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TUNNELLING WITH WORMHOLE CREATIONS. Ansoldi a;b, T. Tanaka 
;d*aNational Institute of Nu
lear Physi
s (INFN), I-34149, Trieste, ItalybUniversity of Udine, I-33100, Udine, Italy
Department of Physi
s, Kyoto University, 606-8502, Kyoto, JapandYukawa Institute for Theoreti
al Physi
s, Kyoto University, 606-8502, Kyoto, JapanRe
eived O
tober 18, 2014The des
ription of quantum tunnelling in the presen
e of gravity shows subtleties in some 
ases. We dis
usswormhole produ
tion in the 
ontext of the spheri
ally symmetri
 thin-shell approximation. By presenting a fully
onsistent treatment based on 
anoni
al quantization, we solve a 
ontroversy present in the literature.Contribution for the JETP spe
ial issue in honor of V. A. Rubakov's 60th birthdayDOI: 10.7868/S00444510150301431. INTRODUCTIONQuantum tunnelling plays various roles in 
osmol-ogy. For instan
e, false va
uum de
ay through quan-tum tunnelling [1�3℄ is an important pro
ess for theuniverse to visit many va
ua in the string lands
ape[4�6℄. Also, the possibility of 
reation of an open uni-verse through false va
uum de
ay has been extensivelydis
ussed [7�10℄. Properly taking the e�e
t of grav-ity into a

ount 
an be quite nontrivial. Although thee�e
t of gravity is se
ondary in some 
ases, there arein fa
t several 
ases where gravity plays a 
ru
ial role,su
h as the upward quantum tunnelling from a lower-to a higher-energy va
uum [11, 12℄.Even when the e�e
t of gravity is se
ondary, in
lu-ding gravity 
an make the treatment highly nontrivial.One example is the subtle issue raised by Lavrelashvili,Rubakov, and Tinyakov [13℄ that �u
tuations aroundbubble nu
leation might 
ause an instability, whi
hleads to explosive parti
le produ
tion. One pres
riptionto 
ure this pathology was proposed in Refs. [14, 15℄,where it is shown that the instability 
an be eliminated,at least apparently, by an appropriate 
hoi
e of thegauge.Quantum tunnelling in 
onne
tion with gravity hasbeen dis
ussed also in other 
ontexts. One of them iswormhole formation [16�24℄, whi
h is the main subje
t*E-mail: tanaka�yukawa.kyoto-u.a
.jp

of this paper. Wormhole formation is a signature ofwhat is also referred to in the literature as baby/
hilduniverse 
reation [25℄. Spheri
al thin shells with var-ious equations of state have been studied as modelsof matter �elds able to des
ribe this pro
ess. Even inthe simple 
ase of a pure tension shell, the quantumme
hani
al formation of a wormhole seems possible.However, some in
onsisten
ies between di�erent pre-s
riptions seem to exist in the literature [26℄. In thispaper, we show that the origin of these apparent dis-
repan
ies is tightly related to the use of the time 
oor-dinate in the stati
 
hart. We then propose a plausiblepres
ription based on a smooth time-sli
ing to ta
klethe problem.This paper is organized as follows. In Se
. 2, webrie�y review the derivation of the standard result forthe tunnelling amplitude based on the dire
t evaluationof the a
tion, when the time sli
e of the stati
 
hart isused. In Se
. 3, we dis
uss the problem that arises whenwe try to apply the 
onventional formula to situations
hara
terized by wormhole produ
tion. To over
omesome di�
ulties that appear in this last 
ase, in Se
. 4we then study the same problem using the 
anoni
alapproa
h with a smooth time sli
e: this allows us toderive the formula for the tunnelling rate without anyambiguity. In Se
. 5, we �nally show how the sameformula 
an be reprodu
ed by the dire
t evaluation ofthe a
tion if we 
arefully take the smooth time sli
e.Se
tion 6 is devoted to a summary and dis
ussion: wealso elaborate on a remaining, more subtle, issue.526
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reation2. CONVENTIONAL APPROACHIn this paper, we 
onsider the simplest spheri
allysymmetri
 domain-wall model, whose Lagrangian isgiven byS = 116�G Z d4xp�gR� Z d� m(R̂); (1)where R is the s
alar 
urvature andm(R̂) is the radius-dependent mass of the wall, e. g., m(R̂) = 
onst for adust domain wall, while m(R̂) = 4��R̂2 for a wall 
on-sisting of pure tension �; moreover, � is the proper timealong the wall, and R̂ denotes the 
ir
umferential ra-dius of the wall. In general, quantities marked witha hat are assumed to be evaluated at the position ofthe wall, e. g., B̂ = B̂(t) = B(t; r̂(t)) if B is a fun
tionof t and r, and r = r̂(t) is one possible parameteriza-tion of the wall traje
tory. Depending on the modelparameters, the wall motion 
an have some 
lassi
allyforbidden region for a range of the radius. We are in-terested in dis
ussing the quantum tunnelling of thewall when it rea
hes a turning point, i. e., a boundaryof the 
lassi
ally forbidden region, by expli
itly takinggravity into a

ount.In this se
tion, we derive a 
onventional but in
or-re
t formula for the tunnelling rate of the wall. Al-though we mostly follow Ref. [27℄, we do not 
laim thatthe result obtained there is wrong. Indeed, our empha-sis is about the fa
t that the authors of Ref. [27℄ 
learlyidenti�ed a dis
repan
y between the dire
t evaluationof the a
tion that they propose and a naive 
anoni-
al approa
h. Moreover, it was 
learly emphasized inRef. [27℄ that the proposed dire
t approa
h guarantees,instead, a 
ontinuous variation of the a
tion as the pa-rameters (the S
hwarzs
hild mass, the de Sitter 
osmo-logi
al 
onstant, the wall surfa
e tension in their model)are 
hanged: on the 
ontrary, the 
onventional 
anon-i
al approa
h does not guarantee the 
ontinuity of thea
tion as a fun
tion of the parameters. At the sametime, the dire
t 
al
ulation of the a
tion reveals di�-
ulties in the identi�
ation of the Eu
lidean manifoldinterpolating between the before- and after-tunnelling
lassi
al solutions in a 
onsistent way: indeed, Farhi etal. asso
iate what they 
all a pseudo-manifold to theinstanton solution. The dire
t approa
h de�nes thepseudo-manifold by weighing di�erent volumes of theinstanton along the 
lassi
ally forbidden traje
tory byan integer number that 
ounts how many times (and inwhi
h dire
tion) the Eu
lidean volume is swept by thetime sli
e. We show in what follows that the 
anoni
alapproa
h, in full generality, 
an reprodu
e the same

value for the tunnelling a
tion given in the approa
hproposed in [27℄.The dire
t evaluation of the a
tion is possible be-
ause the solution is simply given by a jun
tion of twospa
etimes. Here, for simpli
ity, we assume that boththe inside and outside of the bubble are empty, andhen
e the inside 
an be taken as a pie
e of Minkowskispa
etime and the outside as a pie
e of S
hwarzs
hildspa
etime. (In Ref. [27℄, the inside was equipped witha va
uum energy density, i. e., a 
osmologi
al 
onstant,but this does not 
hange the treatment in any substan-tial way.) The method proposed in [27℄ was developedin 
oordinates adapted to the stati
 and spheri
allysymmetri
 nature of the spa
etimes parti
ipating inthe jun
tion. With this, we mean that the Lagrangianwas preferably 
onsidered in 
onne
tion with the 
o-ordinate times in the stati
 
hart in both spa
etimeregions, whi
h we denote by tS and tM in the simpli�ed
ase that we 
onsider here. However, most of the 
al-
ulations were performed using the proper time of anobserver sitting on the jun
tion, and therefore the re-sult 
an be easily extended to a 
oordinate-independentexpression, as we see in Se
. 5.The 
ontributions to the a
tion 
an be summarizedas follows.1. A matter term 
oming from the shell, Iwallmatter:this is nothing but the 
ontribution from the stress�energy tensor lo
alized on the bubble surfa
e.2. A gravity term 
oming from the bubble wall,Iwallgravity: this is, basi
ally, the well-known extrinsi
-
urvature-tra
e-jump term.3. The bulk 
ontributions vanish for 
lassi
al solu-tions sin
e there is no matter in the bulk.4. Surfa
e terms: although the appearan
e ofsurfa
e terms is 
on
eptually 
lear, the treatment ofthese terms may be nontrivial. As 
learly dis
ussed inRef. [27℄, several 
ontributions arise.(a) The 
ru
ial 
ontribution in [27℄, Iwallsurfa
e, 
omesfrom the bubble wall positions, where the normal tothe 
onstant-time surfa
e is dis
ontinuous. However,this 
ontribution does not appear if we adopt a smoothfoliation of time a
ross the wall. In Se
. 4, we take thislast pi
ture.(b) Another 
ontribution 
omes from a surfa
e ata large 
onstant 
ir
umferential radius in the outsidespa
etime, IRBIGsurfa
e: this 
ut-o� radius allows us to workwith a (spatially) bounded volume, and the large-radiuslimit has to be taken in the end. This limit naturallybrings in divergen
es, whi
h 
an be usually dealt with,e. g., by the Gibbons�Hawking pres
ription. The �nalregularized result is 
alled IRBIGnet below.With the notation used above and by setting (be
ause527



S. Ansoldi, T. Tanaka ÆÝÒÔ, òîì 147, âûï. 3, 2015of the square, the notation below di�ers from the oneused in Ref. [27℄)A2M = 1; A2S = 1� 2GMR ; (2)the above terms 
an be written as [27℄1)Iwallmatter = � Z � f� i m(R̂) d�; (3)Iwallgravity = Z � f� i d� ( 12G "2R̂�(R̂2;� +A2)1=2 ++ R̂2�(R̂2;� +A2)1=2 �R̂;�� + 12(A2);R�#) ; (4)Iwallsurfa
e = � 12G Z � f� i d� dd� �� "R̂2 log (R̂2;� +A2)1=2 + �R̂;�A !# == � 12G Z � f� i d� "2R̂R̂;� log (R̂2;�+A2)1=2+�R̂;�A ! ++ R̂2�(R̂2;� + A2)1=2 �R̂;�� + (A2);R2 ��� R̂2�(R̂2;� +A2)1=22A2 (A2);R# ; (5)IRBIGsurfa
e = �RBIGG � 3M12 ��tfS � tiS� ; (6)IRBIGnet = IRBIGsurfa
e � (Isurfa
e)0 == �M12 �tfS � tiS�+O� 1RBIG� ; (7)where square bra
kets represent the jump of the bra
ke-ted quantities a
ross the shell, i. e.,hB̂i = limÆ!0+ �B̂(r̂ � Æ)� B̂(r̂ + Æ)� : (8)1) The expression for Iwallsurfa
e given in Ref. [27℄ looks slightlydi�erent, but it is equivalent to this one as long as we require thatIwallsurfa
e be always real valued. As we explain later (see Eq. (19)),the sign �ip of � is only important in the Eu
lidean regime. Be-
ause the argument of the logarithm has a jump there, we mayhave to add one more term proportional to a Æ fun
tion at thesign �ipping point to the right-hand side of Eq. (5). However,the 
ru
ial point is that the analyti
ity of Iwallsurfa
e is broken at thesign �ipping point. Therefore, it is di�
ult to �nd a 
onsistentmeaning for the analyti
 
ontinuation of this expression to theEu
lidean region.

Square bra
kets are not used anywhere in this paperwith a di�erent meaning. Moreover, the signs�� = sign�A2M �A2S � G2m2R̂2 � (9)are unambiguously determined by the 
onsisten
y withthe jun
tion 
ondition [28℄Gm̂R = ���R̂2;� +A2�1=2� : (10)Noti
ing thatdtSd� = ��R̂2;� +A2S�1=2A2S ; (11)we 
an 
ombine all the above 
ontributions into theLagrangianL = 1G d�dtS  nR̂ h�(R̂2;� +A2)1=2i�m(R̂)o �� R̂R̂;� "log (R̂2;� +A2)1=2 + �R̂;�A !#!�M: (12)Finally, adding a 
onstant M to the Lagrangiansu
h that the Lagrangian vanishes at the turning point,R̂;� = 0, we 
an evaluate L on a 
lassi
al solution toobtainLjsolution = � R̂R̂;tSG �� "log (R̂2;� +A2)1=2 + �R̂;�A !# : (13)Here, R̂;� is to be repla
ed with its 
lassi
al solution,whi
h is obtained from the jun
tion 
ondition (10) asR̂2;� = G2m24R̂2 (1� (AS +AM)2R̂2G2m2 )��(1� (AS �AM)2R̂2G2m2 ) : (14)As expli
itly seen above, the a
tion 
ould in gen-eral 
ontain se
ond-derivative terms. These se
ondderivatives are removed by the �
areful� in
lusion ofthe boundary term, Iwallsurfa
e. From Eq. (13), we identifythe e�e
tive momentum 
onjugate to R̂ asPe� := � R̂G "log (R̂2;� +A2)1=2 + �R̂;�A !# : (15)528
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reationAfter Wi
k rotation to Eu
lidean time, �� = i� , the Eu-
lidean momentum, �Pe� = �iPe� and Eq. (14) be
ome�Pe� = i R̂G "log (A2 � R̂2;�� )1=2 + i�R̂;��A !# (16)and̂R2;�� = G2m24R̂2 ( (AS +AM)2R̂2G2m2 � 1)��(1� (AS �AM)2R̂2G2m2 ) : (17)We indi
ate quantities after the Wi
k rotation with ���,if they are di�erent from the Lorentzian ones. We alsonote that �Pe� is real, sin
e the modulus of the argumentinside the logarithm is unity. Then the tunnelling a
-tion 
an be evaluated as�I(tS) = Z d�tSR̂;tS �Pe� (18)to provide the tunnelling rate proportional toexp(�2�I(tS)).3. WORMHOLE PRODUCTIONThe framework dis
ussed in the pre
eding se
tion isgeneri
ally appli
able to the tunnelling problem. How-ever, analyti
 
ontinuation brings up situations thatare te
hni
ally and 
on
eptually more involved. To seethis, we �rst noti
e that � = �1 �ips sign whenA2� + R̂2;� = G2m24R̂2  1� (A2S �A2M)R̂2G2m2 !2 == G2m24R̂2  1� RgR̂G2m2!2 (19)vanishes, where Rg := 2GM . We denote by R̂
 thevalue of R̂ at the sign 
hanging point. In the Lorentzianregime, the sign �ip of � does not o

ur in regions out-side horizons: it 
an happen behind horizons, but inthese 
ases no pathology arises [26℄. In any 
ase, inthis work, be
ause of our de�nitions (2), we impli
itlyex
lude regions behind horizons. This is 
ertainly non-restri
tive for our 
urrent purpose, be
ause it is pos-sible to prove that tunnelling must always begin andend in regions that are not behind the horizons, and itis always true that Pe� is 
ontinuous during the timeevolution. However, in the Eu
lidean regime, not onlythe sign �ip 
an happen, but also the argument of the

logarithm (and hen
e the logarithm itself) in Pe� hasa jump at the point where the sign of � �ips: this 
an-not be avoided if we 
onsistently require that the e�e
-tive momentum vanishes at both turning points. (Infa
t, the dis
ontinuity 
annot be avoided if we requirethat Pe� analyti
ally 
ontinued ba
k to the Lorentzianregime be real both before and after the tunnelling.)This happens be
ause the expression for Pe� is essen-tially nonanalyti
. For this reason, it is hard to justifythe use of analyti
 
ontinuation for an a
tion that 
on-tains Pe� .In the present 
ase, from Eq. (19), we �nd that thesign �ip 
an happen for �+ only. From the analyti

ontinuation of Eq. (11),d�tSd�� = ��A2S � R̂2;���1=2A2S ; (20)we �nd that d�tS=d�� also vanishes at the sign �ip point.This means that the traje
tory of the wall be
omespurely radial. At this point, there is a jump of thelogarithm in �Pe� . We draw a s
hemati
 pi
ture of thewall traje
tory when there is a sign �ip in Fig. 1. Inthis pi
ture, the 
enter 
orresponds to R = 2GM , theradial dire
tion is the res
aled radius, and the angulardire
tion is the Eu
lidean time �tS.As a 
on
rete example, we 
onsider the 
ase of apure tension wall with m = 4��R2. In this 
ase, fromEq. (14), we �nd that the turning points 
orrespondingto R̂;� = 0 are given by the solutions off(R̂) := ~�2R̂3 � 2~�R̂2 +Rg = 0; (21)where we set ~� := 4�G�. It is easy to see that f(Rg) �� 0 and the equality holds for ~� = 1=Rg. At the min-imum of f(R̂), where R̂ = 4=3~�, we have f(4=3~�) == Rg � 32=27~�. Therefore, we �nd that there is a
lassi
ally forbidden region for ~� < 32=27Rg. A worm-hole 
an be produ
ed when the 
riti
al radius, wherethe dis
ontinuity appears,R̂
 = �Rg~�2 �1=3 ; (22)is in the 
lassi
ally forbidden region. As mentionedabove, this 
riti
al radius does not result in pathologiesin the 
lassi
ally allowed region. Therefore, if R̂
 > Rg,the 
riti
al radius is under the potential barrier. Thismeans that wormhole produ
tion is possible when ~� << 1=Rg.Now, we dis
uss the key issue of this paper. Aslong as we use the foliation by the S
hwarzs
hild time,10 ÆÝÒÔ, âûï. 3 529
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Fig. 1. A s
hemati
 diagram of the Eu
lideanS
hwarzs
hild spa
etime. The 
enter and the bound-ary of the 
ir
le respe
tively 
orrespond to R = Rgand R = 1. Dotted 
ir
les show the surfa
e R = R̂
and those 
orresponding to the radii of the turningpoints, R = R̂0;1. The angle represents the dire
tionof the time 
oordinate of the stati
 
hart, �tS. The solid
urve represents the traje
tory of the domain wall, forthe Minkowski�S
hwarzs
hild 
ase with M = 1 and~� = 0:25. Surfa
es with �tS = 
onst are shown bysolid lines. The foliation by these surfa
es starts with�tS = �t iS and the angle in
reases at the beginning. Af-ter rea
hing the maximum, the angle starts to de
reaseto rea
h �tS = �t fS. The foliation 
orresponding to asmooth time sli
ing is presented by dashed linesit is problemati
 to 
onsistently de�ne the Eu
lideanmanifold interpolating between the 
on�gurations be-fore and after the tunnelling. As a 
on
rete example,we 
onsider the 
ase shown in Fig. 1 (for this 
ase,plots of the e�e
tive momentum along the tunnellingtraje
tory and of the potential barrier 
an be foundin Fig. 2). When d�tS=d�� is positive, the wall is lo-
ated at R̂ < R̂
 and the S
hwarzs
hild spa
etime isrelevant for R̂ < R < 1. The Minkowski spa
etimeis 
onne
ted beyond the wall. After passing throughthe point R̂ = R̂
, d�tS=d�� be
omes negative. Then,the wall is present for R̂ > R̂
 and the S
hwarzs
hildspa
etime is relevant for R < R̂. Again, the Minkowskispa
etime is 
onne
ted beyond the wall. Then, one may

R
c

V R( )

Peff R( )/5

765432

+1

0

−1

^

^

^

^
RFig. 2. Plot of the e�e
tive potential and of the e�e
-tive Eu
lidean momentum along a tunnelling traje
tory.The quantities are 
al
ulated for a Minkowski�S
hwarz-s
hild jun
tion in whi
h M = 1 and ~� = 0:25, whi
hresults in the relevant sign for the outside spa
etimeto 
hange at R̂
 � 3:175. The plot 
learly emphasizesthe dis
ontinuity in the expression for the e�e
tive mo-mentum (16) due to the 
hange in the �+ signwonder where the asymptoti
 region with R ! 1 is.The asymptoti
 region is on the other side extendingbeyond the 
enter, 
orresponding to R = 2GM . Thetime sli
e 
annot terminate at the 
enter (bifur
ationpoint) of the S
hwarzs
hild spa
etime. We then seethat the geometry on this time sli
e suddenly 
hangesat the sign �ip point. Namely, the �nal 
on�guration
ontains a wormhole, 
orresponding to the existen
e ofa minimum 
ir
umferential radius. At the same time,�Pe� is dis
ontinuous there. As long as we sti
k to thistime sli
e, it is di�
ult to obtain a satisfa
tory and
onsistent pres
ription. Figures 3 and 4 show the sit-uation before and after the tunnelling. By 
omparingthe sli
e before the tunnelling (thi
k horizontal line inthe Penrose diagram for the 
on�guration before thetunnelling in Fig. 3
) with the sli
e after the tunnelling(thi
k horizontal line in the Penrose diagram for the
on�guration after the tunnelling in Fig. 4
), we 
analso have a 
lear example of the situation dis
ussedjust above for the Eu
lidean spa
etime that should in-terpolate between these two 
on�gurations. In the nextse
tion, we dis
uss the same pro
ess in the 
anoni
alformalism without spe
ifying the gauge, whi
h makesit possible to over
ome these di�
ulties.4. CANONICAL APPROACH WITH SMOOTHTIME SLICEWe 
onsider the 
anoni
al approa
h in this se
tion,following Ref. [29℄. The spheri
ally symmetri
 metri
530
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Full spacetime before

the tunnelling

a b

c

Fig. 3. Constru
tion of the Penrose diagram for the spa
etime before the tunnelling. Panel a shows the wall traje
tory inMinkowski spa
etime. The unshaded area between R = 0 and the bubble wall parti
ipates in the jun
tion and is joined tothe unshaded region of the S
hwarzs
hild spa
etime in panel b. The �nal 
on�guration is shown in panel 
, where, again,we have to 
onsider only the unshaded part of the Penrose diagrams, that des
ribes spa
etime while the wall expands fromR = 0 until the turning point, where tunnelling takes pla
e. The thi
k bla
k line in panel 
 is the spa
etime sli
e at whi
htunnelling starts (see, e. g., the �t iS sli
e in Fig. 1, whi
h 
orresponds to the S
hwarzs
hild part of this sli
e)is spe
i�ed in the 3 + 1 de
omposition asds2 = N tdt2 + L2(dr +Nrdt)2 +R2d
2; (23)where, with the standard notation, d
2 is the spher-i
ally symmetri
 part of the line element. Then thea
tion in the 
anoni
al formalism is obtained asS = Z dt p _̂r + Z dt Z dr ��� 1Gf�L _L+�R _Rg�N tHt�NrHr�� Z dtSM (24)withHt = 1G  L�2L2R2��L�RR +�RR02L �0�R022L �L2!++ Æ(r � r̂)s� p̂L�2 +m2;Hr = 1G (R0�R � L�0L)� Æ(r � r̂) p; (25)

where p, �L, and �R are the respe
tive 
onjugate mo-menta to r̂, L, and R. For the derivatives, we adoptthe following standard 
onvention:_B = �B�t ; B0 = �B�r : (26)We stress that the values of all the metri
 fun
tionsare assumed to be 
ontinuous a
ross the wall, althoughtheir derivatives 
an be dis
ontinuous. The 
onstraintequations Ht = 0 and Hr = 0 are solved in the bulk as�L = R�; �R = �0LX ; (27)where we introdu
e the de�nitionsX := R0L ; � := (X2 � A2)1=2: (28)By integrating the 
onstraint equations a
ross the wall,we obtain the jun
tion 
onditions, whi
h in the presentnotation 
an be written as531 10*
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i−Fig. 4. Constru
tion analogous to the one in Fig. 3, but for the spa
etime after the tunnelling. The jun
tion is obtainedagain by joining the unshaded region of the Minkowski spa
etime in panel a, with the unshaded region of the S
hwarzs
hildspa
etime in panel b. After performing the jun
tion, the spa
etime after the tunnelling is the region to the future of thethi
k bla
k line in panel 
. The part of this sli
e in the S
hwarzs
hild region 
orresponds to the �t fS sli
e in Fig. 1. Here itis also 
lear that after the tunnelling, the sli
e 
ontains R = Rg. This was not the 
ase for the sli
e before the tunnellingshown in Fig. 3[�L℄ = Gp̂L ; [X ℄ = Gm̂R �1 + p2m2L̂2�1=2 : (29)In the WKB approximation, the wave fun
tion iswritten as / exp(iI(r̂; L;R)) and the 
onjugate mo-menta are identi�ed asp = ÆIÆr̂ ; �L = G ÆIÆL; �R = G ÆIÆR: (30)Hen
e, the a
tion relevant to the WKB wave fun
tionis I = Z dt p _̂r + 1G �Z dt Z drf�L _L+ �R _Rg� : (31)We note that in this approa
h, removing the last termin Eq. (24) is absolutely unambiguous.To handle expression (31) without spe
ifying thegauge, a key observation is the existen
e of a fun
tion� = �(L;R;R0) that satis�esÆ� � �LÆL+ �RÆR; (32)

where ��� means that the equality holds modulo totalderivative terms. It is then possible to integrate theabove equation to obtain�(L;R;R0) = RR0 log�X � �A �+RL�: (33)In the above expression, there is an arbitrariness be-
ause the total derivative of an arbitrary fun
tion of Rwith respe
t to r 
an be added, whi
h, of 
ourse, doesnot a�e
t the �nal result.Then the a
tion be
omesI = Z dt p _̂r + 1G �Z dr Z dt���t � Z dt h	 _Ri� == Z dt p _̂r + 1G ���Z dr����tfStiS � Z dt _̂r[�℄� Z dt h	 _Ri� ; (34)532
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reationwhere we de�ne	 := ���R0 = R log�X � �A � : (35)In the �rst equality in Eq. (34), we removed the 
ontri-bution of 	 _R at r !1, assuming that the time sli
e isasymptoti
ally identi
al to the one in the stati
 
hartof the S
hwarzs
hild spa
etime, in whi
h 	 vanishesbe
ause � = 0 and X = A. Using_̂R := dR̂dt = �R0 _̂r + _R�r=r̂ ; (36)we 
an rewrite the last term in the parentheses in theright-hand side of Eq. (34) ash	 _Ri = h	 _̂R�	R0 _̂ri = � [	R0℄ _̂r + [	℄ _̂R; (37)where in the last equality we have extra
ted _̂R and _̂rfrom the square bra
kets sin
e their values evaluatedon both sides of the jun
tion are identi
al. Thus, weobtainI = Z dt _̂r�p+ 1G [	R0 � �℄�++ 1G �Z dr����tfStiS � Z dt _̂R [	℄� : (38)Be
ause we have 	R0 � � = �RL�, the �rst termin Eq. (38) vanishes under the jun
tion 
ondition (29),and we �nally obtain the gauge non�xed a
tion relevantfor the WKB wave fun
tion in the formI = 1G �Z dr����tfStiS � Z dt _̂R [	℄� : (39)We now examine the motion of the shell, dR̂=dt, inmore detail. The part of the a
tion related to the shelltakes the formSs = Z dtLs == �m Z dt�(N̂ t)2 � L̂2( _̂r + N̂r)2�1=2 : (40)From this expression, the 
onjugate momentum to r̂turns out to be given byp = �Ls� _̂r == m�(N̂ t)2 � L̂2( _̂r + N̂r)2��1=2 L̂2( _̂r + N̂r); (41)from whi
h we obtainL̂2(N̂ t)2 ( _̂r + N̂r)2 = p2m2L̂2 �1 + p2m2L̂2��1 : (42)

From the normalization of the four velo
ity, we also�nd  N̂ tdt̂d� !2 1� L̂2(N̂ t)2 ( _̂r + N̂r)2! = 1; (43)whi
h is further simpli�ed using Eq. (42) asN̂ tdt̂d� = �1 + p2m2L̂2�1=2 : (44)Now, we are ready to rewrite dR̂=d� . Using theequation of motion for R, we have_R = �N t�LR +NrR0:Then we obtaindR̂d� = dt̂d� �(N̂r + _̂r)R̂0 � N̂ t �̂L̂R � == N̂ tdt̂d�  (N̂r + _̂r) L̂̂N t X̂ � �̂! == �1+ p2m2L̂2�1=2 �1+ p2m2L̂2��1=2 pX̂mL̂��̂! == pX̂mL̂ � �̂�1 + p2m2L̂2�1=2 ; (45)where in the third equality, we have used Eqs. (42) and(44). Substituting �̂ = (X̂2� Â2)1=2, we 
an solve thisequation for X̂ asX̂ = � pmL̂R̂;�+��R̂2;�+Â2�1=2�1+ p2m2L̂2�1=2 : (46)Remembering that p and R̂;� do not have a jump a
rossthe jun
tion, from Eq. (46) and the jun
tion 
ondition(29), we re
over exa
tly Eq. (10).Furthermore, substituting Eq. (46) in Eq. (45), weobtain�̂ = ��1+ p2m2L̂2�1=2R̂;�+� pmL̂ �R̂2;�+Â2�1=2 ; (47)and hen
eX̂ � �̂ = (�1 + p2m2L̂2�1=2 � pmL̂)�����R̂2;� + Â2�1=2 + R̂;�� : (48)Therefore, we 
an �nally write the jump of 	 as[	℄ = R̂264log0B���R̂2;� +A2�1=2 + R̂;�A 1CA375 : (49)533
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lideanization, Eq. (39) 
an be rewritten usingthe above results, and it gives�I = 1G �Z dr ������t fS�t iS � Z dt _̂R[ �	℄� (50)with�� = i� = iRR0 log X � i �A2 �X2�1=2A !��RL �A2 �X2�1=2 (51)and[ �	℄ = [i	℄ = iR̂264log0B���A2�R̂2;���1=2+iR̂;�A 1CA375 : (52)This expression is identi
al to Eq. (18) obtained inSe
. 2 for the tunnelling that does not produ
e a worm-hole. First, sin
e A = X on the initial and �nal sur-fa
es, where the time sli
es 
oin
ide with the ones with�tS = 
onst and �tM = 
onst, �� vanishes there. Sin
e� = +1 in this 
ase, as mentioned above, the di�eren
ebetween �Pe� and [ �	℄ does not arise.By 
ontrast, in the 
ase with wormhole produ
tion,the �rst term in Eq. (50) does not vanish be
ause Xis negative in the region between R = Rg and the wallin the S
hwarzs
hild spa
etime, and hen
e X = �Athere. Namely, the �rst term 
ontributes asZ dr ������t fS�t iS = Z rgr̂(�t fS) dr �RR0 = 12 �R2g�R̂(�� f )2� ; (53)where rg is the value of r at R = Rg on the �nal sur-fa
e. Hen
e, the di�eren
e between Eqs. (18) and (50)is evaluated as�I � �I(tS) = Z dr ������t fS�t iS ++ � Z R̂(�t iS)R
 dRR = 12 �R2g �R2
� ; (54)if we assume that �Pe� in Eq. (18) has a dis
rete jumpat R̂ = R
. Of 
ourse, this dis
repan
y is not strangeat all, sin
e the naive extension of the validity range offormula (18) 
annot be justi�ed.5. CONSISTENT DIRECT EVALUATIONAs we anti
ipated, we now show that the methodusing a pseudo-manifold for the des
ription of the in-stanton solution gives the same result that we derived

using the 
anoni
al approa
h in the pre
eding se
tion.Although this equivalen
e might seem almost trivial be-
ause both approa
hes are based on the same smoothfoliation of an Eu
lidean spa
etime, its expli
it proofwould be pedagogi
ally useful.We then return to the dis
ussion in Se
. 2. The�rst key observation is that the 
ontribution from the
arefully in
luded Iwallsurfa
e should not be in
luded whenwe adopt a smooth foliation. The se
ond point is thatwe have rewritten a term in Eq. (4) asZ � f� i d� R̂2(ÂS)2;R̂4G�(R̂2;� +A2)1=2 = �M2 Z � f� i d� dt̂Sd� : (55)We then subtra
ted M(tfS � tiS) from the total a
tion.In the 
omputation in Se
. 2, half of this subtra
tionwas 
ompensated by IRBIGsurfa
e and the rest by the above
ontribution (55). However, we �ndZ �� f�� i d�� dt̂Sd�� = �t fS � �t iS + 2�Rg; (56)when we use a smooth foliation for the tunnelling so-lution with wormhole formation. This shows that anadditional 
ontribution �MRg to the Eu
lidean a
tionarises. Gathering all, we �nd that the Eu
lidean a
tionevaluated by using a smooth foliation is given by�I(tS) � �Iwallsurfa
e + �MRg == 1G  � Z dt _̂R [ �	℄ + R̂2 �̂�����t fS�t iS + R2g2 ! == 1G  � Z dt _̂R [ �	℄ + R2g � R̂(�� f )2 ! ; (57)whi
h is pre
isely identi
al to �I .6. SUMMARY AND DISCUSSIONIn this paper, we studied the wormhole produ
tionfor the simplest spheri
ally symmetri
 shell model inasymptoti
ally �at spa
etime. In this simple setup, theinstanton solution 
an be generi
ally des
ribed by thejun
tion of Eu
lideanized Minkowski and S
hwarzs
hildspa
etimes. This solution, however, is not a Rieman-nian manifold in the sense that the existen
e of thedomain wall may depend on the path taken to rea
hthe possible lo
ation of the wall in spa
etime. Theterm pseudo-manifold was used in [27℄ for this solu-tion. A key point that we have emphasized here is thatin this 
ase, the ordinary 
onstant-time surfa
es asso-
iated with the stati
 
hart do not foliate the instanton534
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reationsmoothly. As a result, methods based on this time sli
-ing inevitably be
ome 
on
eptually ambiguous.We have here dis
ussed, however, that even in these
ases, if we 
hoose a smooth time sli
ing to 
onne
t the
on�gurations before and after the tunnelling, it is stillpossible to �nd the WKB wave fun
tion along an in-terpolating path of 
on�gurations with a bubble wall.In this way, we 
an identify an appropriate expressionfor the tunnelling rate without any ambiguity. The re-sult agrees with the dire
t evaluation of the Eu
lideana
tion on
e we properly subtra
t the zero-point energyand 
ount how many times ea
h region in the instantonsolution is swept when we 
onsider a smooth foliation.It is possible to tra
e the subtle nature of thepseudo-manifold to the fa
t that the time lapse in theEu
lidean region is not positive everywhere. Indeed,the sign of the time lapse has to be opposite betweenthe 
enter and the asymptoti
 in�nity, for at least somerange during the time evolution. This is a feature thatis 
ommon to the upward tunnelling in the 
ase of bub-ble nu
leation. It would be worth investigating whetherthis negative lapse 
auses any problem when we take�u
tuations around the WKB traje
tory into a
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