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ON A CHIRAL ANALOG OF THE EINSTEIN�de HAAS EFFECTV. I. Zakharov *Institute for Theoretial and Experimental Physis117218, Mosow, RussiaMax-Plank Institut für Physik80805, Münhen, GermanyShool of Biomediine, Far Easter Federal University690950, Vladivostok, RussiaReeived November 17, 2014The Einstein�de Haas e�et reveals a transfer of anguar momentum from mirosopi onstituents (eletrons)to a marosopi body, but in the ase of massless fermions, one ould expet the transfer of the hiralityof onstituents to marosopi helial motion. For suh a piture to be onsistent, the marosopi heliityis to be onserved lassially, to eho the onservation of the angular momentum of a rotating body. Theheliity onservation would in turn impose onstraints on hydrodynamis of hiral liquids (whose onstituentsare massless fermions). Essentially, the hiral liquids are dissipation-free, on the lassial level. Reservationsand alternatives to this senario are disussed.Contribution for the JETP speial issue in honor of V. A. Rubakov's 60th birthdayDOI: 10.7868/S00444510150301061. INTRODUCTION. CHIRAL LIQUIDSTheory of liquids with massless fermioni on-stituents has been greatly highlighted reently (for a re-view, see, e. g., leture volume [1℄). The interest in suhhiral liquids was triggered by the disovery of QCDplasma, with its nearly massless quarks (see, e. g., [2℄).The quark�gluon plasma exhibits remarkable proper-ties. In partiular, it is haraterized by a low ratioof the visosity � to the entropy density s, lose to itsonjetured quantum lower bound [3℄. However, thisproperty of the quark�gluon plasma has not yet beenrelated to the (nearly) hiral nature of the plasma, andwe return to this point later.Vetor and axial-vetor urrents are natural probesof the hiral nature of the underlying �eld theory.Moreover, from the theoretial standpoint, the onsid-eration of hiral media with an asymmetri right�leftomposition or a nonvanishing hiral hemial potential�5 6= 0 represents an espeially lean ase. In parti-ular, one predits the existene of the hiral magneti*E-mail: vzakharov�itep.ru

e�et [4�6℄, or a �ow of eletri urrent along the mag-neti �eld in equilibrium,jel� = �MB�; (1)where B� � (1=2)�����u�F�� , u� is the 4-veloity ofan element of the liquid, and F�� is the standard ele-tromagneti �eld tensor. In the rest frame, B� reduesto the magneti �eld. We mostly fous on the vortialhiral e�et [7�9℄, aording to whih helial maro-sopi motion of the liquid ontributes to the axial ur-rent j5�: j5� = (1=2)�!�����u���u�: (2)We note that �! is atually a funtion of both thehemial potential and temperature. For simpliity, wemostly suppress the temperature dependenes. Thisdoes not a�et our onlusions.Currents (1) and (2) are predited to exhibit re-markable properties. First, the oe�ients �M and �!are uniquely determined in terms of the hiral anomaly.Thus, for a single massless Dira fermion with an ele-tri harge e, �M = e�52�2 ; (3)491



V. I. Zakharov ÆÝÒÔ, òîì 147, âûï. 3, 2015where �5 = �L � �R is the hiral hemial potential.For the vortial ondutivity �! , we obtain�! = �22�2 ; (4)where � = �L+�R. Amusingly, Eqs. (1) and (3) implythat the laws of lassial eletrodynamis are modi�edfor hiral liquids.Another intriguing feature of hiral liquids is thaturrents (1) and (2) are nondissipative. This onlusionalready follows from the observation that the urrentsexist in equilibrium. Another way of reasoning [10℄ isthat both the r.h.s. and the l.h.s. of (1) are odd un-der time reversal. This is a strong indiation that thedynamis behind Eqs. (1) and (2) is Hamiltonian andthere is no dissipation. For a disussion of the analogywith supeondutivity, we refer the reader to [11℄.As mentioned above, the numerial values of �Mand �! an be traed bak to the oe�ients in frontof the produt of eletri and magneti �elds in theexpression for the famous hiral anomaly [12℄:��j5� = e28�2B�E�; (5)where the de�nition of the magneti �eld adjusted tothe onsideration of hydrodynamis is given above,while the eletri �eld in the medium is de�ned asE� = u�F��. In the hydrodynami approximation, re-lations (3) and (4) were originally obtained in Ref. [9℄.In their approah, the authors of [9℄ start with botheletri and magneti external �elds present and thenlet E� ! 0. Remarkably enough, urrents (1) and (2)survive in the limit of hiral anomaly (5) being swithedo� by taking the limit E� ! 0. This implies thatalready in the limit of the eletromagneti oupling�el ! 0 the onserved axial harge is modi�ed in thehydrodynami setup.The reason for suh a modi�ation an be explainedin a number of ways (see in partiular, [13�17℄). Whatis spei� for hydrodynamis, is the hange of the orig-inal Hamiltonian H0 of the system to a modi�ed one:H0 ! H0 � �Q; (6)where � is the hemial potential assoiated with a on-served harge Q. As a result, there is a hange alreadyin the onserved axial urrent (i. e., in the limit of van-ishing eletromagneti oupling). In a somewhat sim-pli�ed form, the axial harge within the hydrodynamiapproah is given byQAhydro = QAnaive + 12�2Hfluid +O(e); (7)

where QAnaive ounts the number of elementary hi-ral onstitutents and the �uid heliity is Hfluid == R d3x�2!0, where !� = (1=2)���Æu��uÆ and wereserve for the possibility of the hemial potentialvarying in spae1).The onservation of hydrodynami axial harge (7)suggests a possibility of transition of the hirality ofthe onstituents into helial marosopi motion of theliquid. As is mentioned in the abstrat, this is an ana-log of the Einstein�de Haas e�et. A new point is whatan be alled the lash of symmetries: on the miro-sopi level, hirality is onserved, but on the maro-sopi level, we are using the standard hydrodynamidesription, whih does not inorporate the onserva-tion of hirality in general and was originally developedfor nonrelativisti motion of the onstituents.One way to resolve this ontradition is to imposeextra onstraints on the hydrodynami desription [18℄.Generially, the solution of these onstraints is thatlassially hiral liquids are dissipation-free. In parti-ular, �lassial = 0: (8)We note that phenomenologial onsequenes from the(hypothesized) onservation of �uid heliity were stud-ied in great detail in magnetohydrodynamis2) (see,e. g., [19℄ and the referenes therein).The outline of this paper is as follows. In Se. 2,we disuss the issue of the onservation of marosopihelial motion in hydrodynamis in more detail. Themain onlusion is that the onservation of the axialharge implies dissipation-free hydrodynamis of hiralliquids in the lassial approximation. In Se. 3, wedisuss reservations and problems.2. AXIAL CHARGE IN HYDRODYNAMICS2.1. Hydrodynamis as an e�etive �eld theoryHydrodynamis is a unversal framework to desribemotions in the infrared limit, when the wave lengthsof perturbations are muh larger than the mean freepath of onstituents. The beauty of this approah isthat hydrodynami equations of motion redue to ge-1) For simpliity, we quote the expression for the �uid heliityin �at spae. In urved spae, there is an extra geometri fatorof p�g in the integrand.2) Note, however, that in magnetohydrodynamis, the eletro-magneti �eld is onsidered to be dynamial, while many resultswe are quoting refer to the ase of global symmetries, or externalmagneti and eletri �elds.492



ÆÝÒÔ, òîì 147, âûï. 3, 2015 On a hiral analog of the Einstein�de Haas e�etneral onservation laws. In partiular, in the abseneof external �elds, these equations are��T�� = 0; ��j(i)� = 0;where T�� is the energy�momentum tensor and j(i))� isa set of onserved urrents3).Sine expliit expressions for T�� and j(i)� involvephenomenologial expansions in derivatives, hydrody-namis is usually onsidered as a �typial� e�etive �eldtheory. However, apart from integrating out hard, orultraviolet degrees of freedom, the hydrodynami ap-proximation also assumes a hange of language. In-deed, the �Q term in hydrodynami Hamiltonian (6)does not orrespond literally to any integration overfundamental interations and the very notion of thehemial potantial an be introdued only on average,or thermodynamially (see, e. g., [20℄). Also, the prob-lem we are onsidering here is somewhat spei� sinewe need a losed expression for the axial harge, withno further ontributions [13℄ from the gradient expan-sion.The simplest way to argue that the hydrodynamiaxial harge ontains extra piees, see (7), is as fol-lows [13℄. We �rst assume the hemial potential to besmall, suh that the �Q term in hydrodynami Hamil-tonian (6) an be treated as a perturbation. Using therelation ÆL = �ÆH for a small variation of the La-grangian, we �nd for small �:(ÆL)hydro = �u�j�; (9)where the harge Q above is related to the urrentj� in the standard way, Q = R d3xj0. Finally, us-ing the analogy with the eletromagneti interation,ÆLel = e R d4xA�j�, we ome to the substitutioneA� ! eA� + �u�: (10)Extra piees in the axial harge are generated via thissubstitution.In more detail, we reall that hiral anomaly (5) anbe reformuated [21℄ as the statement that the atuallyonserved axial harge ontains a term with externaleletromagneti potentials:QAonserved = QAnaive + e24�2Hmagn; (11)3) For a moment, we ignore possible quantum anomalies.Moreover, we onsider only U(1) anomalies, and then we anrede�ne the anomaly as a new onserved harge, suh that theexternal eletromagneti �eld has a nonvanishing axial harge ifE�B� 6= 0.

where we introdue the notationHmagn, ommon in pa-pers on magnetohydrodynamis, whih stands for themagneti heliity,Hmagn = Z d3x �ijkAiFjk ;where (i; j; k) range over 1, 2, 3, Ai and Fjk are the ele-tromagneti potential and �eld strength tensor, and eis the eletri harge of the massless fermions.Now, by substitution (10), we generate furtherterms in the hydrodynami expression for the onservedaxial harge [16; 18℄:QAhydro = QAnaive + �22�2Hfluid ++ e2�2Hmixed + e24�2Hmagn; (12)where the so-alled naive axial harge is expressed interms of the density �A of the fermioni onstituents,QAnaive = R d3x�A, the so-alled mixed heliity is givenby Hmixed = e Z d3x��ijkuiF jk;and Hfluid and Hmagn are de�ned in Eqs (7) and (11).We emphasize again that only the last term in ther.h.s. of Eq. (12), that is, Hmagn, orresponds to hiralanomaly (5) on the fundamental level of the underlying�eld theory, while the sum of the �rst three terms is tobe onserved lassially.So far, we treated the �Q piee in Hamiltonian (6)as a perturbation, and the whole onstrution seems tobe straightforward. In the spirit of the hydrodynamiapproximation, one ould introdue further terms inthe derivative expression for the urrents and look forthe solution of the hydrodynami equations order by or-der in terms of suh expansions [9℄. However, from theexperiene with evaluating the axial harge in pertur-bative vauum (11), we learn that the anomalous termHmagn is uniquely �xed and has no extention in termsof perturbative expansions either in the eletri hargeor in derivatives. We expet a similar phenomenon toour in the hydrodynami approximation, suh thatthe densities of Hfluid and Hmixed reeive no furtherontributions [13℄. To ahieve this, we need to formu-late the hydrodynami approximation with an expli-itly hiral invariant infrared regularization (whih fails,exeptionally, in the one-loop alulation in the e�e-tive theory).In the ase of an ideal hiral liquid, suh a formalismis worked out in [17; 22℄ and the referenes therein. Theinfrared degrees of freedom in the �eld theoreti lan-guage are provided by real salar �elds 'i and  , where493



V. I. Zakharov ÆÝÒÔ, òîì 147, âûï. 3, 2015the number of 's is equal to the number of spatial o-ordinates and the 'i an be thought of as omoving o-ordinates of an element of liquid. This identi�ation in-trodues symmetries that have a geometri origin, likethe invariane of the volume under reparametrizationof the oordinates. Another real �eld  is needed to re-alize a �avor symmetry, or a onserved harge. We andevelop intuition on symmetries obeyed by the intera-tions of the �eld  and its relation to hydrodynamisif we think of  as of a relativisti generalization of thephase of the wave funtion in the ase of super�uidity.The interation of the �elds ',  is highly nonlinear.The main advantage, however, is that symmetries ofthe theory an now be realized in �eld-theoreti terms.Thus, we an expet that the modi�ed axial urrent,like (7), arises as a Noether urrent, whih is onserved,as usual, on the mass shell, or with the aount of hy-drodynami equations of motion. These expetationsare indeed realized. For details, we refer the reader toRef. [17℄ and quote here only the �nal result, relevantto our purposes:����2!� + �B�� = B�E� � B̂�Ê�; (13)where !� = (1=2)���Æu��uÆ, B� and E� are mag-neti and eletri �elds in the medium de�ned above(with the onstant e inluded into the de�nition ofthe eletromagneti potential), and B̂� and Ê� areonstruted on the hydrodynami �shadow� potential�u� + eA� in a similar way. The hemial poten-tial � satis�es the standard thermodynami relationdP = T ds + q d�, while �eld-theoretially it is ex-pressed in terms of the ovariant derivative of the �eld mentioned above, � = u�D� .A ruial point is that the so-alled transverse ele-tri �eld Ê� entering Eq. (13) vanishes on the hydro-dynami equations of motion for the ideal liquid, orin equlibrium [17℄. Moreover, the hydrodynami axialharge is de�ned to all orders in the derivative expan-sion, as desired (see the disussion above). A reserva-tion is that these properties hold if the liquid veloityu� is de�ned in a spei� frame. Namely, in this frame,also alled the �entropy frame� [22℄, the entropy ur-rent is simply s� = su�, where s is the entropy density.Moreover, the entropy urrent is de�ned geometriallyin suh a way that it is onserved automatially, i. e.,o� the mass shell:s� = ���Æ�ijk(��'i)(�'j)(�Æ'k):There are no further orretions to the entropy urrentdue to the expansion in derivatives. We also note thatwe are using general urvilinear oordinates and the

expression for the axial harge in terms of the urrentdensity ontains a geometri fator due to the invariantvolume element.2.2. Clash of symmetries?We now onsider a nonideal liquid. Then thereseemingly arises a problem with the axial urrent on-servation. In its generality, it an be formulated as thelak of mathing between symmetries at mirosopiand marosopi sales. Mirosopially, we onsidera hiral invariant theory of massless onstituents (bar-ring the hiral anomaly (5) for the moment, whih isof the seond order in eletromagneti interations).The lassi�ation of partiles aording to their hiralharges is spei� for massless fermions. In general,there is no marosopi onservation law mathing thehirality onservation in the underlying �eld theory.To reiterate the point, we ompare the onservationof the angular momentum and of hirality. We invokethe onservation of the total angular momentum wheninterpreting the Einstein�de Haas experiment. In thisase, we have the onserved total angular momentumthat inorporates both the spin angular momenta of theonstutuents (eletrons) and the angular momentum ofa rotating body:(Mz)total =Xi szi +Mzrotation; (14)where the summation is over all the onstituents andthe axis of rotation is direted along the z oordinate.As a resut of absorbing spinning elementary eletrons,there arises marosopi rotation of a rigid body, inaordane with onservation law (14).Now, in the ase of hiral liquids, we have an ex-tra ondition of the axial harge onservation. In thelimit of vanishing eletromagneti oupling, �el ! 0,the onserved axial harge is given by (7):QAtotal =Xi �i + 12�2Hfluid; dQAtotaldt = 0; (15)where �i are hiralities of the onstituents andHfluid == R d3x�2!0 is the helial harge assoiated with theaxial urrent j5� = (�2)!� (see the disussion above).The onservation of QAtotal suggests the possibility oftransition of the hirality of the onstituents into he-lial marosopi motion. Suh a transition ould bealled a hiral analog of the Einstein�de Haas e�et.As we disussed in the preeding subsetion, in thease of the ideal liquid, bothPi �i and Hfluid are sep-arately onserved in equilibrium. The transition, say,494



ÆÝÒÔ, òîì 147, âûï. 3, 2015 On a hiral analog of the Einstein�de Haas e�etfrom Pi �i 6= 0, Hfluid = 0 to Hfluid 6= 0, with theonservation of QAtotal, is still possible if the on�gura-tion with Hfluid = 0 does not orrespond to the min-imum of energy and is in fat unstable. (For relateddisussions, see Refs. [23�27℄ and Se. 3 below.)We now try to inlude dissipation. Then the maro-sopi heliity Hfluid is not onserved. Indeed, rela-tion (13) redues to the standard anomaly relation (5)only upon the use of the equations of motion of theideal liquid, whih orrespond to the vanishing visos-ity � = 0. Atually, the observation that the �uid he-liity onservation assumes the vanishing visosity wasmade a long time ago, in the ontext of mgnetohydro-dynamis (see, in partiular, [19℄4)).We an readily understand why the onservation ofaxial harge (7) requires the vanishing visosity. Be-ause of the visosity, or frition, the helial motionslows down and reedes. Thus, Hfluid diminishes astime progresses. On the other hand, we assume that� 6= 0 arises due to some hiral invariant interationand neglet the hiral anomaly. This implies that thetotal hirality of the onstituents, Pi �i, is onserved.For onsisteny with the axial harge onservation, wetherefore need the validity of Eq. (8).It is interesting to note that the limit of vanishingeletri resistivity, or in�nite ondutivity �E is alsointimitely related to the onservation of extended axialharge (12). Namely, in the limit as � !1, the eletri�eld in the rest frame of an element of liquid vanishes.Therefore, the Lorentz invariant E�B� vanishes in anyframe as well:�����ÆA��AÆ � E�B� ! 0with �E !1; (16)as is emphasized in many papers on magnetohydrody-namis (see, e. g., [19℄). Moreover, for a large �nite �E ,we obtain the estimateddt Z d3xA �B � � �2��E Z d3xB � (urlB): (17)This relation has been used in many appliations; forreent examples and further referenes, we refer thereader to [25℄.4) On the detailed level, there are important di�erenes be-tween the formalism in Ref. [17℄, whih we quoted in Se. 2, andthat in papers [19℄ on traditional magnetohydrodynamis.

3. RESERVATIONS AND CONCLUSIONS3.1. InstabilitiesIn the preeding setion, we argued that the ax-ial urrent onservation in the hydrodynami approahimposes onstraints on the hydrodynamis itself (in thelassial approximation). Essentially, dissipation-freehydrodynamis is favored in the lassial approxima-tion (see, in partiular, Eq. (8)). Suh a senario looksvery attrative sine it allows appreiating the moststriking e�ets � the low ratio �=s, hiral magnetie�et (1), hiral vortial e�et (2) � in a uni�ed way,as onsequenes of the hiral nature of the underly-ing �eld theories. It is therefore important to analyzereservations and possible alternative senarios.We begin with a disussion of the expansion in ele-tromagneti interation. To derive (8), we negletedeletromagneti interations and used a �shortened�version of the onserved axial harge (see Eq. (7)) in-stead of the full expression (see Eq. (12)). At �rstsight, solving hydrodynami equations order by orderin the expansion in eletromagneti interations is alegitimate proedure.There is a possibility, however, that in fat thereare instabilities, and the true equilibrium state orre-sponds to the (approximate) equality of all four termsontributing to the total onserved axial harge (12):QAnaive � 14�2Hfluid � e2�2Hmixed �� e24�2Hmagn; (18)in apparent de�ane of the expansion in eletromag-neti interations. We note that in this regime, thesmallness of the extra powers of the eletromagnetioupling is ompensated by large amplitudes of ele-tromagneti potentials in the omponents with smallmomenta, k � 1=�el.The instability implies, for example, that if westart with a state with QAnaive 6= 0 and Hmagn = 0,then there is spontaneous prodution of domains withHmagn 6= 0 [27℄. This senario is supported, in parti-ular, by an expliit identi�ation of an unstable mode(see [26℄). The time needed for developing the instabil-ity is of the order of�instability � 1=�5�2el (19)[26℄ and beomes in�nite in the limit of vanishing elet-romagneti oupling, �el ! 0.495



V. I. Zakharov ÆÝÒÔ, òîì 147, âûï. 3, 20153.2. Chiral dynamis, dependene on infraredphysisTo avoid onfusion, it is worth emphasizing thatvarious possible senarios for the dynamis of hi-ral liquids an be onsidered. First, one an assumethat there exists a hiral invariant interation, muhstronger than the eletromagneti interation, whih isresponsible for the gross features of the liquid. Thenthe ondition of the onservation of the total onservedaxial harge (12) an apparently be imposed in eahorder in eletromagneti interations. This senarioessentially implies dissipation-free hydrodynamis, or�lassial ! 0, as disussed in detail in Se. 2. Unex-petedly, the total harge is split into at least two pieesthat are onserved separately aording to the equa-tions of motion. Therefore, the transitions between thestates with the same total harge and di�erent �sub-harges� an our only through formation of bubblesof a new vauum.Closer analysis reveals, however, that the bak-reation of the medium, or higher orders in eletro-magneti interation an ruially hange the proper-ties of hiral liquids beause of the instabilities [23; 25�27℄. To ompensate for the smallness of �el, one has toinlude into onsideration distanes and time intervalsinversely proportional to �el (see, e. g., (19)). One anvisualize this instability in the following way. Beauseof the hiral magneti e�et, there is �ow of eletriurrents. These urrents indue eletri �elds, whihin turn hange the axial harge of the onstituentsbeause of the anomaly. This example demonstratesthat the properties of plasma might depend on the de-tails of the infrared regularization, as is emphasized inRefs. [27, 28℄. Indeed, for the instability to be realized,the total volume is to be large in units (�5�el)�3.Moreover, if we make one step further and aountfor the bak-reation of the medium to the eletri �eldarising as a result of the instability, then the dynamialsenario an hange again beause of the possibility ofsreening of the eletri �eld in the medium. In partiu-lar, if we onsider magnetohydrodynamis, or the asewhere eletrodynamis entirely determines the prop-erties of the plasma, the dissipation-free limit impliesomplete sreening of the eletri �eld [19℄:�E !1; (E�B�)medium ! 0:As a result, the instability would be urbed. Sponta-neous prodution of domains with a nonzero Hmagn isstill possible, but the lifetime of the false vauum withHmagn = 0 would be exponentially large,�bubbe formation � ��15 exp (onst=�el) : (20)

To our knowledge, no expliit alulations of this life-time were attempted in the literature.3.3. Instability in a Eulidean mirrorInstabilities disussed so far refer to the Minkow-skian piture. Many papers on the subjet, however,use the �nite temperature T 6= 0 to �x the theory inthe infrared (see, e. g., [15, 17℄) and start with the Eu-lidean piture, with its yli time oordinate 0 � � �� 1=T . One might suspet that sine the lifetime offalse vauum (19) is large, the instability does not de-velop at temperatures T � 1=�instability .The question an be phrased in another way. Themagneti ondutivity is related to a stati orrelator oftwo spatial omponents of the eletromagneti urrent.In the momentum spae,�M = lim!�0;qi!0 �ijkhjeli ; jelj iqiqk ; (21)where ! is the frequeny, (i; j; k) = (1; 2; 3), and thereis no summation over repeated indies. The hiralanomaly is enoded in the 3D ationS3D = e22�2 Z d3x�5�ijkAi �jAk; (22)whih an be reonstruted, e. g., from Eqs. (6) and(11) and in many other ways. The magneti ondu-tivity is uniquely �xed by ation (22), whih is linearin derivatives.We note that the standard riterion for super�uidityalso refers to a stati orrelator, this time of the spatialomponents T0i and T0k of the energy�momentum ten-sor. If we start from the Minkowskian de�nition, thesuper�uidity is signaled by the following form of theorrelator: lim!!0;qi!0hT0i; T0kiq � Æikq2 Æ(!): (23)In this ase, however, the ontinuation to the Eulideanspae is muh more subtle beause of Æ(!) in the r.h.s.of Eq. (23). Also, a pole in q2, or a long-range foreis required for the super�uidity, while orrelator (21)is saturated by a polynomial. In the ases of both su-per�uidity and the hiral magneti e�et, the urrentsare evaluated in equilibrium, and hene the striking dif-ferenes between orrelators (21) and (23) might lookpuzzling.The hiral-plasma instability mentioned abovearises if the eletromagneti �eld is treated as dy-namial. To larify the Eulidean ounterpart of thephenomenon, we add the standard 3D kineti termLkin = �14 Z d3xF 2ij (i; j = 1; 2; 3)496



ÆÝÒÔ, òîì 147, âûï. 3, 2015 On a hiral analog of the Einstein�de Haas e�etto ation (23) and evaluate the stati photon prop-agator with the anomalous piee (22) taken into a-ount [27℄. The result isDij(q) = 1q2 � �2 �Æij � qiqjq2 �� i��ijlqlq2(q2 � �2) ; (24)where � = �5e2=2�2.If we now use propagator (24) to evaluate orrela-tor (21), then there is a pole at q2 = 0, similar to thease of the super�uidity-related orrelator (23). Thus,the apparent simpliity of the evaluation of orrelator(23) starting from ation (22) is due to the fat that wehave not found the 3D spetrum of exitations. On theother hand, heking the riterion of super�uidity (23)does require the knowledge of the spetrum.Moreover, and more importantly, there is an un-physial pole at q2 = �2, whih reveals the nonunitarynature of the theory we are onsidering. This loss ofunitarity an be spei�ed in the following way. Thestati limit of the 4D theory that we are onsideringan be ompared with the Eulidean version of the(2 + 1) theory with a nonvanishing topologial photonmass. Then the anomalous ation (22) orresponds toan imaginary topologial photon massmtopologial = i�[23, 24, 27℄, or (mtopologial )2 = ��2: (25)This is the signature of the plasma instability in Eu-lidean disguise. The problem of the unphysial pole isnot removed by introduing �nite temperature.3.4. Double ounting?Finally, we mention another reservation onerningour onlusions in Se. 2. Namely, in the ase of a per-fet liquid, there seem to be two onserved urrents.Indeed, the total urrent is represented asJ� = �u� + (�2=2�2)!� + �B�; (26)where � is the orresponding harge density and therest of the notation is the same as in Eq. (13). A-ording to (13), the seond term in (26) by itself sat-is�es the (anomalous) onservation law in equilibrium.Hene, the �rst term, �u�, is to be onserved sepa-rately5). This seems unomfortable, espeially in viewof the fat that on the fundamental level, in terms ofmassless fermions, there exists a single urrent. Thesum of the two terms in the r.h.s. of (26) refers to thehydrodynami matrix element of this fundamental ur-rent. The splitting of the total urrent into two termsseems not well de�ned in general.5) For a related disussion, see [29℄ and the referenes therein.

The problem ould also be formulated in the fol-lowing way. One an derive the hiral vortial e�etby onsidering �eld theory in a rotating frame [7℄. An-other purely geometri derivation an be given in termsof the Fermi sphere in the momentum spae [16℄. Thus,we ould speulate that the origin of the hiral vortiale�et is similar to the origin of, say, the Unruh e�etand is rooted in a (hidden) use of a noninertial frame.Then the (anomalous) onservation of the total urrentould have a kinematial origin. We note that there isan expliit onstrution [17℄ of an o�-shell (anomalous)onservation of the total urrent within the Shwinger�Keldysh formalism. This onstrution has not beenderived from �rst priniples. The mehanism behind itould be simiar to what we are desribing here as theuse of a noninertial frame.At this moment, we annot provide an eduated ap-preiation of the physis behind the possible o�-shellonservation of the urrent.3.5. ConlusionsThe main problem that we addressed in this note ishow to reonile the hiral symmetry of underlying the-ories with the general hydrodynami framework. Thepoint is that hiral symmetry is a property of (someof) theories of massless fermion �elds. The lassi�-ation of massless spin partiles is di�erent from thelassi�ation of massive partiles. The standard hy-drodynamis, on the other hand, uses the symmetriesthat are rooted only in symmetries of spae-time and,as a result, apply to both relativisti and nonrelativistimotions, with or without dissipation.One way to avoid this �lash of symmetries� is toimpose onstraints on hydrodynamis, by requiring theonservation of marosopi helial motion. Essen-tially, the onstraints require the liquid to be ideal, andtherefore desribable in terms of the �eld theory. Theaxial urrent is then a Noether urrent, (anomalously)onserved on the mass shell, i. e., with the equationof motion of the ideal liquid taken into aount. Thederivation of suh urrents an be found, in partiular,in Refs. [17; 22℄. The onstrution turns in fat highlynontrivial and the expression for the onserved urrentontains a �nite number of terms in the derivative ex-pansion if a spei� hoie of the frame is made. Anunexpeted problem emerges: there seem to arise twoindependently onserved urrents.Another possibilty is that we should reserve for ano�-shell onservation of the axial urrent in hydrody-namis. We have not found any preise mehanismfor the o�-shell onservation. However, the analogywith the Unruh e�et, where radiation of partiles8 ÆÝÒÔ, âûï. 3 497
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