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The Einstein—de Haas effect reveals a transfer of anguar momentum from microscopic constituents (electrons)
to a macroscopic body, but in the case of massless fermions, one could expect the transfer of the chirality
of constituents to macroscopic helical motion. For such a picture to be consistent, the macroscopic helicity
is to be conserved classically, to echo the conservation of the angular momentum of a rotating body. The
helicity conservation would in turn impose constraints on hydrodynamics of chiral liquids (whose constituents
are massless fermions). Essentially, the chiral liquids are dissipation-free, on the classical level. Reservations

and alternatives to this scenario are discussed.

Contribution for the JETP special issue in honor of V. A. Rubakov’s 60th birthday

DOI: 10.7868,/S0044451015030106

1. INTRODUCTION. CHIRAL LIQUIDS

Theory of liquids with massless fermionic con-
stituents has been greatly highlighted recently (for a re-
view, see, e. g., lecture volume [1]). The interest in such
chiral liquids was triggered by the discovery of QCD
plasma, with its nearly massless quarks (see, e.g., [2]).
The quark—gluon plasma exhibits remarkable proper-
ties. In particular, it is characterized by a low ratio
of the viscosity n to the entropy density s, close to its
conjectured quantum lower bound [3]. However, this
property of the quark—gluon plasma has not yet been
related to the (nearly) chiral nature of the plasma, and
we return to this point later.

Vector and axial-vector currents are natural probes
of the chiral nature of the underlying field theory.
Moreover, from the theoretical standpoint, the consid-
eration of chiral media with an asymmetric right—left
composition or a nonvanishing chiral chemical potential
s 7 0 represents an especially clean case. In partic-
ular, one predicts the existence of the chiral magnetic
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effect [4-6], or a flow of electric current along the mag-
netic field in equilibrium,

(1)

where B, = (1/2)€masu’ F*?, ut is the 4-velocity of
an element of the liquid, and F*? is the standard elec-
tromagnetic field tensor. In the rest frame, B,, reduces
to the magnetic field. We mostly focus on the vortical
chiral effect [7-9], according to which helical macro-
scopic motion of the liquid contributes to the axial cur-
rent j:
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Jn =

(2)

We note that o, is actually a function of both the
chemical potential and temperature. For simplicity, we
mostly suppress the temperature dependences. This
does not affect our conclusions.

Currents (1) and (2) are predicted to exhibit re-
markable properties. First, the coefficients op; and oy,
are uniquely determined in terms of the chiral anomaly.
Thus, for a single massless Dirac fermion with an elec-
tric charge e,

(1/2)00w€puvpotin Opli.
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where 5 = ur — pgr is the chiral chemical potential.
For the vortical conductivity o, we obtain

12

= o2

Ow (4)
where u = pr, + pr. Amusingly, Egs. (1) and (3) imply
that the laws of classical electrodynamics are modified
for chiral liquids.

Another intriguing feature of chiral liquids is that
currents (1) and (2) are nondissipative. This conclusion
already follows from the observation that the currents
exist in equilibrium. Another way of reasoning [10] is
that both the r.h.s. and the Lh.s. of (1) are odd un-
der time reversal. This is a strong indication that the
dynamics behind Egs. (1) and (2) is Hamiltonian and
there is no dissipation. For a discussion of the analogy
with supeconductivity, we refer the reader to [11].

As mentioned above, the numerical values of oy,
and o, can be traced back to the coefficients in front
of the product of electric and magnetic fields in the
expression for the famous chiral anomaly [12]:

-5 62 a
Oudp = 8?BQE , (5)
where the definition of the magnetic field adjusted to
the consideration of hydrodynamics is given above,
while the electric field in the medium is defined as
E, =uf F3. In the hydrodynamic approximation, re-
lations (3) and (4) were originally obtained in Ref. [9].
In their approach, the authors of [9] start with both
electric and magnetic external fields present and then
let E¢ — 0. Remarkably enough, currents (1) and (2)
survive in the limit of chiral anomaly (5) being switched
off by taking the limit E, — 0. This implies that
already in the limit of the electromagnetic coupling
e — 0 the conserved axial charge is modified in the
hydrodynamic setup.

The reason for such a modification can be explained
in a number of ways (see in particular, [13-17]). What
is specific for hydrodynamics, is the change of the orig-

inal Hamiltonian H, of the system to a modified one:

(6)

where p is the chemical potential associated with a con-
served charge Q. As a result, there is a change already
in the conserved axial current (i.e., in the limit of van-
ishing electromagnetic coupling). In a somewhat sim-
plified form, the axial charge within the hydrodynamic
approach is given by

H() —)Ho—MQ,

1
Qﬁydro = Qﬁaive + W/Hfluid + O(e),

(7)
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where QA . counts the number of elementary chi-

ral constitutents and the fluid helicity is Hfuia =
= [d3x p’wo, where wy = (1/2)€npyuP0u’ and we
reserve for the possibility of the chemical potential
varying in spacel).

The conservation of hydrodynamic axial charge (7)
suggests a possibility of transition of the chirality of
the constituents into helical macroscopic motion of the
liquid. As is mentioned in the abstract, this is an ana-
log of the Einstein—de Haas effect. A new point is what
can be called the clash of symmetries: on the micro-
scopic level, chirality is conserved, but on the macro-
scopic level, we are using the standard hydrodynamic
description, which does not incorporate the conserva-
tion of chirality in general and was originally developed
for nonrelativistic motion of the constituents.

One way to resolve this contradiction is to impose
extra constraints on the hydrodynamic description [18].
Generically, the solution of these constraints is that
classically chiral liquids are dissipation-free. In partic-
ular,

(8)

Nelassical = 0.

We note that phenomenological consequences from the
(hypothesized) conservation of fluid helicity were stud-
ied in great detail in magnetohydrodynamics? (see,
e.g., [19] and the references therein).

The outline of this paper is as follows. In Sec. 2,
we discuss the issue of the conservation of macroscopic
helical motion in hydrodynamics in more detail. The
main conclusion is that the conservation of the axial
charge implies dissipation-free hydrodynamics of chiral
liquids in the classical approximation. In Sec. 3, we
discuss reservations and problems.

2. AXTAL CHARGE IN HYDRODYNAMICS

2.1. Hydrodynamics as an effective field theory

Hydrodynamics is a unversal framework to describe
motions in the infrared limit, when the wave lengths
of perturbations are much larger than the mean free
path of constituents. The beauty of this approach is
that hydrodynamic equations of motion reduce to ge-

1 For simplicity, we quote the expression for the fluid helicity
in flat space. In curved space, there is an extra geometric factor
of \/—g in the integrand.

2) Note, however, that in magnetohydrodynamics, the electro-
magnetic field is considered to be dynamical, while many results
we are quoting refer to the case of global symmetries, or external
magnetic and electric fields.



MWITD, Tom 147, BBm. 3, 2015

On a chiral analog of the Einstein—de Haas effect

neral conservation laws. In particular, in the absence
of external fields, these equations are

T =0, 9"j0) =0,
where T),, is the energy-momentum tensor and jﬁ(f)) is
a set of conserved currents?). '

Since explicit expressions for T}, and j;(f) involve
phenomenological expansions in derivatives, hydrody-
namics is usually considered as a “typical” effective field
theory. However, apart from integrating out hard, or
ultraviolet degrees of freedom, the hydrodynamic ap-
proximation also assumes a change of language. In-
deed, the p@ term in hydrodynamic Hamiltonian (6)
does not correspond literally to any integration over
fundamental interactions and the very notion of the
chemical potantial can be introduced only on average,
or thermodynamically (see, e.g., [20]). Also, the prob-
lem we are considering here is somewhat specific since
we need a closed expression for the axial charge, with
no further contributions [13] from the gradient expan-
sion.

The simplest way to argue that the hydrodynamic
axial charge contains extra pieces, see (7), is as fol-
lows [13]. We first assume the chemical potential to be
small, such that the pu@ term in hydrodynamic Hamil-
tonian (6) can be treated as a perturbation. Using the
relation . = —JH for a small variation of the La-
grangian, we find for small p:

(9)

where the charge @ above is related to the current
jo in the standard way, @ = [d*zjo. Finally, us-
ing the analogy with the electromagnetic interaction,
6L =€ [ d*z A%j,, we come to the substitution

(6L) hydro — /“—’/ajaa

eA, — eA, + uuy. (10)
Extra pieces in the axial charge are generated via this
substitution.

In more detail, we recall that chiral anomaly (5) can
be reformuated [21] as the statement that the actually
conserved axial charge contains a term with external
electromagnetic potentials:
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A
= H/Hmagna

A
conserved ~ Qnaive + (11)

3) For a moment, we ignore possible quantum anomalies.
Moreover, we consider only U(1) anomalies, and then we can
redefine the anomaly as a new conserved charge, such that the
external electromagnetic field has a nonvanishing axial charge if
E“B, #0.
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where we introduce the notation Hpagn, common in pa-
pers on magnetohydrodynamics, which stands for the
magnetic helicity,

Hmagn = /deGijkAiij,

where (i, j, k) range over 1, 2, 3, A; and Fjj;, are the elec-
tromagnetic potential and field strength tensor, and e
is the electric charge of the massless fermions.

Now, by substitution (10), we generate further
terms in the hydrodynamic expression for the conserved
axial charge [16, 18]:

2
A A M
thdro = Qnaive + 2—71_2Hfluid +
2
e
—H
472
where the so-called naive axial charge is expressed in
terms of the density p* of the fermionic constituents,
QA ive = [dPzp?, the so-called mixed helicity is given
by

e
7'lmimed +

+ 2—71_2 (12)

magn

3 i ik
Homized = e/d x peijrpu' B,

and H piyig and Hipegn are defined in Eqgs (7) and (11).
We emphasize again that only the last term in the
r.h.s. of Eq. (12), that is, Hyagn, corresponds to chiral
anomaly (5) on the fundamental level of the underlying
field theory, while the sum of the first three terms is to
be conserved classically.

So far, we treated the u@ piece in Hamiltonian (6)
as a perturbation, and the whole construction seems to
be straightforward. In the spirit of the hydrodynamic
approximation, one could introduce further terms in
the derivative expression for the currents and look for
the solution of the hydrodynamic equations order by or-
der in terms of such expansions [9]. However, from the
experience with evaluating the axial charge in pertur-
bative vacuum (11), we learn that the anomalous term
Humagn is uniquely fixed and has no extention in terms
of perturbative expansions either in the electric charge
or in derivatives. We expect a similar phenomenon to
occur in the hydrodynamic approximation, such that
the densities of Hfjyiq and Hipized receive no further
contributions [13]. To achieve this, we need to formu-
late the hydrodynamic approximation with an explic-
itly chiral invariant infrared regularization (which fails,
exceptionally, in the one-loop calculation in the effec-
tive theory).

In the case of an ideal chiral liquid, such a formalism
is worked out in [17,22] and the references therein. The
infrared degrees of freedom in the field theoretic lan-
guage are provided by real scalar fields ¢’ and 1, where
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the number of s is equal to the number of spatial co-
ordinates and the ¢! can be thought of as comoving co-
ordinates of an element of liquid. This identification in-
troduces symmetries that have a geometric origin, like
the invariance of the volume under reparametrization
of the coordinates. Another real field ¢ is needed to re-
alize a flavor symmetry, or a conserved charge. We can
develop intuition on symmetries obeyed by the interac-
tions of the field ¢ and its relation to hydrodynamics
if we think of v as of a relativistic generalization of the
phase of the wave function in the case of superfluidity.

The interaction of the fields ¢, v is highly nonlinear.
The main advantage, however, is that symmetries of
the theory can now be realized in field-theoretic terms.
Thus, we can expect that the modified axial current,
like (7), arises as a Noether current, which is conserved,
as usual, on the mass shell, or with the account of hy-
drodynamic equations of motion. These expectations
are indeed realized. For details, we refer the reader to
Ref. [17] and quote here only the final result, relevant
to our purposes:

On (qua + ,uBo‘) = B,E* — éaEa, (13)
where w® = (1/2)e**%usd,us, B, and E, are mag-
netic and electric fields in the medium defined above
(with the constant e included into the definition of
the electromagnetic potential), and B, and E, are
constructed on the hydrodynamic “shadow” potential
puy, + €A, in a similar way. The chemical poten-
tial p satisfies the standard thermodynamic relation
dP = Tds + qdu, while field-theoretically it is ex-
pressed in terms of the covariant derivative of the field
1) mentioned above, u = u* D).

A crucial point is that the so-called transverse elec-
tric field E, entering Eq. (13) vanishes on the hydro-
dynamic equations of motion for the ideal liquid, or
in equlibrium [17]. Moreover, the hydrodynamic axial
charge is defined to all orders in the derivative expan-
sion, as desired (see the discussion above). A reserva-
tion is that these properties hold if the liquid velocity
U 18 defined in a specific frame. Namely, in this frame,
also called the “entropy frame” [22], the entropy cur-
rent is simply s, = suq, where s is the entropy density.
Moreover, the entropy current is defined geometrically
in such a way that it is conserved automatically, i.e.,
off the mass shell:

5% = €1 (9p¢") (017 (Ds").-

There are no further corrections to the entropy current
due to the expansion in derivatives. We also note that
we are using general curvilinear coordinates and the
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expression for the axial charge in terms of the current
density contains a geometric factor due to the invariant
volume element.

2.2. Clash of symmetries?

We now consider a nonideal liquid. Then there
seemingly arises a problem with the axial current con-
servation. In its generality, it can be formulated as the
lack of matching between symmetries at microscopic
and macroscopic scales. Microscopically, we consider
a chiral invariant theory of massless constituents (bar-
ring the chiral anomaly (5) for the moment, which is
of the second order in electromagnetic interactions).
The classification of particles according to their chiral
charges is specific for massless fermions. In general,
there is no macroscopic conservation law matching the
chirality conservation in the underlying field theory.

To reiterate the point, we compare the conservation
of the angular momentum and of chirality. We invoke
the conservation of the total angular momentum when
interpreting the Einstein—de Haas experiment. In this
case, we have the conserved total angular momentum
that incorporates both the spin angular momenta of the
constutuents (electrons) and the angular momentum of
a rotating body:

(Mz)total = Z Sf +
i

z
rotation’

(14)
where the summation is over all the constituents and
the axis of rotation is directed along the z coordinate.
As a resut of absorbing spinning elementary electrons,
there arises macroscopic rotation of a rigid body, in
accordance with conservation law (14).

Now, in the case of chiral liquids, we have an ex-
tra condition of the axial charge conservation. In the
limit of vanishing electromagnetic coupling, a.; — 0,
the conserved axial charge is given by (7):

A
thotal

a0

; 1
bt = ZX’ + Wﬂﬂuid’ (15)
i

where y? are chiralities of the constituents and H Fluid =
= [d®z pwy is the helical charge associated with the
axial current j2 = (u?)w, (see the discussion above).
The conservation of Q. , suggests the possibility of
transition of the chirality of the constituents into he-
lical macroscopic motion. Such a transition could be
called a chiral analog of the Einstein—de Haas effect.
As we discussed in the preceding subsection, in the
case of the ideal liquid, both >°, x* and H fjyiq are sep-
arately conserved in equilibrium. The transition, say,
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from Zl Xi # 0, Hpiwia = 0 to Hyppuia # 0, with the
conservation of Q7.  is still possible if the configura-
tion with Hf/4iq = 0 does not correspond to the min-
imum of energy and is in fact unstable. (For related
discussions, see Refs. [23-27] and Sec. 3 below.)

We now try to include dissipation. Then the macro-
scopic helicity H f;4iq is not conserved. Indeed, rela-
tion (13) reduces to the standard anomaly relation (5)
only upon the use of the equations of motion of the
ideal liquid, which correspond to the vanishing viscos-
ity n = 0. Actually, the observation that the fluid he-
licity conservation assumes the vanishing viscosity was
made a long time ago, in the context of mgnetohydro-
dynamics (see, in particular, [19]Y).

We can readily understand why the conservation of
axial charge (7) requires the vanishing viscosity. Be-
cause of the viscosity, or friction, the helical motion
slows down and recedes. Thus, Hfjyiq¢ diminishes as
time progresses. On the other hand, we assume that
17 # 0 arises due to some chiral invariant interaction
and neglect the chiral anomaly. This implies that the
total chirality of the constituents, Y, \’, is conserved.
For consistency with the axial charge conservation, we
therefore need the validity of Eq. (8).

It is interesting to note that the limit of vanishing
electric resistivity, or infinite conductivity og is also
intimitely related to the conservation of extended axial
charge (12). Namely, in the limit as 0 — oo, the electric
field in the rest frame of an element of liquid vanishes.
Therefore, the Lorentz invariant E,B® vanishes in any
frame as well:

Da€*P10 A3D, As ~ Eo B* — 0
with op — o0, (16)
as is emphasized in many papers on magnetohydrody-

namics (see, e.g., [19]). Moreover, for a large finite o g,
we obtain the estimate

d
/deA~Bw—

o /d3a/:B (curl B). (17)

2ToR

This relation has been used in many applications; for
recent examples and further references, we refer the
reader to [25].

4) On the detailed level, there are important differences be-
tween the formalism in Ref. [17], which we quoted in Sec. 2, and
that in papers [19] on traditional magnetohydrodynamics.
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3. RESERVATIONS AND CONCLUSIONS

3.1. Instabilities

In the preceding section, we argued that the ax-
ial current conservation in the hydrodynamic approach
imposes constraints on the hydrodynamics itself (in the
classical approximation). FEssentially, dissipation-free
hydrodynamics is favored in the classical approxima-
tion (see, in particular, Eq. (8)). Such a scenario looks
very attractive since it allows appreciating the most
striking effects — the low ratio 7/s, chiral magnetic
effect (1), chiral vortical effect (2) — in a unified way,
as consequences of the chiral nature of the underly-
ing field theories. It is therefore important to analyze
reservations and possible alternative scenarios.

We begin with a discussion of the expansion in elec-
tromagnetic interaction. To derive (8), we neglected
electromagnetic interactions and used a “shortened”
version of the conserved axial charge (see Eq. (7)) in-
stead of the full expression (see Eq. (12)). At first
sight, solving hydrodynamic equations order by order
in the expansion in electromagnetic interactions is a
legitimate procedure.

There is a possibility, however, that in fact there
are instabilities, and the true equilibrium state corre-
sponds to the (approximate) equality of all four terms
contributing to the total conserved axial charge (12):

e
) 7'lmimed ~

1
A
Qnaive ~ 4—71_2Hfl“id ~ o7

62

m%magna (18)

~
~

in apparent defiance of the expansion in electromag-
netic interactions. We note that in this regime, the
smallness of the extra powers of the electromagnetic
coupling is compensated by large amplitudes of elec-
tromagnetic potentials in the components with small
momenta, k ~ 1/ag;.

The instability implies, for example, that if we
start with a state with Q2. == 0 and Hmagn = 0,
then there is spontaneous production of domains with
Hmagn # 0 [27]. This scenario is supported, in partic-
ular, by an explicit identification of an unstable mode
(see [26]). The time needed for developing the instabil-
ity is of the order of

Tinstabitity ~ 1/ 1502 (19)
[26] and becomes infinite in the limit of vanishing elect-
romagnetic coupling, ae — 0.
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3.2. Chiral dynamics, dependence on infrared
physics

To avoid confusion, it is worth emphasizing that
various possible scenarios for the dynamics of chi-
ral liquids can be considered. First, one can assume
that there exists a chiral invariant interaction, much
stronger than the electromagnetic interaction, which is
responsible for the gross features of the liquid. Then
the condition of the conservation of the total conserved
axial charge (12) can apparently be imposed in each
order in electromagnetic interactions. This scenario
essentially implies dissipation-free hydrodynamics, or
Nelassical — 0, as discussed in detail in Sec. 2. Unex-
pectedly, the total charge is split into at least two pieces
that are conserved separately according to the equa-
tions of motion. Therefore, the transitions between the
states with the same total charge and different “sub-
charges” can occur only through formation of bubbles
of a new vacuum.

Closer analysis reveals, however, that the back-
reaction of the medium, or higher orders in electro-
magnetic interaction can crucially change the proper-
ties of chiral liquids because of the instabilities [23, 25—
27]. To compensate for the smallness of a,;, one has to
include into consideration distances and time intervals
inversely proportional to ae; (see, e.g., (19)). One can
visualize this instability in the following way. Because
of the chiral magnetic effect, there is flow of electric
currents. These currents induce electric fields, which
in turn change the axial charge of the constituents
because of the anomaly. This example demonstrates
that the properties of plasma might depend on the de-
tails of the infrared regularization, as is emphasized in
Refs. [27, 28]. Indeed, for the instability to be realized,
the total volume is to be large in units (uzae;) 3.

Moreover, if we make one step further and account
for the back-reaction of the medium to the electric field
arising as a result of the instability, then the dynamical
scenario can change again because of the possibility of
screening of the electric field in the medium. In particu-
lar, if we consider magnetohydrodynamics, or the case
where electrodynamics entirely determines the prop-
erties of the plasma, the dissipation-free limit implies
complete screening of the electric field [19]:

OF — 00, (EozBa)medium — 0.

As a result, the instability would be curbed. Sponta-
neous production of domains with a nonzero Hpagn is
still possible, but the lifetime of the false vacuum with
Humagn = 0 would be exponentially large,

Thbubbe formation ™~ M5_1 exp (const/ael) . (20)

496

To our knowledge, no explicit calculations of this life-
time were attempted in the literature.

3.3. Instability in a Euclidean mirror

Instabilities discussed so far refer to the Minkow-
skian picture. Many papers on the subject, however,
use the finite temperature 7" # 0 to fix the theory in
the infrared (see, e.g., [15, 17]) and start with the Eu-
clidean picture, with its cyclic time coordinate 0 < 7 <
< 1/T. One might suspect that since the lifetime of
false vacuum (19) is large, the instability does not de-
velop at temperatures T > 1/ Tinstabitity -

The question can be phrased in another way. The
magnetic conductivity is related to a static correlator of
two spatial components of the electromagnetic current.
In the momentum space,

Gl e
oM = I

LGk

lim
w=0,q;—0

; (21)

where w is the frequency, (7,7, k) = (1,2, 3), and there
is no summation over repeated indices. The chiral
anomaly is encoded in the 3D action

2
SgD = % /dSJU u5€ijkAi 8]'Ak, (22)
which can be reconstructed, e.g., from Eqs. (6) and
(11) and in many other ways. The magnetic conduc-
tivity is uniquely fixed by action (22), which is linear
in derivatives.

We note that the standard criterion for superfluidity
also refers to a static correlator, this time of the spatial
components Tp; and Ty, of the energy—momentum ten-
sor. If we start from the Minkowskian definition, the
superfluidity is signaled by the following form of the
correlator:

ik

w—0,q; =0

(Toi, Tor)q (w)- (23)
In this case, however, the continuation to the Euclidean
space is much more subtle because of §(w) in the r.h.s.
of Eq. (23). Also, a pole in ¢2, or a long-range force
is required for the superfluidity, while correlator (21)
is saturated by a polynomial. In the cases of both su-
perfluidity and the chiral magnetic effect, the currents
are evaluated in equilibrium, and hence the striking dif-
ferences between correlators (21) and (23) might look
puzzling.

The chiral-plasma instability mentioned above
arises if the electromagnetic field is treated as dy-
namical. To clarify the Euclidean counterpart of the
phenomenon, we add the standard 3D kinetic term

1
Lyin = 1 /deFEj (4,7 =1,2,3)



MWITD, Tom 147, BBm. 3, 2015

On a chiral analog of the Einstein—de Haas effect

to action (23) and evaluate the static photon prop-
agator with the anomalous piece (22) taken into ac-
count [27]. The result is

1 i ioeijiqt
Dij(q) = £—o? <5ij - q;%) - W]_lqgg)v (24)
where o = use? /272,

If we now use propagator (24) to evaluate correla-
tor (21), then there is a pole at ¢ = 0, similar to the
case of the superfluidity-related correlator (23). Thus,
the apparent simplicity of the evaluation of correlator
(23) starting from action (22) is due to the fact that we
have not found the 3D spectrum of excitations. On the
other hand, checking the criterion of superfluidity (23)
does require the knowledge of the spectrum.

Moreover, and more importantly, there is an un-
physical pole at ¢> = 02, which reveals the nonunitary
nature of the theory we are considering. This loss of
unitarity can be specified in the following way. The
static limit of the 4D theory that we are considering
can be compared with the Euclidean version of the
(2 + 1) theory with a nonvanishing topological photon
mass. Then the anomalous action (22) corresponds to
an imaginary topological photon mass mfy"p"logical
[23, 24, 27], or

e 4

(mfyopological)Z — _0_2. (25)

This is the signature of the plasma instability in Eu-
clidean disguise. The problem of the unphysical pole is
not removed by introducing finite temperature.

3.4. Double counting?

Finally, we mention another reservation concerning
our conclusions in Sec. 2. Namely, in the case of a per-
fect liquid, there seem to be two comserved currents.
Indeed, the total current is represented as

Ju = puy + (H2/27"2)Wu + uBy, (26)

where p is the corresponding charge density and the
rest of the notation is the same as in Eq. (13). Ac-
cording to (13), the second term in (26) by itself sat-
isfies the (anomalous) conservation law in equilibrium.
Hence, the first term, pu,, is to be conserved sepa-
rately®). This seems uncomfortable, especially in view
of the fact that on the fundamental level, in terms of
massless fermions, there exists a single current. The
sum of the two terms in the r.h.s. of (26) refers to the
hydrodynamic matrix element of this fundamental cur-
rent. The splitting of the total current into two terms
seems not well defined in general.

5) For a related discussion, see [29] and the references therein.
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The problem could also be formulated in the fol-
lowing way. One can derive the chiral vortical effect
by considering field theory in a rotating frame [7]. An-
other purely geometric derivation can be given in terms
of the Fermi sphere in the momentum space [16]. Thus,
we could speculate that the origin of the chiral vortical
effect is similar to the origin of, say, the Unruh effect
and is rooted in a (hidden) use of a noninertial frame.
Then the (anomalous) conservation of the total current
could have a kinematical origin. We note that there is
an explicit construction [17] of an off-shell (anomalous)
conservation of the total current within the Schwinger—
Keldysh formalism. This construction has not been
derived from first principles. The mechanism behind it
could be simiar to what we are describing here as the
use of a noninertial frame.

At this moment, we cannot provide an educated ap-
preciation of the physics behind the possible off-shell
conservation of the current.

3.5. Conclusions

The main problem that we addressed in this note is
how to reconcile the chiral symmetry of underlying the-
ories with the general hydrodynamic framework. The
point is that chiral symmetry is a property of (some
of) theories of massless fermion fields. The classifi-
cation of massless spin particles is different from the
classification of massive particles. The standard hy-
drodynamics, on the other hand, uses the symmetries
that are rooted only in symmetries of space-time and,
as a result, apply to both relativistic and nonrelativistic
motions, with or without dissipation.

One way to avoid this “clash of symmetries” is to
impose constraints on hydrodynamics, by requiring the
conservation of macroscopic helical motion. Essen-
tially, the constraints require the liquid to be ideal, and
therefore describable in terms of the field theory. The
axial current is then a Noether current, (anomalously)
conserved on the mass shell, i.e., with the equation
of motion of the ideal liquid taken into account. The
derivation of such currents can be found, in particular,
in Refs. [17,22]. The construction turns in fact highly
nontrivial and the expression for the conserved current
contains a finite number of terms in the derivative ex-
pansion if a specific choice of the frame is made. An
unexpected problem emerges: there seem to arise two
independently conserved currents.

Another possibilty is that we should reserve for an
off-shell conservation of the axial current in hydrody-
namics. We have not found any precise mechanism
for the off-shell conservation. However, the analogy
with the Unruh effect, where radiation of particles
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arises because of the use of a noninertial, accelerated
frame, might serve as a guide. Indeed, the appearence
of specifically hydrodynamic terms in the axial charge
seems to be related to the use of noninertial frames, like
a rotating frame. This possibility might correspond
to the construction of an automatically (anomalously)
conserved current within the Schwinger—Keldysh
formalism presented in Ref. [17].

These notes were prepared for a volume devoted to
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is a pleasure to acknowledge the influence of his pa-
pers and dscussions with him on our research. We are
also thankful to A. S. Adoshkin, V. P. Kirilin, and
A. V. Sadofyev for thorough discussions of the prob-
lems considered here. The work was supported by the
RF Ministry of Science and Education (research project
identifier RFMEFI61614X0023).
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