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ON A CHIRAL ANALOG OF THE EINSTEIN�de HAAS EFFECTV. I. Zakharov *Institute for Theoreti
al and Experimental Physi
s117218, Mos
ow, RussiaMax-Plan
k Institut für Physik80805, Mün
hen, GermanyS
hool of Biomedi
ine, Far Easter Federal University690950, Vladivostok, RussiaRe
eived November 17, 2014The Einstein�de Haas e�e
t reveals a transfer of anguar momentum from mi
ros
opi
 
onstituents (ele
trons)to a ma
ros
opi
 body, but in the 
ase of massless fermions, one 
ould expe
t the transfer of the 
hiralityof 
onstituents to ma
ros
opi
 heli
al motion. For su
h a pi
ture to be 
onsistent, the ma
ros
opi
 heli
ityis to be 
onserved 
lassi
ally, to e
ho the 
onservation of the angular momentum of a rotating body. Theheli
ity 
onservation would in turn impose 
onstraints on hydrodynami
s of 
hiral liquids (whose 
onstituentsare massless fermions). Essentially, the 
hiral liquids are dissipation-free, on the 
lassi
al level. Reservationsand alternatives to this s
enario are dis
ussed.Contribution for the JETP spe
ial issue in honor of V. A. Rubakov's 60th birthdayDOI: 10.7868/S00444510150301061. INTRODUCTION. CHIRAL LIQUIDSTheory of liquids with massless fermioni
 
on-stituents has been greatly highlighted re
ently (for a re-view, see, e. g., le
ture volume [1℄). The interest in su
h
hiral liquids was triggered by the dis
overy of QCDplasma, with its nearly massless quarks (see, e. g., [2℄).The quark�gluon plasma exhibits remarkable proper-ties. In parti
ular, it is 
hara
terized by a low ratioof the vis
osity � to the entropy density s, 
lose to its
onje
tured quantum lower bound [3℄. However, thisproperty of the quark�gluon plasma has not yet beenrelated to the (nearly) 
hiral nature of the plasma, andwe return to this point later.Ve
tor and axial-ve
tor 
urrents are natural probesof the 
hiral nature of the underlying �eld theory.Moreover, from the theoreti
al standpoint, the 
onsid-eration of 
hiral media with an asymmetri
 right�left
omposition or a nonvanishing 
hiral 
hemi
al potential�5 6= 0 represents an espe
ially 
lean 
ase. In parti
-ular, one predi
ts the existen
e of the 
hiral magneti
*E-mail: vzakharov�itep.ru

e�e
t [4�6℄, or a �ow of ele
tri
 
urrent along the mag-neti
 �eld in equilibrium,jel� = �MB�; (1)where B� � (1=2)�����u�F�� , u� is the 4-velo
ity ofan element of the liquid, and F�� is the standard ele
-tromagneti
 �eld tensor. In the rest frame, B� redu
esto the magneti
 �eld. We mostly fo
us on the vorti
al
hiral e�e
t [7�9℄, a

ording to whi
h heli
al ma
ro-s
opi
 motion of the liquid 
ontributes to the axial 
ur-rent j5�: j5� = (1=2)�!�����u���u�: (2)We note that �! is a
tually a fun
tion of both the
hemi
al potential and temperature. For simpli
ity, wemostly suppress the temperature dependen
es. Thisdoes not a�e
t our 
on
lusions.Currents (1) and (2) are predi
ted to exhibit re-markable properties. First, the 
oe�
ients �M and �!are uniquely determined in terms of the 
hiral anomaly.Thus, for a single massless Dira
 fermion with an ele
-tri
 
harge e, �M = e�52�2 ; (3)491
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hiral 
hemi
al potential.For the vorti
al 
ondu
tivity �! , we obtain�! = �22�2 ; (4)where � = �L+�R. Amusingly, Eqs. (1) and (3) implythat the laws of 
lassi
al ele
trodynami
s are modi�edfor 
hiral liquids.Another intriguing feature of 
hiral liquids is that
urrents (1) and (2) are nondissipative. This 
on
lusionalready follows from the observation that the 
urrentsexist in equilibrium. Another way of reasoning [10℄ isthat both the r.h.s. and the l.h.s. of (1) are odd un-der time reversal. This is a strong indi
ation that thedynami
s behind Eqs. (1) and (2) is Hamiltonian andthere is no dissipation. For a dis
ussion of the analogywith supe
ondu
tivity, we refer the reader to [11℄.As mentioned above, the numeri
al values of �Mand �! 
an be tra
ed ba
k to the 
oe�
ients in frontof the produ
t of ele
tri
 and magneti
 �elds in theexpression for the famous 
hiral anomaly [12℄:��j5� = e28�2B�E�; (5)where the de�nition of the magneti
 �eld adjusted tothe 
onsideration of hydrodynami
s is given above,while the ele
tri
 �eld in the medium is de�ned asE� = u�F��. In the hydrodynami
 approximation, re-lations (3) and (4) were originally obtained in Ref. [9℄.In their approa
h, the authors of [9℄ start with bothele
tri
 and magneti
 external �elds present and thenlet E� ! 0. Remarkably enough, 
urrents (1) and (2)survive in the limit of 
hiral anomaly (5) being swit
hedo� by taking the limit E� ! 0. This implies thatalready in the limit of the ele
tromagneti
 
oupling�el ! 0 the 
onserved axial 
harge is modi�ed in thehydrodynami
 setup.The reason for su
h a modi�
ation 
an be explainedin a number of ways (see in parti
ular, [13�17℄). Whatis spe
i�
 for hydrodynami
s, is the 
hange of the orig-inal Hamiltonian H0 of the system to a modi�ed one:H0 ! H0 � �Q; (6)where � is the 
hemi
al potential asso
iated with a 
on-served 
harge Q. As a result, there is a 
hange alreadyin the 
onserved axial 
urrent (i. e., in the limit of van-ishing ele
tromagneti
 
oupling). In a somewhat sim-pli�ed form, the axial 
harge within the hydrodynami
approa
h is given byQAhydro = QAnaive + 12�2Hfluid +O(e); (7)

where QAnaive 
ounts the number of elementary 
hi-ral 
onstitutents and the �uid heli
ity is Hfluid == R d3x�2!0, where !� = (1=2)���
Æu��
uÆ and wereserve for the possibility of the 
hemi
al potentialvarying in spa
e1).The 
onservation of hydrodynami
 axial 
harge (7)suggests a possibility of transition of the 
hirality ofthe 
onstituents into heli
al ma
ros
opi
 motion of theliquid. As is mentioned in the abstra
t, this is an ana-log of the Einstein�de Haas e�e
t. A new point is what
an be 
alled the 
lash of symmetries: on the mi
ro-s
opi
 level, 
hirality is 
onserved, but on the ma
ro-s
opi
 level, we are using the standard hydrodynami
des
ription, whi
h does not in
orporate the 
onserva-tion of 
hirality in general and was originally developedfor nonrelativisti
 motion of the 
onstituents.One way to resolve this 
ontradi
tion is to imposeextra 
onstraints on the hydrodynami
 des
ription [18℄.Generi
ally, the solution of these 
onstraints is that
lassi
ally 
hiral liquids are dissipation-free. In parti
-ular, �
lassi
al = 0: (8)We note that phenomenologi
al 
onsequen
es from the(hypothesized) 
onservation of �uid heli
ity were stud-ied in great detail in magnetohydrodynami
s2) (see,e. g., [19℄ and the referen
es therein).The outline of this paper is as follows. In Se
. 2,we dis
uss the issue of the 
onservation of ma
ros
opi
heli
al motion in hydrodynami
s in more detail. Themain 
on
lusion is that the 
onservation of the axial
harge implies dissipation-free hydrodynami
s of 
hiralliquids in the 
lassi
al approximation. In Se
. 3, wedis
uss reservations and problems.2. AXIAL CHARGE IN HYDRODYNAMICS2.1. Hydrodynami
s as an e�e
tive �eld theoryHydrodynami
s is a unversal framework to des
ribemotions in the infrared limit, when the wave lengthsof perturbations are mu
h larger than the mean freepath of 
onstituents. The beauty of this approa
h isthat hydrodynami
 equations of motion redu
e to ge-1) For simpli
ity, we quote the expression for the �uid heli
ityin �at spa
e. In 
urved spa
e, there is an extra geometri
 fa
torof p�g in the integrand.2) Note, however, that in magnetohydrodynami
s, the ele
tro-magneti
 �eld is 
onsidered to be dynami
al, while many resultswe are quoting refer to the 
ase of global symmetries, or externalmagneti
 and ele
tri
 �elds.492
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hiral analog of the Einstein�de Haas e�e
tneral 
onservation laws. In parti
ular, in the absen
eof external �elds, these equations are��T�� = 0; ��j(i)� = 0;where T�� is the energy�momentum tensor and j(i))� isa set of 
onserved 
urrents3).Sin
e expli
it expressions for T�� and j(i)� involvephenomenologi
al expansions in derivatives, hydrody-nami
s is usually 
onsidered as a �typi
al� e�e
tive �eldtheory. However, apart from integrating out hard, orultraviolet degrees of freedom, the hydrodynami
 ap-proximation also assumes a 
hange of language. In-deed, the �Q term in hydrodynami
 Hamiltonian (6)does not 
orrespond literally to any integration overfundamental intera
tions and the very notion of the
hemi
al potantial 
an be introdu
ed only on average,or thermodynami
ally (see, e. g., [20℄). Also, the prob-lem we are 
onsidering here is somewhat spe
i�
 sin
ewe need a 
losed expression for the axial 
harge, withno further 
ontributions [13℄ from the gradient expan-sion.The simplest way to argue that the hydrodynami
axial 
harge 
ontains extra pie
es, see (7), is as fol-lows [13℄. We �rst assume the 
hemi
al potential to besmall, su
h that the �Q term in hydrodynami
 Hamil-tonian (6) 
an be treated as a perturbation. Using therelation ÆL = �ÆH for a small variation of the La-grangian, we �nd for small �:(ÆL)hydro = �u�j�; (9)where the 
harge Q above is related to the 
urrentj� in the standard way, Q = R d3xj0. Finally, us-ing the analogy with the ele
tromagneti
 intera
tion,ÆLel = e R d4xA�j�, we 
ome to the substitutioneA� ! eA� + �u�: (10)Extra pie
es in the axial 
harge are generated via thissubstitution.In more detail, we re
all that 
hiral anomaly (5) 
anbe reformuated [21℄ as the statement that the a
tually
onserved axial 
harge 
ontains a term with externalele
tromagneti
 potentials:QA
onserved = QAnaive + e24�2Hmagn; (11)3) For a moment, we ignore possible quantum anomalies.Moreover, we 
onsider only U(1) anomalies, and then we 
anrede�ne the anomaly as a new 
onserved 
harge, su
h that theexternal ele
tromagneti
 �eld has a nonvanishing axial 
harge ifE�B� 6= 0.

where we introdu
e the notationHmagn, 
ommon in pa-pers on magnetohydrodynami
s, whi
h stands for themagneti
 heli
ity,Hmagn = Z d3x �ijkAiFjk ;where (i; j; k) range over 1, 2, 3, Ai and Fjk are the ele
-tromagneti
 potential and �eld strength tensor, and eis the ele
tri
 
harge of the massless fermions.Now, by substitution (10), we generate furtherterms in the hydrodynami
 expression for the 
onservedaxial 
harge [16; 18℄:QAhydro = QAnaive + �22�2Hfluid ++ e2�2Hmixed + e24�2Hmagn; (12)where the so-
alled naive axial 
harge is expressed interms of the density �A of the fermioni
 
onstituents,QAnaive = R d3x�A, the so-
alled mixed heli
ity is givenby Hmixed = e Z d3x��ijkuiF jk;and Hfluid and Hmagn are de�ned in Eqs (7) and (11).We emphasize again that only the last term in ther.h.s. of Eq. (12), that is, Hmagn, 
orresponds to 
hiralanomaly (5) on the fundamental level of the underlying�eld theory, while the sum of the �rst three terms is tobe 
onserved 
lassi
ally.So far, we treated the �Q pie
e in Hamiltonian (6)as a perturbation, and the whole 
onstru
tion seems tobe straightforward. In the spirit of the hydrodynami
approximation, one 
ould introdu
e further terms inthe derivative expression for the 
urrents and look forthe solution of the hydrodynami
 equations order by or-der in terms of su
h expansions [9℄. However, from theexperien
e with evaluating the axial 
harge in pertur-bative va
uum (11), we learn that the anomalous termHmagn is uniquely �xed and has no extention in termsof perturbative expansions either in the ele
tri
 
hargeor in derivatives. We expe
t a similar phenomenon too

ur in the hydrodynami
 approximation, su
h thatthe densities of Hfluid and Hmixed re
eive no further
ontributions [13℄. To a
hieve this, we need to formu-late the hydrodynami
 approximation with an expli
-itly 
hiral invariant infrared regularization (whi
h fails,ex
eptionally, in the one-loop 
al
ulation in the e�e
-tive theory).In the 
ase of an ideal 
hiral liquid, su
h a formalismis worked out in [17; 22℄ and the referen
es therein. Theinfrared degrees of freedom in the �eld theoreti
 lan-guage are provided by real s
alar �elds 'i and  , where493



V. I. Zakharov ÆÝÒÔ, òîì 147, âûï. 3, 2015the number of 's is equal to the number of spatial 
o-ordinates and the 'i 
an be thought of as 
omoving 
o-ordinates of an element of liquid. This identi�
ation in-trodu
es symmetries that have a geometri
 origin, likethe invarian
e of the volume under reparametrizationof the 
oordinates. Another real �eld  is needed to re-alize a �avor symmetry, or a 
onserved 
harge. We 
andevelop intuition on symmetries obeyed by the intera
-tions of the �eld  and its relation to hydrodynami
sif we think of  as of a relativisti
 generalization of thephase of the wave fun
tion in the 
ase of super�uidity.The intera
tion of the �elds ',  is highly nonlinear.The main advantage, however, is that symmetries ofthe theory 
an now be realized in �eld-theoreti
 terms.Thus, we 
an expe
t that the modi�ed axial 
urrent,like (7), arises as a Noether 
urrent, whi
h is 
onserved,as usual, on the mass shell, or with the a

ount of hy-drodynami
 equations of motion. These expe
tationsare indeed realized. For details, we refer the reader toRef. [17℄ and quote here only the �nal result, relevantto our purposes:����2!� + �B�� = B�E� � B̂�Ê�; (13)where !� = (1=2)���
Æu��
uÆ, B� and E� are mag-neti
 and ele
tri
 �elds in the medium de�ned above(with the 
onstant e in
luded into the de�nition ofthe ele
tromagneti
 potential), and B̂� and Ê� are
onstru
ted on the hydrodynami
 �shadow� potential�u� + eA� in a similar way. The 
hemi
al poten-tial � satis�es the standard thermodynami
 relationdP = T ds + q d�, while �eld-theoreti
ally it is ex-pressed in terms of the 
ovariant derivative of the �eld mentioned above, � = u�D� .A 
ru
ial point is that the so-
alled transverse ele
-tri
 �eld Ê� entering Eq. (13) vanishes on the hydro-dynami
 equations of motion for the ideal liquid, orin equlibrium [17℄. Moreover, the hydrodynami
 axial
harge is de�ned to all orders in the derivative expan-sion, as desired (see the dis
ussion above). A reserva-tion is that these properties hold if the liquid velo
ityu� is de�ned in a spe
i�
 frame. Namely, in this frame,also 
alled the �entropy frame� [22℄, the entropy 
ur-rent is simply s� = su�, where s is the entropy density.Moreover, the entropy 
urrent is de�ned geometri
allyin su
h a way that it is 
onserved automati
ally, i. e.,o� the mass shell:s� = ���
Æ�ijk(��'i)(�
'j)(�Æ'k):There are no further 
orre
tions to the entropy 
urrentdue to the expansion in derivatives. We also note thatwe are using general 
urvilinear 
oordinates and the

expression for the axial 
harge in terms of the 
urrentdensity 
ontains a geometri
 fa
tor due to the invariantvolume element.2.2. Clash of symmetries?We now 
onsider a nonideal liquid. Then thereseemingly arises a problem with the axial 
urrent 
on-servation. In its generality, it 
an be formulated as thela
k of mat
hing between symmetries at mi
ros
opi
and ma
ros
opi
 s
ales. Mi
ros
opi
ally, we 
onsidera 
hiral invariant theory of massless 
onstituents (bar-ring the 
hiral anomaly (5) for the moment, whi
h isof the se
ond order in ele
tromagneti
 intera
tions).The 
lassi�
ation of parti
les a

ording to their 
hiral
harges is spe
i�
 for massless fermions. In general,there is no ma
ros
opi
 
onservation law mat
hing the
hirality 
onservation in the underlying �eld theory.To reiterate the point, we 
ompare the 
onservationof the angular momentum and of 
hirality. We invokethe 
onservation of the total angular momentum wheninterpreting the Einstein�de Haas experiment. In this
ase, we have the 
onserved total angular momentumthat in
orporates both the spin angular momenta of the
onstutuents (ele
trons) and the angular momentum ofa rotating body:(Mz)total =Xi szi +Mzrotation; (14)where the summation is over all the 
onstituents andthe axis of rotation is dire
ted along the z 
oordinate.As a resut of absorbing spinning elementary ele
trons,there arises ma
ros
opi
 rotation of a rigid body, ina

ordan
e with 
onservation law (14).Now, in the 
ase of 
hiral liquids, we have an ex-tra 
ondition of the axial 
harge 
onservation. In thelimit of vanishing ele
tromagneti
 
oupling, �el ! 0,the 
onserved axial 
harge is given by (7):QAtotal =Xi �i + 12�2Hfluid; dQAtotaldt = 0; (15)where �i are 
hiralities of the 
onstituents andHfluid == R d3x�2!0 is the heli
al 
harge asso
iated with theaxial 
urrent j5� = (�2)!� (see the dis
ussion above).The 
onservation of QAtotal suggests the possibility oftransition of the 
hirality of the 
onstituents into he-li
al ma
ros
opi
 motion. Su
h a transition 
ould be
alled a 
hiral analog of the Einstein�de Haas e�e
t.As we dis
ussed in the pre
eding subse
tion, in the
ase of the ideal liquid, bothPi �i and Hfluid are sep-arately 
onserved in equilibrium. The transition, say,494
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hiral analog of the Einstein�de Haas e�e
tfrom Pi �i 6= 0, Hfluid = 0 to Hfluid 6= 0, with the
onservation of QAtotal, is still possible if the 
on�gura-tion with Hfluid = 0 does not 
orrespond to the min-imum of energy and is in fa
t unstable. (For relateddis
ussions, see Refs. [23�27℄ and Se
. 3 below.)We now try to in
lude dissipation. Then the ma
ro-s
opi
 heli
ity Hfluid is not 
onserved. Indeed, rela-tion (13) redu
es to the standard anomaly relation (5)only upon the use of the equations of motion of theideal liquid, whi
h 
orrespond to the vanishing vis
os-ity � = 0. A
tually, the observation that the �uid he-li
ity 
onservation assumes the vanishing vis
osity wasmade a long time ago, in the 
ontext of mgnetohydro-dynami
s (see, in parti
ular, [19℄4)).We 
an readily understand why the 
onservation ofaxial 
harge (7) requires the vanishing vis
osity. Be-
ause of the vis
osity, or fri
tion, the heli
al motionslows down and re
edes. Thus, Hfluid diminishes astime progresses. On the other hand, we assume that� 6= 0 arises due to some 
hiral invariant intera
tionand negle
t the 
hiral anomaly. This implies that thetotal 
hirality of the 
onstituents, Pi �i, is 
onserved.For 
onsisten
y with the axial 
harge 
onservation, wetherefore need the validity of Eq. (8).It is interesting to note that the limit of vanishingele
tri
 resistivity, or in�nite 
ondu
tivity �E is alsointimitely related to the 
onservation of extended axial
harge (12). Namely, in the limit as � !1, the ele
tri
�eld in the rest frame of an element of liquid vanishes.Therefore, the Lorentz invariant E�B� vanishes in anyframe as well:�����
ÆA��
AÆ � E�B� ! 0with �E !1; (16)as is emphasized in many papers on magnetohydrody-nami
s (see, e. g., [19℄). Moreover, for a large �nite �E ,we obtain the estimateddt Z d3xA �B � � �2��E Z d3xB � (
urlB): (17)This relation has been used in many appli
ations; forre
ent examples and further referen
es, we refer thereader to [25℄.4) On the detailed level, there are important di�eren
es be-tween the formalism in Ref. [17℄, whi
h we quoted in Se
. 2, andthat in papers [19℄ on traditional magnetohydrodynami
s.

3. RESERVATIONS AND CONCLUSIONS3.1. InstabilitiesIn the pre
eding se
tion, we argued that the ax-ial 
urrent 
onservation in the hydrodynami
 approa
himposes 
onstraints on the hydrodynami
s itself (in the
lassi
al approximation). Essentially, dissipation-freehydrodynami
s is favored in the 
lassi
al approxima-tion (see, in parti
ular, Eq. (8)). Su
h a s
enario looksvery attra
tive sin
e it allows appre
iating the moststriking e�e
ts � the low ratio �=s, 
hiral magneti
e�e
t (1), 
hiral vorti
al e�e
t (2) � in a uni�ed way,as 
onsequen
es of the 
hiral nature of the underly-ing �eld theories. It is therefore important to analyzereservations and possible alternative s
enarios.We begin with a dis
ussion of the expansion in ele
-tromagneti
 intera
tion. To derive (8), we negle
tedele
tromagneti
 intera
tions and used a �shortened�version of the 
onserved axial 
harge (see Eq. (7)) in-stead of the full expression (see Eq. (12)). At �rstsight, solving hydrodynami
 equations order by orderin the expansion in ele
tromagneti
 intera
tions is alegitimate pro
edure.There is a possibility, however, that in fa
t thereare instabilities, and the true equilibrium state 
orre-sponds to the (approximate) equality of all four terms
ontributing to the total 
onserved axial 
harge (12):QAnaive � 14�2Hfluid � e2�2Hmixed �� e24�2Hmagn; (18)in apparent de�an
e of the expansion in ele
tromag-neti
 intera
tions. We note that in this regime, thesmallness of the extra powers of the ele
tromagneti

oupling is 
ompensated by large amplitudes of ele
-tromagneti
 potentials in the 
omponents with smallmomenta, k � 1=�el.The instability implies, for example, that if westart with a state with QAnaive 6= 0 and Hmagn = 0,then there is spontaneous produ
tion of domains withHmagn 6= 0 [27℄. This s
enario is supported, in parti
-ular, by an expli
it identi�
ation of an unstable mode(see [26℄). The time needed for developing the instabil-ity is of the order of�instability � 1=�5�2el (19)[26℄ and be
omes in�nite in the limit of vanishing ele
t-romagneti
 
oupling, �el ! 0.495
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s, dependen
e on infraredphysi
sTo avoid 
onfusion, it is worth emphasizing thatvarious possible s
enarios for the dynami
s of 
hi-ral liquids 
an be 
onsidered. First, one 
an assumethat there exists a 
hiral invariant intera
tion, mu
hstronger than the ele
tromagneti
 intera
tion, whi
h isresponsible for the gross features of the liquid. Thenthe 
ondition of the 
onservation of the total 
onservedaxial 
harge (12) 
an apparently be imposed in ea
horder in ele
tromagneti
 intera
tions. This s
enarioessentially implies dissipation-free hydrodynami
s, or�
lassi
al ! 0, as dis
ussed in detail in Se
. 2. Unex-pe
tedly, the total 
harge is split into at least two pie
esthat are 
onserved separately a

ording to the equa-tions of motion. Therefore, the transitions between thestates with the same total 
harge and di�erent �sub-
harges� 
an o

ur only through formation of bubblesof a new va
uum.Closer analysis reveals, however, that the ba
k-rea
tion of the medium, or higher orders in ele
tro-magneti
 intera
tion 
an 
ru
ially 
hange the proper-ties of 
hiral liquids be
ause of the instabilities [23; 25�27℄. To 
ompensate for the smallness of �el, one has toin
lude into 
onsideration distan
es and time intervalsinversely proportional to �el (see, e. g., (19)). One 
anvisualize this instability in the following way. Be
auseof the 
hiral magneti
 e�e
t, there is �ow of ele
tri

urrents. These 
urrents indu
e ele
tri
 �elds, whi
hin turn 
hange the axial 
harge of the 
onstituentsbe
ause of the anomaly. This example demonstratesthat the properties of plasma might depend on the de-tails of the infrared regularization, as is emphasized inRefs. [27, 28℄. Indeed, for the instability to be realized,the total volume is to be large in units (�5�el)�3.Moreover, if we make one step further and a

ountfor the ba
k-rea
tion of the medium to the ele
tri
 �eldarising as a result of the instability, then the dynami
als
enario 
an 
hange again be
ause of the possibility ofs
reening of the ele
tri
 �eld in the medium. In parti
u-lar, if we 
onsider magnetohydrodynami
s, or the 
asewhere ele
trodynami
s entirely determines the prop-erties of the plasma, the dissipation-free limit implies
omplete s
reening of the ele
tri
 �eld [19℄:�E !1; (E�B�)medium ! 0:As a result, the instability would be 
urbed. Sponta-neous produ
tion of domains with a nonzero Hmagn isstill possible, but the lifetime of the false va
uum withHmagn = 0 would be exponentially large,�bubbe formation � ��15 exp (
onst=�el) : (20)

To our knowledge, no expli
it 
al
ulations of this life-time were attempted in the literature.3.3. Instability in a Eu
lidean mirrorInstabilities dis
ussed so far refer to the Minkow-skian pi
ture. Many papers on the subje
t, however,use the �nite temperature T 6= 0 to �x the theory inthe infrared (see, e. g., [15, 17℄) and start with the Eu-
lidean pi
ture, with its 
y
li
 time 
oordinate 0 � � �� 1=T . One might suspe
t that sin
e the lifetime offalse va
uum (19) is large, the instability does not de-velop at temperatures T � 1=�instability .The question 
an be phrased in another way. Themagneti
 
ondu
tivity is related to a stati
 
orrelator oftwo spatial 
omponents of the ele
tromagneti
 
urrent.In the momentum spa
e,�M = lim!�0;qi!0 �ijkhjeli ; jelj iqiqk ; (21)where ! is the frequen
y, (i; j; k) = (1; 2; 3), and thereis no summation over repeated indi
es. The 
hiralanomaly is en
oded in the 3D a
tionS3D = e22�2 Z d3x�5�ijkAi �jAk; (22)whi
h 
an be re
onstru
ted, e. g., from Eqs. (6) and(11) and in many other ways. The magneti
 
ondu
-tivity is uniquely �xed by a
tion (22), whi
h is linearin derivatives.We note that the standard 
riterion for super�uidityalso refers to a stati
 
orrelator, this time of the spatial
omponents T0i and T0k of the energy�momentum ten-sor. If we start from the Minkowskian de�nition, thesuper�uidity is signaled by the following form of the
orrelator: lim!!0;qi!0hT0i; T0kiq � Æikq2 Æ(!): (23)In this 
ase, however, the 
ontinuation to the Eu
lideanspa
e is mu
h more subtle be
ause of Æ(!) in the r.h.s.of Eq. (23). Also, a pole in q2, or a long-range for
eis required for the super�uidity, while 
orrelator (21)is saturated by a polynomial. In the 
ases of both su-per�uidity and the 
hiral magneti
 e�e
t, the 
urrentsare evaluated in equilibrium, and hen
e the striking dif-feren
es between 
orrelators (21) and (23) might lookpuzzling.The 
hiral-plasma instability mentioned abovearises if the ele
tromagneti
 �eld is treated as dy-nami
al. To 
larify the Eu
lidean 
ounterpart of thephenomenon, we add the standard 3D kineti
 termLkin = �14 Z d3xF 2ij (i; j = 1; 2; 3)496
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tto a
tion (23) and evaluate the stati
 photon prop-agator with the anomalous pie
e (22) taken into a
-
ount [27℄. The result isDij(q) = 1q2 � �2 �Æij � qiqjq2 �� i��ijlqlq2(q2 � �2) ; (24)where � = �5e2=2�2.If we now use propagator (24) to evaluate 
orrela-tor (21), then there is a pole at q2 = 0, similar to the
ase of the super�uidity-related 
orrelator (23). Thus,the apparent simpli
ity of the evaluation of 
orrelator(23) starting from a
tion (22) is due to the fa
t that wehave not found the 3D spe
trum of ex
itations. On theother hand, 
he
king the 
riterion of super�uidity (23)does require the knowledge of the spe
trum.Moreover, and more importantly, there is an un-physi
al pole at q2 = �2, whi
h reveals the nonunitarynature of the theory we are 
onsidering. This loss ofunitarity 
an be spe
i�ed in the following way. Thestati
 limit of the 4D theory that we are 
onsidering
an be 
ompared with the Eu
lidean version of the(2 + 1) theory with a nonvanishing topologi
al photonmass. Then the anomalous a
tion (22) 
orresponds toan imaginary topologi
al photon massmtopologi
al
 = i�[23, 24, 27℄, or (mtopologi
al
 )2 = ��2: (25)This is the signature of the plasma instability in Eu-
lidean disguise. The problem of the unphysi
al pole isnot removed by introdu
ing �nite temperature.3.4. Double 
ounting?Finally, we mention another reservation 
on
erningour 
on
lusions in Se
. 2. Namely, in the 
ase of a per-fe
t liquid, there seem to be two 
onserved 
urrents.Indeed, the total 
urrent is represented asJ� = �u� + (�2=2�2)!� + �B�; (26)where � is the 
orresponding 
harge density and therest of the notation is the same as in Eq. (13). A
-
ording to (13), the se
ond term in (26) by itself sat-is�es the (anomalous) 
onservation law in equilibrium.Hen
e, the �rst term, �u�, is to be 
onserved sepa-rately5). This seems un
omfortable, espe
ially in viewof the fa
t that on the fundamental level, in terms ofmassless fermions, there exists a single 
urrent. Thesum of the two terms in the r.h.s. of (26) refers to thehydrodynami
 matrix element of this fundamental 
ur-rent. The splitting of the total 
urrent into two termsseems not well de�ned in general.5) For a related dis
ussion, see [29℄ and the referen
es therein.

The problem 
ould also be formulated in the fol-lowing way. One 
an derive the 
hiral vorti
al e�e
tby 
onsidering �eld theory in a rotating frame [7℄. An-other purely geometri
 derivation 
an be given in termsof the Fermi sphere in the momentum spa
e [16℄. Thus,we 
ould spe
ulate that the origin of the 
hiral vorti
ale�e
t is similar to the origin of, say, the Unruh e�e
tand is rooted in a (hidden) use of a noninertial frame.Then the (anomalous) 
onservation of the total 
urrent
ould have a kinemati
al origin. We note that there isan expli
it 
onstru
tion [17℄ of an o�-shell (anomalous)
onservation of the total 
urrent within the S
hwinger�Keldysh formalism. This 
onstru
tion has not beenderived from �rst prin
iples. The me
hanism behind it
ould be simiar to what we are des
ribing here as theuse of a noninertial frame.At this moment, we 
annot provide an edu
ated ap-pre
iation of the physi
s behind the possible o�-shell
onservation of the 
urrent.3.5. Con
lusionsThe main problem that we addressed in this note ishow to re
on
ile the 
hiral symmetry of underlying the-ories with the general hydrodynami
 framework. Thepoint is that 
hiral symmetry is a property of (someof) theories of massless fermion �elds. The 
lassi�-
ation of massless spin parti
les is di�erent from the
lassi�
ation of massive parti
les. The standard hy-drodynami
s, on the other hand, uses the symmetriesthat are rooted only in symmetries of spa
e-time and,as a result, apply to both relativisti
 and nonrelativisti
motions, with or without dissipation.One way to avoid this �
lash of symmetries� is toimpose 
onstraints on hydrodynami
s, by requiring the
onservation of ma
ros
opi
 heli
al motion. Essen-tially, the 
onstraints require the liquid to be ideal, andtherefore des
ribable in terms of the �eld theory. Theaxial 
urrent is then a Noether 
urrent, (anomalously)
onserved on the mass shell, i. e., with the equationof motion of the ideal liquid taken into a

ount. Thederivation of su
h 
urrents 
an be found, in parti
ular,in Refs. [17; 22℄. The 
onstru
tion turns in fa
t highlynontrivial and the expression for the 
onserved 
urrent
ontains a �nite number of terms in the derivative ex-pansion if a spe
i�
 
hoi
e of the frame is made. Anunexpe
ted problem emerges: there seem to arise twoindependently 
onserved 
urrents.Another possibilty is that we should reserve for ano�-shell 
onservation of the axial 
urrent in hydrody-nami
s. We have not found any pre
ise me
hanismfor the o�-shell 
onservation. However, the analogywith the Unruh e�e
t, where radiation of parti
les8 ÆÝÒÔ, âûï. 3 497
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ause of the use of a noninertial, a

eleratedframe, might serve as a guide. Indeed, the appearen
eof spe
i�
ally hydrodynami
 terms in the axial 
hargeseems to be related to the use of noninertial frames, likea rotating frame. This possibility might 
orrespondto the 
onstru
tion of an automati
ally (anomalously)
onserved 
urrent within the S
hwinger�Keldyshformalism presented in Ref. [17℄.These notes were prepared for a volume devoted tothe 60th birthday of Valery Anatol'evi
h Rubakov. Itis a pleasure to a
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e of his pa-pers and ds
ussions with him on our resear
h. We arealso thankful to A. S. Adoshkin, V. P. Kirilin, andA. V. Sadofyev for thorough dis
ussions of the prob-lems 
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