# ЛЕПТОГЕНЕЗИС В СИММЕТРИЧНОЙ ФАЗЕ РАННЕЙ ВСЕЛЕННОЙ: БАРИОННАЯ АСИММЕТРИЯ И ЭВОЛЮЦИЯ ГИПЕРМАГНИТНОЙ СПИРАЛЬНОСТИ

В. Б. Семикоз<sup>а</sup><sup>\*</sup>, А. Ю. Смирнов<sup>а,b</sup>

<sup>а</sup> Институт земного магнетизма, ионосферы и распространения радиоволн Российской академии наук (ИЗМИРАН) им. Н. В. Пушкова 142190, Троицк, Москва, Россия

<sup>b</sup> Национальный исследовательский технологический университет «МИСиС» 119991, Москва, Россия

Поступила в редакцию 15 июля 2014 г.

Исследуется эволюция барионной асимметрии Вселенной (БАВ) в симметричной фазе до электрослабого фазового перехода (ЭФП), индуцированная лептогенезисом в гипермагнитном поле произвольной структуры и с максимальной плотностью гипермагнитной спиральности. Новизна работы заключается в том, что вычислена БАВ для непрерывного спектра гипермагнитной спиральности. Наблюдаемое значение БАВ  $B_{obs} = 10^{-10}$ , которое может получаться в крупно-масштабных гипермагнитных полях, удовлетворяющих неравенству волновых чисел  $k \leq k_{max}$ , растет с увеличением  $k_{max}$ . Мы покажем также, что используемый в нашей модели лептогенезиса свободный параметр начального значения асимметрии правых электронов  $\xi_{eR}(\eta_0)$  не может принимать слишком больших значений  $\xi_{eR}(\eta_0) = 10^{-4}$ , поскольку это приводит к отрицательной БАВ к моменту ЭФП. Напротив, достаточно малое начальное значение асимметрии правых электронов на уровне  $\xi_{eR}(\eta_0) = 10^{-10}$  обеспечивает ее дальнейший рост, и соответствующий рост БАВ от нуля до некоторой положительной величины, включая наблюдаемое  $B_{obs} = 10^{-10}$ .

**DOI**: 10.7868/S0044451015020066

#### 1. ВВЕДЕНИЕ

Астрофизические магнитные поля влияют на распространение космических лучей, на звездную (солнечную) активность и т. д., в то время как их происхождение до сих пор представляет открытую проблему в астрофизике и космологии [1–3]. Уравнения Максвелла линейны относительно полей **E**, **B**, поэтому должно быть некоторое затравочное (магнитное) поле, необходимое для включения динамо, ведущего к усилению напряженностей до величин наблюдаемых галактических магнитных полей,  $B_{gal} \sim 10^{-6}$  Гс. Есть две возможности поиска такой затравки в галактике: а) астрофизическая, например, в сценариях, учитывающих взрывы сверхновых с выбросом в межгалактическое пространство магнитогидродинамической (МГД) плазмы с вморо-

женным магнитным полем, б) космологический сценарий, предусматривающий наличие затравочных полей (и рассматривающий их эволюцию) на протяжении радиационно-доминированной и пылевидной стадий ранней Вселенной. Мы опираемся в настоящей работе на второй сценарий (б). Верхний предел на космологическое магнитное поле (КМГ),  $B < 10^{-10} - 10^{-9}$  Гс, известен давно, например, из наблюдений фарадеевской меры вращения плоскости поляризации излучения в радиодиапазоне [4]. Первые признаки присутствия КМГ в межгалактической среде, которые могут выжить вплоть до нынешней эпохи, связаны с предсказанием нижнего предела амплитуд КМГ,  $B_{CMF} > 10^{-16} - 10^{-14}$  Гс, следующего из спутниковых наблюдений фотонов высоких энергий (из эксперимента Ферми, в частности) [5, 6], что является новым подтверждением концепции КМГ, используемой здесь.

В данной работе нас будет интересовать фундаментальная проблема генерации барионной асим-

<sup>&</sup>lt;sup>\*</sup>E-mail: semikoz@yandex.ru

метрии в первичном КМГ, существующем до электрослабого фазового перехода (ЭФП) в ранней Вселенной. Для выяснения природы этого поля заметим, что максвелловское поле  $A_{\mu}$  — это след абелева  $U(1)_Y$  гиперзарядового поля  $Y_{\mu}$ . Последнее существует в исходной плазме до ЭФП в качестве единственного безмассового (дальнодействующего) калибровочного поля, в отличие от неабелевых составляющих  $W^3_{\mu}$ , обладающих «магнитной» массовой щелью в плазме порядка  $g^2T$ , т. е. исчезающих на больших масштабах. Оба поля входят в каноническое соотношение  $A_{\mu} = \cos \theta_W Y_{\mu} + \sin \theta_W W_{\mu}^3$ , где  $\sin^2 \theta_W \approx 0.23$  — параметр Вайнберга в стандартной модели (СМ). Это различие в пространственных масштабах объясняет, почему для безмассового фотона следует использовать граничное условие  $A_{\mu} = \cos \theta_W Y_{\mu}$  в момент ЭФП  $t = t_{EW}$  у границы пузыря новой фазы<sup>1)</sup>.

Таким образом, гипермагнитное поле (ГМП)  $\mathbf{B}_Y = \nabla \times \mathbf{Y}$ , сформировавшееся до ЭФП и его плотность спиральности  $h_Y = \mathbf{Y} \cdot \mathbf{B}_Y$  оказываются важными источниками для таких характеристик максвелловского поля, как его начальное значение B, начальная длина корреляции  $\Lambda$ , начальная плотность магнитной спиральности  $h = \mathbf{A} \cdot \mathbf{B}$ . Есть другие важные проблемы, связанные с изменением плотности спиральности гипермагнитного поля  $dh_Y/dt = -2\mathbf{E}_Y \cdot \mathbf{B}_Y$ . На однопетлевом уровне  $dh_Y/dt$  пропорциональна нарушению фермионного числа  $\partial_{\mu} j^{\mu} \sim \mathbf{E}_Y \cdot \mathbf{B}_Y \neq 0$ , благодаря абелевой аномалии, или же фермионное число «сидит» в ГМП [7].

Проблема эволюции лептонной асимметрии через абелеву аномалию в спиральном гипермагнитном поле напрямую связана с ростом барионной асимметрии Вселенной (БАВ). Заметим, что сам процесс лептогенезиса в гипермагнитном поле уже исследовался в нашей недавней работе [8], и это исследование было сделано для произвольной конфигурации ГМП с максимальной плотностью спиральности. В предыдущих работах [9, 10] авторы также рассматривали эволюцию БАВ, опираясь на конкретные одномерные конфигурации гипермагнитного поля — черн-саймоновскую волну  $Y_0 = 0$ ,  $\mathbf{Y} = Y(t)(\sin k_0 z, \cos k_0 z, 0)$  с фиксированным волновым числом  $k_0 = \text{const}$  и максимальной плотностью спиральности. Таким образом, был проигнорирован обратный каскад, который необходим в случае более реалистичного непрерывного спектра спиральности в случае произвольной 3*D*-конфигурации ГМП.

Основной целью настоящей работы является полное описание роста БАВ в спиральном гипермагнитном поле для произвольной трехмерной конфигурации ГМП вплоть до момента ЭФП. В нашей модели при учете асимметрии левых лептонов в равновесной плазме мы вынуждены учитывать сфалеронные переходы вакуум-вакуум, что понижает число образующихся левых лептонов и соответственно БАВ благодаря закону сохранения глобального заряда  $B/3 - L_e = \text{const}$ , во внешнем гипермагнитном поле.

Наш сценарий заключается в следующем. Мы рассматриваем плазму горячей Вселенной до ЭФП на этапе  $T_{RL} > T > T_{EW}$ , когда левые лептоны  $L = (\nu_{eL}e_L)^T$  вступают в равновесие с исходными правыми электронами  $e_R$  за счет обратного хиггсовского распада  $e_R \bar{e}_L \rightarrow \varphi^{(0)}$ ,  $e_R \bar{\nu}_{eL} \rightarrow \varphi^{(-)2)}$ . Это происходит в процессе охлаждения Вселенной до температуры  $T_{RL} \sim 10$  ТэВ, когда скорость хиггсовских распадов  $\Gamma_{RL} \sim T$  становится больше, чем скорость хаболовского расширения Вселенной  $H \sim T^2$ ,  $\Gamma_{RL} \geq H$ .

В работе [12] было показано, что затравочное гипермагнитное поле приводит к появлению черн-саймоновского вклада в эффективный лагранжиан СМ поля  $Y_{\mu}$  за счет эффекта поляризации, который связан с ненулевым средним (макроскопическим) псевдовекторным лептонным током  $j_{i5} = \langle \bar{\psi} \gamma_i \gamma_5 \psi \rangle \sim B_i^Y \neq 0$ . Появление левых фермионов приводит к дополнительному поляризационному эффекту из-за макроскопических токов левых лептонов в затравочном гипермагнитном поле **В**<sub>Y</sub>,

$$\begin{split} J_{i5}^{(e)} &= \langle \bar{\psi}_{eL} \gamma_i \gamma_5 \psi_{eL} \rangle \sim \mu_{eL} B_i^Y, \\ J_{i5}^{(\nu)} &= \langle \bar{\nu}_{eL} \gamma_i \gamma_5 \nu_{eL} \rangle \sim \mu_{eL} B_i^Y, \end{split}$$

где для дублета  $L = (\nu_{eL} e_L)^T$  химический потенциал левых лептонов  $\mu_{eL}$  совпадает с химическим потенциалом левого нейтрино,  $\mu_{eL} = \mu_{\nu_{eL}}$ .

Учитывая эволюцию асимметрии левых лептонов  $(n_{eL} - n_{\bar{e}L}) \sim \mu_{eL}(t)$  благодаря абелевой аномалии при температурах  $T_{EW} < T < T_{RL}$ , а также с учетом взаимодействия левых фермионов со сфалеронами, мы расширяем также сценарий

Мы предполагаем здесь ЭФП первого рода, поддерживаемый сильным гиперматнитным полем.

<sup>&</sup>lt;sup>2)</sup> Следует заметить, что процесс распадов (обратных распадов) бозонов Хиггса не единственный канал реакций, приводящий к изменению киральности лептонов. Таковыми могут быть, например, процессы рассеяния, в частности,  $e_R$  на бозоне Хиггса  $e_R H \leftrightarrow L_e A$ , где A = Y или W — калибровочные поля [11]. Для нас важна оценка роли левых лептонов (электронов) в процессе бариогенезиса хотя бы на примере одного из каналов реакций. Один из авторов (В. С.) благодарит Киммо Кайнулайнена за комментарий на эту тему при обсуждении цикла предшествующих работ нашей группы.

[7, 13], основанный на лептогенезисе вследствие эволюции асимметрии одних правых электронов  $(n_{eR} - n_{\bar{e}R}) \sim \mu_{eR}(t) \neq 0$  в тех же гипермагнитных полях **B**<sub>Y</sub>  $\neq 0$ .

Ниже в разд. 2 мы получаем кинетическое уравнение для плотности спектра гипермагнитного поля в фурье-представлении с использованием конформных переменных. Такой спектр зависит от лептонных асимметрий, которые развиваются в самосогласованном гипермагнитном поле, как описано в разд. 2.2. Затем в главном разд. 3 мы вычисляем БАВ, используя закон сохранения (Хуфта)  $B/3 - L_e = \text{const}$  и численно решая самосогласованные нелинейные кинетические уравнения для лептонного числа L<sub>e</sub> и непрерывного спектра плотности спиральности  $h_Y$ . В разд. 4 мы обсуждаем наши результаты, сравнивая их с некоторыми предыдущими расчетами БАВ (для монохроматического спектра плотности спиральности) в том же сценарии лептогенезиса.

#### 2. ЛЕПТОГЕНЕЗИС В ГИПЕРМАГНИТНЫХ ПОЛЯХ

В стандартной модели  $U(1)_Y$  — абелевы аномалии, возникающие в гиперзарядовом поле  $Y_{\mu}$ :

$$\frac{\partial j_{R,L}^{\mu}}{\partial x^{\mu}} = \pm \frac{g'^2 Y_{R,L}^2}{64\pi^2} Y_{\mu\nu} \tilde{Y}^{\mu\nu}, \qquad (1)$$

нарушают закон сохранения соответствующих лептонных чисел.

Здесь  $Y_R = -2$ ,  $Y_L = -1$  — это гиперзаряды соответственно правых и левых лептонов,  $Y_{\mu\nu}$  и дуальная  $\tilde{Y}_{\mu\nu}$  — напряженности гиперзарядового поля,  $g' = e/\cos\theta_W$  — калибровочная константа связи в СМ. Верхний (нижний) знак в правой части (1) соответствует правым (левым) токам,  $j_R^{\mu} =$  $= \bar{\Psi}_R \gamma^{\mu} \Psi_R$  и  $j_L^{\mu} = \bar{\Psi}_L \gamma^{\mu} \Psi_L$ , где  $\Psi_R = (1 + \gamma_5) \Psi/2$  и  $\Psi_L = (1 - \gamma_5) \Psi/2$  — соответственно правое и левое биспинорные поля.

## 2.1. Гипермагнитная спиральность перед ЭФП

Если среда покоится как целое, то уравнение Фарадея, описывающее гипермагнитное поле  $\mathbf{B}_Y = \nabla \times \mathbf{Y}$ , имеет вид<sup>3)</sup>

$$\frac{\partial \mathbf{B}_Y}{\partial t} = \nabla \times \alpha_Y \mathbf{B}_Y + \eta_Y \nabla^2 \mathbf{B}_Y, \qquad (2)$$

где при температуре  $T_{RL} > T > T_{EW}$  коэффициент гипермагнитной спиральности  $\alpha_Y$  вычисляется из химических потенциалов левых и правых электронов  $\mu_{eR}$ ,  $\mu_{eL}$  [9, 10]:

$$\alpha_Y(T) = \frac{g'^2(\mu_{eR} + \mu_{eL}/2)}{4\pi^2 \sigma_{cond}},$$
(3)

а  $\eta_Y = (\sigma_{cond})^{-1}$  — коэффициент гипермагнитной диффузии,  $\sigma_{cond}(T) \approx 100T$  — электропроводность горячей плазмы. Подчеркнем, что  $\alpha_Y$ -эффект в уравнении Фарадея (2) возникает из-за добавления слагаемого Черн – Саймонса  $L_{CS} \sim \mathbf{Y} \cdot \mathbf{B}_Y$  в эффективный лагранжиан гиперзарядового поля, взаимодействующего с частицами в СМ-плазме, и обязанного поляризационному эффекту, индуцированному гипермагнитным полем [12]. Умножая уравнение (2) на соответствующий векторный потенциал и добавляя аналогичную конструкцию, полученную путем умножения эволюционного уравнения для векторного потенциала на поле, после интегрирования по пространству мы получим уравнение эволюции для гипермагнитной спиральности  $H_Y = \int d^3x \mathbf{Y} \cdot \mathbf{B}_Y$ :

$$\frac{dH_Y}{dt} = -2 \int_V (\mathbf{E}_Y \cdot \mathbf{B}_Y) d^3 x - - \oint [Y_0 \mathbf{B}_Y + \mathbf{E}_Y \times \mathbf{Y}] d^2 S = -2\eta_Y(t) \times \times \int d^3 x (\nabla \times \mathbf{B}_Y) \cdot \mathbf{B}_Y + 2\alpha_Y(t) \int d^3 x B_Y^2(t).$$
(4)

Для одной симметричной фазы до ЭФП мы опустили в последней строке (4) поверхностный интеграл  $\oint$  (...), так как гиперзарядовые поля обращаются в нуль в бесконечности. Однако такой поверхностный интеграл может быть важен на границе раздела различных фаз в процессе ЭФП,  $T \sim T_{EW}$ . В работе [14] авторы исследуют, как поток гипермагнитной спиральности проникает сквозь поверхность, разделяющую симметричную фазу и фазу с нарушенной симетрией, и как плотность гипермагнитной спиральности  $h_Y = \mathbf{B}_Y \cdot \mathbf{Y}$  преобразуется в плотность магнитной спиральности  $h = \mathbf{B} \cdot \mathbf{A}$  в момент ЭФП первого рода.

<sup>&</sup>lt;sup>3)</sup> Всюду в тексте мы пренебрегли изменением макроскопической скорости в плазме, описываемым уравнением Навье – Стокса, поскольку характерный масштаб изменения скорости  $\lambda_v$  намного меньше, чем длина корреляции ги-

пермагнитного поля  $\lambda_v \ll k^{-1}$ , другими словами, инфракрасные моды гипермагнитного поля практически не зависят от скорости плазмы. Кроме того, потоковая скорость **v** не дает вклада в эволюцию спиральности  $dh_Y/dt \sim (\mathbf{E}_Y \cdot \mathbf{B}_Y)$ , когда используется обобщенный закон Ома,  $\mathbf{E}_Y = -\mathbf{v} \times \mathbf{B}_Y + \eta_Y \nabla \times \mathbf{B}_Y - \alpha_Y \mathbf{B}_Y$ .

Перейдем от физических переменных к конформным, используя конформное время  $\eta = M_0/T$ ,  $M_0 = M_{Pl}/1.66\sqrt{g^*}$ , где  $M_{Pl} = 1.2 \cdot 10^{19}$  — планковская масса,  $g^* = 106.75$  — это эффективное число релятивистских степеней свободы.

В FRW-метрике  $ds^2 = a^2(\eta)(d\eta^2 - d\tilde{\mathbf{x}}^2)$  использовано определение  $a = T^{-1}$ ,  $a_0 = 1$  при температуре  $T_{now}$ ,  $d\eta = dt/a(t)$  и мы введем следующие обозначения:  $\tilde{k} = ka = \text{const} - \text{конформный импульс}$ (дающий красное смещение  $k \sim T = T_{now}(1+z)$ );  $\xi_a(\eta) = a\mu_a = \mu_a/T$  — безразмерная фермионная асимметрия, которая меняется с течением времени;  $\tilde{\mathbf{B}}_Y = a^2 \mathbf{B}_Y$ ,  $\tilde{\mathbf{Y}} = a \mathbf{Y}$  — конформные безразмерные аналоги соответственно гипермагнитного поля и гипермагнитного потенциала.

Здесь удобно переписать (4), используя конформные координаты  $\tilde{\mathbf{x}} = \mathbf{x}/a$  для фурье-компонент плотности спиральности,

$$\tilde{h}_Y(\eta) \equiv \int \tilde{\mathbf{Y}} \cdot \tilde{\mathbf{B}}_Y \frac{d^3x}{V} = \int d\tilde{k} \, \tilde{h}_Y(\tilde{k}, \eta),$$

и плотности энергии гипермагнитного поля

$$\tilde{\rho}_{B_Y}(\eta) = \tilde{B}_Y^2(\eta)/2 = \int d\tilde{k} \, \tilde{\rho}_{B_Y}(\tilde{k}, \eta)$$

определенные через их спектры

$$\tilde{h}_{Y}(\tilde{k},\eta) = \frac{k^{2}a^{3}}{2\pi^{2}V}\tilde{\mathbf{Y}}(\tilde{k},\eta) \cdot \tilde{\mathbf{B}}_{Y}^{*}(\tilde{k},\eta),$$

$$\tilde{\rho}_{B_{Y}}(\tilde{k},\eta) = \frac{\tilde{k}^{2}a^{3}}{4\pi^{2}}\tilde{\mathbf{B}}(\tilde{k},\eta) \cdot \tilde{\mathbf{B}}_{Y}^{*}(\tilde{k},\eta).$$
(5)

Это позволяет нам вычислить интегралы  $\int d^3x(...)/V$  в (4) так же, как в уравнении Фарадея (2), умножая его на  $\mathbf{B}_Y^*$  и складывая с его комплексно-сопряженным  $\mathbf{B}_Y \partial_t \mathbf{B}_Y^* = ...,$  и получить эволюционное уравнение для спектра плотности спиральности и спектра гипермагнитной плотности энергии.

Общая система эволюционных уравнений для спектров плотности спиральности  $\tilde{h}_Y(\tilde{k},\eta)$  и плотности энергии  $\tilde{\rho}_{B_Y}(\tilde{k},\eta)$ , удовлетворяющих неравенству  $\tilde{\rho}_{B_Y}(\tilde{k},\eta) \geq \tilde{k}\tilde{h}_Y(\tilde{k},\eta)/2$  [15], имеет следующий вид в конформных переменных:

$$\frac{d\tilde{h}_{Y}(\tilde{k},\eta)}{d\eta} = -\frac{2\tilde{k}^{2}}{\sigma_{c}}\tilde{h}_{Y}(\tilde{k},\eta) + \\
+ \left(\frac{4\alpha'(\xi_{eR} + \xi_{eL}/2)}{\pi\sigma_{c}}\right)\tilde{\rho}_{B_{Y}}(\tilde{k},\eta), \\
\frac{d\tilde{\rho}_{B_{Y}}(\tilde{k},\eta)}{d\eta} = -\frac{2\tilde{k}^{2}}{\sigma_{c}}\tilde{\rho}_{B_{Y}}(\tilde{k},\eta) + \\
+ \left(\frac{\alpha'(\xi_{eR} + \xi_{eL}/2)}{\pi\sigma_{c}}\right)\tilde{k}^{2}\tilde{h}_{Y}(\tilde{k},\eta),$$
(6)

где константа  $\alpha' = g'^2/4\pi$  определяется калибровочной СМ-константой связи  $g' = e/\cos\theta_W$ ,  $\sigma_c =$  $= \sigma_{cond}/T \approx 100$  это безразмерная электропроводность плазмы,  $\xi_{eR}(\eta) = \mu_{eR}(T)/T$  и  $\xi_{eL}(\eta) =$  $= \mu_{eL}(T)/T$  являются асимметриями соответственно правых и левых электронов.

Эта система дополняется кинетическими уравнениями для самих асимметрий  $\xi_{eR}(\eta)$ ,  $\xi_{eL}(\eta)$ , приведенными ниже в уравнениях (13), (14). Было бы интересно в будущем пронаблюдать из уравнений (6), как начальное поле без спиральности,  $\tilde{h}_Y(\tilde{k},\eta_0) = 0$ , эволюционирует в присутствии ненулевой начальной энергии (спектра начальной плотности энергии ГМП), для которых производная плотности спиральности все же отлична от нуля,

$$[d\tilde{h}_Y(\tilde{k},\eta)/d\eta]_{\eta=\eta_0} = (4\alpha'\xi_{eR}(\eta_0)/\pi\sigma_c)\tilde{\rho}_{B_Y}(\tilde{k},\eta_0) \neq 0.$$

Спектры начальной плотности энергии ГМП,  $\rho_{B_Y}(k,t_0) = Ak^{n+2}$ , зависят от показателя n, в частности, для колмогоровского спектра подставляется n = -5/3. Этот случай является предметом отдельного рассмотрения.

Для частного случая максимальной спиральности

$$\tilde{h}_Y(\tilde{k},\eta) = 2\tilde{\rho}_{B_Y}(\tilde{k},\eta)/\tilde{k} \tag{7}$$

система (6) сводится к одному уравнению:

$$\frac{d\tilde{h}_Y(\tilde{k},\eta)}{d\eta} = -\frac{2\tilde{k}^2\tilde{h}_Y(\tilde{k},\eta)}{\sigma_c} + \left(\frac{2\alpha'[\xi_{eR}(\eta) + \xi_{eL}(\eta)/2]\tilde{k}}{\pi\sigma_c}\right)\tilde{h}_Y(\tilde{k},\eta). \quad (8)$$

Примером такого поля («полностью спирального»), которое здесь не рассматривается, удовлетворяющего калибровке  $\nabla \cdot \mathbf{Y} = 0$ ,  $Y_0 = 0$ , является волна Черн-Саймонса

$$\mathbf{Y} = Y(t)(\sin k_0 z, \cos k_0 z, 0),$$

для которой гипермагнитное поле  $\mathbf{B}_Y = \nabla \times \mathbf{Y} = k_0 \mathbf{Y}$  имеет нетривиальную топологию, являясь полем с максимальной спиральностью. Действительно, его плотность спиральности  $h_Y = \mathbf{Y}\mathbf{B}_Y = k_0 Y^2(t)$  связана с плотностью энергии  $\rho_{B_Y} = \mathbf{B}_Y^2/2 = k_0^2 Y^2(t)/2$  в точности через соотношение  $k_0 h_Y = 2\rho_{B_Y}$ .

Решение уравнения (8) имеет вид (см. также уравнение (8) в работе [16]):

$$\tilde{h}_{Y}(\tilde{k},\eta) = \tilde{h}_{Y}^{(0)}(\tilde{k},\eta_{0}) \exp\left(\frac{2\tilde{k}}{\sigma_{c}}\times\right) \times \left[\frac{\alpha'}{\pi} \int_{\eta_{0}}^{\eta} \left(\xi_{eR}(\eta') + \frac{\xi_{eL}(\eta')}{2}\right) d\eta' - \tilde{k}(\eta - \eta_{0})\right] \right).$$
(9)

Спектр безразмерной плотности спиральности  $\tilde{h}_Y(\tilde{k},\eta) = a^3 h_Y(\tilde{k},\eta)$  можно переписать в компактном виде как

$$\tilde{h}_Y(\tilde{k},\eta) \equiv \frac{h_Y(\tilde{k},\eta)}{T^3} = \\ = \tilde{h}_Y^{(0)}(\tilde{k},\eta_0) \exp\left[A(\eta)\tilde{k} - B(\eta)\tilde{k}^2\right], \quad (10)$$

где начальный спектр  $\tilde{h}_{Y}^{(0)}(\tilde{k},\eta_{0}) = h_{Y}(\tilde{k},\eta_{0})/T_{0}^{3}$  соответствует в нашем случае моменту появления левой асимметрии  $T_{0} = T_{RL}$ . Здесь мы использовали обозначения, взятые из (9):

$$A(\eta) = \frac{2\alpha'}{\pi\sigma_c} \int_{\eta_0}^{\eta} \left( \xi_{eR}(\eta') + \frac{\xi_{eL}(\eta')}{2} \right) d\eta',$$
  

$$B(\eta) = \frac{2}{\sigma_c} (\eta - \eta_0).$$
(11)

Пренебрегая квантовыми эффектами абелевых аномалий (в случае  $\alpha' = 0$ ) и в отсутствие гипермагнитной диффузии (когда динамические эффекты исчезают в пределе идеальной плазмы,  $\sigma_c \to \infty$ ), мы получим из (10) закон сохранения плотности спиральности  $d\tilde{h}_Y/d\eta = 0$ ,  $\tilde{h}_Y = \text{const}$ , с учетом конформного масштабирования  $h_Y(\eta) = (\eta_0/\eta)^3 h_Y(\eta_0)$ .

Чтобы вычислить спектр плотности спиральности (10), мы будем искать самосогласованные функции лептонной асимметрии  $\xi_{eR}(\eta), \xi_{eL}(\eta)$ .

#### 2.2. Эволюция лептонной асимметрии

Для простоты мы рассмотрим только обратный распад бозона Хиггса, т. е. пренебрежем асимметрией бозона Хиггса,  $\mu_0 = 0$ . Система кинетических уравнений для лептонов, учитывающая абелевы аномалии как правых электронов, так и левых электронов (нейтрино), обратный распад бозона Хиггса и сфалеронные переходы, имеет вид

$$\frac{dL_{e_R}}{dt} = \frac{g'^2}{4\pi^2 s} (\mathbf{E}_Y \cdot \mathbf{B}_Y) + 2\Gamma_{RL} \left\{ L_{e_L} - L_{e_R} \right\},$$

$$\frac{dL_{e_L}}{dt} = -\frac{g'^2}{16\pi^2 s} (\mathbf{E}_Y \cdot \mathbf{B}_Y) + \qquad (12)$$

$$+ \Gamma_{RL} \left\{ L_{e_R} - L_{e_L} \right\} - \left( \frac{\Gamma_{sph} T}{2} \right) L_{e_L}.$$

Здесь  $L_b = (n_b - n_{\overline{b}})/s \approx T^3 \xi_b/6s$  — лептонное число,  $b = e_R, e_L, \nu_e^L$ ,  $s = 2\pi^2 g^* T^3/45$  — плотность энтропии,  $g^* = 106.75$  — число релятивистских степеней свободы. Коэффициент «два» в первой строке учитывает эквивалентность каналов реакций  $e_R \bar{e}_L \to \tilde{\varphi}^{(0)}$  и  $e_R \bar{\nu}_{e^L} \to \varphi^{(-)}$ ;  $\Gamma_{RL}$  — скорость (ширина) распада бозонов Хиггса с изменением киральности лептонов. Конечно, для левого дублета  $L_e^T = (\nu_e^L, e_L)$  кинетическое уравнение для числа нейтрино избыточно, потому что  $L_{e_L} = L_{\nu_{e^L}}.$ Далее,  $\Gamma_{sph} = C \alpha_W^5 = C (3.2 \cdot 10^{-8})$  — безразмерная вероятность сфалеронных переходов, которые уменьшают число левых лептонов, приводя к вымыванию барионной асимметрии Вселенной. Такая вероятность задана  $SU(2)_W$  константой связи  $\alpha_W = g^2/4\pi =$  $= 1/137 \sin^2 heta_W = 3.17 \cdot 10^{-2}$ , где  $g = e/\sin heta_W$  калибровочная константа в CM, а константа  $C \approx 25$ оценивается через численные расчеты на решетке (см., например, гл. 11 в книге [17]).

В конформных переменных после интегрирования системы (12) по объему  $\int d^3x(\dots)/V$ , переходя к фурье-переменным для гиперзарядовых полей, кинетические уравнения (12) получаем в виде

$$\frac{d\xi_{eR}(\eta)}{d\eta} = -\frac{3\alpha'}{\pi} \int d\tilde{k} \frac{d\tilde{h}_Y(\tilde{k},\eta)}{d\eta} - \Gamma\Big[\xi_{eR}(\eta) - \xi_{eL}(\eta)\Big], \quad (13)$$

$$\frac{d\xi_{eL}(\eta)}{d\eta} = +\frac{3\alpha'}{4\pi} \int d\tilde{k} \frac{d\tilde{h}_Y(\tilde{k},\eta)}{d\eta} - \frac{\Gamma(\eta)}{2} \Big[\xi_{eL}(\eta) - \xi_{eR}(\eta)\Big] - \frac{\Gamma_{sph}}{2} \xi_{eL}(\eta), \quad (14)$$

где

$$\Gamma(\eta) = \left(\frac{242}{\eta_{EW}}\right) \left[1 - \left(\frac{\eta}{\eta_{EW}}\right)^2\right], \qquad (15)$$
$$\eta_{RL} < \eta < \eta_{EW}$$

— безразмерная скорость изменения киральности  $\Gamma=2a\Gamma_{RL}$  [9, 18],  $\eta_{EW}=M_0/T_{EW}=7\cdot 10^{15}$ — момент времени ЭФП при температуре  $T_{EW}=$ =100 ГэВ.

Производная в подынтегральных выражениях первых членов в (13), (14),  $d\tilde{h}_Y(\tilde{k},\eta)/d\eta$ , дается уравнением (8), где в правой части мы должны подставить  $\tilde{h}_Y(\tilde{k},\eta)$  из уравнения (10).

Мы выберем следующие начальные условия в момент  $\eta_0 = \eta_{RL} = 7 \cdot 10^{13}$ , что соответствует температуре  $T_{RL} = 10$  ТэВ:

$$\xi_{eL}(\eta_0) = 0, \quad \xi_{eR}(\eta_0) = 10^{-10}.$$
 (16)

В разд. З.1 обсуждается также случай большой начальной лептонной асимметрии,  $\xi_{eR}(\eta_0) = 10^{-4}$ , поскольку это — свободный параметр в нашей задаче.

Решение системы (13) и (14) позволяет рассчитать эволюцию гипермагнитной плотности спиральности (10) для двух случаев:

a) монохроматический спектр плотности спиральности

$$\tilde{h}_Y(\tilde{k},\eta) = \tilde{h}_Y(\eta)\delta(\tilde{k} - \tilde{k}_0), \qquad (17)$$

б) непрерывный начальный спектр  $\tilde{h}_Y(\tilde{k},\eta_0) \sim \tilde{k}^{n_s}, n_s \geq 3.$ 

Здесь начальная плотность спиральности для монохроматического спектра (17)  $\tilde{h}_Y(\eta_0) = (\tilde{B}_0^Y)^2/\tilde{k}_0$ дается затравочным полем  $\tilde{B}_0^Y$ . Задача имеет два свободных параметра: а) значение затравочного поля  $\tilde{B}_0^Y$  при начальной температуре  $T_0 = T_{RL} =$ = 10 ТэВ и б) значение начальной правой электронной асимметрии  $\xi_{eR}(\eta_0) \neq 0$  в выбранном сценарии [9, 10]. Всюду будем считать начальную гипермагнитную плотность энергии  $\tilde{\rho}_{B_Y}^{(0)} = 10^{-8}$ , что соответствует сильному затравочному полю  $B_0^Y =$ =  $10^{-4}\sqrt{2}T_0^2 \sim 10^{24} G$ . Заметим, что такое поле не влияет на фридмановский закон расширения Вселенной,  $\rho_{B_Y} \ll \rho_\gamma \sim T^4$ .

#### 3. ЗАКОНЫ СОХРАНЕНИЯ И БАВ В ГИПЕРМАГНИТНЫХ ПОЛЯХ

Как следует из кинетических уравнений (12), в отсутствие гиперзарядового поля полное лептонное число не сохраняется из-за сфалеронных переходов, уничтожающих левые лептоны,  $dL_e/dt = \dot{L}_{e_R} +$  $+ \dot{L}_{e_L} + \dot{L}_{\nu_{eL}} = -\Gamma_{sph}L_{e_L}$ . Бариогенезис осуществляется через лептогенезис вследствие закона сохранения  $B/3 - L_e = \text{const}$ , где  $B = (n_B - n_{\bar{B}})/s$ . С учетом абелевых аномалий в системе (12) такой бариогенезис возможен,  $\dot{B} \neq 0$ , когда гипермагнитное поле увеличивает число лептонов и БАВ,  $dL_e/dt|_{B_Y\neq 0} >$  $> 0, dB/dt|_{B_Y\neq 0} > 0$ . Этот процесс конкурирует с влиянием сфалеронов, вымывающих  $L_{eL}$  и B (для сравнения см. [9], где авторы пренебрегали сфалеронными переходами).

Сохраняются три глобальных заряда ( $\delta_i = = \text{const}$ ):

$$\frac{B}{3} - L_e = \delta_1, \quad \frac{B}{3} - L_\mu = \delta_2, \quad \frac{B}{3} - L_\tau = \delta_3, \quad (18)$$

а также  $L_{e_R} = \delta_R$ , пока  $T \gg T_{RL}$ . Если начальная БАВ отличается от нуля,  $B(t_0) \neq 0$ , и если предпо-

ложить отсутствие лептонной асимметрии для частиц второго и третьего поколения, вплоть до  $T_{EW}$ ,  $L_{\mu} = L_{\tau} = 0$ , то находим, что отношение  $\delta_2 = \delta_3 = B(x_0)/3$  верно лишь только в начальный момент. Из первого закона сохранения в уравнении (18) находим изменение БАВ, B(t), при температуре  $T < T_{RL}$ . Это изменение подчиняется соотношению

$$\frac{B(t)}{3} - L_e(t) = \frac{B(t_0)}{3} - L_{e_R}(t_0) = \delta_{2,3} - \delta_R = \delta_1.$$

Если для простоты мы будем считать нулевой начальную БАВ,  $B(t_0) = 0$ , или  $\delta_{2,3} = 0$ , то в итоге мы получим закон сохранения  $B(t)/3 - L_e(t) = -L_{e_R}(t_0)$ .

Таким образом, в данном случае, БАВ «сидит» в гиперзарядовом поле и снижается из-за сфалеронных процессов, как следует из кинетических уравнений (12):

$$B(t) = 3 \int_{t_0}^{t} \left[ \frac{dL_{e_R}(t')}{dt'} + \frac{dL_{e_L}(t')}{dt'} + \frac{dL_{\nu_e^L}(t')}{dt'} \right] dt' = = \frac{3g'^2}{8\pi^2} \int_{t_0}^{t} (\mathbf{E}_Y \cdot \mathbf{B}_Y) \frac{dt'}{s} - 3 \int_{t_0}^{t} \Gamma_{sph} TL_{e_L} dt'.$$
(19)

Используя первое уравнение системы (12), где гипермагнитное слагаемое происходит из абелевой аномалии ~  $(\mathbf{E}_Y \cdot \mathbf{B}_Y)$ , получаем из уравнения (19) барионную асимметрию в следующем виде:

$$B(\eta) = 5.3 \cdot 10^{-3} \int_{\eta_0}^{\eta} d\eta' \left\{ \frac{d\xi_{e_R}(\eta')}{d\eta} + \Gamma(\eta) \times \left[ \xi_{e_R}(\eta') - \xi_{e_L}(\eta') \right] \right\} - \frac{6 \cdot 10^7}{\eta_{EW}} \int_{\eta_0}^{\eta} \xi_{e_L}(\eta') d\eta'.$$
(20)

# 3.1. Эволюция БАВ для непрерывного спектра плотности спиральности

Эволюция барионной асимметрии в гипермагнитных полях с максимальной спиральностью  $\tilde{k}\tilde{h}_{Y}(\eta,\tilde{k}) = 2\tilde{\rho}_{B_{Y}}(\eta,\tilde{k})$  описывается уравнением (20) и показана на рис. 1.

Спектр плотности спиральности гипермагнитного поля  $\tilde{h}_Y(\tilde{k},\eta)$  играет решающую роль для эволюции БАВ, как это следует из кинетических уравнений (13), (14) выше. Для непрерывного начального спектра

$$\tilde{h}_Y(\tilde{k},\eta_0) = C_1 \tilde{k}^{n_s} \tag{21}$$



Рис.1. а) Эволюция БАВ  $B(\eta)$  в логарифмическом масштабе для непрерывного начального спектра плотности спиральности  $\tilde{h}_Y(\eta_0, \tilde{k}) = C \tilde{k}^{n_s}$ ,  $n_s = 3$ , и начальной правой асимметрии  $\xi_{eR}(\eta_0) = 10^{-10}$ . б) Отрицательная БАВ  $B(\eta) < 0$ , эволюционирующая для такого же спектра и начальной асимметрии  $\xi_{eR}(\eta_0) = 10^{-10}$  в случае минимально возможного волнового числа  $\tilde{k}_{max} = 10^{-13}$ . В обоих случаях начальная левая асимметрия отсутствует:  $\xi_{eL}(\eta_0) = 0$ 

мы определяем плотность спиральности как

$$\tilde{h}_{Y}(\eta) = C_{1} \int_{0}^{\bar{k}_{max}} \tilde{k}^{n_{s}} \exp\left[A(\eta)\tilde{k} - B(\eta)\tilde{k}^{2}\right] d\tilde{k} =$$
$$= C_{1}I_{n_{s}}(\eta). \quad (22)$$

Здесь функции  $A(\eta)$ ,  $B(\eta)$  заданы уравнением (11). Постоянную  $C_1$  можно оценить с помощью соотношения для полностью спирального поля

$$\tilde{h}_Y(\tilde{k},\eta_0) = C_1 \tilde{k}^{n_s} = 2 \tilde{\rho}_{B_Y}(\tilde{k},\eta_0) / \tilde{k}.$$

Используя определение начальной гипермагнитной энергии

$$\int d\tilde{k} \, \tilde{\rho}_{B_Y}(\tilde{k}, \eta_0) = (\tilde{B}_0^Y)^2 / 2,$$

получим соотношение

$$C_1 \int_{0}^{\tilde{k}_{max}} \tilde{k}^{n_s+1} d\tilde{k} = (\tilde{B}_0^Y)^2 = 2\tilde{\rho}_Y^{(0)} = 2 \cdot 10^{-8}$$

для выбранного выше значения затравочного поля. Далее варьируем максимальное значение  $\tilde{k}_{max}$ , пропорциональное эффективности гипермагнитной диффузии: чем короче длина волны, тем сильнее диффузия гипермагнитного поля. Таким образом, мы определяем константу  $C_1 =$  $= (n_s + 2) (\tilde{B}_0^Y)^2 / (\tilde{k}_{max})^{n_s+2}$ .

В случае непрерывного начального спектра (21) можно переписать кинетические уравнения для лептонной асимметрии (13), (14), управляющие изменением БАВ:

$$\frac{d\xi_{eR}}{d\eta} = \frac{6\alpha' C_1}{\pi\sigma_c} \times \left[ I_{n_s+2}(\eta) - \frac{\alpha'}{\pi} \left( \xi_{eR} + \frac{\xi_{eL}}{2} \right) I_{n_s+1}(\eta) \right] - \Gamma(\eta) (\xi_{eR} - \xi_{eL}), \quad (23)$$

$$\frac{d\xi_{eL}}{d\eta} = -\frac{3\alpha' C_1}{2\pi\sigma_c} \times \left[ I_{n_s+2}(\eta) - \frac{\alpha'}{\pi} \left( \xi_{eR} + \frac{\xi_{eL}}{2} \right) I_{n_s+1}(\eta) \right] - \Gamma(\eta)(\xi_{eL} - \xi_{eR}) - \frac{\Gamma_{sph}}{2} \xi_{eL}(\eta). \quad (24)$$

Интегралы  $I_{(n_s+2),(n_s+1)}(\eta)$  являются функциями лептонной асимметрии  $\xi_{eR}, \xi_{eL}$  через  $A(\eta)$  в уравнении (22), таким образом, эти дифференциальные уравнения сильно нелинейны и могут быть решены только численно.

На рис. 2 показана эволюция правой лептонной асимметрии  $\xi_{eR}(\eta)$ , найденная в результате решения системы самосогласованных уравнений (23), (24). Это может помочь нам интерпретировать эволюцию БАВ на рис. 1 и 3. Заметим, что асимметрия левых лептонов  $\xi_{eL}$  имеет гораздо меньшее значение,  $\xi_{eL} \ll \xi_{eR}$ , во-первых, из-за сфалеронных переходов, уменьшающих  $L_{eL}$ , во-вторых, из-за начальных условий  $\xi_{eL}(\eta_0) = 0$ ,  $\xi_{eR}(\eta_0) \neq 0$ , при которых  $\xi_{eL}$  не успевает вырасти к моменту ЭФП  $\eta_{EW}$ . Действительно, предполагая, что на уровне насыщения  $\partial_t \xi_{eR} = \partial_t \xi_{eL} \approx 0$ , умножая (14) на 4 и добавляя (13), получаем



Рис.2. Лептогенезис  $\xi_{eR}(\eta)$  в логарифмическом масштабе для непрерывного начального спектра плотности спиральности  $\tilde{h}_Y(\eta_0, \tilde{k}) = C\tilde{k}^{n_s}$ ,  $n_s = 3$ ,  $0 \le \tilde{k} \le \tilde{k}_{max}$ : a — три кривые для различных значений волновых чисел  $\tilde{k}_{max} = 10^{-8}$ ,  $10^{-9}$ ,  $10^{-10}$  стартуют от начального значения  $\xi_{eR}(\eta_0) = 10^{-10}$ ;  $\delta$  — для тех же значений  $\tilde{k}_{max}$ , кривые  $\xi_{eR}(\eta)$  стартуют от  $\xi_{eR}(\eta_0) = 10^{-4}$ . Начальная левая лептонная асимметрия равна нулю в обоих случаях  $\xi_{eL}(\eta_0) = 0$ 



Рис. 3. Отрицательная барионная асимметрия для непрерывного начального спектра плотности спиральности  $\tilde{h}_Y(\eta_0, \tilde{k}) = C \tilde{k}^{n_s}$ ,  $n_s = 3$ . Линия БАВ отвечает  $\tilde{k}_{max} = 10^{-9}$ , где правая асимметрия  $\xi_{eR}(\eta)$  стартует с большого начального значения  $\xi_{eR}(\eta_0) = 10^{-4}$ . Начальная левая асимметрия равна нулю  $\xi_{eL}(\eta_0) = 0$ 

$$\xi_{eL} = \frac{\Gamma \xi_{eR}}{\Gamma + 2\Gamma_{sph}} \ll \xi_{eR}, \qquad (25)$$

где  $\Gamma_{sph} \gg \Gamma$ . Объяснение того, почему  $\xi_{eR}(\eta)$  растет из-за абелевой аномалии (1), стремясь асимптотически к уровню насыщения,  $\xi_{eR}(\eta) \approx \text{const}$ , дано в работе [8], где в случае монохроматического спектра плотности спиральности показана независимость такого уровня насыщения от выбранного начального условия  $\xi_{eR}(\eta_0) = 10^{-10}$  или  $\xi_{eR}(\eta_0) = 10^{-4}$ . Подобным образом отсутствие зависимости величины насыщения  $\xi_{eR} \approx \text{const}$  становится очевидным и здесь для непрерывного спектра плотности спиральности при сравнении рис. 2а и рис. 2б для одинаковых  ${ ilde k}_{max}$ . Затем дополнительный рост правой лептонной асимметрии к концу интервала на рис. 2 объясняется исчезновением обратного распада Хиггса (15) и ведет к дополнительному (второму) росту БАВ на рис. 1 при  $\eta \to \eta_{EW}$ .

#### 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Мы рассмотрели лептогенезис и соответствующий бариогенезис в присутствии гипермагнитных полей до момента ЭФП,  $T > T_{EW} \approx 100$  ГэВ, когда абелева аномалия для  $e_R$  и левого дублета  $L = (\nu_e^L e_L)^T$  обеспечивают эволюцию их асимметрий. Учтены хиггсовский обратный распад и сфалеронные переходы в широкой области температур  $T_{RL} \geq T \geq T_{EW}$ ,  $T_{RL} \approx 10$  ТэВ. Сомнения в том, возмож-

но ли обеспечить наблюдаемую барионную асимметрию Вселенной в симметричной фазе, временно «запасая» БАВ в асимметрии  $e_R$ , развеяны в случае сильных гипермагнитных полей. Вымывание БАВ из-за сфалеронных переходов вследствие вовлечения левых частиц при  $T < T_{RL}$  через обратный распад Хиггса не критично в широком диапазоне значений гипермагнитного поля. Сильное затравочное гипермагнитное поле  $B_Y^{(0)}$  гарантирует нужный рост БАВ.

Рост БАВ возможен только при растущей правой электронной асимметрии,  $d\xi_{eR}(\eta)/d\eta > 0$ , стартующей с малого начального значения  $\xi_{eR}(\eta_0) = 10^{-10}$ (см. рис. 2а). Однако, даже для положительных  $d\xi_{eR}(\eta)/d\eta > 0$  такой рост возможен не для всех масштабов гипермагнитного поля  $\Lambda = \tilde{k}^{-1}$  в области волновых чисел  $0 < \tilde{k} \leq \tilde{k}_{max}$ . Чем меньше  $k_{max}$ , тем меньше оказывается рост БАВ за счет уменьшения плотности спиральности  $h_Y \approx YB \sim kY^2$  как источника лептогенезиса через абелеву аномалию. В результате, для малых значений  $k_{max}$  рост БАВ прекращается, и вместо него мы видим уменьшение БАВ вплоть до отрицательных величин B < 0. Отметим, что аналогичная зависимость была обнаружена для монохроматической черн-саймоновской волны (см. правую панель рис. 1 в работе [10]). В настоящей работе на рис. 16 показано падение БАВ, которая становится отрицательной, B < 0, почти сразу для малых  $k_{max} = 10^{-13}$ .

С другой стороны, такой свободный параметр, как большие начальные значения лептонной асимметрии ( $\xi_{eR}(\eta_0) = 10^{-4}$ ) не позволяет получить положительную БАВ, B > 0. Действительно, несмотря на одинаковый уровень насыщения для  $\xi_{eR}$  для обоих начальных условий, малых  $\xi_{eR}(\eta_0) = 10^{-10}$ и больших  $\xi_{eR}(\eta_0) = 10^{-4}$  (см. рис. 2), отрицательный знак производной  $d\xi_{eR}/d\eta < 0$  во втором случае, (см. также уравнение (20)), приводит к отрицательным значениям БАВ, B < 0. Этот случай показан на рис. 3 для большого значения начальной асимметрии  $\xi_{eR}(\eta_0) = 10^{-4}$  и интервала волновых чисел  $0 \leq \tilde{k} \leq \tilde{k}_{max} = 10^{-9}$ , для которого, наоборот, наблюдался рост БАВ в случае малой начальной асимметрии  $\xi_{eR}(\eta_0) = 10^{-10}$  (для сравнения рис. 1а).

Подчеркнем разницу между монохроматическим и более реалистичным непрерывным спектром плотности спиральности в их влиянии на рост БАВ. Случай монохроматического и непрерывного спектра плотности магнитной спиральности был недавно рассмотрен в работе [8] без расчета соответствующей БАВ. Тем не менее, такая эволюция БАВ по-

казана на рис. 1, в работе [10], где рассмотрена черн-саймоновская волна гиперзарядового поля Y<sub>µ</sub> с некоторыми фиксированными волновыми числами  $k_0$ . Заметим, что черн-саймоновская волна имеет максимальную плотность спиральности (см. комментарии выше к уравнению (9)), что делает сравнение со случаем непрерывного спектра разумным. На рис. 1 в работе [10] сплошная линия достигает  $B_{obs} \sim 10^{-10}$  для  $\tilde{k}_0 \sim 10^{-10}$ , с использованием параметра  $B_0 = 2.1 \cdot 10^{-2}$  в уравнении (3.8). В то время как в настоящей работе случай  $\tilde{k}_{max} \sim 10^{-10}$  приводит к небольшой БАВ,  $B \ll B_{obs}$ , и только большая величина  $\tilde{k}_{max} \sim 10^{-8} - 10^{-9}$  позволяет получить  $B = B_{obs} \sim 10^{-10}$  (см. рис. 1*a*). Такая контрастная разница объясняется учетом обратного каскада, который уменьшает волновые числа  $k < k_{max}$ ,  $\tilde{k} \to 0$ , и сами крупномасштабные ГМП  $B_Y \sim kY$ , которые имеют все меньшие и меньшие амплитуды в последовательных шагах обратного каскада, а также тем, что плотность спиральности  $h_Y \sim Y B_Y \sim k Y^2$ падает, переставая поддерживать рост лептонного числа и рост БАВ.

Можно заключить, что наблюдаемая барионная асимметрия  $B_{obs} \sim 10^{-10}$  может быть обеспечена путем лептогенезиса в сильном гипермагнитном поле для широкой области масштабов ГМП  $\Lambda = k^{-1}$ , заданных волновыми числами  $0 < \tilde{k} \leq \tilde{k}_{max}$ в непрерывном спектре. Для малой начальной лептонной асимметрии  $\xi_{eR}(\eta_0) = 10^{-10}$  значение  $B_{obs} \sim 10^{-10}$  можно получить асимптотически для спектра, ограниченного интервалом  $\tilde{k}_{max}$  ~ ~ 10<sup>-8</sup>-10<sup>-9</sup>. Для той же начальной асимметрии более узкий обратный каскад в области волновых чисел  $0 < \tilde{k} < \tilde{k}_{max} < 10^{-10}$  приводит к меньшему БАВ,  $B \ll B_{obs}$  (см. рис. 1*a*). Это происходит из-за пониженной плотности спиральности в качестве источника БАВ при интегрировании в более узком интервале непрерывного спектра.

Мы благодарим Д. Д. Соколова за обсуждение и полезные замечания.

### ЛИТЕРАТУРА

- A. Brandenburg, D. Sokoloff, and K. Subramanian, Sp. Sci. Rev. 169, 123 (2012).
- D. Grasso and H. R. Rubinstein, Phys. Rep. 348, 163 (2001).
- F. Krause and R. Beck, Astron. Astrophys. 335, 789 (1998).

- Ya. B. Zeldovich, A. A. Ruzmaikin, and D. D. Sokoloff, Magnetic Fields in Astrophysics, Gordon and Breach Science Publishers, New York (1983).
- A. Neronov and D. V. Semikoz, Phys. Rev. D 80, 123012 (2009).
- 6. A. Neronov and I. Vovk, Science 328, 73 (2010).
- M. Giovannini and M. E. Shaposhnikov, Phys. Rev. D 57, 2186 (1998).
- 8. V. B. Semikoz, A. Yu. Smirnov, and D. D. Sokoloff, J. Cosm. Astropart. Phys. 10, 014 (2013).
- M. Dvornikov and V. B. Semikoz, J. Cosm. Astropart. Phys. 02, 040 (2012); *Erratum*: J. Cosm. Astropart. Phys. 08, E01 (2012).
- M. Dvornikov and V. B. Semikoz, Phys. Rev. D 87, 025023 (2013).
- J. M. Cline, K. Kainulainen, and K. A. Olive, Phys. Rev. D 49, 6394 (1994).

- V. B. Semikoz and J. W. F. Valle, J. Cosm. Astropart. Phys. 11, 048 (2011).
- V. B. Semikoz, D. Sokoloff, and J. W. F. Valle, J. Cosm. Astropart. Phys. 06, 008 (2012).
- 14. P. M. Akhmet'ev, V. B. Semikoz, and D. D. Sokoloff, JETP Lett. 91, 215 (2010).
- 15. D. Biskamp, Magnetohydrodynamic Turbulence, Cambridge Univ. Press, Cambridge (2003).
- A. Boyarsky, J. Fröhlich, and O. Ruchayskiy, Phys. Rev. Lett. 108, 031301 (2012).
- 17. D. S. Gorbunov and V. A. Rubakov, Introduction to the Theory of the Early Universe: Hot Big Bang Theory, World Scientific Publishing Company, Singapore (2011), p. 251.
- 18. B. A. Campbell, S. Davidson, J. Ellis, and K. A. Olive, Phys. Lett. B 297, 118 (1992).