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HOLOGRAPHY BEYOND CONFORMAL INVARIANCEAND AdS ISOMETRY?A. O. Barvinsky *Lebedev Physial Institute, Russian Aademy of Sienes119991, Mosow, RussiaTheory Division, CERNCH-1211, Geneva 23, SwitzerlandReeived Otober 20, 2014We suggest that the priniple of holographi duality an be extended beyond onformal invariane and AdSisometry. Suh an extension is based on a speial relation between funtional determinants of the operatorsating in the bulk and on its boundary, provided that the boundary operator represents the inverse propagatorsof the theory indued on the boundary by the Dirihlet boundary value problem in the bulk spaetime. Thisrelation holds for operators of a general spin�tensor struture on generi manifolds with boundaries irrespetiveof their bakground geometry and onformal invariane, and it apparently underlies numerous O(N0) tests ofthe AdS/CFT orrespondene, based on diret alulation of the bulk and boundary partition funtions, Casimirenergies, and onformal anomalies. The generalized holographi duality is disussed within the onept of the�double-trae� deformation of the boundary theory, whih is responsible in the ase of large-N CFT oupled tothe tower of higher-spin gauge �elds for the renormalization group �ow between infrared and ultraviolet �xedpoints. Potential extension of this method beyond the one-loop order is also brie�y disussed.Contribution for the JETP speial issue in honor of V. A. Rubakov's 60th birthdayDOI: 10.7868/S00444510150301311. INTRODUCTIONIt is a great pleasure to write this paper dediated toValery Rubakov on the oasion of his sixties birthday.Our sienti� areers have started simultaneously whenwe were students at the Mosow University and sharedommon interests in physis � lassial and quantumgravity� and invariably pursued these interests, in ourown ways and styles, throughout the years to ome.In partiular, the results of this work were oneivedin the ourse of disussions, when Valery suggested towork out a ovariant method for alulating radiativeorretions in brane gravity models [1℄ as a means of es-tablishing appliability limits of the perturbation the-ory. By the time this method has beome ready foruse, the peak of interest in brane models was basiallyover, and interests of sienti� ommunity have shiftedto other areas, not the least of those being the idea ofholographi duality and the AdS/CFT orrespondene.*E-mail: barvin�td.lpi.ru

Interestingly, that old method now seems to �nd appli-ation in this �eld, and, I hope, Valery will be amusedto see how his suggestions are realized in this nonper-turbative onept of high-energy physis.The idea of holographi duality between a d-di-mensional onformal �eld theory (CFT) and a theoryin the (d + 1)-dimensional anti-de Sitter (AdS) spae-time that initially began with supersymmetri mod-els of N � N -matrix valued �elds [2�4℄ was later for-mulated for muh simpler �vetorial� models withoutthe need in supersymmetry [5℄. These models havean in�nite tower of nearly onserved higher-spin ur-rents and in this way naturally lead to a orrespondingtower of massless higher-spin gauge �elds. Therefore,the holography onept implies that the dual theoryshould ontain these �elds in AdS spaetime, thus form-ing the Vasiliev theory of nonlinear higher-spin gauge�elds [6, 7℄, whih neessarily imply an in�nite set ofthose, beause the priniple of gauge invariane forspins s > 2 annot be realized for a �nite tower ofspins. In ontrast to the original supersymmetri mod-els in whih the AdS/CFT orrespondene was heked514



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Holography beyond onformal invariane : : :for supersymmetry-proteted orrelators, holographiduality in vetorial models underwent veri�ation bynumerous nontrivial alulations that go beyond sim-ple kinematial or group-theoretial reasoning and ex-tend from the tree level O(N1) to the �one-loop� or-der O(N0).In partiular, the alulation of the U(N) singletsalar CFT partition funtion on S1 � S2 was shownto agree with the orresponding higher-spin partitionfuntion alulation in AdS4 [8℄, a result extended tothe O(N) singlet setor of a salar CFT [9℄. Thenthese results were on�rmed and extended to arbitrarydimensions in [10℄, inluding the omparison of ther-mal and Casimir energy parts of partition funtionsin CFTd and AdSd+1 in [11℄. The vanishing Casimirenergy in odd-dimensional theory (assoiated with theabsene of the onformal anomaly) implies the same onthe AdS side, whih is nontrivial beause it implies anin�nite summation over the tower of higher-spin gauge�elds � the property that was observed in d = 4 onthe AdS5 side [12℄ and on�rmed by an expliit summa-tion of onformal anomaly oe�ients as for onformalhigher-spin �elds on the S4 side [13℄. The list of simi-lar results agreeing on both sides of the AdSd+1/CFTdorrespondene was extended in [11℄.A speial lass of holographi dualities is assoi-ated with the so-alled double-trae deformations of thesalar CFT [14℄, whih generates its renormalizationgroup (RG) �ow from the IR �xed point (free CFT)to the UV �xed point [15℄. The assoiated holographidual of this RG �ow in the AdS spaetime is the transi-tion between two di�erent boundary onditions on thedual massless gauge �elds of higher spins at the AdSboundary [12; 15℄.The variety of these miraulous oinidenes andthe gradually extending area of validity of dualityrelations (from supersymmetri models to nonsuper-symmetri ones, from lower spaetime dimensions andlower spins to higher ones, from divergent and Casimirenergy parts of partition funtions to their thermalparts, from bosons to fermions, et) imply that thereshould be some deep funtional reasons underlying allthis and perhaps even allowing one to extend holo-graphi duality beyond AdS isometry and onformalinvariane. The goal of this paper is to show that thisis indeed possible. Within the lass of holographi du-alities assoiated with the double-trae deformation ofCFT, there exist universal relations for one-loop fun-tional determinants of loal and nonloal operators ongeneri (d+1)-dimensional spaetime and its d-dimen-sional boundary [16℄ that guarantee this duality irre-spetive of the bakground geometry and onformal in-

variane. The only ondition that relates (d+ 1)-di-mensional and d-dimensional theories is that at thetree level, the boundary theory be indued from thebulk by a Dirihlet boundary value problem; then theirone-loop quantum orretions dutifully math. Theproof of this statement is based on linear algebra of(pseudo)di�erential operators and a sequene of Gaus-sian funtional integrations. When the theory has asmall parameter 1=N playing the role of a semilassi-al Plank onstant, this sequene of integrations mightapparently be extended to holographi duality beyondthe one-loop order O(N0).2. DOUBLE-TRACE DEFORMATION OF CFTAND THE ADS/CFT CORRESPONDENCEThe double-trae deformation [14℄ of the large-NCFT of salar �elds �i(x), i = 1; : : : ; N , by the squareof the O(N) invariant single-trae salar operatorJ(x) = �i(x)�i(x);SCFT (�)! SCFT (�)� 12f Z dx J2(x);leads to the renormalization group �ow between the IR�xed point of the free CFT and its UV �xed point.In the limit of large N , this was learly demonstratedby using the Habbard�Stratonovih transformation asfollows [15℄.We onsider the generating funtional ZCFT (') ofthe orrelators of J for the perturbed theory withsoures ',ZCFT (') = Z d��� exp��SCFT (�) + 12 J(�)f�1J(�) + 'J(�)� ;withZCFT (')ZCFT (0) = �exp�12 Ĵf�1Ĵ + 'Ĵ��CFT �� Dexp('Ĵ)EfCFT ; (2.1)Ĵf�1Ĵ = Z dx dy Ĵ(x)f�1(x; y)Ĵ(y);'Ĵ = Z dx'(x) Ĵ (x): (2.2)For the sake of generality of our formalism we writethe operator f = f(x; y) in what follows in a rather515 9*



A. O. Barvinsky ÆÝÒÔ, òîì 147, âûï. 3, 2015general form even though it is ultraloal in CFT mod-els, f(x; y) = fÆ(x; y), and we also use the on-densed notation omitting the sign of integration overd-dimensional oordinates. A funtional dependene inthe d-dimensional spae is denoted by round brakets,like SCFT (�) � SCFT (�(x)), and the operators atingin this spae, like f , are boldfaed.Representing the part of the exponential in (2.1)quadrati in J as a Gaussian integral over an auxiliary�eld � (the Habbard�Stratonovih transform), we haveDexp('Ĵ)EfCFT = (det f)1=2 Z d� ���exp��12�f� + (�+ ')Ĵ��CFT ; (2.3)where det f denotes the funtional determinant of theoperator f(x; y) on the spae of funtions of d-dimen-sional oordinates.As usual in large-N CFT, we assume the vanishingexpetation value of Ĵ , hĴi = 0, and the smallness ofhigher-order orrelators hĴ Ĵ : : : Ĵi as N !1,Dexp(' Ĵ)ECFT � exp�12 '
Ĵ Ĵ�'� �� exp��12 'F'� ; (2.4)
Ĵ(x) Ĵ(y)� = �F(x; y); (2.5)where �F is the notation for the undeformed two-pointorrelator of J . From the new Gaussian integrationin (2.3), we then haveDexp('Ĵ)EfCFT = (det f)1=2 (detFf )�1=2 �� exp��12 ' 1F�1 + f�1'� ; (2.6)where Ff � F+ f : (2.7)Therefore, the orrelator hĴ ĴifCFT in the double-traedeformed CFT interpolates between the UV and IR�xed points of the theory:hĴ ĴifCFT = � 1F�1 + f�1 !! ( �F+ : : : ; f�1F� 1;�f + f(f�1F)�1 + : : : ; f�1F� 1: (2.8)For an ultraloal f = fÆ(x; y) in the CFT with a sing-le-trae salar operator Ĵ of dimension �, the orrela-tor hĴ ĴiCFT = �F in the oordinate and momentumrepresentations behaves as

�F � 1jx� yj2� � 1kd�2� :Thus, the above two limits indeed orrespond to therespetive UV, f�1F � � 1fkd�2� � 1;and IR, f�1F � � 1fkd�2� � 1;�xed points. In the IR limit, the orrelator (modulo theontat term f = fÆ(x; y)) is dominated by the seondterm f(f�1F)�1 � 1jx� yj1=(d�2�)in the long-distane regime jx � yj � jf j1=(d�2�) [15℄.The renormalization group �ow interpolates betweentwo phases in whih the operator J(x) has di�erentdimensions, � = �+ in IR and d=2�� = �� in UV.This double-trae deformation piture also appliesin the ontext of the dual desription of higher-spinonformal gauge �elds [12; 15℄. Sine the O(N) orU(N) salar or fermion CFT has a tower of nearly on-served higher-spin urrents J�1:::�s(x), their gaugingresults in the orresponding tower of higher-spin gauge�elds '�1:::�s(x):J = J�1:::�s(x) � �i(x) ��1 : : : ��s�i(x);' = '�1:::�s(x): (2.9)This lass of theories was onjetured to be dual toVasiliev theories of higher-spin gauge �elds in AdS (avery inomplete list of referenes is ontained in [17�22℄). The desription of these dualities an be summa-rized as follows.In AdSd+1 with the oordinates X � XA == X1; : : : ; Xd+1, there exist totally symmetri trans-verse gauge �elds � = �A1:::As(X) with the quadratiationSd+1[�℄ = ZAdS dd+1X L��(X);r�(X)� (2.10)that generates linearized equations for massless spin-stensor �elds. The ovariant form of this quadrati a-tion is known [23℄, but its onrete expression is notneeded in what follows. At the boundary of AdSd+1,whih is either Rd or Sd (or S1 � Sd�1 in the thermalase) and is parameterized by oordinates x � x� == x1; : : : ; xd via the embedding funtions X = e(x),the boundary values of the tangential omponents of �,�j � ��1:::�s(e(x)) = '�1:::�s(x); (2.11)516



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Holography beyond onformal invariane : : :represent the gauge �elds of the d-dimensional CFT,oupled to its onserved higher-spin urrents. Then theAdSd+1/CFTd onjeture means that the generatingfuntional of the orrelators of onserved urrents of theundeformed CFT living on the boundary �(AdSd+1)an be obtained from the path integral of the dual the-ory of gauge �elds in the AdSd+1 spaetime subjet toDirihlet boundary onditions at this boundary:
D exp('Ĵ)ECFT = Z�j=' D� exp(�Sd+1[�℄)Z�j=0 D� exp(�Sd+1[�℄) : (2.12)In what follows, we always use a vertial bar to denotethe restrition of a bulk quantity to the boundary.Using this relation in the right hand side of (2.3),we obtainDexp('Ĵ)EfCFT = (det f)1=2 Z d� exp��12 �f�� Z�j=�+' D� exp(�Sd+1[�℄)Z�j=0 D� exp(�Sd+1[�℄) == (det f)1=2 �� Zall � D� exp��Sd+1[�℄�12��j�'�f��j�'��Z�j=0 D� exp(�Sd+1[�℄) ; (2.13)where the total ation in the funtional integrand on-tains both the bulk part and the boundary part loatedat �(AdSd+1) =MdS[�℄ � Sd+1[�℄ + 12��j � '�f��j � '� == 12 ZAdS dd+1X �(X)$F (r)�(X) ++ 12 ZMd ddx��j(x) � '(x)�f��j(x) � '(x)�; (2.14)and the integration in the denominator runs over the�elds � both in the bulk and on the boundary. Thismeans that the boundary onditions on a saddle-pointon�guration �f are a�eted by the boundary partof the ation (that is, by f , whih is a kernel of thequadrati boundary ation in (2.14)), and that is whywe label it by the subsript f .The kernel of the bulk Lagrangian in given by theseond-order operator F (r), whose derivativesr � �Xare integrated by parts in suh a way that they formbilinear ombinations of �rst-order derivatives atingon two di�erent �elds (this is denoted by the left-rightarrow over F (r)). Integration by parts gives nontriv-ial surfae terms on the boundary. In partiular, thisoperation results in the Wronskian relations for generi

test funtions �1; 2(X) on any spaetime domainMd+1with the boundary �Md+1:ZMd+1 dd+1X ��1!F (r)�2 � �1 F (r)�2� == � Z�Md+1 ddx��1 !W �2 � �1  W �2� ; (2.15)ZMd+1 dd+1X �1 $F �2 = ZMd+1 dd+1X �1(!F �2) ++ Z�Md+1 ddx�1 !W �2 ���: (2.16)The arrows here indiate the diretion of the ation ofderivatives on either �1 or �2. These relations an beregarded as a de�nition of the �rst-orderWronskian op-erator W = W (r) for F (r). In simple models on theAdS bakground and its onformal boundary, parame-terized by oordinates XA = y; x�, it basially reduesto the normal to the boundary derivative, W (r) � �y.The saddle-point approximation for the path inte-gral in the numerator of (2.13) is dominated by the on-tribution of a stationary point of the total ation (2.14).In view of (2.16), the requirement of the vanishing�rst-order variation ontains bulk and surfae terms,517



A. O. Barvinsky ÆÝÒÔ, òîì 147, âûï. 3, 2015ZAdSd+1 dd+1X Æ� (!F �) ++ ZMd ddx Æ��� !W +f�� j � f'� = 0; (2.17)whih must vanish independently beause Æ�(X) isnonvanishing both in the bulk and at the boundarysine � is being integrated over all spaetime points.Thus we obtain equations of motion for a stationaryon�guration �f (X) in the bulk and the boundary on-dition at Md,F (r)�f (X) = 0; � !W (r) + f��f �� = f': (2.18)The latter is the generalized Neumann (or Robin)boundary ondition involving the normal-to-the-boun-dary derivative of �(X) ontained in W (r). On theontrary, f is an entirely d-dimensional operator, whihis ultraloal in the CFT theory of double-trae defor-mations, but we keep it as a more general (di�erentialor even nonloal pseudo-di�erential) operator in Mdin what follows. The solution to this boundary valueproblem an be given in terms of the Green's fun-tion GNf (X;Y ) of F (r) subjet to this (homogeneous)Neumann boundary ondition:F (r)GNf (X;Y ) = Æ(X;Y );(!W +f)GNf (X;Y ) ���X2�Md+1 = 0; (2.19)and is given by�f (X) = Zb dyGNf (X; y) f'(y) � GNf j f': (2.20)Here, GNf (X; y) � Gf (X;Y ) jY=e(y)is the notation for the boundary-to-bulk propaga-tor � the Green's funtion with its seond argu-ment put on the boundary via the embedding fun-tion Y A = eA(y�). Its subsript indiates that thisGreen's funtion is determined by the generalized Neu-mann boundary onditions with a partiular funtion f .Then the stationary (on-shell) value of the a-tion (2.14) isS[�f ℄ = 12 Zb dx dy '(x)f �� �f�1(x; y)�GNf (x; y)�f'(y) �� 12 '�f � f GNf ���� f�'; (2.21)

whereGNf (x; y) � GNf (X;Y ) jX=e(x); Y=e(y) �� GNf jj (2.22)is the notation for the boundary-to-boundary propa-gator � the restrition of both Green's funtion argu-ments to the boundary, denoted by two vertial barsfor brevity. Again using the ondensed notation on theboundary, we omitted the sign of integration over theboundary oordinates in (2.20), (2.21)1). Thus, �nally,we haveZ D� exp��Sd+1[�℄� 12��j � '�f��j � '�� == �DetNfF ��1=2 �� exp��12 '�f � f GNf ���� f�'� ; (2.23)where DetNfF = (DetGNf )�1is the bulk funtional determinant of F on the spae offuntions subjet to the generalized Neumann bound-ary onditions (2.19). The denominator of (2.13) isgiven of ourse by the funtional determinant with theDirihlet boundary onditions orresponding to �j = 0,Z�j=0 DA exp(�Sd+1[�℄) = �DetDF ��1=2: (2.24)Funtional determinants of operators ating in the(d + 1)-dimensional bulk here and in what follows aredenoted by Det with a subsript indiating the type ofboundary onditions for the lass of funtions on whihthe determinant is alulated (in ontrast to det for op-erators ating on the boundary).Substituting these results in (2.13), we obtainD exp('Ĵ)EfCFT = (det f)1=2 �DetNfFDetDF ��1=2 �� exp��12 '�f � f GNf ���� f�'� ; (2.25)and the omparison of the exponentials and preexpo-nential fators here and in (2.6) then yields the tree-level and one-loop relationsGNf ���� = F�1f ; (2.26)DetNfF = detFf DetDF: (2.27)1) It is useful to apply this DeWitt ondensed notation for in-tegral operations on the boundary, beause these operations haveproperties of formal matrix ontration and multipliation.518



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Holography beyond onformal invariane : : :These relations are diret onsequenes ofAdS/CFT orrespondene (2.12) in the lowesttwo orders of the 1=N expansion, but the logi of thisderivation an be reversed. If we start with these rela-tions, then the holographi duality is enfored in thisapproximation. As we see shortly, a simple exeriseon linear algebra and Gaussian integration provides aproof that these relations are very general and holdfor a generi seond-order di�erential operator F (r)ating on an arbitrary spin�tensor �eld for a generimanifold with a boundary. By a speial rule, it induesa (generially nonloal pseudodi�erential) operatorFf ating on the boundary that an be regardedas the inverse (boundary-to-boundary) propagatorof the surfae theory indued from the bulk theory.No partiular geometry of the bulk spaetime or itsboundary is assumed in this onstrution. All thismeans that the holographi duality between d- and(d + 1)-dimensional theories an be extended beyondAdS isometries and onformal invariane under thesingle assumption that the d-dimensional theory isindued from the bulk theory by integrating out itsbulk degrees of freedom.3. HOLOGRAPHIC DUALITY AND THEINDUCED BOUNDARY THEORYFor Eqs. (2.26)�(2.27) to hold, the boundary oper-ator Ff should be related to the operator F (r) at-ing in the bulk and to relevant boundary onditionsNf on �Md+1. To establish this, we address the du-ality relation (2.12) at the tree level. For a quadrati(d+ 1)-dimensional ation of the formSd+1[�℄ = 12 ZAdS dX �(X)$F (r)�(X); (3.1)the tree-level holographi duality (2.12) implies thatD exp('Ĵ)ECFT = exp(�Sd+1[�D(')℄)exp(�Sd+1[�D(0)℄) ; (3.2)where �D(') is a solution of the problem,F (r)�D(X) = 0, �D j = '(x), with inhomoge-neous Dirihlet boundary onditions. In view ofrelations (2.15) and (2.16), this solution and its on-shell value of the ation an be represented in terms ofthe Dirihlet Green's funtion GD(X;Y ),F (r)GD(X;Y ) = Æ(X;Y );GD(X;Y ) ���X=e(x) = 0; (3.3)

as�D(X) = � ZMd dy GD(X;Y )  W ���Y=e(y)'(y) �� �GD  W j '; (3.4)S[�D ℄ = 12 ZMd dx dy '(x)h� !WGD  W (x; y) i'(y) �� 12 'h� !W GD  W jji': (3.5)The expression !W GD  W jj implies that Wronskianoperators at on both arguments of the kernel of theDirihlet Green's funtion, and the result is restritedto the boundary,!WGD  W jj (x; y) ��!W (rX)GD(X;Y )  W (rY) ���X=e(x); Y=e(y): (3.6)The result in (3.5) is exatly the tree-level boundarye�etive ation obtained from the original ation (4.3)by integrating out the bulk �elds subjet to �xedboundary values '(x), S(') = S [�D(')℄. Aordingly,the kernel of the quadrati form of (3.5) in ' is theinverse propagator of the boundary theory,F � Æ2SÆ' Æ' = � !WGD  W jj; (3.7)whih is generially a nonloal operator in the spaeof boundary oordinates x. Thus, the generating fun-tional of orrelation funtions in the undeformed CFTis given byD exp('Ĵ)ECFT = exp��12 'F'� ;
Ĵ Ĵ�CFT = �F; (3.8)with the two-point orrelator of the Ĵ (f. Eq. (2.5))indued from the (d+1)-dimensional bulk. In fat, thisis a basi relation of the linearized tree-level AdS/CFTorrespondene, whih has been heked in numerousmodels starting with [3, 4℄. This �xes the boundaryoperator Ff = F + f in the right-hand sides of ourbasi relations (2.26), (2.27) in terms of the bulk op-erator F (r). We now proeed with the proof of theserelations.4. FUNCTIONAL DETERMINANTSRELATIONSThe idea of the derivation of relations (2.26)and (2.27), that was �rst given in [16℄, is based on a519



A. O. Barvinsky ÆÝÒÔ, òîì 147, âûï. 3, 2015sequene of Gaussian funtional integrations. Any a-tion S[�℄ quadrati in its �eld �(X) an give rise totwo Gaussian funtional integrals. One of them is ofthe form Z = Zall D� exp (�S[�℄); (4.1)where integration runs over all �elds both in the bulkand on its boundary, and the other,Z(') = Z�j=' D� exp (�S[�℄); (4.2)implies integration with �xed values of � at the bound-ary. Obviously, these path integrals are related by theequation Z = R d'Z('), and hene independent al-ulations of its left- and right-hand sides yield ertaintree-level and one-loop relations. As we see in whatfollows, under an appropriate hoie of S[�℄ they turnout to be exatly the ones advoated above.We onsider the bulk�boundary ation of the �eld�(X) in the (d+1)-dimensional (bulk) spaetimeMd+1and its boundary Md = �Md+1,S[�℄ = 12 ZMd+1 dX �(X)$F (r)�(X) ++ ZMd dx�12 '(x) f(�)'(x) + j(x)'(x)� ; (4.3)��� � �(X)���Md+1 = �(e(x)) = '(x): (4.4)We reall that the boundary embedding into the bulkin terms of x = x� is denoted by XA = eA(x�) and,as previously, the vertial bar denotes the restritionof a bulk quantity to the boundary. The �eld �(X)and the seond-order di�erential operator F (r) haveabsolutely generi spin�tensor struture, and there areno restritions on the geometry of the bulk Md+1 andits boundaryMd. Similarly to (2.16), the derivatives ofF (r) in the bulk part are integrated by parts in suh away that they form bilinear ombinations of �rst-orderderivatives. As a kernel, the boundary part of the a-tion ontains some loal or nonloal (pseudodi�eren-tial) operator f = f(�), � = �x ating in the spae of x.In ontrast to the bulk part, integration by parts on theboundary is irrelevant for our purposes, beause Md isassumed either to be losed ompat or to have trivialvanishing boundary onditions at its in�nity. Funtionj(x) plays the role of soures onjugate to '(x) andloated on the boundary.

The alulation of (4.2) repeats the derivation inSe. 2, and the answer is given byZ = �DetNfF ��1=2 exp(�S[�f ℄); (4.5)where �f is a stationary point of ation (4.3) satisfyingthe problem with inhomogeneous generalized Neumannboundary onditionsF (r)�f (X) = 0; (!W + f)�f ���+ j(x) = 0; (4.6)and DetNfF denotes the bulk ((d + 1)-dimensional)funtional determinant of F (r) on the spae of fun-tions subjet to these (homogeneous) boundary ondi-tions.Similarly to (2.17), problem (4.6) naturally followsfrom the ation (4.3) andWronskian relations for F (r),beause the variation of the ation is given by the sumof bulk and boundary terms, whih should vanish sep-arately sine the ation should be stationary also withrespet to arbitrary variations of the boundary �eldsÆ'. The Neumann Green's funtion of this problem,Eq. (2.19), gives a solution of (4.6) that in the on-densed notation of Se. 2 (f. Eq. (2.20)) has the form�f (X) = �GNf j j and gives rise to the on-shell value ofthe ation as a funtional of the boundary soure j(x):S[�f ℄ = �12 Zb dx dy j(x)GNf (x; y) j(y) �� �12 j GNf ���� j: (4.7)Here, again,GNf (x; y) � GNf (X;Y ) jX=e(x); Y=e(y) � GNf jjis the notation for the boundary-to-boundary propaga-tor, with the restrition of both Green's funtion argu-ments to the boundary denoted by two vertial bars forbrevity. To simplify the formalism, we omitted the signof integration over the boundary oordinates in (4.7)2).Thus, we �nally haveZ = �DetNf F ��1=2 exp�12 j GNf ���� j� : (4.8)Alternatively, we an alulate the same integral bysplitting the integration proedure into two steps: �rstintegrating over bulk �elds with �xed boundary val-ues and then integrating over the latter. This allows2) It is useful to apply this DeWitt ondensed notation forintegral operations on the brane, beause these operations haveproperties of formal matrix ontration and multipliation.520



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Holography beyond onformal invariane : : :rewriting the same result in the form Z = R d'Z('),where the inner integral (4.2),Z(') � Z�j=' D� exp (�S[�℄) == (DetD F )�1=2 exp(�S[�D℄); (4.9)is given by the ontribution of the solution of Dirih-let problem (3.4) with the Dirihlet Green's funtionGD(X;Y ) (f. Eq. (3.3)). The orresponding on-shellation equalsS[�D℄ = 12 'h� !WGD  W jj+ f i'+ j ' �� 12 'Ff '+ j ': (4.10)The part quadrati in ' here oinides with the induedation (3.5) in Se. 3 modulo the additional f -term.Substituting (4.9) with (4.10) in Z = R d'Z('), weagain obtain the Gaussian integral over ' that is sat-urated by the saddle point '0 of the above boundaryation (4.10), '0 = �F�1f j, and the �nal result isZ = �DetD F ��1=2�detFf��1=2 �� exp�12 j F�1f j� ; (4.11)where we reall that det denotes funtional determi-nants in the d-dimensional boundary theory.In view of the arbitrariness of the boundary sourej, omparing the tree-level and one-loop (preexponen-tial) parts with those of (4.8) immediately yields tworelationsGNf jj = F�1f � h� !WGD  W jj+ f i�1; (4.12)DetNf F = detFf DetDF: (4.13)These are exatly the relations (2.26), (2.27) that un-derly the dual AdS desription of the double-trae de-formation of CFT models. The one-loop-order equa-tion (4.13) here relates funtional determinants of thebulk operator on di�erent funtional spaes de�ned byNeumann and Dirihlet boundary onditions and in-tertwines them via the determinant of the boundaryoperator3).When applied to a large-N CFT, these relations de-sribe a deformation of the boundary CFT that indues3) This might perhaps be a �eld-theoreti analogue of Vasiliev'sdeterminant relation in the operator algebra of onformal ur-rents [22℄ based on di�erent star produts � a ounterpart ofdi�erent funtional spaes on the �eld theory side.

a renormalization group �ow from the infrared (f =1)to the ultraviolet (f = 0) �xed points of this theoryand generates the orresponding inrease in the entralharge [24℄ (or the onformal anomaly a-oe�ient inthe 4D ase [25℄). From (4.13), the hange of the fparameter is determined by the ratioDetNf1FDetNf2F = detFf1detFf2 � det�1+ f�11 F�det�1+ f�12 F� ; (4.14)where in the seond equality we took into aount thatfor an ultraloal kernel f = fÆ(x; y), its determinantdet f = 1 (e. g., in dimensional regularization) does notgive any ontribution. This is the relation that was for-mulated in [26, 27℄ as the ratio of the bulk theory par-tition funtions with di�erent values of the f oe�ientin terms of the hĴ ĴiCFT orrelator of the unperturbedboundary CFT, �F =!WGD  W jj4).While the right-hand side of this equation wasderived on the CFT side by using the Hubbard�Stratonovih transform [15℄, the left-hand side equalitywas proved in [26℄ by using an expression for the fun-tional determinant of the Sturm�Lioville operator interms of its basis funtions [28, 29℄ or by the expliit useof the operator spetra on the AdS bakground. On theontrary, the power of our result (4.13) is that it holdsfor generi bulk�boundary bakgrounds for operatorsF (r) and f of the most general type and admits anytype of ovariant regularization for UV divergenes [16℄.4.1. The ase of gauge theoriesAn important remark is that the funtional deter-minant duality relation (4.13) also applies to gauge the-ories, whih is the ase of major interest for us beauseour goal is the holographi duality for towers of higher-spin �elds in the bulk and its boundary. A potentialdi�ulty here might be the fat that in the bulk, thetotally symmetri spin-s �elds �A1:::As(X) have bulkindies ranging over d + 1 values, while the boundary�elds '�1:::�s(x) have only d-dimensional tensor om-ponents, and hene the bulk F and boundary F op-erators have essentially di�erent spin strutures. Thisontroversy is reoniled, however, by noting that spins > 0 theories are gauge invariant under transforma-tions of the form�! �� = �+���; '! '� = '+��';�kj = �; (4.15)4) To ompare (4.14) with the formalism in [26℄ we should bearin mind that our f is the negative inverse of f in [26℄, and our Fis the negative of the hĴ ĴiCFT orrelator denoted by G in [26℄.521



A. O. Barvinsky ÆÝÒÔ, òîì 147, âûï. 3, 2015���A1:::As(X) = r(A1�A2:::As)(X); (4.16)��'�1:::�s(x) = D(�1��2:::�s); (4.17)generated by a spin-(s�1) �eld �(X) with the tangen-tial omponents �k = �(x) (D� denotes the ovariantderivative on the boundary). The balane of physialdegrees of freedom in the bulk and on the boundaryis then maintained by imposing gauge onditions �xingthese transformations. Bakground ovariant gauges ofthe formH(�) = HA1:::As�1(X) � rB�BA1:::As�1(X) = 0�x them inompletely: there remain residual gaugetransformations that are the zero modes of the seond-order bulk Faddeev�Popov operator Q = QA1:::As�1B1:::Bs�1de�ned by ��H(�) = Q�: (4.18)These modes are parameterized by the boundary val-ues �j = �(x), whih perform gauge shift (4.15) ofthe boundary �elds '. Therefore, these residual gaugetransformations an be gauged out by imposing theboundary gauge onditions on ' of the formh(') = h�1:::�s�1(x) � D�'��1:::�s�1(x):In their turn, these generate a nondegenerate boundaryFaddeev�Popov operator Q = Q�1:::�s�1�1:::�s�1 de�ned by��h(') = Q�: (4.19)Altogether, this is equivalent to introduing theFaddeev�Popov gauge-breaking fator Æ [H(�) ℄ �� Æ(h('))MH;h[�℄ under the path integral sign with5)(MH;h [�℄ )�1 = Z D� Æ �H(��) � Æ(h('�)) �� (DetNQ )�1 : (4.20)Again, using the obvious relationZ D� (: : : ) = Z d� Z�j=� D� (: : : )5) The ghost fator we use here involves a generi gauge,whereas the works on higher spin gauge �elds on AdS bak-ground [30℄ usually use a partiular (DeWitt bakground ovari-ant) gauge de�ned by the generator of the gauge transformation.Moreover, in [30℄ the power of the Faddeev�Popov determinant inthe ghost fator is di�erent, beause all the determinants are de-�ned on funtional spaes of symmetri tensor �elds onstrainedby onditions of transversality and traelessness.

(meaning that the integral over the full algebra of gaugetransformations deomposes into the integration overthe algebra in the bulk with �xed transformations onthe boundary and the subsequent integration over theseboundary transformations), we evaluate the Faddeev�Popov gauge �xing fator asZ D� Æ �H(��) � Æ�h('�)� == Z d� Æ(Q� ) Z�j=� D� Æ[Q�℄ == (detQ )�1 Z�j=0 D� Æ[ Q� ℄ == (detQ )�1 (DetDQ )�1 ; (4.21)whih similarly to (4.13) fatores into the produt ofthe bulk Dirihlet and boundary ounterparts. We anuse the 't Hooft trik to onvert delta-funtion typegauges into the bulk and boundary gauge breakingtermsÆ [H(�) ℄ Æ(h(')) !! exp��12 Z dd+1XH2(�(X)) �� 12 Z ddxh2('(x))� : (4.22)They ontribute their respetive gauge-breaking partsto the operators F and Ff and make both of themnondegenerate. Then, ultimately in higher-spin gaugetheories, relation (4.13) for the dual one-loop prefatorstakes the formDetNQ�DetNfF �1=2 = detQ�detFf�1=2 DetDQ�DetDF �1=2 ; (4.23)and it an again be laid in the basis of holographiduality. Details of this bulk�boundary fatorization,inluding the Ward identities, whih guarantee gaugeindependene of both boundary and bulk fators in theright-hand side of this relation (of the hoie of h('(x))and H(�(X)) respetively), an be found in [31℄. Theanalysis in [31℄ was done in the spin-two ase, but itan easily be extended to all s.5. CONCLUSIONS AND DISCUSSIONThus, we have a strong evidene that the hologra-phy priniple extends beyond onformal symmetry andAdS isometry of the underlying theories. In the lassof AdS/CFT dualities assoiated with the double-trae522



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Holography beyond onformal invariane : : :deformation of CFT, holography is dutifully enforedat the one-loop level wherever the holographi dualityholds at the tree level in the form of the boundary the-ory indued from the bulk via the Dirihlet boundaryvalue problem. This opens up prospets for the furtherprogress in the holographi onept. First, the arbi-trariness of the bakground gives a �rm ground for thetree-level duality beyond the quadrati approximationfor the ation of bulk and boundary theories. Seond,the obvious identityZall D�e�NS[�℄ = Z d' Z�j=' D�e�NS[�℄ (5.1)applied to a nonlinear bulk�boundary ation with1=N ! 0 playing the role of ~,S[�℄ = ZMd+1 dd+1X �12 S(2) �2+ 13!S(3)�3+ : : :�++ ZMd ddx �12 f(2)'2 + 13! f(3)'3 + : : :� ; (5.2)suggests sequene of new higher-loop identities start-ing with (4.12), (4.13) and involving tree-level vertiesof the ation. This might help extending the knownresults on the AdS/CFT orrespondene beyond theone-loop approximation.Of ourse, there are ertain limitations in the appli-ability of the suggested method. It seems to be work-ing in only one diretion: from a loal theory in the bulkto a potentially nonloal theory on the boundary (wereall that the ritial point of our derivation is a loalbulk operator F (r) of the seond order in derivatives,the orresponding de�nition of its Wronskian operatorW (r), and the related Dirihlet and Neumann bound-ary value problems). At the same time, known numer-ous heks of the AdS/CFT orrespondene [11℄ startfrom a free loal CFT at the boundary and math withpartition funtions of loal, although apparently non-linear, dual theories in the AdS bulk. In order to invertthe setting in our holography derivation, perhaps onemight start with the attempt to solve a mathematialproblem as follows. Given a generi boundary ationfuntional S(') of the �eld '(x), �nd the funtionalof the bulk ation S[�℄ on Md+1 whose on-shell value(subjet to Dirihlet data on �Md+1) mathes S('),ÆS[�0℄Æ�0 = 0; �0�� = '! S[�0(')℄ = S('): (5.3)

Apparently, this problem does not have a unique solu-tion, but the requirement of loality of S[�℄ might re-strit the lass of possible solutions (if any), and then,given the boundary theory with an ation S('), onemay apply the above derivation by �rst reovering theloal S[�℄.The pratial importane of funtional determi-nant relations (4.12), (4.13) is that they an be usedin onrete physial problems. In [16℄, these rela-tions were demonstrated to be useful for the deriva-tion of surfae terms of the Shwinger�DeWitt (Gilkey�Seely) oe�ients in the heat kernel trae expan-sion � a method important for the alulation of theCasimir energy, the boundary UV divergenes, et.The bulk�boundary/brane ation (4.3) �nds applia-tion in the Randall�Sundrum brane-world model [32℄,where the operator f is generated by the tension termon the brane. In the Dvali�Gabadadze�Porrati (DGP)model [33℄, f is a seond-order operator indued by thebrane Einstein term, f(�) � �=�, where � is the DGPsale responsible for the osmologial aeleration [34℄.In the ontext of the Born�Infeld ation in D-branestring theory with vetor gauge �elds, f(�) is a �rst-order operator [35℄.Very interesting is the lass of models in whihthe holographi duality is not assoiated with theonformal in�nity of the AdS spaetime but is realizedfor dynamially evolving (osmologial) branes thatare nontrivially embedded into the spaetime withextra dimensions [1; 32�34℄. One suh model is thelarge-N CFT-driven 4D osmology whose partitionfuntion serves as a soure of quasi-thermal initialonditions for the Universe [36℄. It is dual to the 5DShwarzshild�de Sitter spaetime with an embeddedspherial shell arrying the 4D Einstein ation [37℄ �a realization of the dS/CFT orrespondene [38℄ ratherthan the AdS/CFT one. It is important that this 4Dshell surrounding the Eulidean bulk blak hole is notstati, but rather its radius is periodially osillating.This osillatory dynamis in the bulk inorporates adual desription of the self-onsistent 4D osmologialevolution driven by the large-N CFT in a quasi-thermal state, the amount of its quasi-equilibriumradiation being related to the bulk blak hole mass.Without a doubt, there are many more poten-tial revelations and appliations within this approahin perturbative and nonperturbative quantum gravity.The author strongly bene�tted from the fruitfuldisussions and orrespondene with A. Tseytlin andM. Vasiliev. This work was partly supported by theRFBR (grant � 14-02-01173).523
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