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THERMAL TRANSPORT IN A NONCOMMUTATIVEHYDRODYNAMICSM. Geraie *, D. T. Son **Kadano� Center for Theoretial Physis, University of Chiago60637, Illinois, Chiago, USAReeived Otober 1, 2014We �nd the hydrodynami equations of a system of partiles onstrained to be in the lowest Landau level. Weinterpret the hydrodynami theory as a Hamiltonian system with the Poisson brakets between the hydrody-nami variables determined from the nonommutativity of spae. We argue that the most general hydrodynamitheory an be obtained from this Hamiltonian system by allowing the Righi�Ledu oe�ient to be an arbitraryfuntion of thermodynami variables. We ompute the Righi-Ledu oe�ient at high temperatures and showthat it satis�es the requirements of partile�hole symmetry, whih we outline.Contribution for the JETP speial issue in honor of V. A. Rubakov's 60th birthdayDOI: 10.7868/S004445101503012X1. INTRODUCTIONInterating eletrons in very high magneti �eldsshow extremely rih behaviors, the most well-known ofwhih is the frational quantum Hall (FQH) e�et [1, 2℄.In the most interesting limit, all the physis ours inthe lowest Landau level (LLL) and originates from theinterations.In this paper, we study the �nite-temperature dy-namis of eletrons in a magneti �eld so high thatall partiles are onstrained to be on the LLL. Thisproblem is a �nite-temperature ounterpart of theFQH problem. While many quantum phenomena aresmeared out by the temperature, the hydrodynamitheory, whih takes hold at distanes and time salesmuh larger than the mean free path/time, is expetedto be universal. We assume that the system is lean,without impurities, and the only relaxation mehanismis the interations between partiles. This regime ispartiularly relevant for the proposed realizations ofthe FQH regime in old atomi gases [3�5℄. The mainoutome of our investigation is the set of hydrodynamiequations (Eqs. (8), (18), and (30)) whih desribes thelong-wavelength dynamis of the system, the identi�-ation of the kineti oe�ients, and the omputation*E-mail: mihael.geraie�gmail.om**E-mail: dtson�uhiago.edu

of the thermal Hall oe�ient in the high-temperatureregime (Eq. (34)).Previous studies of transport in high magneti �eldsinlude Refs. [6�9℄. In partiular, in Ref. [9℄, a generalapproah based on onservation laws is developed forthe hydrodynamis of a system in a quantizing mag-neti �eld. This is the approah that we follow in thispaper. But we onentrate here on the LLL limit (thezero mass limit), whih should be a regular limit whenthe partile arries a magneti moment orrespondingto the gyromagneti fator g = 2. This allows us toonsider the response of the system to variations of themagneti �eld, as well as to disuss the partile�holesymmetry of the hydrodynami equations.An important onept in our disussion is that apartile in the LLL e�etively lives on a nonommuta-tive spae [10℄, with its two oordinates x1, x2 sat-isfying the ommutation law [x1; x2℄ = �i`2B. Thisidea has attrated some attention in the ontext ofthe quantum Hall e�et; it has been speulated thatthe appropriate �eld theory of the quantum Hall ef-fet should be a nonommutative �eld theory (see, e. g.,Refs. [11, 12℄; for an introdution to nonommutative�eld theory, see Ref. [13℄.) We use this nonommuta-tivity to argue for a partiular Poisson braket algebrabetween hydrodynami variables, and proeed to derivethe hydrodynami equations from the Poisson braketswith the Hamiltonian. This approah is inspired bythe Hamiltonian formulation of lassial hydrodynam-508



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Thermal transport in a nonommutative hydrodynamisis [14℄. The Hamiltonian equations that follow fromthe formalism form a self-onsistent hydrodynami the-ory, but we argue that they need a slight modi�ationto beome the most general set of equations onsistentwith onservation laws and the seond law of thermo-dynamis. This modi�ation is related to the Righi�Ledu (thermal Hall) e�et [15, 16℄.2. THERMODYNAMICS ANDCONSERVATION LAWSWe reall the basi thermodynami funtions of asystem in an external magneti �eld [9℄. The grandpotential is an extensive thermodynami variable thatdepends on the temperature, hemial potential, andmagneti �eld: 
 = �V P (T; �;B). The partial deriva-tives of P are the entropy density, partile number den-sity, and magnetization: dP = sdT + nd� + MdB.The hydrodynami pressure is not P but its Legendretransform with respet to B: p = P �MB, and henedp = sdT + nd� � BdM . The energy density is " == Ts+ �n� P .We onsider a system of nonrelativisti partiles ofmass m and gyromagneti fator g = 2 moving in abakground magneti �eld B, and are interested in theregime where all higher Landau levels an be negleted.We study the response of the system to arbitrary �u-tuations of both eletri and magneti �elds, assumingthat B does not vanish at any plae in spae and time,and hene the separation between the lowest and thehigher Landau levels is always maintained. The LLLlimit orresponds to taking m ! 0 and all the physisshould be �nite in this limit for g = 2.The Hamiltonian for our system isH = Z dx � jDi j22m ��A0 + B2m� y �++ interations; (1)where Di = �i� iAi (we use units where ~ =  = 1 andabsorb the eletron harge e into the gauge potentialA�). We an also think about our system as that of par-tiles with zero magneti moment (g = 0), subjeted toan external �eld in whih the salar potential is tunedto deviate from B=2m by an amount that remains �niteas m! 0. The onservation laws are the onventionalones, with the replaement A0 ! A0 +B=2m,�n�t + �iji = 0; (2)

��t (mji) + �k�ik = n�Ei + �iB2m �+ �ikjkB; (3)�"�t + �i"i = ji�Ei + �iB2m � : (4)We now extrat the part divergent as m! 0 from theonserved urrents and the stress tensor as follows:~ji = ji + �ij2m�jn; (5)~�ik = �ik + 12(�ij�j~jk + �kj�j~ji)� nB2mÆik ; (6)~" = "� nB2m; ~"i = "i � 12m (Bji + �ijEjn): (7)For the number urrent (5), this proedure of extrat-ing the 1=m part was done in Ref. [19℄. The onserva-tion laws are regular in the m! 0 limit in terms of thenewly de�ned quantities,�n�t + �i~ji = 0; (8a)��t(m~ji) + �k ~�ik = nEi + �ik~jkB; (8b)�~"�t + �i~"i = ~jiEi: (8)These equations an also be obtained within theNewton�Cartan formalism [21℄. Moreover, in the limitm! 0, the �rst term in the left-hand side of Eq. (8b)an be dropped, and it beomes a fore-balane on-dition. From now on, we drop the tildes in the �niteurrents. To lose the equations, we need to express ji,"i, and �ik through the derivatives of the loal tem-perature and hemial potential. To the �rst orderin derivatives in the equations, we an limit ourselvesto the leading-order ontribution to the stress tensor:�ik = pÆik .3. HAMILTONIAN MODEL OF ANONCOMMUTATIVE FLUIDWe start with a simple model of partiles mov-ing in the LLL. We number the partiles by an indexA = 1; : : : ; N and the spatial oordinates by i. The o-ordinates of a partile do not ommute with eah other,but ommute with those of other partiles,fxiA; xjBg = ÆAB �ijB(xA) : (9)The partile number densityn(x) =XA Æ(x� xA) (10)509



M. Geraie, D. T. Son ÆÝÒÔ, òîì 147, âûï. 3, 2015then has the Poisson braketfn(x); n(y)g = ��ij�i � nB��jÆ(x � y): (11)We now need to understand the Possion braketsinvolving the entropy density. We reall that in idealhydrodynamis, the entropy per partile s=n is on-served along �uid worldlines. We an assume that eahpartile A arries an entropy sA for all time,s(x) =XA sAÆ(x� xA): (12)We �ndfs(x); n(y)g = ��ij�i � sB ��jÆ(x� y); (13)fs(x); s(y)g = ��ij�i �jÆ(x� y); (14)where  =XA s2AB(xA)Æ(x� xA): (15)In order to lose the Poisson algebra, we should express in terms of s and n. In the �mean �eld� approxi-mation, we may expet  = s2=nB. We now assumethe most general  ompatible with the Jaobi identity,whih an be shown to be = nBf � sn� : (16)The hydrodynami equations an now be obtainedby omputing Poisson brakets with the HamiltonianH = Z dx�"(s(x); n(x); B(x)) �A0(x)n(x)�: (17)We note that both the total partile number and thetotal entropy are Casimirs of the Poisson algebra, andhene they are automatially onserved. We �nd, forexample, �tn = ��iji, where the partile number ur-rent ji isji = �ijB [n(Ej � �j�)� s�jT ℄ + �ij�j�; (18)where � annot be determined from harge onserva-tion alone. This an be done using the fore balaneequation (8b), in whih we substitute �ik = pÆik,�ip = nEi + �ikjkB; (19)whih, by using dp = sdT + nd� � BdM , ompletelydetermines ji, and the result orresponds to � = M .The �rst term in the right-hand side of Eq. (18) or-responds to the �transport urrent,� while the seondpart is the �magnetization urrent�.

Computing the Poisson braket of s with the Hamil-tonian, we an �nd the onservation law for the entropy�ts+�isi = 0; si = �ij h sB (Ej��j�)��jT i : (20)For the energy density, we an use �t" = T�ts + ��tnand derive the energy urrent from Eq. (8):"i = �ijh"+ pB (Ej � �j�)�M�j��� ��sB + T��jT + �jMEi: (21)We have also introdued the �energy magnetization�ME whose ontribution to the energy urrent is diver-gene-free. 3.1. St�reda formulasWe note in passing that the St�reda formula an bederived from our equation for the urrent. Expandingthe urrent in terms of derivatives of thermodynamivariables, inluding the derivative of B,ji = �ij(�HEj + ��H�j�+ �TH�jT + �BH�jB); (22)we an then �nd, for example�H = nB ;��H = � nB +��M�� �TB = � nB +� �n�B��;T ; (23)where we have used Maxwell's relation. The naiveEinstein relation ��H = ��H does not hold due thenonvanishing magnetization urrent in thermal equilib-rium. We note that in a zero-temperature inompress-ible phase, n=B is onstant and ��H = 0, onsistentwith the expetation that small spatial variations of �should not have any physial e�et in suh a phase. Inthermal equilibrium, the hemial potential traes theeletri �eld, � = A0, and hene the only urrent �ow-ing in the system is the magnetization urrent, equalto ji = �eqH �ijEj , where�eqH = �H + ��H = � �n�B��;T : (24)This is the St�reda formula [20℄.The thermopower an be found from our expressionfor the transport urrent: it is equal to the entropy perpartile s=n, a known result [9℄. We also note that agradient of the magneti �eld only leads to a magneti-zation (but not transport) urrent.510



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Thermal transport in a nonommutative hydrodynamisThe nonommutative model above gives a om-plete expression for the energy urrent in terms ofthe funtion  appearing in the Poisson algebra andthe energy magnetization ME . Namely, if we write"i = �ij(�HEj + ��H�j�+ �TH�jT + �BH�jB), then�H = �+ pB ; (25)��H = �Ts+ �nB +��ME�� �T;B ; (26)�TH = ��sB � T +��ME�T ��;B ; (27)�BH = ��ME�B �T;� : (28)4. GENERALIZED THERMAL TRANSPORTThe Poisson braket formalism, while giving a self-onsistent set of equations, relies on ertain unjusti-�ed assumptions. For example, the e�et of dissipativeheat ondution annot be taken into aount in thisformalism. Fortunately, we an show that beside thise�et, the most general hydrodynami equations havethe same forms as the equations derived above; the onlymodi�ation is that there is now no restrition on theform of , whih to this point has been required to beof the form (16).To write the most general system of hydrodynamiequations, we �rst notie that the partile number ur-rent annot be modi�ed due to the fore balane ondi-tion. Thus, the only plae where modi�ations an bemade is in the onstitutive relation for the energy ur-rent (21). The dissipative part has the familiar form oflongitudinal heat ondution and is not disussed here.The most general additional transverse term that anbe added to the energy urrent is �ij�a�jXa, whereXa, a = 1; 2; 3, are three independent thermodynamivariables (whih an be hosen to be, e. g., �, T , and B,but any other hoie is equally valid) and �a = �a(X)are the orresponding three kineti oe�ients. It isonvenient to introdue the one-form � � �adXa inthe spae of thermodynami variables. The onstrainton �a is that one an modify the entropy urrent byadding a ontribution of the form �ij�a�jXa to Eq. (20)and still preserve the entropy prodution rate, whihshould reeive no ontributions from these new kinetiterms. By diret alulation using the thermodynamirelation ds = T�1(d"��dn) and the energy and parti-le number onservation, we an �nd the divergene ofthe new entropy urrent

�ts+ �isi = 12�ij �d� � 1T d��ab �iXa�jXb: (29)Therefore, for entropy onservation, we need to haved� = T�1d�. The most general solution to this equa-tion is � = db0 + 0dT , � = d�0 + T0dT , where b0, 0,and �0 are salar funtions (zero-forms) of thermody-nami variables. In the energy urrent, �0 an be ab-sorbed into the magnetization urrent, and 0 into  tomake the latter an unonstrained funtion of three ther-modynami variables. The full energy urrent thereforeis "i = �ij �"+ pB (Ej � �j�)�M�j� ++ �jME � RLT�jT� ; (30)where RL =  + �s=BT , orresponding to theRighi�Ledu e�et with the thermal Hall ondutiv-ity KH = TRL. This means that in a gapped quan-tum Hall phase at low temperature, RL = �6 (R� L),where R and L are the numbers of right and left mov-ing modes [15, 17, 18℄.We emphasize here that the fat that the energyurrent is parameterized in terms of two funtions and ME implies one relationship between the oe�-ient ��H , �TH , and �BH . The response to the Luttingerpotential oupled to the energy density [22℄ an also beexpressed in terms of these two funtions [23℄.Despite the fat that the hydrodynami equationswith generi  are dissipationless (without heat ondu-tion), we are unable to �nd a Hamiltonian and a set ofPoisson brakets that would lead to these equations.We leave the study of the Hamiltonian struture of ourequations to future work.4.1. Righi�Ledu oe�ient at hightemperatureAt low temperature, as � hanges, RL is expetedto vary in a ompliated fashion as the system sansthrough many quantum Hall plateaux. When the tem-perature is large ompared to the interation energy,the system is weakly interating and the Righi�Leduoe�ient RL an be omputed reliably. One an fol-low the method of Ref. [6℄, but one an also employ thefollowing short-ut. In thermal equilibrium, all statesin the lowest Landau level have the same oupationnumber � = (e���+1)�1, whih depends only on �=Tbut not � and T separately. The urrent and energyurrent out of equilibrium, where � and T vary in spae,thus depend only on �=T . But these quantities have511



M. Geraie, D. T. Son ÆÝÒÔ, òîì 147, âûï. 3, 2015nonzero dimension, and hene they have to vanish athigh temperature. Hene, at high temperatures andzero eletri �eld, the terms in the right-hand side ofEq. (30) anel eah other.The grand partition funtion in this regime isP = BT2� ln(1 + e�=T ); (31)from whih all other thermodynami potentials an beomputed. In partiular, " = p = 0, M = P=B.The ondition of vanishing energy urrent is M�j� == �jME � RLT�jT , whih means�ME�� =M; �ME�T � TRL = 0: (32)The solution of these equations isME = � 12�T 2Li2(�e�=T ); (33)RL = � 12� h�T ln(1 + e�=T ) + 2Li2(�e�=T )i == � 12� �ln �1�� ln 11��+2Li2�� �1���� : (34)The Righi�Ledu oe�ient approahes 0 as � ! 0,and �=6 as � ! 1. The latter value mathes exatlywith that expeted for the � = 1 integer quantum Hallstate with a single hiral edge mode [15℄.In the limit of low �lling fration � � 1, the formu-las simplify. For example, RL � � 12� (2 � �=T )e�=T .It is interesting to note that, to the leading orderin ln(1=�), = RL � �sBT � e�=T2� �2T 2 = s2nB ; (35)whih is of the form (16) and moreover oinides withour initial �mean-�eld� guess for .4.2. Partile�hole symmetryWhen the interation between fermions is two-body,the system has partile�hole symmetry (for simpliity,here we assume that the magneti �eld is uniform andonstant). This should also be a symmetry of the hy-drodynami equations. If we normalize the one-bodypotential suh that � = 0 orresponds to a half-�lledLandau level (� = 1=2), then partile�hole symmetry isthe symmetry under � ! ��. It is easy to hek thatthe hydrodynami equations are partile�hole symmet-ri if P , ME, and RL satisfy

P (T; �) = P (T; �)� B�2� ; (36)ME(T;��) = 14� ��2 + �23 T 2��ME(T; �); (37)RL(T;��) = �6 � RL(T; �): (38)In partiular, at half �lling, RL = �=12 if partile�holesymmetry is not spontaneously broken, whih shouldbe the ase at least at su�iently high temperature.We note that these properties are satis�ed by Eqs. (33)and (34). 5. CONCLUSIONWe have shown that the full �nite-temperature hy-drodynamis of a system of partiles on�ned to thelowest Landau level an be written based on generalpriniples. We have assumed that the interation be-tween the eletrons is short-range. In the ase oflong-range Coulomb interation, we have to add a Pois-son equation for the salar potential, whih an be donein a straightforward manner.The Righi�Ledu oe�ient RL should be viewedas a fundamental property of a system on the LLL atany �lling fration and temperature. In priniple, theoe�ient an be measured; but the task may be om-pliated by the edge transport, as well as due to theontributions from the other terms in the energy ur-rent (30). We defer a more detailed study to futurework.To the order that we are working on, we are notsensitive to the �rst-order orretions to the stress ten-sor, inluding the dissipative shear and bulk visositiesand the dissipationless Hall visosity. These an beintrodued and it would be interesting to investigatetheir behavior under partile�hole symmetry.We thank Sean Hartnoll and Paul Wiegmann fordisussions. This work is supported in part bythe US DOE grant No.DE-FG02-13ER41958 and theARO-MURI 63834-PH-MUR grant, and a Simon In-vestigator grant from the Simons Foundation. One ofthe authors (D. T. S.) would like to express deep grat-itude to V. A. Rubakov for the guidane, inspiration,and insistene on rigor during this author's time as agraduate student. REFERENCES1. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys.Rev. Lett. 48, 1559 (1982).512
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