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THERMAL TRANSPORT IN A NONCOMMUTATIVEHYDRODYNAMICSM. Gera
ie *, D. T. Son **Kadano� Center for Theoreti
al Physi
s, University of Chi
ago60637, Illinois, Chi
ago, USARe
eived O
tober 1, 2014We �nd the hydrodynami
 equations of a system of parti
les 
onstrained to be in the lowest Landau level. Weinterpret the hydrodynami
 theory as a Hamiltonian system with the Poisson bra
kets between the hydrody-nami
 variables determined from the non
ommutativity of spa
e. We argue that the most general hydrodynami
theory 
an be obtained from this Hamiltonian system by allowing the Righi�Ledu
 
oe�
ient to be an arbitraryfun
tion of thermodynami
 variables. We 
ompute the Righi-Ledu
 
oe�
ient at high temperatures and showthat it satis�es the requirements of parti
le�hole symmetry, whi
h we outline.Contribution for the JETP spe
ial issue in honor of V. A. Rubakov's 60th birthdayDOI: 10.7868/S004445101503012X1. INTRODUCTIONIntera
ting ele
trons in very high magneti
 �eldsshow extremely ri
h behaviors, the most well-known ofwhi
h is the fra
tional quantum Hall (FQH) e�e
t [1, 2℄.In the most interesting limit, all the physi
s o

urs inthe lowest Landau level (LLL) and originates from theintera
tions.In this paper, we study the �nite-temperature dy-nami
s of ele
trons in a magneti
 �eld so high thatall parti
les are 
onstrained to be on the LLL. Thisproblem is a �nite-temperature 
ounterpart of theFQH problem. While many quantum phenomena aresmeared out by the temperature, the hydrodynami
theory, whi
h takes hold at distan
es and time s
alesmu
h larger than the mean free path/time, is expe
tedto be universal. We assume that the system is 
lean,without impurities, and the only relaxation me
hanismis the intera
tions between parti
les. This regime isparti
ularly relevant for the proposed realizations ofthe FQH regime in 
old atomi
 gases [3�5℄. The mainout
ome of our investigation is the set of hydrodynami
equations (Eqs. (8), (18), and (30)) whi
h des
ribes thelong-wavelength dynami
s of the system, the identi�-
ation of the kineti
 
oe�
ients, and the 
omputation*E-mail: mi
hael.gera
ie�gmail.
om**E-mail: dtson�u
hi
ago.edu

of the thermal Hall 
oe�
ient in the high-temperatureregime (Eq. (34)).Previous studies of transport in high magneti
 �eldsin
lude Refs. [6�9℄. In parti
ular, in Ref. [9℄, a generalapproa
h based on 
onservation laws is developed forthe hydrodynami
s of a system in a quantizing mag-neti
 �eld. This is the approa
h that we follow in thispaper. But we 
on
entrate here on the LLL limit (thezero mass limit), whi
h should be a regular limit whenthe parti
le 
arries a magneti
 moment 
orrespondingto the gyromagneti
 fa
tor g = 2. This allows us to
onsider the response of the system to variations of themagneti
 �eld, as well as to dis
uss the parti
le�holesymmetry of the hydrodynami
 equations.An important 
on
ept in our dis
ussion is that aparti
le in the LLL e�e
tively lives on a non
ommuta-tive spa
e [10℄, with its two 
oordinates x1, x2 sat-isfying the 
ommutation law [x1; x2℄ = �i`2B. Thisidea has attra
ted some attention in the 
ontext ofthe quantum Hall e�e
t; it has been spe
ulated thatthe appropriate �eld theory of the quantum Hall ef-fe
t should be a non
ommutative �eld theory (see, e. g.,Refs. [11, 12℄; for an introdu
tion to non
ommutative�eld theory, see Ref. [13℄.) We use this non
ommuta-tivity to argue for a parti
ular Poisson bra
ket algebrabetween hydrodynami
 variables, and pro
eed to derivethe hydrodynami
 equations from the Poisson bra
ketswith the Hamiltonian. This approa
h is inspired bythe Hamiltonian formulation of 
lassi
al hydrodynam-508
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si
s [14℄. The Hamiltonian equations that follow fromthe formalism form a self-
onsistent hydrodynami
 the-ory, but we argue that they need a slight modi�
ationto be
ome the most general set of equations 
onsistentwith 
onservation laws and the se
ond law of thermo-dynami
s. This modi�
ation is related to the Righi�Ledu
 (thermal Hall) e�e
t [15, 16℄.2. THERMODYNAMICS ANDCONSERVATION LAWSWe re
all the basi
 thermodynami
 fun
tions of asystem in an external magneti
 �eld [9℄. The grandpotential is an extensive thermodynami
 variable thatdepends on the temperature, 
hemi
al potential, andmagneti
 �eld: 
 = �V P (T; �;B). The partial deriva-tives of P are the entropy density, parti
le number den-sity, and magnetization: dP = sdT + nd� + MdB.The hydrodynami
 pressure is not P but its Legendretransform with respe
t to B: p = P �MB, and hen
edp = sdT + nd� � BdM . The energy density is " == Ts+ �n� P .We 
onsider a system of nonrelativisti
 parti
les ofmass m and gyromagneti
 fa
tor g = 2 moving in aba
kground magneti
 �eld B, and are interested in theregime where all higher Landau levels 
an be negle
ted.We study the response of the system to arbitrary �u
-tuations of both ele
tri
 and magneti
 �elds, assumingthat B does not vanish at any pla
e in spa
e and time,and hen
e the separation between the lowest and thehigher Landau levels is always maintained. The LLLlimit 
orresponds to taking m ! 0 and all the physi
sshould be �nite in this limit for g = 2.The Hamiltonian for our system isH = Z dx � jDi j22m ��A0 + B2m� y �++ intera
tions; (1)where Di = �i� iAi (we use units where ~ = 
 = 1 andabsorb the ele
tron 
harge e into the gauge potentialA�). We 
an also think about our system as that of par-ti
les with zero magneti
 moment (g = 0), subje
ted toan external �eld in whi
h the s
alar potential is tunedto deviate from B=2m by an amount that remains �niteas m! 0. The 
onservation laws are the 
onventionalones, with the repla
ement A0 ! A0 +B=2m,�n�t + �iji = 0; (2)

��t (mji) + �k�ik = n�Ei + �iB2m �+ �ikjkB; (3)�"�t + �i"i = ji�Ei + �iB2m � : (4)We now extra
t the part divergent as m! 0 from the
onserved 
urrents and the stress tensor as follows:~ji = ji + �ij2m�jn; (5)~�ik = �ik + 12(�ij�j~jk + �kj�j~ji)� nB2mÆik ; (6)~" = "� nB2m; ~"i = "i � 12m (Bji + �ijEjn): (7)For the number 
urrent (5), this pro
edure of extra
t-ing the 1=m part was done in Ref. [19℄. The 
onserva-tion laws are regular in the m! 0 limit in terms of thenewly de�ned quantities,�n�t + �i~ji = 0; (8a)��t(m~ji) + �k ~�ik = nEi + �ik~jkB; (8b)�~"�t + �i~"i = ~jiEi: (8
)These equations 
an also be obtained within theNewton�Cartan formalism [21℄. Moreover, in the limitm! 0, the �rst term in the left-hand side of Eq. (8b)
an be dropped, and it be
omes a for
e-balan
e 
on-dition. From now on, we drop the tildes in the �nite
urrents. To 
lose the equations, we need to express ji,"i, and �ik through the derivatives of the lo
al tem-perature and 
hemi
al potential. To the �rst orderin derivatives in the equations, we 
an limit ourselvesto the leading-order 
ontribution to the stress tensor:�ik = pÆik .3. HAMILTONIAN MODEL OF ANONCOMMUTATIVE FLUIDWe start with a simple model of parti
les mov-ing in the LLL. We number the parti
les by an indexA = 1; : : : ; N and the spatial 
oordinates by i. The 
o-ordinates of a parti
le do not 
ommute with ea
h other,but 
ommute with those of other parti
les,fxiA; xjBg = ÆAB �ijB(xA) : (9)The parti
le number densityn(x) =XA Æ(x� xA) (10)509
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ie, D. T. Son ÆÝÒÔ, òîì 147, âûï. 3, 2015then has the Poisson bra
ketfn(x); n(y)g = ��ij�i � nB��jÆ(x � y): (11)We now need to understand the Possion bra
ketsinvolving the entropy density. We re
all that in idealhydrodynami
s, the entropy per parti
le s=n is 
on-served along �uid worldlines. We 
an assume that ea
hparti
le A 
arries an entropy sA for all time,s(x) =XA sAÆ(x� xA): (12)We �ndfs(x); n(y)g = ��ij�i � sB ��jÆ(x� y); (13)fs(x); s(y)g = ��ij�i
 �jÆ(x� y); (14)where 
 =XA s2AB(xA)Æ(x� xA): (15)In order to 
lose the Poisson algebra, we should express
 in terms of s and n. In the �mean �eld� approxi-mation, we may expe
t 
 = s2=nB. We now assumethe most general 
 
ompatible with the Ja
obi identity,whi
h 
an be shown to be
 = nBf � sn� : (16)The hydrodynami
 equations 
an now be obtainedby 
omputing Poisson bra
kets with the HamiltonianH = Z dx�"(s(x); n(x); B(x)) �A0(x)n(x)�: (17)We note that both the total parti
le number and thetotal entropy are Casimirs of the Poisson algebra, andhen
e they are automati
ally 
onserved. We �nd, forexample, �tn = ��iji, where the parti
le number 
ur-rent ji isji = �ijB [n(Ej � �j�)� s�jT ℄ + �ij�j�; (18)where � 
annot be determined from 
harge 
onserva-tion alone. This 
an be done using the for
e balan
eequation (8b), in whi
h we substitute �ik = pÆik,�ip = nEi + �ikjkB; (19)whi
h, by using dp = sdT + nd� � BdM , 
ompletelydetermines ji, and the result 
orresponds to � = M .The �rst term in the right-hand side of Eq. (18) 
or-responds to the �transport 
urrent,� while the se
ondpart is the �magnetization 
urrent�.

Computing the Poisson bra
ket of s with the Hamil-tonian, we 
an �nd the 
onservation law for the entropy�ts+�isi = 0; si = �ij h sB (Ej��j�)�
�jT i : (20)For the energy density, we 
an use �t" = T�ts + ��tnand derive the energy 
urrent from Eq. (8
):"i = �ijh"+ pB (Ej � �j�)�M�j��� ��sB + 
T��jT + �jMEi: (21)We have also introdu
ed the �energy magnetization�ME whose 
ontribution to the energy 
urrent is diver-gen
e-free. 3.1. St�reda formulasWe note in passing that the St�reda formula 
an bederived from our equation for the 
urrent. Expandingthe 
urrent in terms of derivatives of thermodynami
variables, in
luding the derivative of B,ji = �ij(�HEj + ��H�j�+ �TH�jT + �BH�jB); (22)we 
an then �nd, for example�H = nB ;��H = � nB +��M�� �TB = � nB +� �n�B��;T ; (23)where we have used Maxwell's relation. The naiveEinstein relation ��H = ��H does not hold due thenonvanishing magnetization 
urrent in thermal equilib-rium. We note that in a zero-temperature in
ompress-ible phase, n=B is 
onstant and ��H = 0, 
onsistentwith the expe
tation that small spatial variations of �should not have any physi
al e�e
t in su
h a phase. Inthermal equilibrium, the 
hemi
al potential tra
es theele
tri
 �eld, � = A0, and hen
e the only 
urrent �ow-ing in the system is the magnetization 
urrent, equalto ji = �eqH �ijEj , where�eqH = �H + ��H = � �n�B��;T : (24)This is the St�reda formula [20℄.The thermopower 
an be found from our expressionfor the transport 
urrent: it is equal to the entropy perparti
le s=n, a known result [9℄. We also note that agradient of the magneti
 �eld only leads to a magneti-zation (but not transport) 
urrent.510
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ommutative hydrodynami
sThe non
ommutative model above gives a 
om-plete expression for the energy 
urrent in terms ofthe fun
tion 
 appearing in the Poisson algebra andthe energy magnetization ME . Namely, if we write"i = �ij(�HEj + ��H�j�+ �TH�jT + �BH�jB), then�H = �+ pB ; (25)��H = �Ts+ �nB +��ME�� �T;B ; (26)�TH = ��sB � 
T +��ME�T ��;B ; (27)�BH = ��ME�B �T;� : (28)4. GENERALIZED THERMAL TRANSPORTThe Poisson bra
ket formalism, while giving a self-
onsistent set of equations, relies on 
ertain unjusti-�ed assumptions. For example, the e�e
t of dissipativeheat 
ondu
tion 
annot be taken into a

ount in thisformalism. Fortunately, we 
an show that beside thise�e
t, the most general hydrodynami
 equations havethe same forms as the equations derived above; the onlymodi�
ation is that there is now no restri
tion on theform of 
, whi
h to this point has been required to beof the form (16).To write the most general system of hydrodynami
equations, we �rst noti
e that the parti
le number 
ur-rent 
annot be modi�ed due to the for
e balan
e 
ondi-tion. Thus, the only pla
e where modi�
ations 
an bemade is in the 
onstitutive relation for the energy 
ur-rent (21). The dissipative part has the familiar form oflongitudinal heat 
ondu
tion and is not dis
ussed here.The most general additional transverse term that 
anbe added to the energy 
urrent is �ij�a�jXa, whereXa, a = 1; 2; 3, are three independent thermodynami
variables (whi
h 
an be 
hosen to be, e. g., �, T , and B,but any other 
hoi
e is equally valid) and �a = �a(X)are the 
orresponding three kineti
 
oe�
ients. It is
onvenient to introdu
e the one-form � � �adXa inthe spa
e of thermodynami
 variables. The 
onstrainton �a is that one 
an modify the entropy 
urrent byadding a 
ontribution of the form �ij�a�jXa to Eq. (20)and still preserve the entropy produ
tion rate, whi
hshould re
eive no 
ontributions from these new kineti
terms. By dire
t 
al
ulation using the thermodynami
relation ds = T�1(d"��dn) and the energy and parti-
le number 
onservation, we 
an �nd the divergen
e ofthe new entropy 
urrent

�ts+ �isi = 12�ij �d� � 1T d��ab �iXa�jXb: (29)Therefore, for entropy 
onservation, we need to haved� = T�1d�. The most general solution to this equa-tion is � = db0 + 
0dT , � = d�0 + T
0dT , where b0, 
0,and �0 are s
alar fun
tions (zero-forms) of thermody-nami
 variables. In the energy 
urrent, �0 
an be ab-sorbed into the magnetization 
urrent, and 
0 into 
 tomake the latter an un
onstrained fun
tion of three ther-modynami
 variables. The full energy 
urrent thereforeis "i = �ij �"+ pB (Ej � �j�)�M�j� ++ �jME � 
RLT�jT� ; (30)where 
RL = 
 + �s=BT , 
orresponding to theRighi�Ledu
 e�e
t with the thermal Hall 
ondu
tiv-ity KH = T
RL. This means that in a gapped quan-tum Hall phase at low temperature, 
RL = �6 (
R� 
L),where 
R and 
L are the numbers of right and left mov-ing modes [15, 17, 18℄.We emphasize here that the fa
t that the energy
urrent is parameterized in terms of two fun
tions 
and ME implies one relationship between the 
oe�-
ient ��H , �TH , and �BH . The response to the Luttingerpotential 
oupled to the energy density [22℄ 
an also beexpressed in terms of these two fun
tions [23℄.Despite the fa
t that the hydrodynami
 equationswith generi
 
 are dissipationless (without heat 
ondu
-tion), we are unable to �nd a Hamiltonian and a set ofPoisson bra
kets that would lead to these equations.We leave the study of the Hamiltonian stru
ture of ourequations to future work.4.1. Righi�Ledu
 
oe�
ient at hightemperatureAt low temperature, as � 
hanges, 
RL is expe
tedto vary in a 
ompli
ated fashion as the system s
ansthrough many quantum Hall plateaux. When the tem-perature is large 
ompared to the intera
tion energy,the system is weakly intera
ting and the Righi�Ledu

oe�
ient 
RL 
an be 
omputed reliably. One 
an fol-low the method of Ref. [6℄, but one 
an also employ thefollowing short-
ut. In thermal equilibrium, all statesin the lowest Landau level have the same o

upationnumber � = (e���+1)�1, whi
h depends only on �=Tbut not � and T separately. The 
urrent and energy
urrent out of equilibrium, where � and T vary in spa
e,thus depend only on �=T . But these quantities have511
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e they have to vanish athigh temperature. Hen
e, at high temperatures andzero ele
tri
 �eld, the terms in the right-hand side ofEq. (30) 
an
el ea
h other.The grand partition fun
tion in this regime isP = BT2� ln(1 + e�=T ); (31)from whi
h all other thermodynami
 potentials 
an be
omputed. In parti
ular, " = p = 0, M = P=B.The 
ondition of vanishing energy 
urrent is M�j� == �jME � 
RLT�jT , whi
h means�ME�� =M; �ME�T � T
RL = 0: (32)The solution of these equations isME = � 12�T 2Li2(�e�=T ); (33)
RL = � 12� h�T ln(1 + e�=T ) + 2Li2(�e�=T )i == � 12� �ln �1�� ln 11��+2Li2�� �1���� : (34)The Righi�Ledu
 
oe�
ient approa
hes 0 as � ! 0,and �=6 as � ! 1. The latter value mat
hes exa
tlywith that expe
ted for the � = 1 integer quantum Hallstate with a single 
hiral edge mode [15℄.In the limit of low �lling fra
tion � � 1, the formu-las simplify. For example, 
RL � � 12� (2 � �=T )e�=T .It is interesting to note that, to the leading orderin ln(1=�),
 = 
RL � �sBT � e�=T2� �2T 2 = s2nB ; (35)whi
h is of the form (16) and moreover 
oin
ides withour initial �mean-�eld� guess for 
.4.2. Parti
le�hole symmetryWhen the intera
tion between fermions is two-body,the system has parti
le�hole symmetry (for simpli
ity,here we assume that the magneti
 �eld is uniform and
onstant). This should also be a symmetry of the hy-drodynami
 equations. If we normalize the one-bodypotential su
h that � = 0 
orresponds to a half-�lledLandau level (� = 1=2), then parti
le�hole symmetry isthe symmetry under � ! ��. It is easy to 
he
k thatthe hydrodynami
 equations are parti
le�hole symmet-ri
 if P , ME, and 
RL satisfy

P (T; �) = P (T; �)� B�2� ; (36)ME(T;��) = 14� ��2 + �23 T 2��ME(T; �); (37)
RL(T;��) = �6 � 
RL(T; �): (38)In parti
ular, at half �lling, 
RL = �=12 if parti
le�holesymmetry is not spontaneously broken, whi
h shouldbe the 
ase at least at su�
iently high temperature.We note that these properties are satis�ed by Eqs. (33)and (34). 5. CONCLUSIONWe have shown that the full �nite-temperature hy-drodynami
s of a system of parti
les 
on�ned to thelowest Landau level 
an be written based on generalprin
iples. We have assumed that the intera
tion be-tween the ele
trons is short-range. In the 
ase oflong-range Coulomb intera
tion, we have to add a Pois-son equation for the s
alar potential, whi
h 
an be donein a straightforward manner.The Righi�Ledu
 
oe�
ient 
RL should be viewedas a fundamental property of a system on the LLL atany �lling fra
tion and temperature. In prin
iple, the
oe�
ient 
an be measured; but the task may be 
om-pli
ated by the edge transport, as well as due to the
ontributions from the other terms in the energy 
ur-rent (30). We defer a more detailed study to futurework.To the order that we are working on, we are notsensitive to the �rst-order 
orre
tions to the stress ten-sor, in
luding the dissipative shear and bulk vis
ositiesand the dissipationless Hall vis
osity. These 
an beintrodu
ed and it would be interesting to investigatetheir behavior under parti
le�hole symmetry.We thank Sean Hartnoll and Paul Wiegmann fordis
ussions. This work is supported in part bythe US DOE grant No.DE-FG02-13ER41958 and theARO-MURI 63834-PH-MUR grant, and a Simon In-vestigator grant from the Simons Foundation. One ofthe authors (D. T. S.) would like to express deep grat-itude to V. A. Rubakov for the guidan
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