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RESURGENCE, OPERATOR PRODUCT EXPANSION, ANDREMARKS ON RENORMALONS IN SUPERSYMMETRICYANG�MILLS THEORYM. Shifman *William I. Fine Theoreti
al Physi
s Institute, University of Minnesota55455, Minneapolis, MN USARe
eived O
tober 4, 2014We dis
uss similarities and di�eren
es between the resurgen
e program in quantum me
hani
s and the operatorprodu
t expansion in strongly 
oupled Yang�Mills theories. In N = 1 super-Yang�Mills theories, renormalonsare pe
uliar and are not quite similar to renormalons in QCD.Contribution for the JETP spe
ial issue in honor of V. A. Rubakov's 60th birthdayDOI: 10.7868/S00444510150300761. PREAMBLEThis paper is written for Valery Rubakov-60Fests
hrift on the basis of my talk at CERN in thesummer of 2014. I �rst met Valery around 1980, whenhe dis
overed the monopole 
atalysis of the proton de-
ay, whi
h later be
ame known as the Callan�Rubakove�e
t. There is a beautiful paper of Edward Wittenillustrating subtle points in this e�e
t, whi
h appearedshortly after Rubakov's publi
ation. I rememberWitten's seminar based on this paper delivered duringhis only visit to the USSR in the early 1980s.After the Callan�Rubakov e�e
t, Rubakov pub-lished many inspiring papers and raised two or threegenerations of bright students. These students, in turn,now inspire new young generations of theoreti
al physi-
ists all over the world.2. INTRODUCTIONThe notion of resurgen
e and trans-series asso
iatedwith it � a breakthrough dis
overy1) in 
onstru
tivemathemati
s in the 1980s mostly asso
iated with thename of Jean E
alle � gradually spread in mathemat-i
al and theoreti
al physi
s. I was impressed by di-*E-mail: shifman�umn.edu1) For a pedestrian review understandable to physi
ists (atleast, in part) and an exhaustive list of referen
es, see [1, 2℄.

verse and numerous appli
ations of these ideas re
entlydis
ussed by J. Zinn-Justin, M. Berry, U. Jents
hura,G. Dunne, M. Beneke, and others. The issues to bedis
ussed below are rather 
lose to resurgen
e in quan-tum me
hani
s, although they go far beyond and aremu
h more 
ompli
ated, be
ause I dis
uss strongly 
ou-pled �eld theories, su
h as quantum 
hromodynami
s(QCD).In quantum me
hani
s, the program of resurgen
eworks well, and trans-series of the typeE(g2) = EPT; regularized(g2) ++ 1Xk=1Xl 1Xp=0� 1g2N+1 exp �� 
g2 ��k| {z }k�instanton �log 
g2�l �� 
k;l;pg2p| {z }regularized PT (1)
an be derived for all energy eigenvalues (g2 is assumedto be small; the subs
ript PT stands for perturbationtheory).In weakly 
oupled �eld theories, trans-series 
ouldbe perhaps 
onstru
ted, although 
on
lusive argumentshave not yet been presented. One of my tasks is to ex-plain why resurgen
e, being 
on
eptually 
lose to theoperator produ
t expansion (OPE), does not work instrongly 
oupled �eld theories, for instan
e, in QCD. Itis worth noting that OPE existed in QCD from the mid-1970s, and in its general form, the late 1960s. It grewfrom a formalism that had been suggested by K. Wil-444
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Fig. 1. V (x) in the anharmoni
 os
illator prob-lem (2)son before the advent of QCD. The �rst part of thispaper is devoted to this issue.In the se
ond part, I fo
us on a more te
hni
al as-pe
t: pe
uliarities of the fa
torial divergen
e of pertur-bation theory in N = 1 super-Yang�Mills (SYM). Sofar renormalons in SYM were s
ar
ely dis
ussed. No�nal 
on
lusion was rea
hed. To a large extent thisquestion remains open.3. THE SIMPLEST QUANTUM MECHANICALEXAMPLES3.1. Anharmoni
 os
illatorWe 
onsider a one-dimensional anharmoni
 os
illa-tor, H = 12p2 + 12!2x2 + g2x4 (2)(see Fig. 1).For de�niteness, we fo
us on the ground state en-ergy E0. There exists a well-de�ned pro
edure for 
on-stru
ting E0 order by order in perturbation theory, toany �nite order,E0 = !2 �1 + 
1g2 + 
2g4 + : : : � : (3)Nevertheless, Eq. (3) does not de�ne the ground stateenergy. Indeed, the 
oe�
ients 
k are fa
torially diver-gent at large k [3℄,
k � (�1)kB�kk!; k � 1; (4)where B = !3=3 is the so-
alled boun
e a
tion2).Hen
e, the sum in (3) needs a regularization.2) Equation (4) is slightly simpli�ed. For a more pre
ise for-mula, see [3℄.

−B
Contour of integration

a

Fig. 2. The perturbative series in the anharmoni
 os-
illator problem is Borel-summable. The g2 series forE0 is sign alternating; f(a) has a singularity on thereal negative semi-axis in the Borel parameter 
omplexplane. a is the Borel parameterIn the simplest 
ase under 
onsideration, an appro-priate (and exhaustive) regularization is provided bythe Borel transformation B,BE0 � !2  1 + 1Xk=1 1k!
kg2k! � !2 f(g2): (5)The Borel transformation introdu
es 1=k! in ea
h termof series (3), rendering it 
onvergent. Moreover, if the
onvergent series1 + 1Xk=1 1k!
kg2k � f(g2); (6)whi
h de�nes the Borel fun
tion f(g2), has no singular-ities on the real positive semi-axis g2 � 0, then we 
anobtain the ground-state energy E0 starting from thewell-de�ned expression for BE0 and using the Lapla
etransformation,E0 = L (BE0) � !2 1Z0 da g�2 exp�� ag2� f(a): (7)This pro
edure is usually referred to as the Borel sum-mation. Thus, the perturbative expansion in the an-harmoni
 os
illator is Borel-summable be
ause the sin-gularities of f(a) are on the negative real semi-axis.Indeed, we assume that f(a) has a pole at a = �B (seeFig. 2), namely,f(a) = Ba+B ; B = !33 : (8)445
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Fig. 3. The same potential with the repla
ementg2 ! �g2, to be denoted as ~V (x)Then the integral (7) is well-de�ned. At the same time,expanding (8), f(a) = 1Xk=0(�1)k � aB �k ; (9)and substituting this series in (7), we immediately ar-rive at (4).The fa
t that the position of the singularity in thea plane is to the left of the origin and that the series issign-alternating are in one-to-one 
orresponden
e withea
h other.Exa
tly �fty years ago, Vainshtein identi�ed [4℄the physi
al meaning of the fa
torial growth of 
oe�-
ients (4) and explained why the underlying singularityin the Borel parameter plane is on the negative semi-axis. Changing the sign of g2 from positive to negative,g2 ! �g2, we 
onvert a stable potential V (x) in (2)into an unstable potential ~V (x) presented in Fig. 3, al-lowing for the wave fun
tion to leak to large distan
es.In the leaking potential ~V , the energy 
orrespondingto the 0th eigenvalue a
quires an imaginary part (as doother energy eigenvalues). This imaginary part 
an beeasily determined. Indeed, after the Eu
lidean timerotation, the potential e�e
tively 
hanges as ~V (x) !! � ~V (x), as shown in Fig. 4. Then the so-
alledboun
e traje
tory be
omes 
lassi
ally a

essible3). Theboun
e traje
tory starts at x = 0, slides to the right,boun
es o� at x� = !=p2 g, and then returns to thepoint x = 0. The Eu
lidean a
tion on the boun
e tra-je
tory is readily 
al
ulable,Aboun
e = Bg2 ; (10)3) See, e. g., Chapter 7 in [5℄.

Fig. 4. An e�e
tive potential in Eu
lidean time. Thispotential is a sign re�e
tion of that in Fig. 3, i. e., is� ~V (x). It vanishes at x = 0 and at x = �x�, wherex� = !=p2 gwhere B is de�ned in Eq. (8). In this way, we obtainthat ImE0 = �!2 Bg2 exp��Bg2� : (11)Now we 
an 
al
ulate the ground-state energy for theoriginal potential in Fig. 1 by using (11) and a disper-sion relation in the 
oupling 
onstant [4℄,E0 = 1� 1Z0 d~g2 1g2 + ~g2 ImE0 �~g2� == !2 Z dz 11 + (g2=B) z e�z: (12)The last expression reprodu
es the series in (3) and (4)with its sign alternation and fa
torial divergen
e of the
oe�
ients. Both features are explained by the imagi-nary part in (11) being proportional to exp(�B=g2).Summarizing, the perturbative expansion for theanharmoni
 os
illator is fa
torially divergent; however,the Borel summability allows �nding the 
losed, well-de�ned, and exa
t expressions for the energy eigenval-ues. The physi
al meaning of the fa
torial divergen
e,as well as the sign alternation, are fully understood.Now we pass to a more 
ompli
ated but more interest-ing non-Borel-summable 
ase.3.2. Double-well potentialThe double-well problem is des
ribed by the Hamil-tonian H = 12p2 � 14!2x2 + g2x4; (13)446
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Fig. 5. The g2 series in the double-well problem is notsign alternating; f(a) has a singularity on the real neg-ative semi-axis in the Borel parameter 
omplex planeat a = 2Binst, where a is the Borel parameteri. e., the sign of the O(x2) term is 
hanged, and thepoint x = 0 be
omes unstable. Instead, two stableminima develop at x� = �x� withx� = !=2p2g:The shape of the double-well potential is depi
ted inFig. 4. Classi
ally, ea
h of the two minima x == �!=2p2g presents a stable solution of the system.Quantum me
hani
ally, zero-point os
illations aboutthe minima o

ur. Taking the anharmoni
ity near theminima into a

ount, we generate a perturbative seriesfor the ground-state energy. This is in the perturba-tion theory. In fa
t, the two minima are 
onne
ted bythe tunneling traje
tory (instanton) in Eu
lidean time.The instanton a
tion isSinst = !312g2 (14)(see, e. g., [6℄). In what follows, it will be 
onvenient tointrodu
e Binst = g2Sinst = !312 : (15)At small g2, the ground-state energy is 
lose to !=2plus 
orre
tions in g2 and nonperturbative 
orre
tionsof the type exp(�
=g2). A 
ru
ial distin
tion from theanharmoni
 os
illator dis
ussed in Se
. 3.1 is that the g2series in this 
ase is not sign-alternating (although stillfa
torially divergent), 
orresponding to a singularity inthe Borel fun
tion at a real positive value a = 2Binst,i. e., on the integration 
ontour (see Fig. 5). Thus, wehave to rethink the Borel summation pro
edure.Equation (7) is repla
ed by

E0 = L (BE0) � !2 1Z0 da g�2 exp�� ag2� f(a); (16)where, roughly speaking,f(a) = �2Binsta� 2Binst : (17)Then, instead of Eq. (4), we obtain
k = k! (2Binst)�k : (18)The perturbative series is not sign alternating, unlikethe 
ase of the anharmoni
 os
illator.We pause here to take a 
loser look at the above re-sults. In fa
t, integral (16) is unde�ned: the integrationalong the real positive semi-axis 
annot be performedsin
e we hit a singularity. It must be 
ir
umventedalong either the upper or the lower small semi
ir
lesas shown in Fig. 5. Depending on whether we 
hoosethe upper or lower semi
ir
le, we obtain an imaginary
ontribution(�E0)Borel = �� i��2Binstg2 ��� exp��2Binstg2 � : (19)However, in the 
ase of the double-well potential,the system is stable and does not de
ay, implyingthat the ground-state energy must be stri
tly real;(�E0)Borel must be 
an
eled by something, and, in-deed, it is 
an
eled by a 
ontribution 
oming from theinstanton�anti-instanton (IA) pair. The position of thesingularity at 2Binst in Fig. 5 prompts us that it is apair of instantons whi
h is important.The IA pair is only an approximate saddle point.There is an attra
tion potential that is very shallowwhen they are far apart. As usual, approximate sad-dle points require a regularization. One of regulariza-tions, whi
h is very helpful at least for qualitative pur-poses, is to 
onsider the IA pair at a �nite (rather thanzero) energy E, along the lines des
ribed, e. g., in [5℄,Se
s. 23.2 and 23.3. Then the imaginary part of theIA 
ontribution redu
es to exp(�2Sinst) with a knownpre-exponential, and 
an
els the imaginary part in (19).The real part of the IA 
ontribution is proportional to!T� � log (Sinst) (!=E), where T� is the 
riti
al IAseparation and the value of E relevant to the problemis E � !. Thus, the real part of the IA 
ontributionredu
es to logSinst exp(�2Sinst) times a known powerof Sinst in the pre-exponential. For a more 
areful 
al-
ulation, see [7�9℄.447
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ipal value of the inte-gral, this expression is well de�ned and, being ex-panded, generates the perturbative series in its en-tirety4). Stri
tly speaking, the se
ond line is oversim-pli�ed, sin
e the pre-exponential in the se
ond line isalso represented by an in�nite g2 series with fa
toriallydivergent 
oe�
ients. To amend this series, we have toin
lude a 2I�2A 
ontribution, and so on. We refer tothis formula as the minimal Borel pro
edure (MBP).The MBP formula 
ontains all information one 
ansqueeze from perturbation theory. It still la
ks some-thing. In order to understand what this something is,we make a digression.As is well known, perturbation theory (PT) de-s
ribes �u
tuations of a quantal system around 
las-si
al minima of the potential. In the 
ase at hand, wehave two degenerate minima re�e
ting a Z2 symmetryof the potential. We 
hoose one of them for the �un-perturbed� Hamiltonian, for instan
e,H0 = p22 + !22 (x� x�)2: (21)All 
ubi
 and quarti
 terms from the expansion of po-tential (13) are referred to Hint. The perturbation the-ory in Hint is well de�ned in any order.The Hamiltonian H0 does not know about the se
-ond va
uum, but high-order 
orre
tions re�e
t the ex-isten
e of the se
ond va
uum indire
tly, through thefa
torial divergen
e of the PT series. The perturba-tion theory in Hint requires only the knowledge of theunperturbed eigenfun
tions and eigenvalues (i. e., thoseof harmoni
 os
illator (21)). The eigenfun
tions of H0should be square normalizable, and no other require-ments are imposed.Next, we de�ne the sum of the fa
torially divergentseries as MBP plus IA. Using this pro
edure, we would
on
lude that the system has two degenerate groundstates: the Z2 restoration in the va
uum is still absent.This fa
t � restoration of Z2 � does not ensuewith ne
essity from the amended PT series. It presentsan additional information on the global va
uum stru
-ture: a Z2 order parameter drasti
ally 
hanges 
om-pared to its PT value, and the degenera
y of the ground4) Equation (20) is to be 
ompared with the general trans-seriesformula (1).

state is lifted a

ordingly. This e�e
t is proportionalto exp(�Sinst), as opposed to exp(�2Sinst) re�e
t-ing the 
orresponding singularity in the Borel plane at2Binst5).Con
eptually, this is similar to 
hiral symmetrybreaking in the 
hiral limit in QCD. No matter whatwe do with the PT, we do not see any splitting be-tween the axial and ve
tor quark two-point fun
tions.We have to infer the global va
uum stru
ture of QCDfrom other sour
es.4. ASYMPTOTICALLY FREE FIELDTHEORIESWe arrived at a point where it would be natural topass from quantum me
hani
s to asymptoti
ally free�eld theories. Up to a 
ertain point, we 
an pro
eedalong the lines outlined in Se
. 3. There are two 
aseswhen we 
an go all the way up to 
omplete resurgen
e:(a) if a given �eld theory is exa
tly solvable (in whi
h
ase this is a triviality), or (b) if it is weakly 
oupled(perhaps, after a 
ertain deformation) and hen
e 
anbe treated semi
lassi
ally. In the latter 
ase, 
ompli-
ations that arise are of a te
hni
al nature. Today, weare aware of quite a few examples of this type that havebeen identi�ed and studied in the past.However, the most interesting theories are QCD andits relatives. They are spe
ial be
ause QCD is the the-ory of Nature, des
ribing the quark�gluon dynami
s.They are strongly 
oupled in the infrared (IR) domain,where it is impossible to treat them semi
lassi
ally: theperturbation theory fails even qualitatively. It does not
apture the drasti
 rearrangement of the va
uum stru
-ture related to 
on�nement.I would like to dis
uss the following question: howfar 
an we go in the resurgen
e program in these theo-ries? We see in what follows that a 
ertain pro
eduresuggested in the late 1960s [10℄ and implemented inQCD in the 1970s [11℄ allows advan
ing rather far, al-though, unfortunately, not to the very end. This is asgood as it gets : : :The Lagrangian of QCD has the form (in the 
hirallimit) L = � 14g2Ga��G�� a +X � i =D ; (22)5) The instanton 
an leak to another minimum and then ananti-instanton would return the system to the original minimum.That is the origin of the exp(�2Sinst) fa
tor. The splitting be-tween the ground state and the �rst ex
itation is due to a singleinstanton that 
onne
ts two �preva
ua�. This e�e
t is propor-tional to exp(�Sinst).448
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tual world, N = 3, but in theo-reti
al laboratory we are free to 
onsider any value ofN . If we drop the quark term, we are left with the G2��gluon term. This is a pure Yang�Mills theory. More-over, g2 in front of the gluon term is the asymptoti
allyfree gauge 
oupling.As we know, this is a strongly 
oupled theory. TheLagrangian is de�ned at short distan
es in terms of glu-ons and quarks, while at large distan
es of the order of& ��1QCD, we deal with hadrons, e. g., pions and pro-tons. Certainly, the latter are 
onne
ted with quarksand gluons in a divine way, but this 
onne
tion is highlynonlinear, nonlo
al, and is not amenable to analyti
des
ription at the moment. Moreover, the very exis-ten
e of massless pions and massive protons is due toa dramati
 restru
turing of the QCD va
uum re�e
t-ing spontaneous breaking of the 
hiral symmetry. Thisphenomenon is only possible at a very strong 
oupling.Perhaps, in the future, string theory will be able toprovide an adequate des
ription, but as they say, �thefuture is not ours to see : : : �.Another (a mu
h simpler) example is the two-dimensional CP(N � 1) model with a varying degreeof supersymmetry (or no supersymmetry at all). TheLagrangian of the model isL = N�1Xi;�j=1Gi�j ���y�j ���i + fermions; (23)where Gi�j = 2g2 Æi�j� � �y i��j�2 !;� = 1 + N�1Xm �ym�m; (24)and g2 is the asymptoti
ally free 
oupling 
onstant. Inthe large-N limit, this model is exa
tly solvable [12�14℄.To the leading order in 1=N , the solution is known, but
annot be expressed in terms of (1) be
ause instantonsare irrelevant at strong 
oupling. Sin
e the solution isknown, we 
an still represent it in the form of a generi
trans-series. In the �rst subleading 1=N 
orre
tion, wereturn to a generi
 
ontrived situation, to be dis
ussedbelow, similar to that in QCD.A 
ommon feature of both theories above as well asmany others from this 
lass is the fa
t that the 
oupling
onstant is not a bona �de 
onstant; it runs. In moredetail,

g2(Q) = Binst�0 log(Q=�) ; (25)where Binst = ( 8�2; QCD;4�; CP(N � 1);�0 = 8><>: 113 N; YM;N; CP(N � 1); (26)and Q is an appropriate momentum s
ale (assumingQ� �). Here, �0 is the �rst 
oe�
ient of the � fun
-tion. In the upper line on the right, it is given for apure Yang�Mills theory. When 
hara
teristi
 values ofQ be
ome 
lose to �, the running 
onstant is unde-�ned and all 
al
ulations in terms of gluons and quarksbe
ome meaningless.As wee see, the genuine parameter of QCD is notthe dimensionless g2, but rather the dynami
al QCDs
ale � invisible in the 
lassi
al Lagrangian. That is thephenomenon of dimensional transmutation inherent toall strongly 
oupled asymptoti
ally free �eld theories.The series in g2 be
omes the series in 1= log(Q)=�, ex-ponential terms exp(�
=g2(Q)) redu
e to powers��Q�
�0=8�2 ;while terms exponential in Q, � exp(�
Q=�), whi
halso appear in QCD and similar theories in the g2 per-turbation theory, have to emerge fromexp(�
 exp(~
=g2(Q))):Complete failure of quark�gluon 
al
ulations atQ � � blo
ks the program of �analyti
� resurgen
e interms of trans-series in QCD. However, some kind ofresurgen
e is possible, known as the operator produ
texpansion. Now we pro
eed to a more systemati
 (al-beit brief) dis
ussion of OPE.5. OPE VERSUS TRANS-SERIESInstead of a general introdu
tion to Wilson's op-erator produ
t expansion (whi
h would require a lotof time6)), we brie�y dis
uss OPE from a somewhatnonstandard standpoint: following the logi
 of Se
. 3.devoted to resurgen
e in quantum me
hani
s.6) For a review of OPE in QCD, see [15℄.5 ÆÝÒÔ, âûï. 3 449
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a b

Fig. 6. The leading and the next-to-leading terms in the expansion of the Adler fun
tion. The external 
urrent j� inje
tinga quark�antiquark pair in the va
uum (and then annihilating it) is denoted by wavy linesWe start our dis
ussion from the two-point fun
tion���(q) = i Z d4x e�iqx DT [j�(x)j� (0)℄E == �q�q� � q2g��� �(Q2); (27)where j� = � 
� is the quark 
urrent, and we setQ2 = �q2; (28)su
h that Q2 is positive in the Eu
lidean domain. Welimit ourselves to large values of the Eu
lidean momen-tum, Q� �, su
h that the perturbation theory 
an beused. In fa
t, instead of �(Q2), for te
hni
al reasons itis 
onvenient analyze the so-
alled Adler fun
tion de-�ned as D(Q2) = �4�2Q2 d�(Q2)dQ2 : (29)The �rst two terms in the expansion of the Adler fun
-tion are de�ned by the diagrams in Fig. 6, with the
oupling 
onstant � � g24� : (30)Given the external momentum Q �owing through thewavy line, it is easy to see that it is the running 
ou-pling �(Q) that enters Fig. 6b. Indeed, the momentum�owing through the gluon line in Fig. 6b is k � Q.Moving to higher orders in �, we �nd more andmore 
ompli
ated multiloop graphs. Among them, aspe
ial role belongs to the bubble-
hain diagrams, de-pi
ted in Fig. 7. These graphs (referred to as renor-malons) were extensively studied in the late 1970s [16℄(for reviews, see [17, 18℄).When we say bubble 
hains, we should be 
are-ful. Generally speaking, the very de�nition of a bubble
hain in the form of Fig. 7 is not quite a

urate. Theappropriate renormalon graphs 
annot be isolated inthe form of a bubble 
hain be
ause in this form they

are not even gauge invariant. An honest-to-god renor-malon 
al
ulation is quite 
ontrived.There is a useful tri
k, however. We add Nf �avorsto the theory, where Nf is treated as a free parame-ter. Then, instead of the full 
al
ulation of the genuine�bubble 
hain�, with gluon degrees of freedom in thebubbles, we 
al
ulate only the matter bubbles (whi
hare gauge invariant in the 
hain of Fig. 7), and thenrepla
e �f0 � �23Nf ! �0; (31)where �0 is the �rst 
oe�
ient in the � fun
tion that in-
ludes everything: gluons (plus ghosts in the 
ovariantgauges) and matter �elds7).It is easy to see that the renormalon 
ontributionto the D fun
tion is sign-nonalternating and fa
toriallydivergent in higher orders, �Drenorm � n!�n (n� 1).If n is large, the estimate k � Q is no longer valid. Bothobservations � the absen
e of sign alteration and fa
-torial divergen
e � be
ome obvious after a 
loser lookat Fig. 6b before integrating over k. The exa
t resultfor a �xed k2 was found by Neubert [19℄. For illustra-tive purposes, it is su�
ient to use a simpli�ed inter-polating expression [20℄ 
olle
ting all bubble insertionsin the gluon propagator: no bubbles, one bubble, twobubbles, and so on,D = C �Q2 Z dk2 k2�s(k2)(k2 +Q2)3 ; (32)whi
h 
oin
ides with the exa
t expression [19℄ in thelimits k2 � Q2 and k2 � Q2, up to minor irrelevantdetails. The 
oe�
ient C in Eq. (32) is a numeri
al 
on-stant and �(k2) is the running gauge 
oupling, whi
h
an be represented as�(k2) = �(Q2)1� �0�(Q2)4� ln(Q2=k2) : (33)7) We note that �f0 and �0 have opposite signs.450
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Fig. 7. The bubble-
hain diagrams representing renor-malons. Solid lines denote quark propagators, whiledashed lines are for gluons

4� 8�2� (IA)IA ��4��0 8��0IR renUV ren 0Fig. 8. The Borel plane for the Adler fun
tion in QCD.The singularity to the left of the origin is due to an ul-traviolet renormalon, whi
h does not 
on
ern us here.The nearest singularity to the right of the origin is dueto the IR renormalon shown in Fig. 7. The IA singular-ities lie mu
h farther to the rightWe fo
us on the infrared domain. Omitting theoverall 
onstant C, we obtainD(Q2) = 1Q4� 1Xn=0��0�4� �n �� Z dk2k2�ln Q2k2 �n ; � � �(Q2); (34)whi
h 
an be rewritten asD(Q2) = �2 1Xn=0��0�8� �n Z dy yne�y;y = 2 ln Q2k2 : (35)The y integration in Eq. (35) represents all bubble-
hain diagrams after integration over the loop momen-tum k. The y integral from zero to in�nity is n!. A
hara
teristi
 value of k2 saturating the integral isy � n or k2 � Q2 exp��n2� : (36)Thus, we observe a fa
torial divergen
e of the 
oef-�
ients. The 
orresponding singularity in the Borelplane is depi
ted in Fig. 8.If Q2 is �xed and n is su�
iently large, n > n�,where n� = 2 ln Q2�2 ; (37)

then the fa
torial divergen
e of the 
oe�
ients in (35) ispurely formal and 
annot be trusted. At small k2 . �2,the diagrams in Figs. 6b and 7 (in fa
t, any Feynmandiagrams) 
ease to properly represent non-Abelian dy-nami
s due to the strong 
oupling in the IR. Equa-tion (36) shows that if n > n�, the 
hara
teristi
 val-ues of k2 saturating the integral do fall o� below �2.The point n = n� represents the optimal trun
ationpoint: at this point, the terms of the asymptoti
 se-ries are minimal. Formally, if we dis
ard the domaink2 < �2, at n > n� the fa
torial growth is suppressed(see Fig. 10), and the series must be trun
ated:D(Q2)! �s2 n�Xn=0��0�s8� �n n! (38)At this point, the road we have to take in QCD andsimilar strongly 
oupled theories diverges from that inquantum me
hani
s. In the latter, the validity of thesemi
lassi
al approximation 
ombined with the 
lear-
ut pi
ture of the va
uum stru
ture allows a
hievingfull resurgen
e. In �eld theories, the va
uum stru
-ture is determined by infrared dynami
s, the theory ofwhi
h is still la
king, and semi
lassi
al approximationsare bound to fail. What 
an we do under the 
ir
um-stan
es?6. OPERATOR PRODUCT EXPANSIONI remember that after the �rst seminar on the SVZsum rules [11℄ in 1978, Eugene Bogomol'nyi used toask me ea
h time we met: �Look, how 
an you speakof power 
orre
tions in the two-point fun
tions at largeQ2 when even the perturbative expansion (i. e., the ex-pansion in 1= ln(Q2=�2)) is not well de�ned? Isn't itin
onsistent�?Now, with the dis
ussion of Se
. 5 in mind, I amable to answer the above Bogomol'nyi question in apositive way, namely:Consistent use of Wilson's OPE makes everythingwell-de�ned at the 
on
eptual level. Te
hni
al imple-mentation may not always be straightforward, how-ever. Moreover, the resulting OPE formula 
ontainsunknown va
uum 
ondensates in the form of power
orre
tions. In turn, their summation presents an un-solved problem.The operator produ
t expansion in asymptoti-
ally free theories is a book-keeping devi
e separat-ing short-distan
e (weak-
oupling) 
ontributions fromthose 
oming from large distan
es (strong-
oupling do-main). To this end, we introdu
e an auxiliary param-eter �, a separation s
ale between large and short dis-451 5*
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es. The latter 
ontribution resides in the OPE 
o-e�
ient fun
tions Ci(Q;�), while the former 
ontribu-tion is en
oded in the matrix elements of the 
orre-sponding operators Oi(�;�),D(Q;�) = 1Xi=0 Ci(Q;�) hOi(�;�)i : (39)Generally speaking, OPE is appli
able whenever wedeal with problems that 
an be formulated in Eu
lideanspa
e�time and in whi
h we 
an regulate typi
al Eu-
lidean distan
es by a varying large external momen-tum Q. Fa
torization (39) is te
hni
ally meaningful(i. e., allows 
arrying out 
onstru
tive 
al
ulations ofCi(Q;�)) if we 
an 
hoose�� Q; but �� �: (40)Then the 
oe�
ients Ci(Q;�) 
an be found semi
lassi-
ally, even though they by no means redu
e to the PT.The matrix elements hOi(�;�)i 
annot be determinedsemi
lassi
ally. As a book-keeping devi
e, OPE 
annotfail [11℄, as long as no arithmeti
 mistake is made enroute.A remarkable observation was made in the 1990s.Perturbative analysis (e. g., that of renormalons)prompts us that 
ertain nonperturbative 
ondensatesmust be present in QCD. Moreover, we 
an evendetermine their dimension from the the position ofsingularities in the Borel plane. Unfortunately, by farnot all 
ondensates are visible in the analysis of PThigh orders. For instan
e, all 
ondensates related tothe spontaneous breaking of 
hiral symmetry leave notra
e in any order of the perturbation theory, nor inits divergen
e.The values of 
ondensates that are visible in thePT divergen
e are not determined by the PT analysiseither8).7. OPE AND RENORMALONS IN QCDAfter this brief digression, we return to Adler fun
-tion (27) at large Eu
lidean q2, where OPE 
an be 
on-sistently built through separation of large- and short-distan
e 
ontributions.For simpli
ity, taking into a

ount that my pur-pose today is illustrative, I ignore the se
ond inequality8) Prevalent in the 1970s and early 1980s was a mis
on
eptionthat the OPE 
oe�
ients are determined ex
lusively by perturba-tion theory, while the matrix elements of the operators involvedare purely nonperturbative. Attempts to separate perturbationtheory from �purely nonperturbative� 
ondensates gave rise toin
onsisten
ies (see, e. g., [21℄).

in (40) and set the separation s
ale at � = � ratherthan at �� �. This would be inappropriate in quanti-tative analyses; however, my task is to explain a quali-tative situation. Being auxiliary, the parameter � even-tually 
an
els from the master formula (42) anyway (seebelow).We take a 
loser look at Eqs. (32) and (33). Theunlimited fa
torial divergen
e in (35) is a dire
t 
on-sequen
e of the integration over k2 in (34) all the waydown to k2 = 0: Not only is this nonsensi
al be
ause ofthe pole in (33) at k2 = �2; this is not what we shoulddo in 
al
ulating 
oe�
ient fun
tions in OPE. The 
o-e�
ients must in
lude k2 > �2 by 
onstru
tion. Thedomain of small k2 (below �2) must be ex
luded from
0 and referred to the va
uum matrix element of thegluon operator G2�� . Indeed, in the sum in Eq. (35),all terms with n > n� 
an be written as (see Figs. 9and 10)�D(Q2) = �2 Xn>n���0�8� �n nn�e�n� == �2 Xn>n� �4Q4 ; (41)where we used the fa
t that�0�(Q2)8� = 12 ln(Q2=�2) = 1n� :Of 
ourse, we 
annot 
al
ulate the gluon 
ondensatefrom the above expression for the tail of the series (35)representing the large-distan
e 
ontribution, for a num-ber of reasons. In parti
ular, the value of the 
oe�
ientin front of �4=Q4 remains un
ertain in (41) be
ause Eq.(33) is no longer valid at su
h momenta.We do not expe
t the gluon Green's fun
tions usedin 
al
ulation in Fig. 7 and in Eq. (33) to retain anymeaning in the strong-
oupling nonperturbative do-main. A qualitative feature � the power dependen
e(�=Q)4 in (41) � is 
orre
t, however.We note with satisfa
tion that the fourth power ofthe parameter �=Q, whi
h we �nd from this tail, ex-a
tly mat
hes the OPE 
ontribution of the operatorhG2��i (see [11℄).Summarizing, we see that the 
onsistent use of OPE
ures the problem of the renormalon-related fa
torialdivergen
e of 
oe�
ients in the � series, absorbing theIR tail of the series in the va
uum expe
tation value ofthe gluon operator G2�� and similar higher-order opera-tors. Although the value of hG2��i 
annot be 
al
ulatedfrom renormalons, the very fa
t of its existen
e 
an beestablished.452
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n∗ n∗ y

n > n∗n < n∗

yne−n

Fig. 9. The plot of the integrand in Eq. (34) for twovalues of n, �small� and �large�. A sharp peak at y � nsaturates the integral. In the left plot, n < n� == 2 ln(Q2=�2) and the forbidden domain k2 � �2does not 
ontribute to the fa
torial fa
tor. In the rightplot, n > n�. The y integration has to be 
ut o� aty = n�, whi
h kills the fa
torial growth
cn[α(Q)]n

???

nn∗

∼ (Λ/Q)2kFig. 10. The PT expansion for the Adler fun
tion isasymptoti
. We 
an trust it only up to a point of op-timal trun
ation. A �tail� beyond this point tells us ofthe existen
e of an operator of dimension 2k represent-ing this tail not a

essible by PT 
al
ulation. (In the
ase at hand, k = 2)8. SOURCES OF FACTORIALS AND THEMASTER FORMULAFrom quantum me
hani
s, we learned that the fa
-torial divergen
e 
an arise from instantons. In QCD,the instantons are ill-de�ned in the IR and, stri
tlyspeaking, nobody knows what to do with them9). If9) This statement is a slight exaggeration. We refer to [22℄ foran alternative point of view on instantons in the QCD va
uum.

we 
onsider QCD in the 't Hooft limit of a large num-ber of 
olors, instantons de
ouple. The 
orrespondingsingularity in the Borel plane (see Fig. 8) moves to theright in�nity. At the same time, none of the essen-tial features of QCD disappears in the 't Hooft limit.Therefore, in our simpli�ed 
onsideration, we 
an forgetabout instantons. Perhaps, they will be needed later.If so, we 
an write a single (simpli�ed) �master� for-mula for QCD and similar theories. At large Eu
lideanmomenta, the 
orrelation fun
tions of type (27) 
an berepresented asD(Q2) = n0�Xn=0 
0;n� 1ln(Q2=�2)�n ++ n1�Xn=0 
1;n� 1ln(Q2=�2)�n ��Q�d1 ++ n2�Xn=0 
2;n� 1ln(Q2=�2)�n��Q�d2 + : : :+ �exponential terms�: (42)Equation (42) is simpli�ed in a number of ways. First,it is assumed that the 
urrents in the left-hand sidehave no anomalous dimensions, and so do the opera-tors appearing in the right-hand side. They are as-sumed to have only normal dimensions given by di forthe ith operator. Se
ond, we ignore the se
ond andall higher 
oe�
ients in the � fun
tion, and hen
e therunning 
oupling is represented by a pure logarithm.All these assumptions are not realisti
 in QCD10). Westi
k to them to make the master formula more 
on
ise.In
lusion of higher orders in the � fun
tion and anoma-lous dimensions in both the left- and right-hand sideswould give rise to rather 
ontrived additional terms andfa
tors 
ontaining log log's, log log log's (log log = log)'s,et
.11). This is a purely te
hni
al, rather than 
on
ep-tual, 
ompli
ation, however.So far, we dis
ussed the divergen
e/
onvergen
e ofthe perturbative series explaining that the regulatingparameter � in OPE allows making the PT mean-ingful12). Expansion (42) runs not only in powers of1= lnQ2 but also in powers of �=Q. This is a doubleexpansion, and the power series in �=Q is also in�nitein its turn. Does it have a �nite radius of 
onvergen
e?10) They 
ould be made somewhat more realisti
 in N = 2super-Yang�Mills theories.11) Multiple logarithms are elements of the trans-series analysistoo, see [1℄.12) Fa
torial divergen
e of PT series due to a fa
torially largenumber of Feynman graphs with many loops is suppressed in the't Hooft limit.453



M. Shifman ÆÝÒÔ, òîì 147, âûï. 3, 2015Needless to say, this is an important question. Theanswer to it is negative. Twenty years ago I arguedin [23℄ (see also [15℄) that the power series in (42) arefa
torially divergent in high orders. This is a ratherstraightforward observation following from the analyti
stru
ture of D(Q2). In a nutshell, be
ause the Q2 sin-gularities in D(Q2) run all the way to in�nity along thepositive real semi-axis of q2, the 1=Q2 expansion 
annotbe 
onvergent. The last line in Eq. (42) symboli
allyrepresents a divergent tail of the power series.9. SUPERSYMMETRIC YANG�MILLSTHEORYFa
torial divergen
e of the perturbative series in su-persymmetri
 theories was only s
ar
ely dis
ussed inthe past [24�26℄. Meanwhile, this is an interesting ques-tion be
ause renormalons in supersymmetri
 theorieshave pe
uliarities related to pe
uliarities of the oper-ator produ
t expansion in supersymmetri
 Yang�Millstheory.As we already know, the renormalons are in a one-to-one 
orresponden
e with parti
ular gluon operatorsin OPE. There is a one-to-one 
orresponden
e betweenthe given bubble-
hain graph and an appropriate oper-ator in OPE (see, e. g., [18℄).The SYM Lagrangian isL = � 14g2Ga��Ga�� + ig2 ��a���D��a: (43)The only di�eren
e with the QCD Lagrangian in (22)is in the fermion se
tor: the fundamental quarks arerepla
ed by a Majorana spinor in the adjoint represen-tation of the gauge group.Supersymmetry of the model implies that an in�-nite 
lass of gluoni
 operators 
annot have nonvanish-ing va
uum expe
tation values (VEVs). This fa
t tellsus that the 
onventional renormalon analysis must bemodi�ed. Below, we dis
uss a modi�
ation needed, but�rst see why gluoni
 operator VEVs must vanish in theSYM theory, in 
ontradistin
tion to QCD.9.1. Why gluon operators have vanishingVEVs in SYM?The operator Ga��Ga�� + i��a���D��a is the highest
omponent of TrW 2, whereW� = i ��� + i��D � ��G�� � i�2D� _��� _�� : (44)

Supersymmetry allows only the lowest 
omponents ofsuper �elds to develop a nonvanishing VEV. In a pureSYM theory, without matter, D = 0, and thereforeG�� � Df�W�g + : : : ; (45)where the bra
es denote symmetrization, D� is thespinorial derivative, and the ellipses stand for higher
omponents irrelevant for our purposes.Gluoni
 operators in the pure SYM theory must
ontain at least two G fa
tors; in other words, theirgeneri
 form isOg / G : : : G / Df�W�g : : :Df~�W~�g: (46)The ellipses above represent any number of 
ovariantderivatives and extra W fa
tors under the 
onditionthat the overall number of theW fa
tors be even. Tak-ing Tr (whi
h singles out 
olor-singlet parts) is impliedbut not expli
itly indi
ated.The right-hand side in (46) 
an be identi
allyrewritten asDf�W�g : : : Df~�W~�g = Df� �W�g : : : Df~�W~�g�++W� �D� : : :Df~�W~�g� : (47)The �rst term is a full superderivative and, as su
h,
an have no nontrivial VEV. The lowest 
omponentof the se
ond term, at the very least, 
ontains � andD� _��� _� (the last fa
tor vanishes due to the equation ofmotion). Thus, the lowest-dimensional operator that
ould in prin
iple appear in OPE is a two-� operator.However, this 
annot appear too be
ause if we 
al
ulatethe OPE 
oe�
ients perturbatively (and renormalonsare perturbative obje
ts), then two-� operators havea wrong R parity, while ��� operators 
an have theLorentz spin zero only in the 
ombinationTr��D� _
G _
 _��� _� ; (48)whi
h redu
es to a four-fermion operator by virtue ofthe equation of motion. Thus, in a pure SYM, the OPEin fa
t starts from four-gluino operators of dimension6 and the four-lambda operators with possible addi-tional insertions of 
ovariant derivatives and G or ��or ��� fa
tors, whi
h have dimensions higher than 6. Nopurely gluoni
 operator 
an have a nonvanishing VEVin SYM.The above argument based on R parity is appli
ableto the two-point fun
tions of the typei Z d4x eiqx 
O(x); Oy(0)� ;O = Tr �� _��� or Tr����: (49)454
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e the IR renormalons are in a one-to-one 
or-responden
e with OPE, we 
on
lude that the bubble
hain in Fig. 7, whi
h normally is responsible for thenon-Borel-summable divergen
e of higher orders (
los-est to the origin in the Borel plane) must be 
an
eledby something else.We note, however, that an easy way of identifyingthe �bubble 
hains� in QCD was through matter loopswith the subsequent extra
tion of the Nf fa
tor plussubstitution (31). This tri
k does not work in SYM(see (43)). We are for
ed to introdu
e matter �elds.9.2. Matter loops in SYMTo identify the renormalon bubble 
hain throughmatter loops, we should expand supersymmetri
 gluo-dynami
s (43) to in
lude Nf matter �elds in the fun-damental representation of SU(N),L = � 14g2Ga��Ga�� + ig2 ��a���D��a ++Xf �D�qf D�qf + i  f ���D� f�++ h�m2  f� �f+ip2 ( f�a T a) qf+H:
:i�V (qf ); (50)whereV (qf ) = g22 0�Xf qf T a qf1A2 +Xf jmj2 jqf j2 : (51)Here, q and  are the respe
tive squark and quark�elds. The mass terms in (50) and (51) are irrelevantand 
an be safely omitted13).In addition to the bubbles depi
ted in Fig. 7, bubble
hains now develop elsewhere, as in Fig. 11.Unlike the familiar QCD example (Fig. 7), the mat-ter bubbles in the SYM theory appear even in the dia-grams without gluon insertions, su
h as the graph de-pi
ted in Fig. 12. Ea
h bubble produ
es Nfg2 log p2,where p is the momentum �owing through the gluinoline. However, this parti
ular diagram would 
orre-spond to the operator�� _�iD _����; (52)whi
h redu
es via the equation of motion to anotherdimension-4 operator,Xf �j ���ij � i� ;13) We should remember that ea
h �avor is represented by twosquarks and two Weyl quarks, one in the fundamental and an-other in the antifundamental representation of SU(N).

quarksquarkgluino
Fig. 11. Elementary bubble insertion in the gluinoline

quark

squark

gluino

Fig. 12. Additional bubble diagrams in SYM, with mat-ter insertions in the gluino line. Nf matter bubblesprodu
e the Nf fa
torwhi
h has no analog in QCD. We note that in SYMwith matter, 
hiral symmetry is broken a priori, and isrepla
ed by R symmetry of the U(1) type. In addition,there is an anomalous part in the equation of motion tobe used in Eq. (52), whi
h produ
es the operator G��2.Cal
ulating the elementary bubble insertion in thegluino line is straightforward. It is determined by thegraph in Fig. 11. In fa
t, there is no need for an expli
it
al
ulation of this diagram. It represents the Z fa
torof the gluino �eld. However, supersymmetry guaran-tees that the renormalization of the gluon and gluino�elds are identi
al.If we start from Lagrangian (50) normalized at amomentum s
ale Q (then the 
orresponding 
ouplingis g2(Q)) and evolve it down to p, then the operator(i=g2)��a���D��a in the Lagrangian evolves as455
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orresponding Z fa
tor 
an be easily read o�, forinstan
e, by pro
eeding to the 
anoni
ally normalizedgluino kineti
 term. In this way, we �ndZ�1 = g2(Q)g2(p) = 1� g24� (3N �Nf ) log Q2p2 ; (54)where the matter bubble produ
es only the Nf part,of 
ourse. In other words, the (trun
ated) diagram inFig. 11 produ
es (p�
�) Nfg24� log Q2p2 : (55)In summary, we see that the standard method ofthe renormalon analysis, whi
h works well in QCD, isnot so straightforward in supersymmetri
 gluodynam-i
s (i. e., gluons plus gluinos) be
ause the introdu
tionof matter dramati
ally 
hanges the OPE operator ba-sis. In pure YM and in QCD with massless quarks, it isone and the same dimension-4 operator that a
quires aVEV and is responsible for the leading renormalon sin-gularity. This is in sharp 
ontradistin
tion with whathappens in SYM.9.3. Renormalons, OPE, and diagrams in SYMWe elu
idate the last statement. The role of the IRrenormalon bubble 
hain in a given diagram is to makethe line to whi
h bubbles are atta
hed soft [17, 18℄. Ata 
riti
al value of n, the integration momentum �ow-ing through the bubble line be
omes of the order of�. Hen
e, in the framework of OPE, this line mustbe �
ut� and be
omes a part of the operator with aVEV, whi
h then represents the tail of the renormalon.For instan
e, if we 
onsider the graph in Fig. 7, thesolid lines 
arry a large momentum, while the dashedone is soft. Correspondingly, this bubble 
hain is ina one-to-one 
orresponden
e with the operators G2,GD2G ! G3, and so on. In Fig. 12, the upper partof the graph is soft, while the lower part is hard. Oneof the operators 
orresponding to this bubble 
hain isTr��D� _��� _� . Four-gluino operators are obtained fromthe 
hains depi
ted in Fig. 13. In this graph, we should�
ut� the gluino lines with bubble insertions. A largeexternal momentum is passed through the graph, vialines without bubbles.The problem of interpretation arises only with thebubble 
hains atta
hed to the gluon lines, be
ause the

quark

squark

gluino

Fig. 13. Lines with bubbles are soft. Those withoutbubbles are hard
orresponding operators that should 
onspire with thetail of su
h renormalons 
an have no VEVs. Based onarguments that are not dis
ussed here, I am in
linedto 
onje
ture that the renormalon depi
ted in Fig. 7 is
an
eled by the renormalon depi
ted in Fig. 12. If thenumeri
al 
oe�
ient 
 is right, the operator that thesetwo graphs (
ombined together) give in OPE is�14Ga��Ga�� + i
g2 ��a���D� �a ! 0: (56)This question should be explored further, however,see [27℄. 10. CONCLUSIONS1. Resurgen
e in the sense it is 
arried out in quan-tum me
hani
s, en
ounters 
on
eptual di�
ulties instrongly 
oupled Yang�Mills theories.2. The best we 
an do is to use Wilson's operatorprodu
t expansion adapted to QCD, whi
h has 
on
ep-tual similarities with the resurgen
e program.3. In SYM theories, there are additional te
hni
alproblems with renormalons, not addressed in the past,whi
h are not yet fully solved.Useful dis
ussion with A. Cherman, G. Dunne,M. Ünsal, and A. Vainshtein are gratefully a
knowl-edged. This work is supported in part by the DOEgrant DE-SC0011842.456
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