten working at late night in the basement of the NielsBohr Institute (we were doing some numeri
al work andthat was where the 
omputer terminals were in theseold days). Some time after the midnight, Vadim would
ome down to us and say: �time to stop working, youngguys�, and he would bring three glasses and a bottle ofvodka, and we would dis
uss all kind of topi
s, some ofthem quite surprizing for Valery. He understood soonthat he had been somewhat mis-informed about how aso
iety like the Danish one was stru
tured. In parti
-ular, I remember a long dis
ussion we had about theDanish health 
are system. Valery 
ontinued askingand asking and in the end he said: �I see, I understand

now that it 
an be organized that way, and be equallygood for both the poor and the ri
h� (whi
h is perhapsnot entirely true : : : ). The openness with whi
h he re-
eived the new information and the way he 
orre
tedhis view after 
riti
ally judging on whether the infor-mation was reliable impressed me immensely. If onlypeople in general 
ould judge new 
ultures the way hedid we would live in a better world.Y. M. re
alls: I interse
ted on
e with Valery at Fer-milab in 1989, where he was giving an honorable 
ol-loquium (a week after the one given by Steven Hawk-ing). Before his 
olloquium, we played volleyball withother members of the Theory Department, in
ludingthe head, Bill Bardeen. At some point, Bill said toValery that he should probably go now to a spe
iallun
h with some important people in 
onne
tion withhis 
olloquium. �No�, replied Valery, �I have 
an
eledit be
ause of the volleyball game�. Our team led byBill �nally lost to the team led by Valery. Bill thenformulated: �Whatever Valery does, he does it well�.Our best wishes for the jubilee!The authors a
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