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We study holographic thermalization of a strongly coupled theory inspired by two colliding shock waves in a
vacuum confining background. Holographic thermalization means a black hole formation, in fact, a trapped
surface formation. As the vacuum confining background, we considered the well-know bottom-up AdS/QCD
model that provides the Cornell potential and reproduces the QCD S-function. We perturb the vacuum back-
ground by colliding domain shock waves that are assumed to be holographically dual to heavy ions collisions.
Our main physical assumption is that we can make a restriction on the time of trapped surface formation, which
results in a natural limitation on the size of the domain where the trapped surface is produced. This limits the
intermediate domain where the main part of the entropy is produced. In this domain, we can use an intermediate
vacuum background as an approximation to the full confining background. We find that the dependence of the
multiplicity on energy for the intermediate background has an asymptotic expansion whose first term depends
on energy as E/3 which is very similar to the experimental dependence of particle multiplicities on the colliding
ion energy obtained from the RHIC and LHC. However, this first term, at the energies where the approximation
of the confining metric by the intermediate background works, does not saturate the exact answer, and we have
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to take the nonleading terms into account.
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1. INTRODUCTION

QCD, which is the currently accepted theory of
strong interactions, still has the well-known prob-
lems with describing a strong-coupling phenomena.
The physics of heavy-ion collisions, in particular, a
quark-gluon plasma (QGP) formation, involves real-ti-
me strongly coupled phenomena, which makes these
phenomena difficult to study within the standard QCD
methods. In the recent years, a powerful approach to
QGP is explored, based on a holographic duality be-
tween the strong-coupling quantum field in d-dimensio-
nal Minkowski space and classical gravity in (d + 1)-di-
mensional anti de Sitter (AdS) space [1-3]. In particu-
lar, there is considerable progress in the holographic de-
scription of equilibrium QGP [4]. The holographic ap-
proach is also applied to nonequilibrium QGP. Within
this holographic approach, thermalization is described
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as a process of formation of a black hole in the AdS
space.

The AdS/CFT (conformal-field theory) correspon-
dence is based on string theory and perfectly works
for the N/ = 4 SUSY Yang-Mills theory, while the
dual description of real QCD is unknown. Much ef-
fort has been invested into the search for holographic
QCD from string theory (see, in particular, [5-7]). This
approach is known as the “top-down” approach. An
other approach, known as the “bottom-up” approach,
is supposed to propose a suitable holographic QCD mo-
dels from experimental data and lattice results [8-15].
The main idea of this approach is to use natural pre-
scriptions of the general AdS/CFT correspondence to
try to recover nonperturbative QCD phenomena, in
particular, nonperturbative vacuum phenomena, finite-
temperature, high-density, and nonzero chemical po-
tential phenomena.

The 5-dimensional metrics that reproduce the Cor-
nell potential [16], as well as p-meson spectrum, etc.,
have been proposed [10, 13, 14]. A so-called improved
holographic QCD (IHQCD) that is able to reproduce
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the QCD p-function has been constructed [15]. Ther-
mal deformations of these backgrounds are intensively
studied in the last years (see [4] for a review).

The problem of QGP formation is the subject of in-
tensive study within holographic approach in last years
(see [17, 18] and the references therein). There is con-
siderable progress in the understanding of the therma-
lization process from the gravity side as BH formation.
Initially, this process has been considered starting from
the AdS background [19-25]. However, the pure AdS
background is unable to describe the vacuum QCD with
quark confinement, nor is it able to reproduce the QCD
S-function. There are backgrounds that solve one, or
even two of these problems. The first was solved in [10]
(see also [13, 14]), where a special version of a soft wall
was proposed, and the S-function was reproduced from
THQCD [12, 15].

To describe thermalization, it is natural to study
deformations of these backgrounds. Suitable deforma-
tions of THQCD by shock waves have been studied in
[26, 27], and it has been shown that without additional
assumptions, the THQCD metric does not reproduce
the experimental multiplicity dependence on energy. It
was noted in [28] that holographic realization of the
experimental multiplicity requires an unstable back-
ground.

The goal of this paper is to close this gap and to
show that the model that reproduces the Cornell po-
tential can at the same time be used as a gravity back-
ground to give the correct energy dependence of mul-
tiplicities produced in a finite time. As a bonus of
our approach, we obtain a reasonable estimation of the
thermalization time.

This paper is organized as follows. In Sec. 2.1, we
recall the confining metrics that reproduce the Cornell
potential. In Sec. 2.2, we recall the previous results
concerning the dependence of multiplicities on energy.
In Sec. 2.3, we present the main formula for the size of
trapped surfaces formed in collision of domain walls. In
Sec. 3, we consider a special metric that is far away from
the confining metrics, but gives a suitable entropy. We
also note that a restriction of the size of the trapped
surface permits determining the thermalization time.
In Sec. 4, we show that the confining metric in [14] can
be approximated at intermediate values of the holo-
graphic coordinate z by the metric considered in Sec. 3.
As a result, for the entropy produced during a short
time Tyepm &~ 0.25 fm?), this gives an asymptotic ex-
pansion with the leading term that depends on energy
as E'/3. The same is true for the metric in [10].

1 Here and below the light velocity ¢ = 1.
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2. SETUP

2.1. Confining backgrounds

It is well known that the AdS space does not repro-
duce the quark confinement. To reproduce quark con-
finement, in particular, the appropriate glueball spec-
trum, Polchinski and Strassler [8] imposed a cut-off in
the AdS space, a “hard wall model”. Another modifica-
tion of the AdS space, a “soft wall models” [9], is related
to the dilaton. In the bottom-up approach, the metric
is usually taken to be

ds® = b?(2)(—dt* + dz* + dx?), (2.1)

where b%(z) is some function usually taken to be the
AdS metric in the UV zone (this leads to the Coulomb
potential in the UV) and is a deformed AdS metric in
the IR. The deformation in the IR should be taken in
such a way that the quark—antiquark potential exhibit
confinement.

The experimental model of the potential that is
used to fit lattice and experimental data [16] is usu-
ally taken to be the Cornell potential. In principle,
this potential should reproduce the quarkonium spec-
trum, interpolating between one-gluon exchange in the
UV and linear confinement in the IR.

The model proposed in [10] uses the warp factor

L?h(z) az’

20\ _

b (Z) - 2 ) hAZ = exp < 9 ) ) (22)
a =0.42 GeVZ.

In [11], it was shown that this factor reproduces the
static interquark potential obtained from SU(3) lattice
calculations [16].

In [14], the modification

exp (—0z%/2)
[(zrr — 2)/21R]
ZIR = 2.54 Gerl

h(z) = o =0.34 GeV?,

Cco ?

(2.3)

C():].,

was considered. This modification is in fact very close
to the model in [13] for 0 < z < 2 fm and reproduces
the Cornell potential and the S-function.

In this paper, we consider modification (4.1) (see
below) of factor (2.2), which also fits the Cornell po-
tential well.

2.2. Multiplicities

The experimental data for multiplicities in heavy-
ion collisions at the RHIC and LHC indicate that [29]

Meap 0 EO3 4. (2.4)
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The multiplicities obtained for the simplest holographic
calculation in a conformal background with the AdSs
metric [19-25],

M ags, (E) < E*/?, (2.5)
are in fact worse than the Landau bound
MLandau(E) X E1/2~ (26)

To improve the energy dependence of multiplicities,
Kiritsis and Taliotis [26] proposed to use modifications
of the b-factor. They considered b-factors correspond-
ing to conformal and nonconformal backgrounds. More
precisely, they considered collision of holographic point-
like sources in dilaton models and obtained estimations
for a variety of models (depending on the dilaton po-
tential)

Ma>1/3 x E(3a+3)/(3a+2)’ (27)

Mac 173 oxx EGatD/3a, (2.8)

We note that a perturbative QCD-inspired UV
cut-off was also used in [20]. This modification pro-
vides logarithmic corrections. Following [24], where an
energy-dependent cut-off in the high-energy limit was
proposed, Kiritsis and Taliotis [26] have shown that this
cut-off reduces the powers in (2.7) and (2.8) as

Ma>1/3 X E2/(3a+1), (29)

Mac 173 o BZ/BU=a), (2.10)

Later, in [28], we confirmed the results in (2.7)
and (2.8) by considering the domain-wall collision mo-
dels that generalized the Lin-Shuryak model [30, 31]
to nonconformal cases. In [28], we also noted that the
model with the b-factor b(z) = Leysr/z gives a more
realistic bound

Mph—dilaton(E) X El/g, (2.11)

which is closer to (2.4). But the price for this modifi-
cation is the phantom kinetic term for the dilaton. We
note that we have not performed any UV cut-off in this
model to obtain estimation (2.11).

2.3. Trapped surface for domain-wall shock
waves

The equation for the domain-wall wave profile ¢ (z)
in the space with a b-factor is

3w ) 6 (2)

(83 + -0 Oz — 2)

P

C

(2.12)
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where
1671'G5E
R £
is a dimensionless variable, G5 is the 5-dimensional

gravitational constant, F is an energy, and L is a scale
parameter. The solution of (2.12) is given by

(2.13)

0U(2) = 0ub(ze — 2) + Bz —2),  (214)
where
¢a = Ca/b73dz, ¢b = Cb/biSdZ. (215)

The constants C, and Cj, can be represented in the
form (see [28,30])

Co = C’/b*3dz//b*3dz,
Zp Zp

C, = C/b‘3dz//b‘3dz.
Za Zp

As has been mentioned in the Introduction, we consider
the collision of two shock domain walls in 5-dimensional
space—time as a holographical model of heavy-ion colli-
sions in real 4-dimensional space-time. The shock-wave
profile ¢ satisfies Eq. (2.12). The trapped surface
formed in the wall-on-wall collision obeys Eq. (2.12)
and special boundary conditions. From these bound-
ary conditions, we can find that the trapped surface is
located in z-direction from some point z, to a point z,
such that z, < z4 < z,. The points z, and z, can be
found from the relations

b*3dz//b*3dz —1,
Zp Zp
b—3(zb)/b—3dz//b—3dz -1
Za Zp

Relations (2.17) guaranty that the trapped surface
forms and is located between z, and z;, and the colli-
sion point z, is located between z, and zp, 2z, < z¢ < 23
(see the details in [28,30]).

From (2.17), we obtain

(2.16)

b e

(2.17)
C

2

% = b3(24) + b*(2), (2.18)
b 3(20)F(25) + b3(25) F(24)
Pl = D EEG) (5 )
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Fig.1. (a) The thick line represents s§>

(C) and the thin one represents s1(C,z,) at z, = 1.7 fm.
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Here, we take

L.sf = 4.4 fm and G5 = 44.83 fm®. (b) The dependence of the entropy s1(C, z,) on C for z, = 1.7 fm (solid thick

line) and z, = 1.3 fm (solid thin line). Approximations 59)(0, zp) (dot-and-dash lines) and s?)(c, zp) (dashed lines) for

zp = 1.7 fm (thick lines) and z, = 1.3 fm (thin lines). Here, L.s; = 20.7 fm. For thick lines, z, varies from 1.0 to 1.7 fm,
for thin lines, z, varies from 0.6 to 1.3 fm

where
/b*3dz = F(z;) — F(z)

Zi

(2.20)

and
Za < Zx < Zp. (2.21)

There is the following formula for the entropy den-
sity [28] of the trapped surface:

11,

3. INTERMEDIATE BACKGROUND

s = Strap
fdle

(2.22)

3.1. Entropy

In this section, we consider metric (2.1) with the

b-factor

The entropy dependence on the energy can be read off
from the formula

Leyy

z

bzblE

(3.1)
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1/2 1/2
oy = Lest | ((Less (L \Y (3.2)
Gx Za, 2 ’
where
. —2/3
w_[Cf = )", / (3.3)
Zp n 2 Leff ' '
Substituting (3.3) in (3.2), we obtain
I I 1/2
1(Com) = 22 (F222)
1/3
[ o \M?
Mk (Leff> —1| =13, (34)

We can perform the large-C' expansion in for-
mula (3.4) to obtain

51(C, zp) = Leyr (g) v — <L6ff>1/2 _
’ G5 2 Zb
172\ (Lo \ 32
-~ (= Y 4., 35)
3 C Zb
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Fig.2. Dependence of the interquark distance x on the

string maximum holographic coordinate z;,, for metric

with the factor b1(z) (solid line) and for the metric
b2(z) (dashed line)

whence the zeroth, first, and second approximations
are given by

)y = Lesr (€ v
81 ( )_ G5 2 )
(3.6)
oy = Lesr [(CN7*_ (Ler )"
s ( 72b) - G5 ) 2 )
) o B Legs g 1/3 - Less 1/2 -
Sl ( 7Zb)_ G5 2 2

1

3

2

C

Leyy
2

@) ()] o

The dependence of the entropy s1(C,z,) on C at
a fixed zj is represented with the thin line in Fig. 1a.
The approximation s\” (C) at large C' behaves as C''/3
and is shown with the thick line in Fig. 1a. We note
that due to relation (2.13), C' o« E. More precisely,
taking G5 = 44.83 fm3 and L. = 4.4 fm, we have C' =
= 580E/GeV and the range of C' in Fig. 1a corresponds
to the energy around 0.1 TeV. Therefore, we can say
that at large energies, s1(F, z,) o< E'/3, which in fact
is rather close to the experimental dependence oc E%3,

However, relation (3.3) written in the form

()" ()5

may give a restriction on the possible variation range
of energy. Indeed, by the construction, z, < z,, and
to obtain a large value of C' at a fixed z,, we have to

Legs

Zb

Legs

Za

(3.8)
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take a small z,. In the case of an additional restriction
ON Zg, SAY, Zq > Za,min, We obtain the restriction C' <
< Caz- It may happen that in this domain of C', we
cannot restrict ourself by the zeroth approximation to
s1(C,2p). A few examples of such a behavior are pre-
sented in Fig. 1b. In Fig. 1b, the energy dependences of
the exact entropy s1(C), z,) and approximated entropies
sgl)(C, zp) and 312)(0, zp) for different z, are shown for
relatively small values of C'. Figure 1b shows that in
the considered domains of C', we have to take the first
three terms of approximation (3.5) into account. The
choice of L.gr = 20.7 fm in Fig. 1b is clarified in Sec. 4.

3.2. Thermalization times

We estimate the thermalization time by a charac-
teristic size of the trapped surface, i.e.,

Zp — Za

2.4

(3.9)

Ttherm ™~

We put the factor 2.4 taking the relation between the
interquark distance x and the string maximum holo-
graphic coordinate z,, into account. The dependence
of the interquark distance x on the maximum of the
string z-coordinate, z,,, is given by

Zm

~1/2
x:/?( —1> dz
0

(see, e.g., [13] for the details). For metric (2.1) with by
given by (3.1), this dependence is represented in Fig. 2
by the solid line, and we see that @ = z,,/2.4.

b (2)
b (Zm)

(3.10)

We note that formula (3.9) is written using gen-
eral causal arguments. We assume that the time of
formation of an object extended along the holographic
direction from z, to z, is the same as the formation
time of an extended object along the z direction with
a characteristic scale Az = (z, — 2,)/2.4. This is in
accordance with (3.10). Formation of such an object
can be performed no faster than Axz.

The dependence of the thermalization time on C'
for a given value of z; can be estimated by substituting
zq from (3.3) in the r. h. s. of (3.9). In Fig. 3, the
dependence of the thermalization time on C' for diffe-
rent values of z;, is presented. To vary C, we vary z,.
In the plot, different domains of z, are shown by lines
with different thickness. Small values of z, correspond
to large energy values.
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Fig.3. The dependence of the thermalization time on
C for different values of z;, (2, = 1.7 fm — lines 1 and
2, zp, = 1.3 fm — lines 3 and 4). Different range of vari-
ation of z, are shown by lines with different thickness:
(1)1.0fm < zo < 1.3fm; (2) 0.8 fm < 2z, < 1.0 fm;
(3)145fm < z, < 1.6 fm; (4) 1.0 fm < 2z, < 1.45 fm

4. INTERMEDIATE BACKGROUND AS A
PART OF THE CONFINING BACKGROUND

In this section, we consider metric (2.1) with the
confining factor

2

(%) viTe

g =—0.02 GeV.

L
b = —
2(2) ~ exp

b(2)

(4.1)

A schematic picture of the bulk scales is presented in
Fig. 4.

Figure 5 shows that for L = 4.4 fm, in the range of
intermediate holographic coordinate z, 1.3 fm = zpyy <
< z < zrr = 1.8 fm, the factor b; with L.g = 20.86 fm
coincides with bs up to 3 % and for 1.4 fm < z < 1.7 fm,
these factors are almost identical. Instead of (4.1), we
can use the b-factor (2.2) from [10]. This leads to a
slight variation of the parameters L.f¢, 2rr, and zyy
(Fig. 6).

We note that the metric with the b-factor b; leads
to a potential of interquark interaction of the form
V(r) o< Alog(r/rg), where A and ry are some con-
stants. This form of the potential was suggested as
a simple model to fit identical spin-averaged charmo-
nium and bottomonium level splitting (see [16] and the
references therein).
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intermediate scales

' E

Fig.4. Schematic picture of the bulk scales (¢ is the
UV regularization)

The dependence of the interquark distance x on the
string maximum z coordinate z,, for metric (2.1) with
the confining factor b is presented above in Fig. 2 by
a dashed line. We note that at z ~ 2.2 fm, there is a
string breaking, which is in accordance with [32]. This
point is out side our intermediate zone.

In formula (2.22) for the entropy, we take the usu-
ally accepted value G5 ~ 44.83 fm? [19].

In Fig. 7a, the entropy dependence on the energy is
presented for the confining metric and b3 = L.ss/z. We
see that the energy dependences of entropies are very
close in this intermediate region 1.2 fm < z < 1.8 fm.
This intermediate region, according to (3.9), corre-
sponds to the thermalization time 7¢perm =~ 0.25 fm.

We note that our assumption about the restriction
of the area of trapped surface formation and the choice
of the nonconfining metric with b-factor (3.1) instead
of the confining metric with b-factor (4.1) (with the
desired energy dependence of entropy in the asymp-
totic regime) is similar in some sense to the proposal
to use an energy-dependent cut-off in the high-energy
limit [24]. We can also say that our estimations give
an analytic realization of this proposal.

However, if we consider a wider region for possi-
ble values of z, and, for example, consider z, — 0,
which corresponds to large energies, we obtain differ-
ent, entropy behaviors in these two models. The model
with the factor by has a typical behavior s(C) o C?/3
[19, 31] and the model with b; has s(C') o C'/? at
large C' [27]. This means that without changing the
asymptotic forms of the b-factor in the UV region, we
cannot change the behavior of s(C') at large energies.
From another point of view, the UV asymptotic form
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Fig.5. (a) Factors bi(z) and b2(z).

Here L = 4.4 fm and L.; = 20.86 fm. (b) The same b-factors as in (a) in the

intermediate region 1.2 fm < z < 1.8 fm. Solid lines correspond to b1 = b1(z), dashed lines correspond to ba = b2(z)

1.2 1.4 1.6 1.8
z, fm

Fig.6. Factors bi(z) with L.y = 20.7 fm (solid line)
and b(z) given by (2.2) (dashed line) in the intermedi-
ate region 1.2 fm < 2 < 1.8 fm

of the b-factor is fixed by the Coulomb potential [1].
This leads us to a modification of the holographic sce-
nario and consideration of an anisotropic background
at small z, where we can expect that the most part of
the entropy for large energy is produced [33].

5. CONCLUSION

Our calculations show that within the holographic
model of heavy-ion collisions using the confining vac-
uum background and colliding domain shock waves, the
produced entropy has an asymptotic expansion whose
first term provides a suitable dependence on the energy
3;0) x E'/3. However, the entropy produced during a
time about 0.25 fm after collision of two shock domain

walls in the confining background cannot be saturated
by the first term and contributions of nonleading terms
have to be taken into account. This is related to the
fact that to restrict our asymptotic expansion by the
first term, we have to consider the asymptotic expan-
sion at large energies. Large energies correspond to
small values of the holographic coordinate z, where our
approximation of the metric with by factor (4.1) by the
metric with b; factor (3.1) fails. On the other hand,
as mentioned above, we cannot change the asymptotic
form of by because it is related to the Coulomb poten-
tial.

It seems that a possible resolution of the prob-
lem is a change of the scenario of isotropic holo-
graphic thermalization to an anisotropic short-time
holographic thermalization scenario. This scenario as-
sumes that the main part of multiplicity is produced in
an anisotropic regime, and this part of multiplicity can
be estimated by the trapped surface produced under a
collision of the two shock waves in an anisotropic back-
ground. This scenario is accepted in recent paper [33],
where collisions of shock waves in a Lifshitz-like back-
ground have been considered.

It would be interesting to compare our estimation
of the thermalization time with thermalization time es-
timations given by the Vaidya confining bulk metric,
as well as with the thermalization time obtained in the
holographic hard-wall model using the homogeneous in-
jection of energy [34].

We note that our discussion may have applications
not only for heavy-ion collisions but also to studies of
thermalization process in a broader class of strongly
correlated multiparticle systems.
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Fig.7. (a) The entropy dependence on the energy for the confining metric (dashed line) and b7 = L. /2 (solid line). For
both lines, z;, = 1.8 fm and z, varies from z, = 1.2 fm to z, = 1.8 fm. (b) The thermalization time dependence on the

energy. The dashed line corresponds to the confining metric, the solid line corresponds to b?

Lejp/z. zy and z, are the

same as in (a)
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