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HOLOGRAPHY BEYOND CONFORMAL INVARIANCEAND AdS ISOMETRY?A. O. Barvinsky *Lebedev Physi
al Institute, Russian A
ademy of S
ien
es119991, Mos
ow, RussiaTheory Division, CERNCH-1211, Geneva 23, SwitzerlandRe
eived O
tober 20, 2014We suggest that the prin
iple of holographi
 duality 
an be extended beyond 
onformal invarian
e and AdSisometry. Su
h an extension is based on a spe
ial relation between fun
tional determinants of the operatorsa
ting in the bulk and on its boundary, provided that the boundary operator represents the inverse propagatorsof the theory indu
ed on the boundary by the Diri
hlet boundary value problem in the bulk spa
etime. Thisrelation holds for operators of a general spin�tensor stru
ture on generi
 manifolds with boundaries irrespe
tiveof their ba
kground geometry and 
onformal invarian
e, and it apparently underlies numerous O(N0) tests ofthe AdS/CFT 
orresponden
e, based on dire
t 
al
ulation of the bulk and boundary partition fun
tions, Casimirenergies, and 
onformal anomalies. The generalized holographi
 duality is dis
ussed within the 
on
ept of the�double-tra
e� deformation of the boundary theory, whi
h is responsible in the 
ase of large-N CFT 
oupled tothe tower of higher-spin gauge �elds for the renormalization group �ow between infrared and ultraviolet �xedpoints. Potential extension of this method beyond the one-loop order is also brie�y dis
ussed.Contribution for the JETP spe
ial issue in honor of V. A. Rubakov's 60th birthdayDOI: 10.7868/S00444510150301311. INTRODUCTIONIt is a great pleasure to write this paper dedi
ated toValery Rubakov on the o

asion of his sixties birthday.Our s
ienti�
 
areers have started simultaneously whenwe were students at the Mos
ow University and shared
ommon interests in physi
s � 
lassi
al and quantumgravity� and invariably pursued these interests, in ourown ways and styles, throughout the years to 
ome.In parti
ular, the results of this work were 
on
eivedin the 
ourse of dis
ussions, when Valery suggested towork out a 
ovariant method for 
al
ulating radiative
orre
tions in brane gravity models [1℄ as a means of es-tablishing appli
ability limits of the perturbation the-ory. By the time this method has be
ome ready foruse, the peak of interest in brane models was basi
allyover, and interests of s
ienti�
 
ommunity have shiftedto other areas, not the least of those being the idea ofholographi
 duality and the AdS/CFT 
orresponden
e.*E-mail: barvin�td.lpi.ru

Interestingly, that old method now seems to �nd appli-
ation in this �eld, and, I hope, Valery will be amusedto see how his suggestions are realized in this nonper-turbative 
on
ept of high-energy physi
s.The idea of holographi
 duality between a d-di-mensional 
onformal �eld theory (CFT) and a theoryin the (d + 1)-dimensional anti-de Sitter (AdS) spa
e-time that initially began with supersymmetri
 mod-els of N � N -matrix valued �elds [2�4℄ was later for-mulated for mu
h simpler �ve
torial� models withoutthe need in supersymmetry [5℄. These models havean in�nite tower of nearly 
onserved higher-spin 
ur-rents and in this way naturally lead to a 
orrespondingtower of massless higher-spin gauge �elds. Therefore,the holography 
on
ept implies that the dual theoryshould 
ontain these �elds in AdS spa
etime, thus form-ing the Vasiliev theory of nonlinear higher-spin gauge�elds [6, 7℄, whi
h ne
essarily imply an in�nite set ofthose, be
ause the prin
iple of gauge invarian
e forspins s > 2 
annot be realized for a �nite tower ofspins. In 
ontrast to the original supersymmetri
 mod-els in whi
h the AdS/CFT 
orresponden
e was 
he
ked514
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onformal invarian
e : : :for supersymmetry-prote
ted 
orrelators, holographi
duality in ve
torial models underwent veri�
ation bynumerous nontrivial 
al
ulations that go beyond sim-ple kinemati
al or group-theoreti
al reasoning and ex-tend from the tree level O(N1) to the �one-loop� or-der O(N0).In parti
ular, the 
al
ulation of the U(N) singlets
alar CFT partition fun
tion on S1 � S2 was shownto agree with the 
orresponding higher-spin partitionfun
tion 
al
ulation in AdS4 [8℄, a result extended tothe O(N) singlet se
tor of a s
alar CFT [9℄. Thenthese results were 
on�rmed and extended to arbitrarydimensions in [10℄, in
luding the 
omparison of ther-mal and Casimir energy parts of partition fun
tionsin CFTd and AdSd+1 in [11℄. The vanishing Casimirenergy in odd-dimensional theory (asso
iated with theabsen
e of the 
onformal anomaly) implies the same onthe AdS side, whi
h is nontrivial be
ause it implies anin�nite summation over the tower of higher-spin gauge�elds � the property that was observed in d = 4 onthe AdS5 side [12℄ and 
on�rmed by an expli
it summa-tion of 
onformal anomaly 
oe�
ients as for 
onformalhigher-spin �elds on the S4 side [13℄. The list of simi-lar results agreeing on both sides of the AdSd+1/CFTd
orresponden
e was extended in [11℄.A spe
ial 
lass of holographi
 dualities is asso
i-ated with the so-
alled double-tra
e deformations of thes
alar CFT [14℄, whi
h generates its renormalizationgroup (RG) �ow from the IR �xed point (free CFT)to the UV �xed point [15℄. The asso
iated holographi
dual of this RG �ow in the AdS spa
etime is the transi-tion between two di�erent boundary 
onditions on thedual massless gauge �elds of higher spins at the AdSboundary [12; 15℄.The variety of these mira
ulous 
oin
iden
es andthe gradually extending area of validity of dualityrelations (from supersymmetri
 models to nonsuper-symmetri
 ones, from lower spa
etime dimensions andlower spins to higher ones, from divergent and Casimirenergy parts of partition fun
tions to their thermalparts, from bosons to fermions, et
) imply that thereshould be some deep fun
tional reasons underlying allthis and perhaps even allowing one to extend holo-graphi
 duality beyond AdS isometry and 
onformalinvarian
e. The goal of this paper is to show that thisis indeed possible. Within the 
lass of holographi
 du-alities asso
iated with the double-tra
e deformation ofCFT, there exist universal relations for one-loop fun
-tional determinants of lo
al and nonlo
al operators ongeneri
 (d+1)-dimensional spa
etime and its d-dimen-sional boundary [16℄ that guarantee this duality irre-spe
tive of the ba
kground geometry and 
onformal in-

varian
e. The only 
ondition that relates (d+ 1)-di-mensional and d-dimensional theories is that at thetree level, the boundary theory be indu
ed from thebulk by a Diri
hlet boundary value problem; then theirone-loop quantum 
orre
tions dutifully mat
h. Theproof of this statement is based on linear algebra of(pseudo)di�erential operators and a sequen
e of Gaus-sian fun
tional integrations. When the theory has asmall parameter 1=N playing the role of a semi
lassi-
al Plan
k 
onstant, this sequen
e of integrations mightapparently be extended to holographi
 duality beyondthe one-loop order O(N0).2. DOUBLE-TRACE DEFORMATION OF CFTAND THE ADS/CFT CORRESPONDENCEThe double-tra
e deformation [14℄ of the large-NCFT of s
alar �elds �i(x), i = 1; : : : ; N , by the squareof the O(N) invariant single-tra
e s
alar operatorJ(x) = �i(x)�i(x);SCFT (�)! SCFT (�)� 12f Z dx J2(x);leads to the renormalization group �ow between the IR�xed point of the free CFT and its UV �xed point.In the limit of large N , this was 
learly demonstratedby using the Habbard�Stratonovi
h transformation asfollows [15℄.We 
onsider the generating fun
tional ZCFT (') ofthe 
orrelators of J for the perturbed theory withsour
es ',ZCFT (') = Z d��� exp��SCFT (�) + 12 J(�)f�1J(�) + 'J(�)� ;withZCFT (')ZCFT (0) = �exp�12 Ĵf�1Ĵ + 'Ĵ��CFT �� Dexp('Ĵ)EfCFT ; (2.1)Ĵf�1Ĵ = Z dx dy Ĵ(x)f�1(x; y)Ĵ(y);'Ĵ = Z dx'(x) Ĵ (x): (2.2)For the sake of generality of our formalism we writethe operator f = f(x; y) in what follows in a rather515 9*



A. O. Barvinsky ÆÝÒÔ, òîì 147, âûï. 3, 2015general form even though it is ultralo
al in CFT mod-els, f(x; y) = fÆ(x; y), and we also use the 
on-densed notation omitting the sign of integration overd-dimensional 
oordinates. A fun
tional dependen
e inthe d-dimensional spa
e is denoted by round bra
kets,like SCFT (�) � SCFT (�(x)), and the operators a
tingin this spa
e, like f , are boldfa
ed.Representing the part of the exponential in (2.1)quadrati
 in J as a Gaussian integral over an auxiliary�eld � (the Habbard�Stratonovi
h transform), we haveDexp('Ĵ)EfCFT = (det f)1=2 Z d� ���exp��12�f� + (�+ ')Ĵ��CFT ; (2.3)where det f denotes the fun
tional determinant of theoperator f(x; y) on the spa
e of fun
tions of d-dimen-sional 
oordinates.As usual in large-N CFT, we assume the vanishingexpe
tation value of Ĵ , hĴi = 0, and the smallness ofhigher-order 
orrelators hĴ Ĵ : : : Ĵi as N !1,Dexp(' Ĵ)ECFT � exp�12 '
Ĵ Ĵ�'� �� exp��12 'F'� ; (2.4)
Ĵ(x) Ĵ(y)� = �F(x; y); (2.5)where �F is the notation for the undeformed two-point
orrelator of J . From the new Gaussian integrationin (2.3), we then haveDexp('Ĵ)EfCFT = (det f)1=2 (detFf )�1=2 �� exp��12 ' 1F�1 + f�1'� ; (2.6)where Ff � F+ f : (2.7)Therefore, the 
orrelator hĴ ĴifCFT in the double-tra
edeformed CFT interpolates between the UV and IR�xed points of the theory:hĴ ĴifCFT = � 1F�1 + f�1 !! ( �F+ : : : ; f�1F� 1;�f + f(f�1F)�1 + : : : ; f�1F� 1: (2.8)For an ultralo
al f = fÆ(x; y) in the CFT with a sing-le-tra
e s
alar operator Ĵ of dimension �, the 
orrela-tor hĴ ĴiCFT = �F in the 
oordinate and momentumrepresentations behaves as

�F � 1jx� yj2� � 1kd�2� :Thus, the above two limits indeed 
orrespond to therespe
tive UV, f�1F � � 1fkd�2� � 1;and IR, f�1F � � 1fkd�2� � 1;�xed points. In the IR limit, the 
orrelator (modulo the
onta
t term f = fÆ(x; y)) is dominated by the se
ondterm f(f�1F)�1 � 1jx� yj1=(d�2�)in the long-distan
e regime jx � yj � jf j1=(d�2�) [15℄.The renormalization group �ow interpolates betweentwo phases in whi
h the operator J(x) has di�erentdimensions, � = �+ in IR and d=2�� = �� in UV.This double-tra
e deformation pi
ture also appliesin the 
ontext of the dual des
ription of higher-spin
onformal gauge �elds [12; 15℄. Sin
e the O(N) orU(N) s
alar or fermion CFT has a tower of nearly 
on-served higher-spin 
urrents J�1:::�s(x), their gaugingresults in the 
orresponding tower of higher-spin gauge�elds '�1:::�s(x):J = J�1:::�s(x) � �i(x) ��1 : : : ��s�i(x);' = '�1:::�s(x): (2.9)This 
lass of theories was 
onje
tured to be dual toVasiliev theories of higher-spin gauge �elds in AdS (avery in
omplete list of referen
es is 
ontained in [17�22℄). The des
ription of these dualities 
an be summa-rized as follows.In AdSd+1 with the 
oordinates X � XA == X1; : : : ; Xd+1, there exist totally symmetri
 trans-verse gauge �elds � = �A1:::As(X) with the quadrati
a
tionSd+1[�℄ = ZAdS dd+1X L��(X);r�(X)� (2.10)that generates linearized equations for massless spin-stensor �elds. The 
ovariant form of this quadrati
 a
-tion is known [23℄, but its 
on
rete expression is notneeded in what follows. At the boundary of AdSd+1,whi
h is either Rd or Sd (or S1 � Sd�1 in the thermal
ase) and is parameterized by 
oordinates x � x� == x1; : : : ; xd via the embedding fun
tions X = e(x),the boundary values of the tangential 
omponents of �,�j � ��1:::�s(e(x)) = '�1:::�s(x); (2.11)516



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Holography beyond 
onformal invarian
e : : :represent the gauge �elds of the d-dimensional CFT,
oupled to its 
onserved higher-spin 
urrents. Then theAdSd+1/CFTd 
onje
ture means that the generatingfun
tional of the 
orrelators of 
onserved 
urrents of theundeformed CFT living on the boundary �(AdSd+1)
an be obtained from the path integral of the dual the-ory of gauge �elds in the AdSd+1 spa
etime subje
t toDiri
hlet boundary 
onditions at this boundary:
D exp('Ĵ)ECFT = Z�j=' D� exp(�Sd+1[�℄)Z�j=0 D� exp(�Sd+1[�℄) : (2.12)In what follows, we always use a verti
al bar to denotethe restri
tion of a bulk quantity to the boundary.Using this relation in the right hand side of (2.3),we obtainDexp('Ĵ)EfCFT = (det f)1=2 Z d� exp��12 �f�� Z�j=�+' D� exp(�Sd+1[�℄)Z�j=0 D� exp(�Sd+1[�℄) == (det f)1=2 �� Zall � D� exp��Sd+1[�℄�12��j�'�f��j�'��Z�j=0 D� exp(�Sd+1[�℄) ; (2.13)where the total a
tion in the fun
tional integrand 
on-tains both the bulk part and the boundary part lo
atedat �(AdSd+1) =MdS[�℄ � Sd+1[�℄ + 12��j � '�f��j � '� == 12 ZAdS dd+1X �(X)$F (r)�(X) ++ 12 ZMd ddx��j(x) � '(x)�f��j(x) � '(x)�; (2.14)and the integration in the denominator runs over the�elds � both in the bulk and on the boundary. Thismeans that the boundary 
onditions on a saddle-point
on�guration �f are a�e
ted by the boundary partof the a
tion (that is, by f , whi
h is a kernel of thequadrati
 boundary a
tion in (2.14)), and that is whywe label it by the subs
ript f .The kernel of the bulk Lagrangian in given by these
ond-order operator F (r), whose derivativesr � �Xare integrated by parts in su
h a way that they formbilinear 
ombinations of �rst-order derivatives a
tingon two di�erent �elds (this is denoted by the left-rightarrow over F (r)). Integration by parts gives nontriv-ial surfa
e terms on the boundary. In parti
ular, thisoperation results in the Wronskian relations for generi


test fun
tions �1; 2(X) on any spa
etime domainMd+1with the boundary �Md+1:ZMd+1 dd+1X ��1!F (r)�2 � �1 F (r)�2� == � Z�Md+1 ddx��1 !W �2 � �1  W �2� ; (2.15)ZMd+1 dd+1X �1 $F �2 = ZMd+1 dd+1X �1(!F �2) ++ Z�Md+1 ddx�1 !W �2 ���: (2.16)The arrows here indi
ate the dire
tion of the a
tion ofderivatives on either �1 or �2. These relations 
an beregarded as a de�nition of the �rst-orderWronskian op-erator W = W (r) for F (r). In simple models on theAdS ba
kground and its 
onformal boundary, parame-terized by 
oordinates XA = y; x�, it basi
ally redu
esto the normal to the boundary derivative, W (r) � �y.The saddle-point approximation for the path inte-gral in the numerator of (2.13) is dominated by the 
on-tribution of a stationary point of the total a
tion (2.14).In view of (2.16), the requirement of the vanishing�rst-order variation 
ontains bulk and surfa
e terms,517



A. O. Barvinsky ÆÝÒÔ, òîì 147, âûï. 3, 2015ZAdSd+1 dd+1X Æ� (!F �) ++ ZMd ddx Æ��� !W +f�� j � f'� = 0; (2.17)whi
h must vanish independently be
ause Æ�(X) isnonvanishing both in the bulk and at the boundarysin
e � is being integrated over all spa
etime points.Thus we obtain equations of motion for a stationary
on�guration �f (X) in the bulk and the boundary 
on-dition at Md,F (r)�f (X) = 0; � !W (r) + f��f �� = f': (2.18)The latter is the generalized Neumann (or Robin)boundary 
ondition involving the normal-to-the-boun-dary derivative of �(X) 
ontained in W (r). On the
ontrary, f is an entirely d-dimensional operator, whi
his ultralo
al in the CFT theory of double-tra
e defor-mations, but we keep it as a more general (di�erentialor even nonlo
al pseudo-di�erential) operator in Mdin what follows. The solution to this boundary valueproblem 
an be given in terms of the Green's fun
-tion GNf (X;Y ) of F (r) subje
t to this (homogeneous)Neumann boundary 
ondition:F (r)GNf (X;Y ) = Æ(X;Y );(!W +f)GNf (X;Y ) ���X2�Md+1 = 0; (2.19)and is given by�f (X) = Zb dyGNf (X; y) f'(y) � GNf j f': (2.20)Here, GNf (X; y) � Gf (X;Y ) jY=e(y)is the notation for the boundary-to-bulk propaga-tor � the Green's fun
tion with its se
ond argu-ment put on the boundary via the embedding fun
-tion Y A = eA(y�). Its subs
ript indi
ates that thisGreen's fun
tion is determined by the generalized Neu-mann boundary 
onditions with a parti
ular fun
tion f .Then the stationary (on-shell) value of the a
-tion (2.14) isS[�f ℄ = 12 Zb dx dy '(x)f �� �f�1(x; y)�GNf (x; y)�f'(y) �� 12 '�f � f GNf ���� f�'; (2.21)

whereGNf (x; y) � GNf (X;Y ) jX=e(x); Y=e(y) �� GNf jj (2.22)is the notation for the boundary-to-boundary propa-gator � the restri
tion of both Green's fun
tion argu-ments to the boundary, denoted by two verti
al barsfor brevity. Again using the 
ondensed notation on theboundary, we omitted the sign of integration over theboundary 
oordinates in (2.20), (2.21)1). Thus, �nally,we haveZ D� exp��Sd+1[�℄� 12��j � '�f��j � '�� == �DetNfF ��1=2 �� exp��12 '�f � f GNf ���� f�'� ; (2.23)where DetNfF = (DetGNf )�1is the bulk fun
tional determinant of F on the spa
e offun
tions subje
t to the generalized Neumann bound-ary 
onditions (2.19). The denominator of (2.13) isgiven of 
ourse by the fun
tional determinant with theDiri
hlet boundary 
onditions 
orresponding to �j = 0,Z�j=0 DA exp(�Sd+1[�℄) = �DetDF ��1=2: (2.24)Fun
tional determinants of operators a
ting in the(d + 1)-dimensional bulk here and in what follows aredenoted by Det with a subs
ript indi
ating the type ofboundary 
onditions for the 
lass of fun
tions on whi
hthe determinant is 
al
ulated (in 
ontrast to det for op-erators a
ting on the boundary).Substituting these results in (2.13), we obtainD exp('Ĵ)EfCFT = (det f)1=2 �DetNfFDetDF ��1=2 �� exp��12 '�f � f GNf ���� f�'� ; (2.25)and the 
omparison of the exponentials and preexpo-nential fa
tors here and in (2.6) then yields the tree-level and one-loop relationsGNf ���� = F�1f ; (2.26)DetNfF = detFf DetDF: (2.27)1) It is useful to apply this DeWitt 
ondensed notation for in-tegral operations on the boundary, be
ause these operations haveproperties of formal matrix 
ontra
tion and multipli
ation.518



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Holography beyond 
onformal invarian
e : : :These relations are dire
t 
onsequen
es ofAdS/CFT 
orresponden
e (2.12) in the lowesttwo orders of the 1=N expansion, but the logi
 of thisderivation 
an be reversed. If we start with these rela-tions, then the holographi
 duality is enfor
ed in thisapproximation. As we see shortly, a simple exer
iseon linear algebra and Gaussian integration provides aproof that these relations are very general and holdfor a generi
 se
ond-order di�erential operator F (r)a
ting on an arbitrary spin�tensor �eld for a generi
manifold with a boundary. By a spe
ial rule, it indu
esa (generi
ally nonlo
al pseudodi�erential) operatorFf a
ting on the boundary that 
an be regardedas the inverse (boundary-to-boundary) propagatorof the surfa
e theory indu
ed from the bulk theory.No parti
ular geometry of the bulk spa
etime or itsboundary is assumed in this 
onstru
tion. All thismeans that the holographi
 duality between d- and(d + 1)-dimensional theories 
an be extended beyondAdS isometries and 
onformal invarian
e under thesingle assumption that the d-dimensional theory isindu
ed from the bulk theory by integrating out itsbulk degrees of freedom.3. HOLOGRAPHIC DUALITY AND THEINDUCED BOUNDARY THEORYFor Eqs. (2.26)�(2.27) to hold, the boundary oper-ator Ff should be related to the operator F (r) a
t-ing in the bulk and to relevant boundary 
onditionsNf on �Md+1. To establish this, we address the du-ality relation (2.12) at the tree level. For a quadrati
(d+ 1)-dimensional a
tion of the formSd+1[�℄ = 12 ZAdS dX �(X)$F (r)�(X); (3.1)the tree-level holographi
 duality (2.12) implies thatD exp('Ĵ)ECFT = exp(�Sd+1[�D(')℄)exp(�Sd+1[�D(0)℄) ; (3.2)where �D(') is a solution of the problem,F (r)�D(X) = 0, �D j = '(x), with inhomoge-neous Diri
hlet boundary 
onditions. In view ofrelations (2.15) and (2.16), this solution and its on-shell value of the a
tion 
an be represented in terms ofthe Diri
hlet Green's fun
tion GD(X;Y ),F (r)GD(X;Y ) = Æ(X;Y );GD(X;Y ) ���X=e(x) = 0; (3.3)

as�D(X) = � ZMd dy GD(X;Y )  W ���Y=e(y)'(y) �� �GD  W j '; (3.4)S[�D ℄ = 12 ZMd dx dy '(x)h� !WGD  W (x; y) i'(y) �� 12 'h� !W GD  W jji': (3.5)The expression !W GD  W jj implies that Wronskianoperators a
t on both arguments of the kernel of theDiri
hlet Green's fun
tion, and the result is restri
tedto the boundary,!WGD  W jj (x; y) ��!W (rX)GD(X;Y )  W (rY) ���X=e(x); Y=e(y): (3.6)The result in (3.5) is exa
tly the tree-level boundarye�e
tive a
tion obtained from the original a
tion (4.3)by integrating out the bulk �elds subje
t to �xedboundary values '(x), S(') = S [�D(')℄. A

ordingly,the kernel of the quadrati
 form of (3.5) in ' is theinverse propagator of the boundary theory,F � Æ2SÆ' Æ' = � !WGD  W jj; (3.7)whi
h is generi
ally a nonlo
al operator in the spa
eof boundary 
oordinates x. Thus, the generating fun
-tional of 
orrelation fun
tions in the undeformed CFTis given byD exp('Ĵ)ECFT = exp��12 'F'� ;
Ĵ Ĵ�CFT = �F; (3.8)with the two-point 
orrelator of the Ĵ (
f. Eq. (2.5))indu
ed from the (d+1)-dimensional bulk. In fa
t, thisis a basi
 relation of the linearized tree-level AdS/CFT
orresponden
e, whi
h has been 
he
ked in numerousmodels starting with [3, 4℄. This �xes the boundaryoperator Ff = F + f in the right-hand sides of ourbasi
 relations (2.26), (2.27) in terms of the bulk op-erator F (r). We now pro
eed with the proof of theserelations.4. FUNCTIONAL DETERMINANTSRELATIONSThe idea of the derivation of relations (2.26)and (2.27), that was �rst given in [16℄, is based on a519



A. O. Barvinsky ÆÝÒÔ, òîì 147, âûï. 3, 2015sequen
e of Gaussian fun
tional integrations. Any a
-tion S[�℄ quadrati
 in its �eld �(X) 
an give rise totwo Gaussian fun
tional integrals. One of them is ofthe form Z = Zall D� exp (�S[�℄); (4.1)where integration runs over all �elds both in the bulkand on its boundary, and the other,Z(') = Z�j=' D� exp (�S[�℄); (4.2)implies integration with �xed values of � at the bound-ary. Obviously, these path integrals are related by theequation Z = R d'Z('), and hen
e independent 
al-
ulations of its left- and right-hand sides yield 
ertaintree-level and one-loop relations. As we see in whatfollows, under an appropriate 
hoi
e of S[�℄ they turnout to be exa
tly the ones advo
ated above.We 
onsider the bulk�boundary a
tion of the �eld�(X) in the (d+1)-dimensional (bulk) spa
etimeMd+1and its boundary Md = �Md+1,S[�℄ = 12 ZMd+1 dX �(X)$F (r)�(X) ++ ZMd dx�12 '(x) f(�)'(x) + j(x)'(x)� ; (4.3)��� � �(X)���Md+1 = �(e(x)) = '(x): (4.4)We re
all that the boundary embedding into the bulkin terms of x = x� is denoted by XA = eA(x�) and,as previously, the verti
al bar denotes the restri
tionof a bulk quantity to the boundary. The �eld �(X)and the se
ond-order di�erential operator F (r) haveabsolutely generi
 spin�tensor stru
ture, and there areno restri
tions on the geometry of the bulk Md+1 andits boundaryMd. Similarly to (2.16), the derivatives ofF (r) in the bulk part are integrated by parts in su
h away that they form bilinear 
ombinations of �rst-orderderivatives. As a kernel, the boundary part of the a
-tion 
ontains some lo
al or nonlo
al (pseudodi�eren-tial) operator f = f(�), � = �x a
ting in the spa
e of x.In 
ontrast to the bulk part, integration by parts on theboundary is irrelevant for our purposes, be
ause Md isassumed either to be 
losed 
ompa
t or to have trivialvanishing boundary 
onditions at its in�nity. Fun
tionj(x) plays the role of sour
es 
onjugate to '(x) andlo
ated on the boundary.

The 
al
ulation of (4.2) repeats the derivation inSe
. 2, and the answer is given byZ = �DetNfF ��1=2 exp(�S[�f ℄); (4.5)where �f is a stationary point of a
tion (4.3) satisfyingthe problem with inhomogeneous generalized Neumannboundary 
onditionsF (r)�f (X) = 0; (!W + f)�f ���+ j(x) = 0; (4.6)and DetNfF denotes the bulk ((d + 1)-dimensional)fun
tional determinant of F (r) on the spa
e of fun
-tions subje
t to these (homogeneous) boundary 
ondi-tions.Similarly to (2.17), problem (4.6) naturally followsfrom the a
tion (4.3) andWronskian relations for F (r),be
ause the variation of the a
tion is given by the sumof bulk and boundary terms, whi
h should vanish sep-arately sin
e the a
tion should be stationary also withrespe
t to arbitrary variations of the boundary �eldsÆ'. The Neumann Green's fun
tion of this problem,Eq. (2.19), gives a solution of (4.6) that in the 
on-densed notation of Se
. 2 (
f. Eq. (2.20)) has the form�f (X) = �GNf j j and gives rise to the on-shell value ofthe a
tion as a fun
tional of the boundary sour
e j(x):S[�f ℄ = �12 Zb dx dy j(x)GNf (x; y) j(y) �� �12 j GNf ���� j: (4.7)Here, again,GNf (x; y) � GNf (X;Y ) jX=e(x); Y=e(y) � GNf jjis the notation for the boundary-to-boundary propaga-tor, with the restri
tion of both Green's fun
tion argu-ments to the boundary denoted by two verti
al bars forbrevity. To simplify the formalism, we omitted the signof integration over the boundary 
oordinates in (4.7)2).Thus, we �nally haveZ = �DetNf F ��1=2 exp�12 j GNf ���� j� : (4.8)Alternatively, we 
an 
al
ulate the same integral bysplitting the integration pro
edure into two steps: �rstintegrating over bulk �elds with �xed boundary val-ues and then integrating over the latter. This allows2) It is useful to apply this DeWitt 
ondensed notation forintegral operations on the brane, be
ause these operations haveproperties of formal matrix 
ontra
tion and multipli
ation.520
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onformal invarian
e : : :rewriting the same result in the form Z = R d'Z('),where the inner integral (4.2),Z(') � Z�j=' D� exp (�S[�℄) == (DetD F )�1=2 exp(�S[�D℄); (4.9)is given by the 
ontribution of the solution of Diri
h-let problem (3.4) with the Diri
hlet Green's fun
tionGD(X;Y ) (
f. Eq. (3.3)). The 
orresponding on-shella
tion equalsS[�D℄ = 12 'h� !WGD  W jj+ f i'+ j ' �� 12 'Ff '+ j ': (4.10)The part quadrati
 in ' here 
oin
ides with the indu
eda
tion (3.5) in Se
. 3 modulo the additional f -term.Substituting (4.9) with (4.10) in Z = R d'Z('), weagain obtain the Gaussian integral over ' that is sat-urated by the saddle point '0 of the above boundarya
tion (4.10), '0 = �F�1f j, and the �nal result isZ = �DetD F ��1=2�detFf��1=2 �� exp�12 j F�1f j� ; (4.11)where we re
all that det denotes fun
tional determi-nants in the d-dimensional boundary theory.In view of the arbitrariness of the boundary sour
ej, 
omparing the tree-level and one-loop (preexponen-tial) parts with those of (4.8) immediately yields tworelationsGNf jj = F�1f � h� !WGD  W jj+ f i�1; (4.12)DetNf F = detFf DetDF: (4.13)These are exa
tly the relations (2.26), (2.27) that un-derly the dual AdS des
ription of the double-tra
e de-formation of CFT models. The one-loop-order equa-tion (4.13) here relates fun
tional determinants of thebulk operator on di�erent fun
tional spa
es de�ned byNeumann and Diri
hlet boundary 
onditions and in-tertwines them via the determinant of the boundaryoperator3).When applied to a large-N CFT, these relations de-s
ribe a deformation of the boundary CFT that indu
es3) This might perhaps be a �eld-theoreti
 analogue of Vasiliev'sdeterminant relation in the operator algebra of 
onformal 
ur-rents [22℄ based on di�erent star produ
ts � a 
ounterpart ofdi�erent fun
tional spa
es on the �eld theory side.

a renormalization group �ow from the infrared (f =1)to the ultraviolet (f = 0) �xed points of this theoryand generates the 
orresponding in
rease in the 
entral
harge [24℄ (or the 
onformal anomaly a-
oe�
ient inthe 4D 
ase [25℄). From (4.13), the 
hange of the fparameter is determined by the ratioDetNf1FDetNf2F = detFf1detFf2 � det�1+ f�11 F�det�1+ f�12 F� ; (4.14)where in the se
ond equality we took into a

ount thatfor an ultralo
al kernel f = fÆ(x; y), its determinantdet f = 1 (e. g., in dimensional regularization) does notgive any 
ontribution. This is the relation that was for-mulated in [26, 27℄ as the ratio of the bulk theory par-tition fun
tions with di�erent values of the f 
oe�
ientin terms of the hĴ ĴiCFT 
orrelator of the unperturbedboundary CFT, �F =!WGD  W jj4).While the right-hand side of this equation wasderived on the CFT side by using the Hubbard�Stratonovi
h transform [15℄, the left-hand side equalitywas proved in [26℄ by using an expression for the fun
-tional determinant of the Sturm�Lioville operator interms of its basis fun
tions [28, 29℄ or by the expli
it useof the operator spe
tra on the AdS ba
kground. On the
ontrary, the power of our result (4.13) is that it holdsfor generi
 bulk�boundary ba
kgrounds for operatorsF (r) and f of the most general type and admits anytype of 
ovariant regularization for UV divergen
es [16℄.4.1. The 
ase of gauge theoriesAn important remark is that the fun
tional deter-minant duality relation (4.13) also applies to gauge the-ories, whi
h is the 
ase of major interest for us be
auseour goal is the holographi
 duality for towers of higher-spin �elds in the bulk and its boundary. A potentialdi�
ulty here might be the fa
t that in the bulk, thetotally symmetri
 spin-s �elds �A1:::As(X) have bulkindi
es ranging over d + 1 values, while the boundary�elds '�1:::�s(x) have only d-dimensional tensor 
om-ponents, and hen
e the bulk F and boundary F op-erators have essentially di�erent spin stru
tures. This
ontroversy is re
on
iled, however, by noting that spins > 0 theories are gauge invariant under transforma-tions of the form�! �� = �+���; '! '� = '+��';�kj = �; (4.15)4) To 
ompare (4.14) with the formalism in [26℄ we should bearin mind that our f is the negative inverse of f in [26℄, and our Fis the negative of the hĴ ĴiCFT 
orrelator denoted by G in [26℄.521



A. O. Barvinsky ÆÝÒÔ, òîì 147, âûï. 3, 2015���A1:::As(X) = r(A1�A2:::As)(X); (4.16)��'�1:::�s(x) = D(�1��2:::�s); (4.17)generated by a spin-(s�1) �eld �(X) with the tangen-tial 
omponents �k = �(x) (D� denotes the 
ovariantderivative on the boundary). The balan
e of physi
aldegrees of freedom in the bulk and on the boundaryis then maintained by imposing gauge 
onditions �xingthese transformations. Ba
kground 
ovariant gauges ofthe formH(�) = HA1:::As�1(X) � rB�BA1:::As�1(X) = 0�x them in
ompletely: there remain residual gaugetransformations that are the zero modes of the se
ond-order bulk Faddeev�Popov operator Q = QA1:::As�1B1:::Bs�1de�ned by ��H(�) = Q�: (4.18)These modes are parameterized by the boundary val-ues �j = �(x), whi
h perform gauge shift (4.15) ofthe boundary �elds '. Therefore, these residual gaugetransformations 
an be gauged out by imposing theboundary gauge 
onditions on ' of the formh(') = h�1:::�s�1(x) � D�'��1:::�s�1(x):In their turn, these generate a nondegenerate boundaryFaddeev�Popov operator Q = Q�1:::�s�1�1:::�s�1 de�ned by��h(') = Q�: (4.19)Altogether, this is equivalent to introdu
ing theFaddeev�Popov gauge-breaking fa
tor Æ [H(�) ℄ �� Æ(h('))MH;h[�℄ under the path integral sign with5)(MH;h [�℄ )�1 = Z D� Æ �H(��) � Æ(h('�)) �� (DetNQ )�1 : (4.20)Again, using the obvious relationZ D� (: : : ) = Z d� Z�j=� D� (: : : )5) The ghost fa
tor we use here involves a generi
 gauge,whereas the works on higher spin gauge �elds on AdS ba
k-ground [30℄ usually use a parti
ular (DeWitt ba
kground 
ovari-ant) gauge de�ned by the generator of the gauge transformation.Moreover, in [30℄ the power of the Faddeev�Popov determinant inthe ghost fa
tor is di�erent, be
ause all the determinants are de-�ned on fun
tional spa
es of symmetri
 tensor �elds 
onstrainedby 
onditions of transversality and tra
elessness.

(meaning that the integral over the full algebra of gaugetransformations de
omposes into the integration overthe algebra in the bulk with �xed transformations onthe boundary and the subsequent integration over theseboundary transformations), we evaluate the Faddeev�Popov gauge �xing fa
tor asZ D� Æ �H(��) � Æ�h('�)� == Z d� Æ(Q� ) Z�j=� D� Æ[Q�℄ == (detQ )�1 Z�j=0 D� Æ[ Q� ℄ == (detQ )�1 (DetDQ )�1 ; (4.21)whi
h similarly to (4.13) fa
tores into the produ
t ofthe bulk Diri
hlet and boundary 
ounterparts. We 
anuse the 't Hooft tri
k to 
onvert delta-fun
tion typegauges into the bulk and boundary gauge breakingtermsÆ [H(�) ℄ Æ(h(')) !! exp��12 Z dd+1XH2(�(X)) �� 12 Z ddxh2('(x))� : (4.22)They 
ontribute their respe
tive gauge-breaking partsto the operators F and Ff and make both of themnondegenerate. Then, ultimately in higher-spin gaugetheories, relation (4.13) for the dual one-loop prefa
torstakes the formDetNQ�DetNfF �1=2 = detQ�detFf�1=2 DetDQ�DetDF �1=2 ; (4.23)and it 
an again be laid in the basis of holographi
duality. Details of this bulk�boundary fa
torization,in
luding the Ward identities, whi
h guarantee gaugeindependen
e of both boundary and bulk fa
tors in theright-hand side of this relation (of the 
hoi
e of h('(x))and H(�(X)) respe
tively), 
an be found in [31℄. Theanalysis in [31℄ was done in the spin-two 
ase, but it
an easily be extended to all s.5. CONCLUSIONS AND DISCUSSIONThus, we have a strong eviden
e that the hologra-phy prin
iple extends beyond 
onformal symmetry andAdS isometry of the underlying theories. In the 
lassof AdS/CFT dualities asso
iated with the double-tra
e522
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onformal invarian
e : : :deformation of CFT, holography is dutifully enfor
edat the one-loop level wherever the holographi
 dualityholds at the tree level in the form of the boundary the-ory indu
ed from the bulk via the Diri
hlet boundaryvalue problem. This opens up prospe
ts for the furtherprogress in the holographi
 
on
ept. First, the arbi-trariness of the ba
kground gives a �rm ground for thetree-level duality beyond the quadrati
 approximationfor the a
tion of bulk and boundary theories. Se
ond,the obvious identityZall D�e�NS[�℄ = Z d' Z�j=' D�e�NS[�℄ (5.1)applied to a nonlinear bulk�boundary a
tion with1=N ! 0 playing the role of ~,S[�℄ = ZMd+1 dd+1X �12 S(2) �2+ 13!S(3)�3+ : : :�++ ZMd ddx �12 f(2)'2 + 13! f(3)'3 + : : :� ; (5.2)suggests sequen
e of new higher-loop identities start-ing with (4.12), (4.13) and involving tree-level verti
esof the a
tion. This might help extending the knownresults on the AdS/CFT 
orresponden
e beyond theone-loop approximation.Of 
ourse, there are 
ertain limitations in the appli-
ability of the suggested method. It seems to be work-ing in only one dire
tion: from a lo
al theory in the bulkto a potentially nonlo
al theory on the boundary (were
all that the 
riti
al point of our derivation is a lo
albulk operator F (r) of the se
ond order in derivatives,the 
orresponding de�nition of its Wronskian operatorW (r), and the related Diri
hlet and Neumann bound-ary value problems). At the same time, known numer-ous 
he
ks of the AdS/CFT 
orresponden
e [11℄ startfrom a free lo
al CFT at the boundary and mat
h withpartition fun
tions of lo
al, although apparently non-linear, dual theories in the AdS bulk. In order to invertthe setting in our holography derivation, perhaps onemight start with the attempt to solve a mathemati
alproblem as follows. Given a generi
 boundary a
tionfun
tional S(') of the �eld '(x), �nd the fun
tionalof the bulk a
tion S[�℄ on Md+1 whose on-shell value(subje
t to Diri
hlet data on �Md+1) mat
hes S('),ÆS[�0℄Æ�0 = 0; �0�� = '! S[�0(')℄ = S('): (5.3)

Apparently, this problem does not have a unique solu-tion, but the requirement of lo
ality of S[�℄ might re-stri
t the 
lass of possible solutions (if any), and then,given the boundary theory with an a
tion S('), onemay apply the above derivation by �rst re
overing thelo
al S[�℄.The pra
ti
al importan
e of fun
tional determi-nant relations (4.12), (4.13) is that they 
an be usedin 
on
rete physi
al problems. In [16℄, these rela-tions were demonstrated to be useful for the deriva-tion of surfa
e terms of the S
hwinger�DeWitt (Gilkey�Seely) 
oe�
ients in the heat kernel tra
e expan-sion � a method important for the 
al
ulation of theCasimir energy, the boundary UV divergen
es, et
.The bulk�boundary/brane a
tion (4.3) �nds appli
a-tion in the Randall�Sundrum brane-world model [32℄,where the operator f is generated by the tension termon the brane. In the Dvali�Gabadadze�Porrati (DGP)model [33℄, f is a se
ond-order operator indu
ed by thebrane Einstein term, f(�) � �=�, where � is the DGPs
ale responsible for the 
osmologi
al a

eleration [34℄.In the 
ontext of the Born�Infeld a
tion in D-branestring theory with ve
tor gauge �elds, f(�) is a �rst-order operator [35℄.Very interesting is the 
lass of models in whi
hthe holographi
 duality is not asso
iated with the
onformal in�nity of the AdS spa
etime but is realizedfor dynami
ally evolving (
osmologi
al) branes thatare nontrivially embedded into the spa
etime withextra dimensions [1; 32�34℄. One su
h model is thelarge-N CFT-driven 4D 
osmology whose partitionfun
tion serves as a sour
e of quasi-thermal initial
onditions for the Universe [36℄. It is dual to the 5DS
hwarzs
hild�de Sitter spa
etime with an embeddedspheri
al shell 
arrying the 4D Einstein a
tion [37℄ �a realization of the dS/CFT 
orresponden
e [38℄ ratherthan the AdS/CFT one. It is important that this 4Dshell surrounding the Eu
lidean bulk bla
k hole is notstati
, but rather its radius is periodi
ally os
illating.This os
illatory dynami
s in the bulk in
orporates adual des
ription of the self-
onsistent 4D 
osmologi
alevolution driven by the large-N CFT in a quasi-thermal state, the amount of its quasi-equilibriumradiation being related to the bulk bla
k hole mass.Without a doubt, there are many more poten-tial revelations and appli
ations within this approa
hin perturbative and nonperturbative quantum gravity.The author strongly bene�tted from the fruitfuldis
ussions and 
orresponden
e with A. Tseytlin andM. Vasiliev. This work was partly supported by theRFBR (grant � 14-02-01173).523
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