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RESURGENCE, OPERATOR PRODUCT EXPANSION, ANDREMARKS ON RENORMALONS IN SUPERSYMMETRICYANG�MILLS THEORYM. Shifman *William I. Fine Theoretial Physis Institute, University of Minnesota55455, Minneapolis, MN USAReeived Otober 4, 2014We disuss similarities and di�erenes between the resurgene program in quantum mehanis and the operatorprodut expansion in strongly oupled Yang�Mills theories. In N = 1 super-Yang�Mills theories, renormalonsare peuliar and are not quite similar to renormalons in QCD.Contribution for the JETP speial issue in honor of V. A. Rubakov's 60th birthdayDOI: 10.7868/S00444510150300761. PREAMBLEThis paper is written for Valery Rubakov-60Festshrift on the basis of my talk at CERN in thesummer of 2014. I �rst met Valery around 1980, whenhe disovered the monopole atalysis of the proton de-ay, whih later beame known as the Callan�Rubakove�et. There is a beautiful paper of Edward Wittenillustrating subtle points in this e�et, whih appearedshortly after Rubakov's publiation. I rememberWitten's seminar based on this paper delivered duringhis only visit to the USSR in the early 1980s.After the Callan�Rubakov e�et, Rubakov pub-lished many inspiring papers and raised two or threegenerations of bright students. These students, in turn,now inspire new young generations of theoretial physi-ists all over the world.2. INTRODUCTIONThe notion of resurgene and trans-series assoiatedwith it � a breakthrough disovery1) in onstrutivemathematis in the 1980s mostly assoiated with thename of Jean Ealle � gradually spread in mathemat-ial and theoretial physis. I was impressed by di-*E-mail: shifman�umn.edu1) For a pedestrian review understandable to physiists (atleast, in part) and an exhaustive list of referenes, see [1, 2℄.

verse and numerous appliations of these ideas reentlydisussed by J. Zinn-Justin, M. Berry, U. Jentshura,G. Dunne, M. Beneke, and others. The issues to bedisussed below are rather lose to resurgene in quan-tum mehanis, although they go far beyond and aremuh more ompliated, beause I disuss strongly ou-pled �eld theories, suh as quantum hromodynamis(QCD).In quantum mehanis, the program of resurgeneworks well, and trans-series of the typeE(g2) = EPT; regularized(g2) ++ 1Xk=1Xl 1Xp=0� 1g2N+1 exp �� g2 ��k| {z }k�instanton �log g2�l �� k;l;pg2p| {z }regularized PT (1)an be derived for all energy eigenvalues (g2 is assumedto be small; the subsript PT stands for perturbationtheory).In weakly oupled �eld theories, trans-series ouldbe perhaps onstruted, although onlusive argumentshave not yet been presented. One of my tasks is to ex-plain why resurgene, being oneptually lose to theoperator produt expansion (OPE), does not work instrongly oupled �eld theories, for instane, in QCD. Itis worth noting that OPE existed in QCD from the mid-1970s, and in its general form, the late 1960s. It grewfrom a formalism that had been suggested by K. Wil-444



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Resurgene, operator produt expansion : : :

Fig. 1. V (x) in the anharmoni osillator prob-lem (2)son before the advent of QCD. The �rst part of thispaper is devoted to this issue.In the seond part, I fous on a more tehnial as-pet: peuliarities of the fatorial divergene of pertur-bation theory in N = 1 super-Yang�Mills (SYM). Sofar renormalons in SYM were sarely disussed. No�nal onlusion was reahed. To a large extent thisquestion remains open.3. THE SIMPLEST QUANTUM MECHANICALEXAMPLES3.1. Anharmoni osillatorWe onsider a one-dimensional anharmoni osilla-tor, H = 12p2 + 12!2x2 + g2x4 (2)(see Fig. 1).For de�niteness, we fous on the ground state en-ergy E0. There exists a well-de�ned proedure for on-struting E0 order by order in perturbation theory, toany �nite order,E0 = !2 �1 + 1g2 + 2g4 + : : : � : (3)Nevertheless, Eq. (3) does not de�ne the ground stateenergy. Indeed, the oe�ients k are fatorially diver-gent at large k [3℄,k � (�1)kB�kk!; k � 1; (4)where B = !3=3 is the so-alled boune ation2).Hene, the sum in (3) needs a regularization.2) Equation (4) is slightly simpli�ed. For a more preise for-mula, see [3℄.
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a

Fig. 2. The perturbative series in the anharmoni os-illator problem is Borel-summable. The g2 series forE0 is sign alternating; f(a) has a singularity on thereal negative semi-axis in the Borel parameter omplexplane. a is the Borel parameterIn the simplest ase under onsideration, an appro-priate (and exhaustive) regularization is provided bythe Borel transformation B,BE0 � !2  1 + 1Xk=1 1k!kg2k! � !2 f(g2): (5)The Borel transformation introdues 1=k! in eah termof series (3), rendering it onvergent. Moreover, if theonvergent series1 + 1Xk=1 1k!kg2k � f(g2); (6)whih de�nes the Borel funtion f(g2), has no singular-ities on the real positive semi-axis g2 � 0, then we anobtain the ground-state energy E0 starting from thewell-de�ned expression for BE0 and using the Laplaetransformation,E0 = L (BE0) � !2 1Z0 da g�2 exp�� ag2� f(a): (7)This proedure is usually referred to as the Borel sum-mation. Thus, the perturbative expansion in the an-harmoni osillator is Borel-summable beause the sin-gularities of f(a) are on the negative real semi-axis.Indeed, we assume that f(a) has a pole at a = �B (seeFig. 2), namely,f(a) = Ba+B ; B = !33 : (8)445
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Fig. 3. The same potential with the replaementg2 ! �g2, to be denoted as ~V (x)Then the integral (7) is well-de�ned. At the same time,expanding (8), f(a) = 1Xk=0(�1)k � aB �k ; (9)and substituting this series in (7), we immediately ar-rive at (4).The fat that the position of the singularity in thea plane is to the left of the origin and that the series issign-alternating are in one-to-one orrespondene witheah other.Exatly �fty years ago, Vainshtein identi�ed [4℄the physial meaning of the fatorial growth of oe�-ients (4) and explained why the underlying singularityin the Borel parameter plane is on the negative semi-axis. Changing the sign of g2 from positive to negative,g2 ! �g2, we onvert a stable potential V (x) in (2)into an unstable potential ~V (x) presented in Fig. 3, al-lowing for the wave funtion to leak to large distanes.In the leaking potential ~V , the energy orrespondingto the 0th eigenvalue aquires an imaginary part (as doother energy eigenvalues). This imaginary part an beeasily determined. Indeed, after the Eulidean timerotation, the potential e�etively hanges as ~V (x) !! � ~V (x), as shown in Fig. 4. Then the so-alledboune trajetory beomes lassially aessible3). Theboune trajetory starts at x = 0, slides to the right,bounes o� at x� = !=p2 g, and then returns to thepoint x = 0. The Eulidean ation on the boune tra-jetory is readily alulable,Aboune = Bg2 ; (10)3) See, e. g., Chapter 7 in [5℄.

Fig. 4. An e�etive potential in Eulidean time. Thispotential is a sign re�etion of that in Fig. 3, i. e., is� ~V (x). It vanishes at x = 0 and at x = �x�, wherex� = !=p2 gwhere B is de�ned in Eq. (8). In this way, we obtainthat ImE0 = �!2 Bg2 exp��Bg2� : (11)Now we an alulate the ground-state energy for theoriginal potential in Fig. 1 by using (11) and a disper-sion relation in the oupling onstant [4℄,E0 = 1� 1Z0 d~g2 1g2 + ~g2 ImE0 �~g2� == !2 Z dz 11 + (g2=B) z e�z: (12)The last expression reprodues the series in (3) and (4)with its sign alternation and fatorial divergene of theoe�ients. Both features are explained by the imagi-nary part in (11) being proportional to exp(�B=g2).Summarizing, the perturbative expansion for theanharmoni osillator is fatorially divergent; however,the Borel summability allows �nding the losed, well-de�ned, and exat expressions for the energy eigenval-ues. The physial meaning of the fatorial divergene,as well as the sign alternation, are fully understood.Now we pass to a more ompliated but more interest-ing non-Borel-summable ase.3.2. Double-well potentialThe double-well problem is desribed by the Hamil-tonian H = 12p2 � 14!2x2 + g2x4; (13)446
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Fig. 5. The g2 series in the double-well problem is notsign alternating; f(a) has a singularity on the real neg-ative semi-axis in the Borel parameter omplex planeat a = 2Binst, where a is the Borel parameteri. e., the sign of the O(x2) term is hanged, and thepoint x = 0 beomes unstable. Instead, two stableminima develop at x� = �x� withx� = !=2p2g:The shape of the double-well potential is depited inFig. 4. Classially, eah of the two minima x == �!=2p2g presents a stable solution of the system.Quantum mehanially, zero-point osillations aboutthe minima our. Taking the anharmoniity near theminima into aount, we generate a perturbative seriesfor the ground-state energy. This is in the perturba-tion theory. In fat, the two minima are onneted bythe tunneling trajetory (instanton) in Eulidean time.The instanton ation isSinst = !312g2 (14)(see, e. g., [6℄). In what follows, it will be onvenient tointrodue Binst = g2Sinst = !312 : (15)At small g2, the ground-state energy is lose to !=2plus orretions in g2 and nonperturbative orretionsof the type exp(�=g2). A ruial distintion from theanharmoni osillator disussed in Se. 3.1 is that the g2series in this ase is not sign-alternating (although stillfatorially divergent), orresponding to a singularity inthe Borel funtion at a real positive value a = 2Binst,i. e., on the integration ontour (see Fig. 5). Thus, wehave to rethink the Borel summation proedure.Equation (7) is replaed by

E0 = L (BE0) � !2 1Z0 da g�2 exp�� ag2� f(a); (16)where, roughly speaking,f(a) = �2Binsta� 2Binst : (17)Then, instead of Eq. (4), we obtaink = k! (2Binst)�k : (18)The perturbative series is not sign alternating, unlikethe ase of the anharmoni osillator.We pause here to take a loser look at the above re-sults. In fat, integral (16) is unde�ned: the integrationalong the real positive semi-axis annot be performedsine we hit a singularity. It must be irumventedalong either the upper or the lower small semiirlesas shown in Fig. 5. Depending on whether we hoosethe upper or lower semiirle, we obtain an imaginaryontribution(�E0)Borel = �� i��2Binstg2 ��� exp��2Binstg2 � : (19)However, in the ase of the double-well potential,the system is stable and does not deay, implyingthat the ground-state energy must be stritly real;(�E0)Borel must be aneled by something, and, in-deed, it is aneled by a ontribution oming from theinstanton�anti-instanton (IA) pair. The position of thesingularity at 2Binst in Fig. 5 prompts us that it is apair of instantons whih is important.The IA pair is only an approximate saddle point.There is an attration potential that is very shallowwhen they are far apart. As usual, approximate sad-dle points require a regularization. One of regulariza-tions, whih is very helpful at least for qualitative pur-poses, is to onsider the IA pair at a �nite (rather thanzero) energy E, along the lines desribed, e. g., in [5℄,Ses. 23.2 and 23.3. Then the imaginary part of theIA ontribution redues to exp(�2Sinst) with a knownpre-exponential, and anels the imaginary part in (19).The real part of the IA ontribution is proportional to!T� � log (Sinst) (!=E), where T� is the ritial IAseparation and the value of E relevant to the problemis E � !. Thus, the real part of the IA ontributionredues to logSinst exp(�2Sinst) times a known powerof Sinst in the pre-exponential. For a more areful al-ulation, see [7�9℄.447



M. Shifman ÆÝÒÔ, òîì 147, âûï. 3, 2015If we write the ground-state energy in the formE0 = !2 P 1Z0 da g�2 exp�� ag2� f(a) ++ (Sinst)p(logSinst) exp(�2Sinst); (20)where P stands for the prinipal value of the inte-gral, this expression is well de�ned and, being ex-panded, generates the perturbative series in its en-tirety4). Stritly speaking, the seond line is oversim-pli�ed, sine the pre-exponential in the seond line isalso represented by an in�nite g2 series with fatoriallydivergent oe�ients. To amend this series, we have toinlude a 2I�2A ontribution, and so on. We refer tothis formula as the minimal Borel proedure (MBP).The MBP formula ontains all information one ansqueeze from perturbation theory. It still laks some-thing. In order to understand what this something is,we make a digression.As is well known, perturbation theory (PT) de-sribes �utuations of a quantal system around las-sial minima of the potential. In the ase at hand, wehave two degenerate minima re�eting a Z2 symmetryof the potential. We hoose one of them for the �un-perturbed� Hamiltonian, for instane,H0 = p22 + !22 (x� x�)2: (21)All ubi and quarti terms from the expansion of po-tential (13) are referred to Hint. The perturbation the-ory in Hint is well de�ned in any order.The Hamiltonian H0 does not know about the se-ond vauum, but high-order orretions re�et the ex-istene of the seond vauum indiretly, through thefatorial divergene of the PT series. The perturba-tion theory in Hint requires only the knowledge of theunperturbed eigenfuntions and eigenvalues (i. e., thoseof harmoni osillator (21)). The eigenfuntions of H0should be square normalizable, and no other require-ments are imposed.Next, we de�ne the sum of the fatorially divergentseries as MBP plus IA. Using this proedure, we wouldonlude that the system has two degenerate groundstates: the Z2 restoration in the vauum is still absent.This fat � restoration of Z2 � does not ensuewith neessity from the amended PT series. It presentsan additional information on the global vauum stru-ture: a Z2 order parameter drastially hanges om-pared to its PT value, and the degeneray of the ground4) Equation (20) is to be ompared with the general trans-seriesformula (1).

state is lifted aordingly. This e�et is proportionalto exp(�Sinst), as opposed to exp(�2Sinst) re�et-ing the orresponding singularity in the Borel plane at2Binst5).Coneptually, this is similar to hiral symmetrybreaking in the hiral limit in QCD. No matter whatwe do with the PT, we do not see any splitting be-tween the axial and vetor quark two-point funtions.We have to infer the global vauum struture of QCDfrom other soures.4. ASYMPTOTICALLY FREE FIELDTHEORIESWe arrived at a point where it would be natural topass from quantum mehanis to asymptotially free�eld theories. Up to a ertain point, we an proeedalong the lines outlined in Se. 3. There are two aseswhen we an go all the way up to omplete resurgene:(a) if a given �eld theory is exatly solvable (in whihase this is a triviality), or (b) if it is weakly oupled(perhaps, after a ertain deformation) and hene anbe treated semilassially. In the latter ase, ompli-ations that arise are of a tehnial nature. Today, weare aware of quite a few examples of this type that havebeen identi�ed and studied in the past.However, the most interesting theories are QCD andits relatives. They are speial beause QCD is the the-ory of Nature, desribing the quark�gluon dynamis.They are strongly oupled in the infrared (IR) domain,where it is impossible to treat them semilassially: theperturbation theory fails even qualitatively. It does notapture the drasti rearrangement of the vauum stru-ture related to on�nement.I would like to disuss the following question: howfar an we go in the resurgene program in these theo-ries? We see in what follows that a ertain proeduresuggested in the late 1960s [10℄ and implemented inQCD in the 1970s [11℄ allows advaning rather far, al-though, unfortunately, not to the very end. This is asgood as it gets : : :The Lagrangian of QCD has the form (in the hirallimit) L = � 14g2Ga��G�� a +X � i =D ; (22)5) The instanton an leak to another minimum and then ananti-instanton would return the system to the original minimum.That is the origin of the exp(�2Sinst) fator. The splitting be-tween the ground state and the �rst exitation is due to a singleinstanton that onnets two �prevaua�. This e�et is propor-tional to exp(�Sinst).448



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Resurgene, operator produt expansion : : :where the sum ranges over the massless quark �avors,and  is the quark �eld in the fundamental represen-tation of SU(N). In atual world, N = 3, but in theo-retial laboratory we are free to onsider any value ofN . If we drop the quark term, we are left with the G2��gluon term. This is a pure Yang�Mills theory. More-over, g2 in front of the gluon term is the asymptotiallyfree gauge oupling.As we know, this is a strongly oupled theory. TheLagrangian is de�ned at short distanes in terms of glu-ons and quarks, while at large distanes of the order of& ��1QCD, we deal with hadrons, e. g., pions and pro-tons. Certainly, the latter are onneted with quarksand gluons in a divine way, but this onnetion is highlynonlinear, nonloal, and is not amenable to analytidesription at the moment. Moreover, the very exis-tene of massless pions and massive protons is due toa dramati restruturing of the QCD vauum re�et-ing spontaneous breaking of the hiral symmetry. Thisphenomenon is only possible at a very strong oupling.Perhaps, in the future, string theory will be able toprovide an adequate desription, but as they say, �thefuture is not ours to see : : : �.Another (a muh simpler) example is the two-dimensional CP(N � 1) model with a varying degreeof supersymmetry (or no supersymmetry at all). TheLagrangian of the model isL = N�1Xi;�j=1Gi�j ���y�j ���i + fermions; (23)where Gi�j = 2g2 Æi�j� � �y i��j�2 !;� = 1 + N�1Xm �ym�m; (24)and g2 is the asymptotially free oupling onstant. Inthe large-N limit, this model is exatly solvable [12�14℄.To the leading order in 1=N , the solution is known, butannot be expressed in terms of (1) beause instantonsare irrelevant at strong oupling. Sine the solution isknown, we an still represent it in the form of a generitrans-series. In the �rst subleading 1=N orretion, wereturn to a generi ontrived situation, to be disussedbelow, similar to that in QCD.A ommon feature of both theories above as well asmany others from this lass is the fat that the ouplingonstant is not a bona �de onstant; it runs. In moredetail,

g2(Q) = Binst�0 log(Q=�) ; (25)where Binst = ( 8�2; QCD;4�; CP(N � 1);�0 = 8><>: 113 N; YM;N; CP(N � 1); (26)and Q is an appropriate momentum sale (assumingQ� �). Here, �0 is the �rst oe�ient of the � fun-tion. In the upper line on the right, it is given for apure Yang�Mills theory. When harateristi values ofQ beome lose to �, the running onstant is unde-�ned and all alulations in terms of gluons and quarksbeome meaningless.As wee see, the genuine parameter of QCD is notthe dimensionless g2, but rather the dynamial QCDsale � invisible in the lassial Lagrangian. That is thephenomenon of dimensional transmutation inherent toall strongly oupled asymptotially free �eld theories.The series in g2 beomes the series in 1= log(Q)=�, ex-ponential terms exp(�=g2(Q)) redue to powers��Q��0=8�2 ;while terms exponential in Q, � exp(�Q=�), whihalso appear in QCD and similar theories in the g2 per-turbation theory, have to emerge fromexp(� exp(~=g2(Q))):Complete failure of quark�gluon alulations atQ � � bloks the program of �analyti� resurgene interms of trans-series in QCD. However, some kind ofresurgene is possible, known as the operator produtexpansion. Now we proeed to a more systemati (al-beit brief) disussion of OPE.5. OPE VERSUS TRANS-SERIESInstead of a general introdution to Wilson's op-erator produt expansion (whih would require a lotof time6)), we brie�y disuss OPE from a somewhatnonstandard standpoint: following the logi of Se. 3.devoted to resurgene in quantum mehanis.6) For a review of OPE in QCD, see [15℄.5 ÆÝÒÔ, âûï. 3 449
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Fig. 6. The leading and the next-to-leading terms in the expansion of the Adler funtion. The external urrent j� injetinga quark�antiquark pair in the vauum (and then annihilating it) is denoted by wavy linesWe start our disussion from the two-point funtion���(q) = i Z d4x e�iqx DT [j�(x)j� (0)℄E == �q�q� � q2g��� �(Q2); (27)where j� = � � is the quark urrent, and we setQ2 = �q2; (28)suh that Q2 is positive in the Eulidean domain. Welimit ourselves to large values of the Eulidean momen-tum, Q� �, suh that the perturbation theory an beused. In fat, instead of �(Q2), for tehnial reasons itis onvenient analyze the so-alled Adler funtion de-�ned as D(Q2) = �4�2Q2 d�(Q2)dQ2 : (29)The �rst two terms in the expansion of the Adler fun-tion are de�ned by the diagrams in Fig. 6, with theoupling onstant � � g24� : (30)Given the external momentum Q �owing through thewavy line, it is easy to see that it is the running ou-pling �(Q) that enters Fig. 6b. Indeed, the momentum�owing through the gluon line in Fig. 6b is k � Q.Moving to higher orders in �, we �nd more andmore ompliated multiloop graphs. Among them, aspeial role belongs to the bubble-hain diagrams, de-pited in Fig. 7. These graphs (referred to as renor-malons) were extensively studied in the late 1970s [16℄(for reviews, see [17, 18℄).When we say bubble hains, we should be are-ful. Generally speaking, the very de�nition of a bubblehain in the form of Fig. 7 is not quite aurate. Theappropriate renormalon graphs annot be isolated inthe form of a bubble hain beause in this form they

are not even gauge invariant. An honest-to-god renor-malon alulation is quite ontrived.There is a useful trik, however. We add Nf �avorsto the theory, where Nf is treated as a free parame-ter. Then, instead of the full alulation of the genuine�bubble hain�, with gluon degrees of freedom in thebubbles, we alulate only the matter bubbles (whihare gauge invariant in the hain of Fig. 7), and thenreplae �f0 � �23Nf ! �0; (31)where �0 is the �rst oe�ient in the � funtion that in-ludes everything: gluons (plus ghosts in the ovariantgauges) and matter �elds7).It is easy to see that the renormalon ontributionto the D funtion is sign-nonalternating and fatoriallydivergent in higher orders, �Drenorm � n!�n (n� 1).If n is large, the estimate k � Q is no longer valid. Bothobservations � the absene of sign alteration and fa-torial divergene � beome obvious after a loser lookat Fig. 6b before integrating over k. The exat resultfor a �xed k2 was found by Neubert [19℄. For illustra-tive purposes, it is su�ient to use a simpli�ed inter-polating expression [20℄ olleting all bubble insertionsin the gluon propagator: no bubbles, one bubble, twobubbles, and so on,D = C �Q2 Z dk2 k2�s(k2)(k2 +Q2)3 ; (32)whih oinides with the exat expression [19℄ in thelimits k2 � Q2 and k2 � Q2, up to minor irrelevantdetails. The oe�ient C in Eq. (32) is a numerial on-stant and �(k2) is the running gauge oupling, whihan be represented as�(k2) = �(Q2)1� �0�(Q2)4� ln(Q2=k2) : (33)7) We note that �f0 and �0 have opposite signs.450
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Fig. 7. The bubble-hain diagrams representing renor-malons. Solid lines denote quark propagators, whiledashed lines are for gluons

4� 8�2� (IA)IA ��4��0 8��0IR renUV ren 0Fig. 8. The Borel plane for the Adler funtion in QCD.The singularity to the left of the origin is due to an ul-traviolet renormalon, whih does not onern us here.The nearest singularity to the right of the origin is dueto the IR renormalon shown in Fig. 7. The IA singular-ities lie muh farther to the rightWe fous on the infrared domain. Omitting theoverall onstant C, we obtainD(Q2) = 1Q4� 1Xn=0��0�4� �n �� Z dk2k2�ln Q2k2 �n ; � � �(Q2); (34)whih an be rewritten asD(Q2) = �2 1Xn=0��0�8� �n Z dy yne�y;y = 2 ln Q2k2 : (35)The y integration in Eq. (35) represents all bubble-hain diagrams after integration over the loop momen-tum k. The y integral from zero to in�nity is n!. Aharateristi value of k2 saturating the integral isy � n or k2 � Q2 exp��n2� : (36)Thus, we observe a fatorial divergene of the oef-�ients. The orresponding singularity in the Borelplane is depited in Fig. 8.If Q2 is �xed and n is su�iently large, n > n�,where n� = 2 ln Q2�2 ; (37)

then the fatorial divergene of the oe�ients in (35) ispurely formal and annot be trusted. At small k2 . �2,the diagrams in Figs. 6b and 7 (in fat, any Feynmandiagrams) ease to properly represent non-Abelian dy-namis due to the strong oupling in the IR. Equa-tion (36) shows that if n > n�, the harateristi val-ues of k2 saturating the integral do fall o� below �2.The point n = n� represents the optimal trunationpoint: at this point, the terms of the asymptoti se-ries are minimal. Formally, if we disard the domaink2 < �2, at n > n� the fatorial growth is suppressed(see Fig. 10), and the series must be trunated:D(Q2)! �s2 n�Xn=0��0�s8� �n n! (38)At this point, the road we have to take in QCD andsimilar strongly oupled theories diverges from that inquantum mehanis. In the latter, the validity of thesemilassial approximation ombined with the lear-ut piture of the vauum struture allows ahievingfull resurgene. In �eld theories, the vauum stru-ture is determined by infrared dynamis, the theory ofwhih is still laking, and semilassial approximationsare bound to fail. What an we do under the irum-stanes?6. OPERATOR PRODUCT EXPANSIONI remember that after the �rst seminar on the SVZsum rules [11℄ in 1978, Eugene Bogomol'nyi used toask me eah time we met: �Look, how an you speakof power orretions in the two-point funtions at largeQ2 when even the perturbative expansion (i. e., the ex-pansion in 1= ln(Q2=�2)) is not well de�ned? Isn't itinonsistent�?Now, with the disussion of Se. 5 in mind, I amable to answer the above Bogomol'nyi question in apositive way, namely:Consistent use of Wilson's OPE makes everythingwell-de�ned at the oneptual level. Tehnial imple-mentation may not always be straightforward, how-ever. Moreover, the resulting OPE formula ontainsunknown vauum ondensates in the form of powerorretions. In turn, their summation presents an un-solved problem.The operator produt expansion in asymptoti-ally free theories is a book-keeping devie separat-ing short-distane (weak-oupling) ontributions fromthose oming from large distanes (strong-oupling do-main). To this end, we introdue an auxiliary param-eter �, a separation sale between large and short dis-451 5*



M. Shifman ÆÝÒÔ, òîì 147, âûï. 3, 2015tanes. The latter ontribution resides in the OPE o-e�ient funtions Ci(Q;�), while the former ontribu-tion is enoded in the matrix elements of the orre-sponding operators Oi(�;�),D(Q;�) = 1Xi=0 Ci(Q;�) hOi(�;�)i : (39)Generally speaking, OPE is appliable whenever wedeal with problems that an be formulated in Eulideanspae�time and in whih we an regulate typial Eu-lidean distanes by a varying large external momen-tum Q. Fatorization (39) is tehnially meaningful(i. e., allows arrying out onstrutive alulations ofCi(Q;�)) if we an hoose�� Q; but �� �: (40)Then the oe�ients Ci(Q;�) an be found semilassi-ally, even though they by no means redue to the PT.The matrix elements hOi(�;�)i annot be determinedsemilassially. As a book-keeping devie, OPE annotfail [11℄, as long as no arithmeti mistake is made enroute.A remarkable observation was made in the 1990s.Perturbative analysis (e. g., that of renormalons)prompts us that ertain nonperturbative ondensatesmust be present in QCD. Moreover, we an evendetermine their dimension from the the position ofsingularities in the Borel plane. Unfortunately, by farnot all ondensates are visible in the analysis of PThigh orders. For instane, all ondensates related tothe spontaneous breaking of hiral symmetry leave notrae in any order of the perturbation theory, nor inits divergene.The values of ondensates that are visible in thePT divergene are not determined by the PT analysiseither8).7. OPE AND RENORMALONS IN QCDAfter this brief digression, we return to Adler fun-tion (27) at large Eulidean q2, where OPE an be on-sistently built through separation of large- and short-distane ontributions.For simpliity, taking into aount that my pur-pose today is illustrative, I ignore the seond inequality8) Prevalent in the 1970s and early 1980s was a misoneptionthat the OPE oe�ients are determined exlusively by perturba-tion theory, while the matrix elements of the operators involvedare purely nonperturbative. Attempts to separate perturbationtheory from �purely nonperturbative� ondensates gave rise toinonsistenies (see, e. g., [21℄).

in (40) and set the separation sale at � = � ratherthan at �� �. This would be inappropriate in quanti-tative analyses; however, my task is to explain a quali-tative situation. Being auxiliary, the parameter � even-tually anels from the master formula (42) anyway (seebelow).We take a loser look at Eqs. (32) and (33). Theunlimited fatorial divergene in (35) is a diret on-sequene of the integration over k2 in (34) all the waydown to k2 = 0: Not only is this nonsensial beause ofthe pole in (33) at k2 = �2; this is not what we shoulddo in alulating oe�ient funtions in OPE. The o-e�ients must inlude k2 > �2 by onstrution. Thedomain of small k2 (below �2) must be exluded from0 and referred to the vauum matrix element of thegluon operator G2�� . Indeed, in the sum in Eq. (35),all terms with n > n� an be written as (see Figs. 9and 10)�D(Q2) = �2 Xn>n���0�8� �n nn�e�n� == �2 Xn>n� �4Q4 ; (41)where we used the fat that�0�(Q2)8� = 12 ln(Q2=�2) = 1n� :Of ourse, we annot alulate the gluon ondensatefrom the above expression for the tail of the series (35)representing the large-distane ontribution, for a num-ber of reasons. In partiular, the value of the oe�ientin front of �4=Q4 remains unertain in (41) beause Eq.(33) is no longer valid at suh momenta.We do not expet the gluon Green's funtions usedin alulation in Fig. 7 and in Eq. (33) to retain anymeaning in the strong-oupling nonperturbative do-main. A qualitative feature � the power dependene(�=Q)4 in (41) � is orret, however.We note with satisfation that the fourth power ofthe parameter �=Q, whih we �nd from this tail, ex-atly mathes the OPE ontribution of the operatorhG2��i (see [11℄).Summarizing, we see that the onsistent use of OPEures the problem of the renormalon-related fatorialdivergene of oe�ients in the � series, absorbing theIR tail of the series in the vauum expetation value ofthe gluon operator G2�� and similar higher-order opera-tors. Although the value of hG2��i annot be alulatedfrom renormalons, the very fat of its existene an beestablished.452
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Fig. 9. The plot of the integrand in Eq. (34) for twovalues of n, �small� and �large�. A sharp peak at y � nsaturates the integral. In the left plot, n < n� == 2 ln(Q2=�2) and the forbidden domain k2 � �2does not ontribute to the fatorial fator. In the rightplot, n > n�. The y integration has to be ut o� aty = n�, whih kills the fatorial growth
cn[α(Q)]n

???

nn∗

∼ (Λ/Q)2kFig. 10. The PT expansion for the Adler funtion isasymptoti. We an trust it only up to a point of op-timal trunation. A �tail� beyond this point tells us ofthe existene of an operator of dimension 2k represent-ing this tail not aessible by PT alulation. (In thease at hand, k = 2)8. SOURCES OF FACTORIALS AND THEMASTER FORMULAFrom quantum mehanis, we learned that the fa-torial divergene an arise from instantons. In QCD,the instantons are ill-de�ned in the IR and, stritlyspeaking, nobody knows what to do with them9). If9) This statement is a slight exaggeration. We refer to [22℄ foran alternative point of view on instantons in the QCD vauum.

we onsider QCD in the 't Hooft limit of a large num-ber of olors, instantons deouple. The orrespondingsingularity in the Borel plane (see Fig. 8) moves to theright in�nity. At the same time, none of the essen-tial features of QCD disappears in the 't Hooft limit.Therefore, in our simpli�ed onsideration, we an forgetabout instantons. Perhaps, they will be needed later.If so, we an write a single (simpli�ed) �master� for-mula for QCD and similar theories. At large Eulideanmomenta, the orrelation funtions of type (27) an berepresented asD(Q2) = n0�Xn=0 0;n� 1ln(Q2=�2)�n ++ n1�Xn=0 1;n� 1ln(Q2=�2)�n ��Q�d1 ++ n2�Xn=0 2;n� 1ln(Q2=�2)�n��Q�d2 + : : :+ �exponential terms�: (42)Equation (42) is simpli�ed in a number of ways. First,it is assumed that the urrents in the left-hand sidehave no anomalous dimensions, and so do the opera-tors appearing in the right-hand side. They are as-sumed to have only normal dimensions given by di forthe ith operator. Seond, we ignore the seond andall higher oe�ients in the � funtion, and hene therunning oupling is represented by a pure logarithm.All these assumptions are not realisti in QCD10). Westik to them to make the master formula more onise.Inlusion of higher orders in the � funtion and anoma-lous dimensions in both the left- and right-hand sideswould give rise to rather ontrived additional terms andfators ontaining log log's, log log log's (log log = log)'s,et.11). This is a purely tehnial, rather than onep-tual, ompliation, however.So far, we disussed the divergene/onvergene ofthe perturbative series explaining that the regulatingparameter � in OPE allows making the PT mean-ingful12). Expansion (42) runs not only in powers of1= lnQ2 but also in powers of �=Q. This is a doubleexpansion, and the power series in �=Q is also in�nitein its turn. Does it have a �nite radius of onvergene?10) They ould be made somewhat more realisti in N = 2super-Yang�Mills theories.11) Multiple logarithms are elements of the trans-series analysistoo, see [1℄.12) Fatorial divergene of PT series due to a fatorially largenumber of Feynman graphs with many loops is suppressed in the't Hooft limit.453



M. Shifman ÆÝÒÔ, òîì 147, âûï. 3, 2015Needless to say, this is an important question. Theanswer to it is negative. Twenty years ago I arguedin [23℄ (see also [15℄) that the power series in (42) arefatorially divergent in high orders. This is a ratherstraightforward observation following from the analytistruture of D(Q2). In a nutshell, beause the Q2 sin-gularities in D(Q2) run all the way to in�nity along thepositive real semi-axis of q2, the 1=Q2 expansion annotbe onvergent. The last line in Eq. (42) symboliallyrepresents a divergent tail of the power series.9. SUPERSYMMETRIC YANG�MILLSTHEORYFatorial divergene of the perturbative series in su-persymmetri theories was only sarely disussed inthe past [24�26℄. Meanwhile, this is an interesting ques-tion beause renormalons in supersymmetri theorieshave peuliarities related to peuliarities of the oper-ator produt expansion in supersymmetri Yang�Millstheory.As we already know, the renormalons are in a one-to-one orrespondene with partiular gluon operatorsin OPE. There is a one-to-one orrespondene betweenthe given bubble-hain graph and an appropriate oper-ator in OPE (see, e. g., [18℄).The SYM Lagrangian isL = � 14g2Ga��Ga�� + ig2 ��a���D��a: (43)The only di�erene with the QCD Lagrangian in (22)is in the fermion setor: the fundamental quarks arereplaed by a Majorana spinor in the adjoint represen-tation of the gauge group.Supersymmetry of the model implies that an in�-nite lass of gluoni operators annot have nonvanish-ing vauum expetation values (VEVs). This fat tellsus that the onventional renormalon analysis must bemodi�ed. Below, we disuss a modi�ation needed, but�rst see why gluoni operator VEVs must vanish in theSYM theory, in ontradistintion to QCD.9.1. Why gluon operators have vanishingVEVs in SYM?The operator Ga��Ga�� + i��a���D��a is the highestomponent of TrW 2, whereW� = i ��� + i��D � ��G�� � i�2D� _��� _�� : (44)

Supersymmetry allows only the lowest omponents ofsuper �elds to develop a nonvanishing VEV. In a pureSYM theory, without matter, D = 0, and thereforeG�� � Df�W�g + : : : ; (45)where the braes denote symmetrization, D� is thespinorial derivative, and the ellipses stand for higheromponents irrelevant for our purposes.Gluoni operators in the pure SYM theory mustontain at least two G fators; in other words, theirgeneri form isOg / G : : : G / Df�W�g : : :Df~�W~�g: (46)The ellipses above represent any number of ovariantderivatives and extra W fators under the onditionthat the overall number of theW fators be even. Tak-ing Tr (whih singles out olor-singlet parts) is impliedbut not expliitly indiated.The right-hand side in (46) an be identiallyrewritten asDf�W�g : : : Df~�W~�g = Df� �W�g : : : Df~�W~�g�++W� �D� : : :Df~�W~�g� : (47)The �rst term is a full superderivative and, as suh,an have no nontrivial VEV. The lowest omponentof the seond term, at the very least, ontains � andD� _��� _� (the last fator vanishes due to the equation ofmotion). Thus, the lowest-dimensional operator thatould in priniple appear in OPE is a two-� operator.However, this annot appear too beause if we alulatethe OPE oe�ients perturbatively (and renormalonsare perturbative objets), then two-� operators havea wrong R parity, while ��� operators an have theLorentz spin zero only in the ombinationTr��D� _G _ _��� _� ; (48)whih redues to a four-fermion operator by virtue ofthe equation of motion. Thus, in a pure SYM, the OPEin fat starts from four-gluino operators of dimension6 and the four-lambda operators with possible addi-tional insertions of ovariant derivatives and G or ��or ��� fators, whih have dimensions higher than 6. Nopurely gluoni operator an have a nonvanishing VEVin SYM.The above argument based on R parity is appliableto the two-point funtions of the typei Z d4x eiqx 
O(x); Oy(0)� ;O = Tr �� _��� or Tr����: (49)454



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Resurgene, operator produt expansion : : :Sine the IR renormalons are in a one-to-one or-respondene with OPE, we onlude that the bubblehain in Fig. 7, whih normally is responsible for thenon-Borel-summable divergene of higher orders (los-est to the origin in the Borel plane) must be aneledby something else.We note, however, that an easy way of identifyingthe �bubble hains� in QCD was through matter loopswith the subsequent extration of the Nf fator plussubstitution (31). This trik does not work in SYM(see (43)). We are fored to introdue matter �elds.9.2. Matter loops in SYMTo identify the renormalon bubble hain throughmatter loops, we should expand supersymmetri gluo-dynamis (43) to inlude Nf matter �elds in the fun-damental representation of SU(N),L = � 14g2Ga��Ga�� + ig2 ��a���D��a ++Xf �D�qf D�qf + i  f ���D� f�++ h�m2  f� �f+ip2 ( f�a T a) qf+H::i�V (qf ); (50)whereV (qf ) = g22 0�Xf qf T a qf1A2 +Xf jmj2 jqf j2 : (51)Here, q and  are the respetive squark and quark�elds. The mass terms in (50) and (51) are irrelevantand an be safely omitted13).In addition to the bubbles depited in Fig. 7, bubblehains now develop elsewhere, as in Fig. 11.Unlike the familiar QCD example (Fig. 7), the mat-ter bubbles in the SYM theory appear even in the dia-grams without gluon insertions, suh as the graph de-pited in Fig. 12. Eah bubble produes Nfg2 log p2,where p is the momentum �owing through the gluinoline. However, this partiular diagram would orre-spond to the operator�� _�iD _����; (52)whih redues via the equation of motion to anotherdimension-4 operator,Xf �j ���ij � i� ;13) We should remember that eah �avor is represented by twosquarks and two Weyl quarks, one in the fundamental and an-other in the antifundamental representation of SU(N).

quarksquarkgluino
Fig. 11. Elementary bubble insertion in the gluinoline

quark
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gluino

Fig. 12. Additional bubble diagrams in SYM, with mat-ter insertions in the gluino line. Nf matter bubblesprodue the Nf fatorwhih has no analog in QCD. We note that in SYMwith matter, hiral symmetry is broken a priori, and isreplaed by R symmetry of the U(1) type. In addition,there is an anomalous part in the equation of motion tobe used in Eq. (52), whih produes the operator G��2.Calulating the elementary bubble insertion in thegluino line is straightforward. It is determined by thegraph in Fig. 11. In fat, there is no need for an expliitalulation of this diagram. It represents the Z fatorof the gluino �eld. However, supersymmetry guaran-tees that the renormalization of the gluon and gluino�elds are idential.If we start from Lagrangian (50) normalized at amomentum sale Q (then the orresponding ouplingis g2(Q)) and evolve it down to p, then the operator(i=g2)��a���D��a in the Lagrangian evolves as455



M. Shifman ÆÝÒÔ, òîì 147, âûï. 3, 2015ig2(Q) ��a���D��a ! ig2(p) ��a���D��a: (53)The orresponding Z fator an be easily read o�, forinstane, by proeeding to the anonially normalizedgluino kineti term. In this way, we �ndZ�1 = g2(Q)g2(p) = 1� g24� (3N �Nf ) log Q2p2 ; (54)where the matter bubble produes only the Nf part,of ourse. In other words, the (trunated) diagram inFig. 11 produes (p��) Nfg24� log Q2p2 : (55)In summary, we see that the standard method ofthe renormalon analysis, whih works well in QCD, isnot so straightforward in supersymmetri gluodynam-is (i. e., gluons plus gluinos) beause the introdutionof matter dramatially hanges the OPE operator ba-sis. In pure YM and in QCD with massless quarks, it isone and the same dimension-4 operator that aquires aVEV and is responsible for the leading renormalon sin-gularity. This is in sharp ontradistintion with whathappens in SYM.9.3. Renormalons, OPE, and diagrams in SYMWe eluidate the last statement. The role of the IRrenormalon bubble hain in a given diagram is to makethe line to whih bubbles are attahed soft [17, 18℄. Ata ritial value of n, the integration momentum �ow-ing through the bubble line beomes of the order of�. Hene, in the framework of OPE, this line mustbe �ut� and beomes a part of the operator with aVEV, whih then represents the tail of the renormalon.For instane, if we onsider the graph in Fig. 7, thesolid lines arry a large momentum, while the dashedone is soft. Correspondingly, this bubble hain is ina one-to-one orrespondene with the operators G2,GD2G ! G3, and so on. In Fig. 12, the upper partof the graph is soft, while the lower part is hard. Oneof the operators orresponding to this bubble hain isTr��D� _��� _� . Four-gluino operators are obtained fromthe hains depited in Fig. 13. In this graph, we should�ut� the gluino lines with bubble insertions. A largeexternal momentum is passed through the graph, vialines without bubbles.The problem of interpretation arises only with thebubble hains attahed to the gluon lines, beause the
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Fig. 13. Lines with bubbles are soft. Those withoutbubbles are hardorresponding operators that should onspire with thetail of suh renormalons an have no VEVs. Based onarguments that are not disussed here, I am inlinedto onjeture that the renormalon depited in Fig. 7 isaneled by the renormalon depited in Fig. 12. If thenumerial oe�ient  is right, the operator that thesetwo graphs (ombined together) give in OPE is�14Ga��Ga�� + ig2 ��a���D� �a ! 0: (56)This question should be explored further, however,see [27℄. 10. CONCLUSIONS1. Resurgene in the sense it is arried out in quan-tum mehanis, enounters oneptual di�ulties instrongly oupled Yang�Mills theories.2. The best we an do is to use Wilson's operatorprodut expansion adapted to QCD, whih has onep-tual similarities with the resurgene program.3. In SYM theories, there are additional tehnialproblems with renormalons, not addressed in the past,whih are not yet fully solved.Useful disussion with A. Cherman, G. Dunne,M. Ünsal, and A. Vainshtein are gratefully aknowl-edged. This work is supported in part by the DOEgrant DE-SC0011842.456
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