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1. PREAMBLE

This paper is written for Valery Rubakov-60
Festschrift on the basis of my talk at CERN in the
summer of 2014. T first met Valery around 1980, when
he discovered the monopole catalysis of the proton de-
cay, which later became known as the Callan—Rubakov
effect. There is a beautiful paper of Edward Witten
illustrating subtle points in this effect, which appeared
shortly after Rubakov’s publication. I remember
Witten’s seminar based on this paper delivered during
his only visit to the USSR in the early 1980s.

After the Callan—Rubakov effect, Rubakov pub-
lished many inspiring papers and raised two or three
generations of bright students. These students, in turn,
now inspire new young generations of theoretical physi-
cists all over the world.

2. INTRODUCTION

The notion of resurgence and trans-series associated
with it — a breakthrough discovery®) in constructive
mathematics in the 1980s mostly associated with the
name of Jean Ecalle — gradually spread in mathemat-
ical and theoretical physics. I was impressed by di-

*BE-mail: shifman@umn.edu
D For a pedestrian review understandable to physicists (at
least, in part) and an exhaustive list of references, see [1, 2].

verse and numerous applications of these ideas recently
discussed by J. Zinn-Justin, M. Berry, U. Jentschura,
G. Dunne, M. Beneke, and others. The issues to be
discussed below are rather close to resurgence in quan-
tum mechanics, although they go far beyond and are
much more complicated, because I discuss strongly cou-
pled field theories, such as quantum chromodynamics
(QCD).

In quantum mechanics, the program of resurgence
works well, and trans-series of the type

E(gz) = EPT, regularized (92) +

[es) o) 1 c k ¢ 1
F X3S (e | ) (o)
[ _

k=1 =0

k—instanton
2
X eripg” (1)
——

regularized PT

can be derived for all energy eigenvalues (g2 is assumed
to be small; the subscript PT stands for perturbation
theory).

In weakly coupled field theories, trans-series could
be perhaps constructed, although conclusive arguments
have not yet been presented. One of my tasks is to ex-
plain why resurgence, being conceptually close to the
operator product expansion (OPE), does not work in
strongly coupled field theories, for instance, in QCD. It
is worth noting that OPE existed in QCD from the mid-
1970s, and in its general form, the late 1960s. It grew
from a formalism that had been suggested by K. Wil-
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Fig.1. V(z) in the anharmonic oscillator prob-

lem (2)

son before the advent of QCD. The first part of this
paper is devoted to this issue.

In the second part, I focus on a more technical as-
pect: peculiarities of the factorial divergence of pertur-
bation theory in N = 1 super-Yang-Mills (SYM). So
far renormalons in SYM were scarcely discussed. No
final conclusion was reached. To a large extent this
question remains open.

3. THE SIMPLEST QUANTUM MECHANICAL
EXAMPLES

3.1. Anharmonic oscillator

We consider a one-dimensional anharmonic oscilla-
tor,

(2)

1, 1 .
H=—p* + =w?a® + ¢g°z*
2 2
(see Fig. 1).

For definiteness, we focus on the ground state en-
ergy Ey. There exists a well-defined procedure for con-
structing Ey order by order in perturbation theory, to
any finite order,

Eo==(l4cig® +cag* +...).
Nevertheless, Eq. (3) does not define the ground state
energy. Indeed, the coefficients ¢, are factorially diver-
gent at large k [3],

(3)

wIE

(~1)"B- (4)

where B = w?/3 is the so-called bounce action?).
Hence, the sum in (3) needs a regularization.

Cp ~ kk!7 kE>1,

2) Equation (4) is slightly simplified. For a more precise for-
mula, see [3].
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Fig.2. The perturbative series in the anharmonic os-

cillator problem is Borel-summable. The g2 series for

Ey is sign alternating; f(a) has a singularity on the

real negative semi-axis in the Borel parameter complex
plane. a is the Borel parameter

In the simplest case under consideration, an appro-
priate (and exhaustive) regularization is provided by
the Borel transformation 3,

(1+Zk,ckg> 2He )

The Borel transformation introduces 1/k! in each term
of series (3), rendering it convergent. Moreover, if the
convergent series

BE

= f(g*), (6)

??‘|>_n

L

which defines the Borel function f(g2
ities on the real positive semi-axis g2 > 0, then we can
obtain the ground-state energy Ey starting from the
well-defined expression for BE; and using the Laplace

transformation,
/dag Yo (-2) f@. (@

This procedure is usually referred to as the Borel sum-
mation. Thus, the perturbative expansion in the an-
harmonic oscillator is Borel-summable because the sin-
gularities of f(a) are on the negative real semi-axis.

), has no singular-

&

EO = BEO E

2

Indeed, we assume that f(a) has a pole at a = —B (see
Fig. 2), namely,
B w?
fla) = B=— (8)



M. Shifman

MWKITD, Tom 147, Bhm. 3, 2015

Fig.3. The same potential with the replacement

g% — —g?, to be denoted as 17(93)

Then the integral (7) is well-defined. At the same time,
expanding (8),

(9)

and substituting this series in (7), we immediately ar-
rive at (4).

The fact that the position of the singularity in the
a plane is to the left of the origin and that the series is
sign-alternating are in one-to-one correspondence with
each other.

Exactly fifty years ago, Vainshtein identified [4]
the physical meaning of the factorial growth of coeffi-
cients (4) and explained why the underlying singularity
in the Borel parameter plane is on the negative semi-
axis. Changing the sign of g> from positive to negative,
g> — —g?, we convert a stable potential V(x) in (2)
into an unstable potential V' (x) presented in Fig. 3, al-
lowing for the wave function to leak to large distances.

In the leaking potential V, the energy corresponding
to the Oth eigenvalue acquires an imaginary part (as do
other energy eigenvalues). This imaginary part can be
easily determined. Indeed, after the Euclidean time
rotation, the potential effectively changes as V(z) —
— —V(z), as shown in Fig. 4. Then the so-called
bounce trajectory becomes classically accessible?). The
bounce trajectory starts at x = 0, slides to the right,
bounces off at z, = w/ﬂg, and then returns to the
point z = 0. The Euclidean action on the bounce tra-
jectory is readily calculable,

B
9

Abounce = (10)

Q

3) See, e.g., Chapter 7 in [5].
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Fig.4. An effective potential in Euclidean time. This
potential is a sign reflection of that in Fig. 3, i.e., is
—V(z). It vanishes at = 0 and at z = +xz., where

z. =w/V2g

where B is defined in Eq. (8).
that

In this way, we obtain

()

Now we can calculate the ground-state energy for the
original potential in Fig. 1 by using (11) and a disper-
sion relation in the coupling constant [4],

B

g2

B
ImEy = ™ — exp
g

- (11)

o0
1 -2 1 -2
Fo= [ 5 iy a 57) =
0
w 1
=— [dz—————e 7 12
2/ 1+ (2/B): ¢ (12)

The last expression reproduces the series in (3) and (4)
with its sign alternation and factorial divergence of the
coefficients. Both features are explained by the imagi-
nary part in (11) being proportional to exp(—B/g?).

Summarizing, the perturbative expansion for the
anharmonic oscillator is factorially divergent; however,
the Borel summability allows finding the closed, well-
defined, and exact expressions for the energy eigenval-
ues. The physical meaning of the factorial divergence,
as well as the sign alternation, are fully understood.
Now we pass to a more complicated but more interest-
ing non-Borel-summable case.

3.2. Double-well potential

The double-well problem is described by the Hamil-
tonian

1 1
H=—p® — ~wa? + g2at,

5 1 (13)
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Fig.5. The ¢? series in the double-well problem is not

sign alternating; f(a) has a singularity on the real neg-

ative semi-axis in the Borel parameter complex plane
at @ = 2B;nst, where a is the Borel parameter

i.e., the sign of the O(2?) term is changed, and the
point x = 0 becomes unstable. Instead, two stable
minima develop at x, = + z, with

Ty = w/2\/§g.

The shape of the double-well potential is depicted in
Fig. 4. Classically, each of the two minima xz
= +w/2/2g presents a stable solution of the system.
Quantum mechanically, zero-point oscillations about
the minima occur. Taking the anharmonicity near the
minima into account, we generate a perturbative series
for the ground-state energy. This is in the perturba-
tion theory. In fact, the two minima are connected by
the tunneling trajectory (instanton) in Euclidean time.
The instanton action is

w3

a7 (14)

Sinst =
(see, e.g., [6]). In what follows, it will be convenient to
introduce

3

w
2
Binst = g Sinst = 75

- (15)

At small g2, the ground-state energy is close to w/2
plus corrections in g2 and nonperturbative corrections
of the type exp(—c/g?). A crucial distinction from the
anharmonic oscillator discussed in Sec. 3.1 is that the g?
series in this case is not sign-alternating (although still
factorially divergent), corresponding to a singularity in
the Borel function at a real positive value a = 2B, s,
i.e., on the integration contour (see Fig. 5). Thus, we
have to rethink the Borel summation procedure.

Equation (7) is replaced by
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o ]
/dag*2 exp (— a
J g

EO =L (BE[)) =

| &

2

)f@% (16)

where, roughly speaking,

_QBinst
— st 1
fla) = =gt a7)
Then, instead of Eq. (4), we obtain
¢k = k! (2Binst) " (18)

The perturbative series is not sign alternating, unlike
the case of the anharmonic oscillator.

We pause here to take a closer look at the above re-
sults. In fact, integral (16) is undefined: the integration
along the real positive semi-axis cannot be performed
since we hit a singularity. It must be circumvented
along either the upper or the lower small semicircles
as shown in Fig. 5. Depending on whether we choose
the upper or lower semicircle, we obtain an imaginary
contribution

) <

X exp (— ) . (19)

However, in the case of the double-well potential,
the system is stable and does not decay, implying
that the ground-state energy must be strictly real;
(AEy) g,y must be canceled by something, and, in-
deed, it is canceled by a contribution coming from the
instanton—anti-instanton (TA) pair. The position of the
singularity at 2B;,s: in Fig. 5 prompts us that it is a
pair of instantons which is important.

The TA pair is only an approximate saddle point.
There is an attraction potential that is very shallow
when they are far apart. As usual, approximate sad-
dle points require a regularization. One of regulariza-
tions, which is very helpful at least for qualitative pur-
poses, is to consider the TA pair at a finite (rather than
zero) energy E, along the lines described, e.g., in [5],
Secs. 23.2 and 23.3. Then the imaginary part of the
TA contribution reduces to exp(—2S;,s:) with a known
pre-exponential, and cancels the imaginary part in (19).
The real part of the IA contribution is proportional to
wTi ~ log(Sinst) (W/E), where T, is the critical TA
separation and the value of E relevant to the problem
is E ~ w. Thus, the real part of the IA contribution
reduces to 10g Sinst exp(—2Sinst) times a known power
of Sinst in the pre-exponential. For a more careful cal-
culation, see [7-9].

2Binst
2

(AEU)Borel =*mi (_
g

2Binst
g2
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If we write the ground-state energy in the form

/da g 2 exp (
0

+ (Sinst )p(log Sinst) eXp(_QSinst)a

&

2

Ey, = jz)f(a)-l-

(20)

where P stands for the principal value of the inte-
gral, this expression is well defined and, being ex-
panded, generates the perturbative series in its en-
tirety?). Strictly speaking, the second line is oversim-
plified, since the pre-exponential in the second line is
also represented by an infinite ¢2 series with factorially
divergent coefficients. To amend this series, we have to
include a 2I-2A contribution, and so on. We refer to
this formula as the minimal Borel procedure (MBP).
The MBP formula contains all information one can
squeeze from perturbation theory. It still lacks some-
thing. In order to understand what this something is,
we make a digression.

As is well known, perturbation theory (PT) de-
scribes fluctuations of a quantal system around clas-
sical minima of the potential. In the case at hand, we
have two degenerate minima reflecting a Z symmetry
of the potential. We choose one of them for the “un-
perturbed” Hamiltonian, for instance,

w2

+ E(x—x*)? (21)
All cubic and quartic terms from the expansion of po-
tential (13) are referred to H;,;. The perturbation the-
ory in H;,; is well defined in any order.

The Hamiltonian Hy does not know about the sec-
ond vacuum, but high-order corrections reflect the ex-
istence of the second vacuum indirectly, through the
factorial divergence of the PT series. The perturba-
tion theory in Hj,: requires only the knowledge of the
unperturbed eigenfunctions and eigenvalues (i. e., those
of harmonic oscillator (21)). The eigenfunctions of Hy
should be square normalizable, and no other require-
ments are imposed.

Next, we define the sum of the factorially divergent
series as MBP plus TA. Using this procedure, we would
conclude that the system has two degenerate ground
states: the Zs restoration in the vacuum is still absent.

This fact — restoration of Z5 — does not ensue
with necessity from the amended PT series. It presents
an additional information on the global vacuum struc-
ture: a Z order parameter drastically changes com-
pared to its PT value, and the degeneracy of the ground

4) Equation (20) is to be compared with the general trans-series
formula (1).
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state is lifted accordingly. This effect is proportional
to exp(—Sinst), as opposed to exp(—2S;,s) reflect-
ing the corresponding singularity in the Borel plane at
2Binst5)-

Conceptually, this is similar to chiral symmetry
breaking in the chiral limit in QCD. No matter what
we do with the PT, we do not see any splitting be-
tween the axial and vector quark two-point functions.
We have to infer the global vacuum structure of QCD
from other sources.

4. ASYMPTOTICALLY FREE FIELD
THEORIES

We arrived at a point where it would be natural to
pass from quantum mechanics to asymptotically free
field theories. Up to a certain point, we can proceed
along the lines outlined in Sec. 3. There are two cases
when we can go all the way up to complete resurgence:
(a) if a given field theory is exactly solvable (in which
case this is a triviality), or (b) if it is weakly coupled
(perhaps, after a certain deformation) and hence can
be treated semiclassically. In the latter case, compli-
cations that arise are of a technical nature. Today, we
are aware of quite a few examples of this type that have
been identified and studied in the past.

However, the most interesting theories are QCD and
its relatives. They are special because QCD is the the-
ory of Nature, describing the quark—gluon dynamics.
They are strongly coupled in the infrared (IR) domain,
where it is impossible to treat them semiclassically: the
perturbation theory fails even qualitatively. It does not
capture the drastic rearrangement, of the vacuum struc-
ture related to confinement.

I would like to discuss the following question: how
far can we go in the resurgence program in these theo-
ries? We see in what follows that a certain procedure
suggested in the late 1960s [10] and implemented in
QCD in the 1970s [11] allows advancing rather far, al-
though, unfortunately, not to the very end. This is as
good as it gets ...

The Lagrangian of QCD has the form (in the chiral
limit)

1 —.
L= —qmCuG™ £ s, (@)

5) The instanton can leak to another minimum and then an
anti-instanton would return the system to the original minimum.
That is the origin of the exp(—2S;,s¢) factor. The splitting be-
tween the ground state and the first excitation is due to a single
instanton that connects two “prevacua”’. This effect is propor-
tional to exp(—Sinst)-
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where the sum ranges over the massless quark flavors,
and 9 is the quark field in the fundamental represen-
tation of SU(N). In actual world, N = 3, but in theo-
retical laboratory we are free to consider any value of
N. If we drop the quark term, we are left with the G7,
gluon term. This is a pure Yang-Mills theory. More-
over, g2 in front of the gluon term is the asymptotically
free gauge coupling.

As we know, this is a strongly coupled theory. The
Lagrangian is defined at short distances in terms of glu-
ons and quarks, while at large distances of the order of
2 AéICD, we deal with hadrons, e.g., pions and pro-
tons. Certainly, the latter are connected with quarks
and gluons in a divine way, but this connection is highly
nonlinear, nonlocal, and is not amenable to analytic
description at the moment. Moreover, the very exis-
tence of massless pions and massive protons is due to
a dramatic restructuring of the QCD vacuum reflect-
ing spontaneous breaking of the chiral symmetry. This
phenomenon is only possible at a very strong coupling.
Perhaps, in the future, string theory will be able to
provide an adequate description, but as they say, “the
future is not ours to see ... ”.

Another (a much simpler) example is the two-
dimensional CP(N — 1) model with a varying degree
of supersymmetry (or no supersymmetry at all). The
Lagrangian of the model is

N—-1
L= Gi;0,6" "¢ + fermions, (23)

i,j=1

2 (05  tig
Gr=—= 2 22
J 92<X 2

N—1
x=1+) o' "™,
m

where

and g2 is the asymptotically free coupling constant. In
the large-V limit, this model is exactly solvable [12-14].
To the leading order in 1/N, the solution is known, but
cannot be expressed in terms of (1) because instantons
are irrelevant at strong coupling. Since the solution is
known, we can still represent it in the form of a generic
trans-series. In the first subleading 1/N correction, we
return to a generic contrived situation, to be discussed
below, similar to that in QCD.

A common feature of both theories above as well as
many others from this class is the fact that the coupling
constant is not a bona fide constant; it runs. In more
detail,

5 ZKOT®, Beim. 3

2 Binst
=", 25
7= GogQ/n) >
where
82, CD,
Binst: " Q
4w, CP(N —1),
26
EN7 YM, (26)
Bo=2 3

N, CP(N-1),

and @) is an appropriate momentum scale (assuming
@ > A). Here, (3 is the first coefficient of the f func-
tion. In the upper line on the right, it is given for a
pure Yang—Mills theory. When characteristic values of
@ become close to A, the running constant is unde-
fined and all calculations in terms of gluons and quarks
become meaningless.

As wee see, the genuine parameter of QCD is not
the dimensionless g2, but rather the dynamical QCD
scale A invisible in the classical Lagrangian. That is the
phenomenon of dimensional transmutation inherent to
all strongly coupled asymptotically free field theories.
The series in g> becomes the series in 1/log(Q)/A, ex-
ponential terms exp(—c/g*(Q)) reduce to powers

A CB()/87I’2
()

while terms exponential in @, ~ exp(—c@/A), which
also appear in QCD and similar theories in the g2 per-
turbation theory, have to emerge from

exp(—cexp(¢/9°(Q))).

Complete failure of quark—gluon calculations at
@ ~ A blocks the program of “analytic” resurgence in
terms of trans-series in QCD. However, some kind of
resurgence is possible, known as the operator product
expansion. Now we proceed to a more systematic (al-
beit brief) discussion of OPE.

5. OPE VERSUS TRANS-SERIES

Instead of a general introduction to Wilson’s op-
erator product expansion (which would require a lot
of time®)), we briefly discuss OPE from a somewhat
nonstandard standpoint: following the logic of Sec. 3.
devoted to resurgence in quantum mechanics.

6) For a review of OPE in QCD, see [15].
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a b
0(a?) O(at)

Fig.6. The leading and the next-to-leading terms in the expansion of the Adler function. The external current j, injecting
a quark—antiquark pair in the vacuum (and then annihilating it) is denoted by wavy lines

We start our discussion from the two-point function

Wle) =i [ d'ae o (T [ju()5(0)])

= (quav — gu) TH(Q?), (27)

where j, = 1/_1%10 is the quark current, and we set

such that Q2 is positive in the Euclidean domain. We
limit ourselves to large values of the Euclidean momen-
tum, ) > A, such that the perturbation theory can be
used. In fact, instead of II(Q?), for technical reasons it
is convenient analyze the so-called Adler function de-
fined as

dIL(Q?)

dQ?
The first two terms in the expansion of the Adler func-

tion are defined by the diagrams in Fig. 6, with the
coupling constant

D(Q?) = —4r> Q* (29)

! (30)

g2
.
Given the external momentum ) flowing through the
wavy line, it is easy to see that it is the running cou-
pling a(Q) that enters Fig. 6b. Indeed, the momentum
flowing through the gluon line in Fig. 6b is k ~ Q.

Moving to higher orders in «, we find more and
more complicated multiloop graphs. Among them, a
special role belongs to the bubble-chain diagrams, de-
picted in Fig. 7. These graphs (referred to as renor-
malons) were extensively studied in the late 1970s [16]
(for reviews, see [17, 18]).

When we say bubble chains, we should be care-
ful. Generally speaking, the very definition of a bubble
chain in the form of Fig. 7 is not quite accurate. The
appropriate renormalon graphs cannot be isolated in
the form of a bubble chain because in this form they
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are not even gauge invariant. An honest-to-god renor-
malon calculation is quite contrived.

There is a useful trick, however. We add Ny flavors
to the theory, where Ny is treated as a free parame-
ter. Then, instead of the full calculation of the genuine
“bubble chain”, with gluon degrees of freedom in the
bubbles, we calculate only the matter bubbles (which
are gauge invariant in the chain of Fig. 7), and then
replace

gl = _§Nf - Bo, (31)
where [y is the first coefficient in the 3 function that in-
cludes everything: gluons (plus ghosts in the covariant
gauges) and matter fields”.

It is easy to see that the renormalon contribution
to the D function is sign-nonalternating and factorially
divergent in higher orders, AD eporm ~ nla™ (n > 1).
If n is large, the estimate k& ~ @ is no longer valid. Both
observations — the absence of sign alteration and fac-
torial divergence — become obvious after a closer look
at Fig. 6b before integrating over k. The exact result
for a fixed k*> was found by Neubert [19]. For illustra-
tive purposes, it is sufficient to use a simplified inter-
polating expression [20] collecting all bubble insertions
in the gluon propagator: no bubbles, one bubble, two
bubbles, and so on,

D=(C x Q2/dk2 (k2as(k2)

which coincides with the exact expression [19] in the

limits k2 < Q% and k% > Q2, up to minor irrelevant

details. The coefficient C'in Eq. (32) is a numerical con-

stant and a(k?) is the running gauge coupling, which

can be represented as

a(Q?)

Boa(Q%) .

In(Q*/?)

1200\ J
4

a(k?) =

(33)

7) We note that Bg and f¢ have opposite signs.
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Fig.7. The bubble-chain diagrams representing renor-
malons. Solid lines denote quark propagators, while
dashed lines are for gluons

[a]

UVren 0 IRren IA 2 x (IA)

_4r 8m 4T 8T
Bo Bo

Fig.8. The Borel plane for the Adler function in QCD.

The singularity to the left of the origin is due to an ul-

traviolet renormalon, which does not concern us here.

The nearest singularity to the right of the origin is due

to the IR renormalon shown in Fig. 7. The IA singular-
ities lie much farther to the right

We focus on the infrared domain.
overall constant C', we obtain

B 1 00 Boax n
D(Q2) = @QT;) (E) X
2 n
y /dk2k2 (mﬁ) L aza(0d), (34)

which can be rewritten as

=5 5 (32) fanrer

n=0

Omitting the

2 (35)

Q
The y integration in Eq. (35) represents all bubble-
chain diagrams after integration over the loop momen-
tum k. The y integral from zero to infinity is n!. A
characteristic value of k2 saturating the integral is

y~n or k¥ ~ Q% exp (—%) . (36)

Thus, we observe a factorial divergence of the coef-
ficients. The corresponding singularity in the Borel
plane is depicted in Fig. 8.

If Q2 is fixed and n is sufficiently large, n > n,,
where

2

n. =2In ek (37)

then the factorial divergence of the coefficients in (35) is
purely formal and cannot be trusted. At small k% < A2
the diagrams in Figs. 60 and 7 (in fact, any Feynman
diagrams) cease to properly represent non-Abelian dy-
namics due to the strong coupling in the IR. Equa-
tion (36) shows that if n > n., the characteristic val-
ues of k% saturating the integral do fall off below AZ.
The point n = n, represents the optimal truncation
point: at this point, the terms of the asymptotic se-
ries are minimal. Formally, if we discard the domain
k? < A2, at n > n, the factorial growth is suppressed
(see Fig. 10), and the series must be truncated:

2 Qs — Bocrs "
D(@Q*) = = > (87> n! (38)
n=0

At this point, the road we have to take in QCD and
similar strongly coupled theories diverges from that in
quantum mechanics. In the latter, the validity of the
semiclassical approximation combined with the clear-
cut picture of the vacuum structure allows achieving
full resurgence. In field theories, the vacuum struc-
ture is determined by infrared dynamics, the theory of
which is still lacking, and semiclassical approximations
are bound to fail. What can we do under the circum-

stances?

6. OPERATOR PRODUCT EXPANSION

I remember that after the first seminar on the SVZ
sum rules [11] in 1978, Eugene Bogomol'nyi used to
ask me each time we met: “Look, how can you speak
of power corrections in the two-point functions at large
Q? when even the perturbative expansion (i.e., the ex-
pansion in 1/1n(Q?/A?)) is not well defined? Isn’t it
inconsistent”?

Now, with the discussion of Sec. 5 in mind, T am
able to answer the above Bogomol'nyi question in a
positive way, namely:

Consistent use of Wilson’s OPE makes everything
well-defined at the conceptual level. Technical imple-
mentation may not always be straightforward, how-
ever. Moreover, the resulting OPE formula contains
unknown vacuum condensates in the form of power
corrections. In turn, their summation presents an un-
solved problem.

The operator product expansion in asymptoti-
cally free theories is a book-keeping device separat-
ing short-distance (weak-coupling) contributions from
those coming from large distances (strong-coupling do-
main). To this end, we introduce an auxiliary param-
eter i, a separation scale between large and short dis-

5*
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tances. The latter contribution resides in the OPE co-
efficient functions C;(Q, ), while the former contribu-
tion is encoded in the matrix elements of the corre-
sponding operators O;(u, A),

D(Q,A) = Z@(Q,u) (0i(p, A)) . (39)

i=0

Generally speaking, OPE is applicable whenever we
deal with problems that can be formulated in Euclidean
space-time and in which we can regulate typical Eu-
clidean distances by a varying large external momen-
tum . Factorization (39) is technically meaningful
(i.e., allows carrying out constructive calculations of
C;(Q, p)) if we can choose

< Q, but pu>A. (40)

Then the coefficients C;(Q, 1) can be found semiclassi-
cally, even though they by no means reduce to the PT.
The matrix elements (O;(u, A)) cannot be determined
semiclassically. As a book-keeping device, OPE cannot
fail [11], as long as no arithmetic mistake is made en
route.

A remarkable observation was made in the 1990s.
Perturbative analysis (e.g., that of renormalons)
prompts us that certain nonperturbative condensates
must be present in QCD. Moreover, we can even
determine their dimension from the the position of
singularities in the Borel plane. Unfortunately, by far
not all condensates are visible in the analysis of PT
high orders. For instance, all condensates related to
the spontaneous breaking of chiral symmetry leave no
trace in any order of the perturbation theory, nor in
its divergence.

The values of condensates that are visible in the
PT divergence are not determined by the PT analysis
either®).

7. OPE AND RENORMALONS IN QCD

After this brief digression, we return to Adler func-
tion (27) at large Euclidean ¢?, where OPE can be con-
sistently built through separation of large- and short-
distance contributions.

For simplicity, taking into account that my pur-
pose today is illustrative, I ignore the second inequality

8) Prevalent in the 1970s and early 1980s was a misconception
that the OPE coefficients are determined exclusively by perturba-
tion theory, while the matrix elements of the operators involved
are purely nonperturbative. Attempts to separate perturbation
theory from “purely nonperturbative” condensates gave rise to
inconsistencies (see, e.g., [21]).
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in (40) and set the separation scale at p = A rather
than at > A. This would be inappropriate in quanti-
tative analyses; however, my task is to explain a quali-
tative situation. Being auxiliary, the parameter u even-
tually cancels from the master formula (42) anyway (see
below).

We take a closer look at Egs. (32) and (33). The
unlimited factorial divergence in (35) is a direct con-
sequence of the integration over k? in (34) all the way
down to k? = 0. Not only is this nonsensical because of
the pole in (33) at k> = A?; this is not what we should
do in calculating coefficient functions in OPE. The co-
efficients must include k2 > A% by construction. The
domain of small k? (below A2?) must be excluded from
co and referred to the vacuum matrix element of the
gluon operator G’fw. Indeed, in the sum in Eq. (35),
all terms with n > n, can be written as (see Figs. 9
and 10)

where we used the fact that

Boa(Q?) 1 _
8t 2In(Q?/A?)

Of course, we cannot calculate the gluon condensate
from the above expression for the tail of the series (35)
representing the large-distance contribution, for a num-
ber of reasons. In particular, the value of the coefficient
in front of A*/Q* remains uncertain in (41) because Eq.
(33) is no longer valid at such momenta.

We do not expect the gluon Green’s functions used
in calculation in Fig. 7 and in Eq. (33) to retain any
meaning in the strong-coupling nonperturbative do-
main. A qualitative feature — the power dependence
(A/Q)* in (41) — is correct, however.

We note with satisfaction that the fourth power of
the parameter A/Q, which we find from this tail, ex-
actly matches the OPE contribution of the operator
(G2,) (see [11]).

Summarizing, we see that the consistent use of OPE
cures the problem of the renormalon-related factorial
divergence of coefficients in the a series, absorbing the
IR tail of the series in the vacuum expectation value of
the gluon operator Gi,j and similar higher-order opera-
tors. Although the value of (G},,) cannot be calculated
from renormalons, the very fact of its existence can be
established.

Ny
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Fig.9. The plot of the integrand in Eq. (34) for two

values of n, “small” and “large”. A sharp peak at y ~n
saturates the integral. In the left plot, n < n. =
= 2In(Q?*/A?) and the forbidden domain k* ~ A?
does not contribute to the factorial factor. In the right
plot, n > n.. The y integration has to be cut off at

y = n., which kills the factorial growth

cala(@)]"

Fig.10. The PT expansion for the Adler function is

asymptotic. We can trust it only up to a point of op-

timal truncation. A “tail” beyond this point tells us of

the existence of an operator of dimension 2k represent-

ing this tail not accessible by PT calculation. (In the
case at hand, k = 2)

8. SOURCES OF FACTORIALS AND THE
MASTER FORMULA

From quantum mechanics, we learned that the fac-
torial divergence can arise from instantons. In QCD,
the instantons are ill-defined in the IR and, strictly
speaking, nobody knows what to do with them?. If

9) This statement is a slight exaggeration. We refer to [22] for
an alternative point of view on instantons in the QCD vacuum.
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we consider QCD in the 't Hooft limit of a large num-
ber of colors, instantons decouple. The corresponding
singularity in the Borel plane (see Fig. 8) moves to the
right infinity. At the same time, none of the essen-
tial features of QCD disappears in the 't Hooft limit.
Therefore, in our simplified consideration, we can forget
about instantons. Perhaps, they will be needed later.

If so, we can write a single (simplified) “master” for-
mula for QCD and similar theories. At large Euclidean
momenta, the correlation functions of type (27) can be
represented as

Z( @2/A2>>n+

+ZC“’< @2/A2>>n(%>d1+
oS (irgim) (3

do
a) +...

+ “exponential terms”. (42)
Equation (42) is simplified in a number of ways. First,
it is assumed that the currents in the left-hand side
have no anomalous dimensions, and so do the opera-
tors appearing in the right-hand side. They are as-
sumed to have only normal dimensions given by d; for
the ith operator. Second, we ignore the second and
all higher coefficients in the g function, and hence the
running coupling is represented by a pure logarithm.
All these assumptions are not realistic in QCD'?). We
stick to them to make the master formula more concise.
Inclusion of higher orders in the g function and anoma-
lous dimensions in both the left- and right-hand sides
would give rise to rather contrived additional terms and
factors containing loglog’s, logloglog’s (loglog /log)’s,
etc.!V). This is a purely technical, rather than concep-
tual, complication, however.

So far, we discussed the divergence/convergence of
the perturbative series explaining that the regulating
parameter p in OPE allows making the PT mean-
ingful'®. Expansion (42) runs not only in powers of
1/1nQ? but also in powers of A/Q. This is a double
expansion, and the power series in A/@ is also infinite
in its turn. Does it have a finite radius of convergence?

10) They could be made somewhat more realistic in N/ = 2
super-Yang—Mills theories.

1) Multiple logarithms are elements of the trans-series analysis
too, see [1].

12) Factorial divergence of PT series due to a factorially large
number of Feynman graphs with many loops is suppressed in the
’t Hooft limit.
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Needless to say, this is an important question. The
answer to it is negative. Twenty years ago I argued
in [23] (see also [15]) that the power series in (42) are
factorially divergent in high orders. This is a rather
straightforward observation following from the analytic
structure of D(Q?). In a nutshell, because the Q? sin-
gularities in D(Q?) run all the way to infinity along the
positive real semi-axis of ¢2, the 1/Q? expansion cannot
be convergent. The last line in Eq. (42) symbolically
represents a divergent tail of the power series.

9. SUPERSYMMETRIC YANG-MILLS
THEORY

Factorial divergence of the perturbative series in su-
persymmetric theories was only scarcely discussed in
the past [24-26]. Meanwhile, this is an interesting ques-
tion because renormalons in supersymmetric theories
have peculiarities related to peculiarities of the oper-
ator product expansion in supersymmetric Yang—Mills
theory.

As we already know, the renormalons are in a one-
to-one correspondence with particular gluon operators
in OPE. There is a one-to-one correspondence between
the given bubble-chain graph and an appropriate oper-
ator in OPE (see, e. g., [18]).

The SYM Lagrangian is

L= —LG“ GY, + LX“&“D A® (43)
4g2 v T gD po
The only difference with the QCD Lagrangian in (22)
is in the fermion sector: the fundamental quarks are
replaced by a Majorana spinor in the adjoint represen-
tation of the gauge group.

Supersymmetry of the model implies that an infi-
nite class of gluonic operators cannot have nonvanish-
ing vacuum expectation values (VEVs). This fact tells
us that the conventional renormalon analysis must be
modified. Below, we discuss a modification needed, but

first see why gluonic operator VEVs must vanish in the
SYM theory, in contradistinction to QCD.

9.1. Why gluon operators have vanishing
VEVs in SYM?

The operator G%,G%,, + iX*5" D, \* is the highest
component of TrW?2, where

Wo =i (Mg +iba D — 0°Gop — i6° Das ) . (44)
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Supersymmetry allows only the lowest components of
super fields to develop a nonvanishing VEV. In a pure
SYM theory, without matter, D = 0, and therefore

GaB ~ D{ﬁWa} +..., (45)

where the braces denote symmetrization, Dg is the
spinorial derivative, and the ellipses stand for higher
components irrelevant for our purposes.

Gluonic operators in the pure SYM theory must
contain at least two G factors; in other words, their
generic form is

OgO(G...GOCD{BWQ}...D{BW&}. (46)

The ellipses above represent any number of covariant
derivatives and extra W factors under the condition
that the overall number of the W factors be even. Tak-
ing Tr (which singles out color-singlet parts) is implied
but not explicitly indicated.

The right-hand side in (46) can be identically
rewritten as

DisWay - DygWay = Dgs (Way - DysWay ) +
+ W, (DB . ..D{BW&}) . (A7)

The first term is a full superderivative and, as such,
can have no nontrivial VEV. The lowest component
of the second term, at the very least, contains A and
Doa N\ (the last factor vanishes due to the equation of
motion). Thus, the lowest-dimensional operator that
could in principle appear in OPE is a two-\ operator.
However, this cannot appear too because if we calculate
the OPE coefficients perturbatively (and renormalons
are perturbative objects), then two-\ operators have
a wrong R parity, while A\ operators can have the
Lorentz spin zero only in the combination
Tr Ao Das GTPN, (48)
which reduces to a four-fermion operator by virtue of
the equation of motion. Thus, in a pure SYM, the OPE
in fact starts from four-gluino operators of dimension
6 and the four-lambda operators with possible addi-
tional insertions of covariant derivatives and G or A\
or A\ factors, which have dimensions higher than 6. No
purely gluonic operator can have a nonvanishing VEV
in SYM.
The above argument based on R parity is applicable
to the two-point functions of the type

z/ d*z e (O(z), 07(0)),
O =Tr g\, or TrA%\,.

(49)



MWITD, Tom 147, BBm. 3, 2015

Resurgence, operator product expansion ...

Since the IR renormalons are in a one-to-one cor-
respondence with OPE, we conclude that the bubble
chain in Fig. 7, which normally is responsible for the
non-Borel-summable divergence of higher orders (clos-
est to the origin in the Borel plane) must be canceled
by something else.

We note, however, that an easy way of identifying
the “bubble chains” in QCD was through matter loops
with the subsequent extraction of the Ny factor plus
substitution (31). This trick does not work in SYM
(see (43)). We are forced to introduce matter fields.

9.2. Matter loops in SYM

To identify the renormalon bubble chain through
matter loops, we should expand supersymmetric gluo-
dynamics (43) to include Ny matter fields in the fun-
damental representation of SU(N),

1 a a i ya = a
E = —@GMVGMV + g—ZA U“D”A +
+ > (DG Dugy +i%, 5 Duvys) +
f

+ [-RedusHVE (X T G+ V(). (50)

where

2
2
g — ma p
Vi) =5 | 25T | + D ImPlgl”. (51)
7 7

Here, ¢ and 1 are the respective squark and quark
fields. The mass terms in (50) and (51) are irrelevant
and can be safely omitted').

In addition to the bubbles depicted in Fig. 7, bubble
chains now develop elsewhere, as in Fig. 11.

Unlike the familiar QCD example (Fig. 7), the mat-
ter bubbles in the SYM theory appear even in the dia-
grams without gluon insertions, such as the graph de-
picted in Fig. 12. Each bubble produces N;g*logp?,
where p is the momentum flowing through the gluino
line. However, this particular diagram would corre-
spond to the operator

NaiDY Ay, (52)
which reduces via the equation of motion to another
dimension-4 operator,

>0 (Nvi),
f

13) We should remember that each flavor is represented by two
squarks and two Weyl quarks, one in the fundamental and an-
other in the antifundamental representation of SU(N).
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Fig.11. Elementary bubble insertion in the gluino

line

Fig.12. Additional bubble diagrams in SYM, with mat-
ter insertions in the gluino line. Ny matter bubbles
produce the Ny factor

which has no analog in QCD. We note that in SYM
with matter, chiral symmetry is broken a priori, and is
replaced by R symmetry of the U(1) type. In addition,
there is an anomalous part in the equation of motion to
be used in Eq. (52), which produces the operator G,,,,%.

Calculating the elementary bubble insertion in the
gluino line is straightforward. It is determined by the
graph in Fig. 11. In fact, there is no need for an explicit
calculation of this diagram. It represents the Z factor
of the gluino field. However, supersymmetry guaran-
tees that the renormalization of the gluon and gluino
fields are identical.

If we start from Lagrangian (50) normalized at a
momentum scale @ (then the corresponding coupling
is ¢2(Q)) and evolve it down to p, then the operator
(i/g*)A\?&* D, A in the Lagrangian evolves as
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i i
9*(Q) 9%(p)
The corresponding Z factor can be easily read off, for
instance, by proceeding to the canonically normalized
gluino kinetic term. In this way, we find

XGH DA — Xegt DA (53)

2

-1 _ QZ(Q)
9%(p)

2
g Q
=1— (3N — N¢)log = 4
ECAERLE )
where the matter bubble produces only the Ny part,
of course. In other words, the (truncated) diagram in

Fig. 11 produces

2

Q2
p_2.

Nyg
47

(Pur") log (55)

In summary, we see that the standard method of
the renormalon analysis, which works well in QCD, is
not so straightforward in supersymmetric gluodynam-
ics (i.e., gluons plus gluinos) because the introduction
of matter dramatically changes the OPE operator ba-
sis. In pure YM and in QCD with massless quarks, it is
one and the same dimension-4 operator that acquires a
VEV and is responsible for the leading renormalon sin-
gularity. This is in sharp contradistinction with what
happens in SYM.

9.3. Renormalons, OPE, and diagrams in SYM

We elucidate the last statement. The role of the IR
renormalon bubble chain in a given diagram is to make
the line to which bubbles are attached soft [17, 18]. At
a critical value of n, the integration momentum flow-
ing through the bubble line becomes of the order of
A. Hence, in the framework of OPE, this line must
be “cut” and becomes a part of the operator with a
VEV, which then represents the tail of the renormalon.
For instance, if we consider the graph in Fig. 7, the
solid lines carry a large momentum, while the dashed
one is soft. Correspondingly, this bubble chain is in
a one-to-one correspondence with the operators G2,
GD?G — G2, and so on. In Fig. 12, the upper part
of the graph is soft, while the lower part is hard. One
of the operators corresponding to this bubble chain is
Tr)\aDaéj\ﬁ. Four-gluino operators are obtained from
the chains depicted in Fig. 13. In this graph, we should
“cut” the gluino lines with bubble insertions. A large
external momentum is passed through the graph, via
lines without bubbles.

The problem of interpretation arises only with the
bubble chains attached to the gluon lines, because the
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Lines with bubbles are soft. Those without

bubbles are hard

Fig. 13.

corresponding operators that should conspire with the
tail of such renormalons can have no VEVs. Based on
arguments that are not discussed here, I am inclined
to conjecture that the renormalon depicted in Fig. 7 is
canceled by the renormalon depicted in Fig. 12. If the
numerical coefficient ¢ is right, the operator that these
two graphs (combined together) give in OPE is

1
—_—q°

G (56)

a ic \a = a
Gl + 9—2/\ "D, N — 0.
This question should be explored further, however,
see [27].

10. CONCLUSIONS

1. Resurgence in the sense it is carried out in quan-
tum mechanics, encounters conceptual difficulties in
strongly coupled Yang-Mills theories.

2. The best we can do is to use Wilson’s operator
product expansion adapted to QCD, which has concep-
tual similarities with the resurgence program.

3. In SYM theories, there are additional technical
problems with renormalons, not addressed in the past,
which are not yet fully solved.

Useful discussion with A. Cherman, G. Dunne,
M. Unsal, and A. Vainshtein are gratefully acknowl-
edged. This work is supported in part by the DOE
grant DE-SC0011842.
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