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consistent treatment based on canonical quantization, we solve a controversy present in the literature.
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1. INTRODUCTION

Quantum tunnelling plays various roles in cosmol-
ogy. For instance, false vacuum decay through quan-
tum tunnelling [1-3] is an important process for the
universe to visit many vacua in the string landscape
[4-6]. Also, the possibility of creation of an open uni-
verse through false vacuum decay has been extensively
discussed [7-10]. Properly taking the effect of grav-
ity into account can be quite nontrivial. Although the
effect of gravity is secondary in some cases, there are
in fact several cases where gravity plays a crucial role,
such as the upward quantum tunnelling from a lower-
to a higher-energy vacuum [11, 12].

Even when the effect of gravity is secondary, inclu-
ding gravity can make the treatment highly nontrivial.
One example is the subtle issue raised by Lavrelashvili,
Rubakov, and Tinyakov [13] that fluctuations around
bubble nucleation might cause an instability, which
leads to explosive particle production. One prescription
to cure this pathology was proposed in Refs. [14, 15],
where it is shown that the instability can be eliminated,
at least apparently, by an appropriate choice of the
gauge.

Quantum tunnelling in connection with gravity has
been discussed also in other contexts. One of them is
wormbhole formation [16-24], which is the main subject
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of this paper. Wormhole formation is a signature of
what is also referred to in the literature as baby /child
universe creation [25]. Spherical thin shells with var-
ious equations of state have been studied as models
of matter fields able to describe this process. Even in
the simple case of a pure tension shell, the quantum
mechanical formation of a wormhole seems possible.
However, some inconsistencies between different pre-
scriptions seem to exist in the literature [26]. In this
paper, we show that the origin of these apparent dis-
crepancies is tightly related to the use of the time coor-
dinate in the static chart. We then propose a plausible
prescription based on a smooth time-slicing to tackle
the problem.

This paper is organized as follows. In Sec. 2, we
briefly review the derivation of the standard result for
the tunnelling amplitude based on the direct evaluation
of the action, when the time slice of the static chart is
used. In Sec. 3, we discuss the problem that arises when
we try to apply the conventional formula to situations
characterized by wormhole production. To overcome
some difficulties that appear in this last case, in Sec. 4
we then study the same problem using the canonical
approach with a smooth time slice: this allows us to
derive the formula for the tunnelling rate without any
ambiguity. In Sec. 5, we finally show how the same
formula can be reproduced by the direct evaluation of
the action if we carefully take the smooth time slice.
Section 6 is devoted to a summary and discussion: we
also elaborate on a remaining, more subtle, issue.
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2. CONVENTIONAL APPROACH

In this paper, we consider the simplest spherically
symmetric domain-wall model, whose Lagrangian is
given by

1

S = 1671_G/d4x\/—_g72—/drm(1%), (1)

A~

where R is the scalar curvature and m(R) is the radius-
dependent mass of the wall, e.g., m(]%) = const for a
dust domain wall, while m(R) = 410 R? for a wall con-
sisting of pure tension ¢; moreover, 7 is the proper time
along the wall, and R denotes the circumferential ra-
dius of the wall. In general, quantities marked with
a hat are assumed to be evaluated at the position of
the wall, e.g., B = B(t) = B(t,#(t)) if B is a function
of t and r, and r = 7(¢) is one possible parameteriza-
tion of the wall trajectory. Depending on the model
parameters, the wall motion can have some classically
forbidden region for a range of the radius. We are in-
terested in discussing the quantum tunnelling of the
wall when it reaches a turning point, i.e., a boundary
of the classically forbidden region, by explicitly taking
gravity into account.

In this section, we derive a conventional but incor-
rect formula for the tunnelling rate of the wall. Al-
though we mostly follow Ref. [27], we do not claim that
the result obtained there is wrong. Indeed, our empha-
sis is about the fact that the authors of Ref. [27] clearly
identified a discrepancy between the direct evaluation
of the action that they propose and a naive canoni-
cal approach. Moreover, it was clearly emphasized in
Ref. [27] that the proposed direct approach guarantees,
instead, a continuous variation of the action as the pa-
rameters (the Schwarzschild mass, the de Sitter cosmo-
logical constant, the wall surface tension in their model)
are changed: on the contrary, the conventional canon-
ical approach does not guarantee the continuity of the
action as a function of the parameters. At the same
time, the direct calculation of the action reveals diffi-
culties in the identification of the Euclidean manifold
interpolating between the before- and after-tunnelling
classical solutions in a consistent way: indeed, Farhi et
al. associate what they call a pseudo-manifold to the
instanton solution. The direct approach defines the
pseudo-manifold by weighing different volumes of the
instanton along the classically forbidden trajectory by
an integer number that counts how many times (and in
which direction) the Euclidean volume is swept by the
time slice. We show in what follows that the canonical
approach, in full generality, can reproduce the same

value for the tunnelling action given in the approach
proposed in [27].

The direct evaluation of the action is possible be-
cause the solution is simply given by a junction of two
spacetimes. Here, for simplicity, we assume that both
the inside and outside of the bubble are empty, and
hence the inside can be taken as a piece of Minkowski
spacetime and the outside as a piece of Schwarzschild
spacetime. (In Ref. [27], the inside was equipped with
a vacuum energy density, i.e., a cosmological constant,
but this does not change the treatment in any substan-
tial way.) The method proposed in [27] was developed
in coordinates adapted to the static and spherically
symmetric nature of the spacetimes participating in
the junction. With this, we mean that the Lagrangian
was preferably considered in connection with the co-
ordinate times in the static chart in both spacetime
regions, which we denote by tg and ) in the simplified
case that we consider here. However, most of the cal-
culations were performed using the proper time of an
observer sitting on the junction, and therefore the re-
sult can be easily extended to a coordinate-independent
expression, as we see in Sec. 5.

The contributions to the action can be summarized
as follows.

1. A matter term coming from the shell, I¥al
this is nothing but the contribution from the stress—
energy tensor localized on the bubble surface.

2. A gravity term coming from the bubble wall,
Ig‘;lvlity: this is, basically, the well-known eztrinsic-
curvature-trace-jump term.

3. The bulk contributions vanish for classical solu-
tions since there is no matter in the bulk.

4. Surface terms: although the appearance of
surface terms is conceptually clear, the treatment of
these terms may be nontrivial. As clearly discussed in
Ref. [27], several contributions arise.

(a) The crucial contribution in [27], I . comes
from the bubble wall positions, where the normal to
the constant-time surface is discontinuous. However,
this contribution does not appear if we adopt a smooth
foliation of time across the wall. In Sec. 4, we take this
last picture.

(b) Another contribution comes from a surface at
a large constant circumferential radius in the outside
spacetime, IBI¢ : this cut-off radius allows us to work
with a (spatially) bounded volume, and the large-radius
limit has to be taken in the end. This limit naturally
brings in divergences, which can be usually dealt with,
e.g., by the Gibbons—Hawking prescription. The final
regularized result is called I, Reic 100w,

net

With the notation used above and by setting (because
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of the square, the notation below differs from the one
used in Ref. [27])

2GM
A%/[:]-a Ag:l_Ta (2)

the above terms can be written as [27]")

f

[ —— / m(R) dr. (3)

£
T 1
wall _
Igravity - /Ti dr {%
R? A 1
— (R, + = (47
+ e(R27.+A2)1/2( , +2( ),R)

2Re(R% + AY)'/? +

}, (4)

f
1 T d
=), Ta

~ (RQ +A2)1/2 +€RT
21 T s
R 0g<

wall
surface

X

I
——— | ar

2G /.

. R2 + A%)1/24¢R |
2RR,Tlog<( A Tela) |

A

R? . A2
b <R,TT + @) ~
e(R2 + A2)1/2 2

R26(R2,.+A2)1/2
- ()|, )
RBIG 3]\4'00 i
M= (T - T (5 -4), @
Irlli:e]%lc = Iﬁ?};e - (Isurface)o =
Mo ¢ 4 < 1 )
=——(ts—t5)+O0 | 5— ), (7
5 (ts — ts) Fore (7)

where square brackets represent the jump of the bracke-
ted quantities across the shell, i.e.,

[B] ~ lim (B(f—(s)—é(wﬂs)). 8)

§—0+

1 The expression for I::::‘lflace given in Ref. [27] looks slightly
different, but it is equivalent to this one as long as we require that
I::,ﬁ'lflace be always real valued. As we explain later (see Eq. (19)),
the sign flip of € is only important in the Euclidean regime. Be-
cause the argument of the logarithm has a jump there, we may
have to add one more term proportional to a § function at the
sign flipping point to the right-hand side of Eq. (5). However,
the crucial point is that the analyticity of I::,ﬁ'lflace is broken at the
sign flipping point. Therefore, it is difficult to find a consistent
meaning for the analytic continuation of this expression to the

Euclidean region.

Square brackets are not used anywhere in this paper
with a different meaning. Moreover, the signs
G?*m? )

€+ = sign <A§,[ — Al F =

(9)

are unambiguously determined by the consistency with
the junction condition [28]

G]% = [e (R?T + A2)1/2] : (10)

Noticing that

. 1/2
dts € (R?T + A%)
e N A 11
dr A% ’ (11)
we can combine all the above contributions into the
Lagrangian

_Lldr 5 2 2\1/2] _ ML
L= G ({R[G(RJJrA ) ] m(R)}
L (R2 + A%)Y/? 4+ ¢R,
— RR  |log : 1 - M. (12)

Finally, adding a constant M to the Lagrangian
such that the Lagrangian vanishes at the turning point,
I%,T = 0, we can evaluate L on a classical solution to
obtain

RE,
L|soluti0n = _TS X
R2 4+ A2)L/2 4 RT
X log<( a ll ik (13)

Here, RJ is to be replaced with its classical solution,
which is obtained from the junction condition (10) as

G [ (As+ AR
T T 4R2 G2m?2

2 P2
x {1 - %} . (14)

As explicitly seen above, the action could in gen-
eral contain second-derivative terms. These second
derivatives are removed by the “careful” inclusion of
the boundary term, I3 . From Eq. (13), we identify
the effective momentum conjugate to R as

R (B2 + A2)Y/2 4+ eR,
Py = -G log :

- (15)
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After Wick rotation to Euclidean time, 7 = it, the Eu-

clidean momentum, P.g = —iP.g and Eq. (14) become
_ R (A2 — RQ,,—_)l/2 + i€R7-T-
Py = iG llog ( : I (16)
and

% {1_W}. (17)

We indicate quantities after the Wick rotation with “™
if they are different from the Lorentzian ones. We also
note that P.g is real, since the modulus of the argument,
inside the logarithm is unity. Then the tunnelling ac-
tion can be evaluated as

Ty = / dtsR 1 Pogy (18)

to provide the tunnelling
exp(—QI(tS)).

rate proportional to

3. WORMHOLE PRODUCTION

The framework discussed in the preceding section is
generically applicable to the tunnelling problem. How-
ever, analytic continuation brings up situations that
are technically and conceptually more involved. To see
this, we first notice that e = +1 flips sign when

N 2
., GPm? (A2 — A2)R2
2 2 S M —
N 2
G*m? R.R
TR (HZ Gng2> (19)

vanishes, where Ry := 2GM. We denote by R, the
value of R at the sign changing point. In the Lorentzian
regime, the sign flip of € does not occur in regions out-
side horizons: it can happen behind horizons, but in
these cases no pathology arises [26]. In any case, in
this work, because of our definitions (2), we implicitly
exclude regions behind horizons. This is certainly non-
restrictive for our current purpose, because it is pos-
sible to prove that tunnelling must always begin and
end in regions that are not behind the horizons, and it
is always true that Peg is continuous during the time
evolution. However, in the Euclidean regime, not only
the sign flip can happen, but also the argument of the

10 ZKSBT®, seim. 3

logarithm (and hence the logarithm itself) in Peg has
a jump at the point where the sign of € flips: this can-
not be avoided if we consistently require that the effec-
tive momentum vanishes at both turning points. (In
fact, the discontinuity cannot be avoided if we require
that P.g analytically continued back to the Lorentzian
regime be real both before and after the tunnelling.)
This happens because the expression for P.g is essen-
tially nonanalytic. For this reason, it is hard to justify
the use of analytic continuation for an action that con-
tains Pag.

In the present case, from Eq. (19), we find that the
sign flip can happen for e, only. From the analytic
continuation of Eq. (11),

L oN1/2
drs _c(R-F%)
- A (20)
we find that dts/d7 also vanishes at the sign flip point.
This means that the trajectory of the wall becomes
purely radial. At this point, there is a jump of the
logarithm in P.g. We draw a schematic picture of the
wall trajectory when there is a sign flip in Fig. 1. In
this picture, the center corresponds to R = 2G M, the
radial direction is the rescaled radius, and the angular
direction is the Euclidean time 5.

As a concrete example, we consider the case of a
pure tension wall with m = 4roR2. In this case, from
Eq. (14), we find that the turning points corresponding
to ]%,T = 0 are given by the solutions of

f(R) :=6°R®> —26R? + R, = 0, (21)

where we set ¢ := 4nGo. It is easy to see that f(Rg) >
> 0 and the equality holds for & = 1/R,. At the min-
imum of f(R), where R = 4/35, we have f(4/35) =
= Ry — 32/275. Therefore, we find that there is a
classically forbidden region for & < 32/27R;. A worm-
hole can be produced when the critical radius, where
the discontinuity appears,

R R
Rc=<&—§> : (22)

is in the classically forbidden region. As mentioned
above, this critical radius does not result in pathologies
in the classically allowed region. Therefore, if Re > Ry,
the critical radius is under the potential barrier. This
means that wormhole production is possible when ¢ <
< 1/Ry.

Now, we discuss the key issue of this paper. As
long as we use the foliation by the Schwarzschild time,
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Fig.1. A schematic diagram of the Euclidean
Schwarzschild spacetime. The center and the bound-
ary of the circle respectively correspond to R = R,
and R = oo. Dotted circles show the surface R = R,
and those corresponding to the radii of the turning
points, R = Ro.1. The angle represents the direction
of the time coordinate of the static chart, ts. The solid
curve represents the trajectory of the domain wall, for
the Minkowski-Schwarzschild case with M = 1 and
6 = 0.25. Surfaces with ts = const are shown by
solid lines. The foliation by these surfaces starts with
ts =t and the angle increases at the beginning. Af-
ter reaching the maximum, the angle starts to decrease
to reach ts = ¢5. The foliation corresponding to a
smooth time slicing is presented by dashed lines

it is problematic to consistently define the Euclidean
manifold interpolating between the configurations be-
fore and after the tunnelling. As a concrete example,
we consider the case shown in Fig. 1 (for this case,
plots of the effective momentum along the tunnelling
trajectory and of the potential barrier can be found
in Fig. 2). When dtg/dT is positive, the wall is lo-
cated at R < R, and the Schwarzschild spacetime is
relevant for R < R < oo. The Minkowski spacetime
is connected beyond the wall. After passing through
the point R = RC, dts/dT becomes negative. Then,
the wall is present for R > R, and the Schwarzschild
spacetime is relevant for R < R. Again, the Minkowski
spacetime is connected beyond the wall. Then, one may

___________ V(R)
ok — _eff(k)/5
T
“1F _

Fig.2. Plot of the effective potential and of the effec-
tive Euclidean momentum along a tunnelling trajectory.
The quantities are calculated for a Minkowski—-Schwarz-
schild junction in which M =1 and & = 0.25, which
results in the relevant sign for the outside spacetime
to change at Re ~ 3.175. The plot clearly emphasizes
the discontinuity in the expression for the effective mo-
mentum (16) due to the change in the e sign

wonder where the asymptotic region with R — oo is.
The asymptotic region is on the other side extending
beyond the center, corresponding to R = 2GM. The
time slice cannot terminate at the center (bifurcation
point) of the Schwarzschild spacetime. We then see
that the geometry on this time slice suddenly changes
at the sign flip point. Namely, the final configuration
contains a wormhole, corresponding to the existence of
a minimum circumferential radius. At the same time,
P.g is discontinuous there. As long as we stick to this
time slice, it is difficult to obtain a satisfactory and
consistent prescription. Figures 3 and 4 show the sit-
uation before and after the tunnelling. By comparing
the slice before the tunnelling (thick horizontal line in
the Penrose diagram for the configuration before the
tunnelling in Fig. 3¢) with the slice after the tunnelling
(thick horizontal line in the Penrose diagram for the
configuration after the tunnelling in Fig. 4¢), we can
also have a clear example of the situation discussed
just above for the Euclidean spacetime that should in-
terpolate between these two configurations. In the next
section, we discuss the same process in the canonical
formalism without specifying the gauge, which makes
it possible to overcome these difficulties.

4. CANONICAL APPROACH WITH SMOOTH
TIME SLICE

We consider the canonical approach in this section,
following Ref. [29]. The spherically symmetric metric
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0000
9:0.0.0:0:0:9:0
RN
0.0:0.0:0:
9:0:9.9:0.0:9:0:9:

Full spacetime before
the tunnelling

Fig.3. Construction of the Penrose diagram for the spacetime before the tunnelling. Panel a shows the wall trajectory in
Minkowski spacetime. The unshaded area between R = 0 and the bubble wall participates in the junction and is joined to
the unshaded region of the Schwarzschild spacetime in panel b. The final configuration is shown in panel ¢, where, again,
we have to consider only the unshaded part of the Penrose diagrams, that describes spacetime while the wall expands from
R = 0 until the turning point, where tunnelling takes place. The thick black line in panel ¢ is the spacetime slice at which
tunnelling starts (see, e.g., the ¢4 slice in Fig. 1, which corresponds to the Schwarzschild part of this slice)

is specified in the 3 + 1 decomposition as

ds®> = Ntdt® + L*(dr + N"dt)* + R*dQ?, (23)

where, with the standard notation, dQ? is the spher-
ically symmetric part of the line element. Then the
action in the canonical formalism is obtained as

S:/dtpﬂ/dt/drx

X (é{ﬂLL+7TRR}—Nth—NTHT> —/dtSM (24)

with
1 (Lr} mar, (RR\' R? L
Ht_@(zm_ rR \2r) 2z 2)°"
2
25
+6(r —7) <£> m?2, (25)
L
1
Hy = el (R'mgp — L7}) — 6(r —7) p,

where p, 7z, and wr are the respective conjugate mo-
menta to 7, L, and R. For the derivatives, we adopt
the following standard convention:
. OB 0B
B=—, B =—. 26
ot’ or (26)
We stress that the values of all the metric functions
are assumed to be continuous across the wall, although
their derivatives can be discontinuous. The constraint
equations Hy; = 0 and H, = 0 are solved in the bulk as

ﬂ'L:Rﬁ, FR=Y7 (27)
where we introduce the definitions
!
X := %, Bi= (X2 — A%)2, (28)

By integrating the constraint equations across the wall,
we obtain the junction conditions, which in the present
notation can be written as

10%*
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ZRRIRRLRRLRRL
SERLRLRLRRKAK
GRS

Full spacetime after
the tunnelling

Fig.4. Construction analogous to the one in Fig. 3, but for the spacetime after the tunnelling. The junction is obtained

again by joining the unshaded region of the Minkowski spacetime in panel a, with the unshaded region of the Schwarzschild

spacetime in panel b. After performing the junction, the spacetime after the tunnelling is the region to the future of the

thick black line in panel c. The part of this slice in the Schwarzschild region corresponds to the 7 £ slice in Fig. 1. Here it

is also clear that after the tunnelling, the slice contains R = R,. This was not the case for the slice before the tunnelling
shown in Fig. 3

ml=2, =%

p? 1/2
14+ —— . (29)
R m2L2

In the WKB approximation, the wave function is
written as o< exp(il(F, L, R)) and the conjugate mo-
menta are identified as

ol ol ol
== = =G—=.

oF =R
Hence, the action relevant to the WKB wave function
is

I:/dtpiwré (/dt/dr{ﬂ'LL+7rRR}>. (31)

We note that in this approach, removing the last term
in Eq. (24) is absolutely unambiguous.

To handle expression (31) without specifying the
gauge, a key observation is the existence of a function
® = &(L, R, R") that satisfies

0P ~ 0L + mRrOR, (32)

P (30)

where “~” means that the equality holds modulo total
derivative terms. It is then possible to integrate the
above equation to obtain
! i X - ﬂ

®(L,R,R") = RR'log (T) + RLS. (33)
In the above expression, there is an arbitrariness be-
cause the total derivative of an arbitrary function of R
with respect to r can be added, which, of course, does
not affect the final result.

Then the action becomes

Iz/dtpiwré(/dr/dt%—f—/dt[wRD -
:/dtp?+é><
x </dr<1>f—/dt%[<1>]—/dt [m]) (34)
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where we define

0% X-p
U= R Rlog (—A ) . (35)

In the first equality in Eq. (34), we removed the contri-
bution of ¥R at r — oo, assuming that the time slice is
asymptotically identical to the one in the static chart
of the Schwarzschild spacetime, in which ¥ vanishes
because f =0 and X = A. Using
2 dR
Ri="2=(Ri+R)_, 36
dt + r=f ( )
we can rewrite the last term in the parentheses in the
right-hand side of Eq. (34) as
[0E] = [wR-9R7| = —[WR]} + [W]R,  (37)
where in the last equality we have extracted ]% and 7
from the square brackets since their values evaluated
on both sides of the junction are identical. Thus, we
obtain

1:/dt%<p+é[w3'—q>]) +
4L ( /dtR[lIf]) (38)

Because we have YR’ — & = —RLB, the first term
in Eq. (38) vanishes under the junction condition (29),
and we finally obtain the gauge nonfized action relevant
for the WKB wave function in the form

( / QR \1/]> (39)

We now examine the motion of the shell, dR/ dt, in
more detail. The part of the action related to the shell
takes the form

S’—/dtL_

- _m/dt ((Nt)2 —L*(r + NT)Q)W. (40)

From this expression, the conjugate momentum to r
turns out to be given by

— 8LS —
P=% =
N PO N -1/2 . . N
=m (N2 = LG+ N7)?) 7 L2( 4+ N7), (1)

from which we obtain

72 A P P -1
W(T-I-N) = = (1+ 2£2) . (42)

From the normalization of the four velocity, we also

find
N A\ 2 N
t 2 . A
Ndi 1- AL—(f +N"? ) =1, (43)
dr (Nt)2

which is further simplified using Eq. (42) as
Ntat 2 0\ 1/2
_ (1 P ) . (44)

dr m2L2
Using the

Now, we are ready to rewrite dR/dr.
equation of motion for R, we have

R=-NtIL L NTR

R
Then we obtain
dR _ di : . T
N"+#)R — N2 ) =
dr  dr (( +7) )

R
Ntdt [ . . L o -

= NT r)—X — =

dr <( +T)Nt ﬂ)

2 1/2 2 —1/2 X .
(o) () )
m2L2 m2L2 mL

5 1/2
pX p?
L) @)

where in the third equality, we have used Eqs. (42) and
(44). Substituting 3 = (X2 — A2)1/2 we can solve this
equation for X as

2\ 1/2
L fote(f242) 7 (14-22) L a0
mL ' m2L2
Remembering that p and I%,T do not have a jump across
the junction, from Eq. (46) and the junction condition
(29), we recover exactly Eq. (10).
Furthermore, substituting Eq. (46) in Eq. (45), we

obtain

2\ 1/2 1/2
A_ p 5 p 52, A2
and hence
2 1/2
> 5 p p
X-p= 1+ = = ¢ X
g {( m2L2) mL}
~ o\ 1/2 ~
x{e(R?T+A2) +R7T}. (48)

Therefore, we can finally write the jump of ¥ as

X =

+R,

)

(e +a)"
A

A~

[¥] =R |log

(49)
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After Euclideanization, Eq. (39) can be rewritten using
the above results, and it gives

5" / dtﬁ[@]) (50)

with

_ (X —i(az- Xy
& =i® =iRR log —

A
~RL(42-x*)"? (51
and
N /2 4
i ) ¢ (A2—R72?) ViR,
[¥] =[i¥] =R |log . (52)

A

This expression is identical to Eq. (18) obtained in
Sec. 2 for the tunnelling that does not produce a worm-
hole. First, since A = X on the initial and final sur-
faces, where the time slices coincide with the ones with
tg = const and fyy = const, ® vanishes there. Since
€ = +1 in this case, as mentioned above, the difference
between P.g and [¥] does not arise.

By contrast, in the case with wormhole production,
the first term in Eq. (50) does not vanish because X
is negative in the region between R = R, and the wall
in the Schwarzschild spacetime, and hence X = —A
there. Namely, the first term contributes as

_ Tg
B :/ dr tRR' =
ty #(TL)

where r, is the value of r at R = R, on the final sur-
face. Hence, the difference between Eqgs. (18) and (50)
is evaluated as

f—f(ts):/drti

R(ts) 1 ) )
+7r/ ARR=3 (R~ R). (54)

s (R-RGY). (53)

if we assume that P.g in Eq. (18) has a discrete jump
at R = R,. Of course, this discrepancy is not strange
at all, since the naive extension of the validity range of
formula (18) cannot be justified.

5. CONSISTENT DIRECT EVALUATION

As we anticipated, we now show that the method
using a pseudo-manifold for the description of the in-
stanton solution gives the same result that we derived

using the canonical approach in the preceding section.
Although this equivalence might seem almost trivial be-
cause both approaches are based on the same smooth
foliation of an Euclidean spacetime, its explicit proof
would be pedagogically useful.

We then return to the discussion in Sec. 2. The
first key observation is that the contribution from the
carefully included I;’:’ﬂlflace should not be included when

we adopt a smooth foliation. The second point is that
we have rewritten a term in Eq. (4) as

_M / drdﬁ. (55)

rf R2(AS)
dr -
/Ta 1Ge(, + 4?12

We then subtracted M (t§ — tL) from the total action.
In the computation in Sec. 2, half of this subtraction
was compensated by Islflﬁ’f‘gce and the rest by the above
contribution (55). However, we find

dis ¢
/d* > = FL — 7L + 27Ry,, (56)

when we use a smooth foliation for the tunnelling so-
lution with wormhole formation. This shows that an
additional contribution 7 M R, to the Euclidean action
arises. Gathering all, we find that the Euclidean action
evaluated by using a smooth foliation is given by

I( s) T [::ﬁlflace_‘_ﬂMRg:
1 o Rz t_é R?
=— |- [dtR[Y]+ =& £ =
G( / ]+ 2 £§S+ 2

L R2 — R(+*
:é (—/dtR[‘If]+gf()>, (57)

which is precisely identical to I.

6. SUMMARY AND DISCUSSION

In this paper, we studied the wormhole production
for the simplest spherically symmetric shell model in
asymptotically flat spacetime. In this simple setup, the
instanton solution can be generically described by the
junction of Euclideanized Minkowski and Schwarzschild
spacetimes. This solution, however, is not a Rieman-
nian manifold in the sense that the existence of the
domain wall may depend on the path taken to reach
the possible location of the wall in spacetime. The
term pseudo-manifold was used in [27] for this solu-
tion. A key point that we have emphasized here is that
in this case, the ordinary constant-time surfaces asso-
ciated with the static chart do not foliate the instanton
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smoothly. As a result, methods based on this time slic-
ing inevitably become conceptually ambiguous.

We have here discussed, however, that even in these
cases, if we choose a smooth time slicing to connect the
configurations before and after the tunnelling, it is still
possible to find the WKB wave function along an in-
terpolating path of configurations with a bubble wall.
In this way, we can identify an appropriate expression
for the tunnelling rate without any ambiguity. The re-
sult agrees with the direct evaluation of the Euclidean
action once we properly subtract the zero-point energy
and count how many times each region in the instanton
solution is swept when we consider a smooth foliation.

It is possible to trace the subtle nature of the
pseudo-manifold to the fact that the time lapse in the
Euclidean region is not positive everywhere. Indeed,
the sign of the time lapse has to be opposite between
the center and the asymptotic infinity, for at least some
range during the time evolution. This is a feature that
is common to the upward tunnelling in the case of bub-
ble nucleation. It would be worth investigating whether
this negative lapse causes any problem when we take
fluctuations around the WKB trajectory into account.
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