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The dynamics of a bubble in a dielectric liquid under the influence of a uniform external electric field are con-
sidered. It is shown that in the situation where the boundary motion is determined only by electrostatic forces,
the special regime of fluid motion can be realized for which the velocity and electric field potentials are linearly
related. In the two-dimensional case, the corresponding equations are reduced to an equation similar in structure
to the well-known Laplacian growth equation, which, in turn, can be reduced to a finite number of ordinary
differential equations. This allows us to obtain exact solutions for asymmetric bubble deformations resulting in

the formation of a finite-time singularity (cusp).
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1. INTRODUCTION

It is known that a liquid drop suspended in another
liquid deforms when an external electric field is applied.
In the case of two perfect dielectric fluids with no free
charges at the interface, an initially spherical drop (or
a gas bubble) is stretched by the electrostatic forces
in the direction of the electric field [1-4]. For leaky
dielectric fluids, the drop behavior becomes more com-
plicated; its deformation also depends on the ratio of
the conductivities of the fluids (see [5, 6] and the refe-
rences therein).

Considerable interest is focused on the behavior of
a conducting drop surrounded by an insulating fluid
in an electric field [7-9]). In this situation, the elec-
tric field also stretches the drop. If the drop moves
through the ambient fluid, the dynamic pressure of the
flow should be taken into account. For irrotational flow,
in the absence of an electric field, the drop is flattened
along the direction of its motion (see, e.g., Ref. [10]).
Considering a bubble instead of a drop corresponds to
passing to the limit of zero density of the internal fluid.
If the surface of the bubble is assumed to be perfectly
conducting, then the electric field does not penetrate
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into the interior of the bubble as well as it does not
penetrate into the conducting drop.

The problem of bubble motion, as well as any other
problem concerning the dynamics of a free surface or
interface, is extremely difficult to solve. Therefore, it
is important to find ways to simplify the correspond-
ing equations of motion. One known approach is to
consider the Stokes flow of a viscous incompressible
fluid, where the stream function satisfies the bihar-
monic equation (see, e.g., Refs. [8, 9, 11]). It is clear
that the analysis essentially simplifies for a two-dimen-
sional bubble [12]. The effect of an electric field on
the motion of a two-dimensional bubble or drop sur-
rounded by a viscous fluid was studied numerically in
Refs. [13, 14]. In the case of two spatial dimensions, the
conformal mapping technique can be effectively used
for studying the bubble behavior. It allows one to re-
duce the original moving boundary problem to a fixed
boundary problem (see the papers by Crowdy [11] and
by Tanveer and Vasconcelos [15]).

In this paper, we show that if the boundary mo-
tion is determined only by electrostatic forces (capillary
forces being ignored), it is possible to use a completely
different method to simplify the equations of motion,
which is applicable to studying the potential flow of
an incompressible, inviscid fluid. The method is based
on the consideration of a special regime of liquid mo-
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tion for which the velocity and electric field potentials
are linearly dependent functions. Due to this depen-
dence, the number of equations required for describ-
ing the motion of the bubble boundary can be reduced
by half. The reduction can be carried out in the gen-
eral three-dimensional case. In the particular case of a
two-dimensional bubble, where it is possible to use the
conformal mapping technique, the problem reduces to
an equation similar to the Laplacian growth equation
(LGE), whose time-dependent exact solutions can be
found analytically. Its simplest (quasistationary) solu-
tion corresponds to an elliptical bubble moving with
a constant velocity along the direction of the external
electric field. Other (nontrivial) solutions describe the
development of instability of the steady flow. Initially
small deviations from the elliptical shape of the bubble
grow rapidly; the bubble boundary is deformed asym-
metrically, resulting in the formation of a singularity (a
cusp) in a finite time.

We note that a similar approach was previously
used in the analysis of the electrohydrodynamic insta-
bility of a charged free surface of liquid helium [16, 17]
and also of an interface between two dielectric flu-
ids [18]. A condition for instability of the plane bound-
ary of liquid helium (the threshold value of the surface
charge density) was found in Ref. [19]; it is a general-
ization of the instability criterion for the surface of a
conducting liquid in an external electric field [20]. A
functional relation between the electric and velocity po-
tentials that underlies the analysis of boundary dynam-
ics in Refs. [16-18] arises in the situation where elec-
trostatic forces dominate over gravitational and capil-
lary forces, i.e., if the system is far above the stability
threshold [19].

2. INITIAL EQUATIONS

We consider the dynamics of the free boundary of a
bubble in a perfect dielectric (nonconducting) fluid in
the presence of an external uniform electric field. We
assume that the electric field is directed along the
axis of the Cartesian coordinate system, and E is the
external electric field strength. Let D(t) be the region
occupied by the fluid, Dy(t) be the region correspond-
ing to the bubble, and dD(t) be the bubble boundary.
We suppose that the surface of the bubble is conductive
and the charge relaxation time is small, and hence the
surface can be considered equipotential in the charac-
teristic times of electrohydrodynamic phenomena. This
situation can correspond to the bubble filled with a dis-
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charge plasma formed during electrical breakdown in a
liquid dielectric.

We assume that the fluid is inviscid and incompress-
ible and that the flow is irrotational (potential). The
velocity and electric field potentials, ¢ and ¢, satisfy
the Laplace equations

Vip=0, V=0 in D(t). (1)
The velocity potential ¢ obeys the dynamic boundary
condition (the nonstationary Bernoulli equation on a
free surface),

==

por +£(V9)” = Ap— Z=(V)? on D).

(2)
Here, g is the vacuum permittivity, ¢ is the dielectric
constant of the fluid, p is its density, and Ap is the dif-
ference between the fluid pressure at infinity and the
pressure in the bubble, Ap = ps — pp (the bubble is
regarded as a constant-pressure region). We suppose
that Ap does not vary with time and is defined by

£oc

A
P=

E?,
which corresponds to volume-preserving deformations
of the bubble. The last term in the right-hand side
of Eq. (2) is responsible for the electrostatic pressure
at the bubble boundary resulting from the interaction
between free surface charges and the external electric
field. We note that the surface tension effects are not
taken into account in (2); this corresponds to the for-
mal limit of a strong external electric field.

Without loss of generality, the electric field poten-
tial can be assumed to be zero at the bubble boundary:

=0 on 9D(t). (3)

Formally, the equation

o(x,y,2,t) =0

is the equation of a free surface. Then the condition
that the velocity of the bubble surface coincides with
the normal velocity of the ambient liquid (the kinematic
boundary condition) can be written as

0+ Vo -Vé=0 on 9D(t). (4)

The system is closed by the conditions

¢ =0, (5)

stating that the liquid is at rest and the electric field is
uniform at an infinite distance from the bubble.

¢ = —FEz, |r| = oo,
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Multiplying kinematic boundary condition (4) by
/PEoE, then adding and subtracting dynamic (2) and
kinematic (4) boundary conditions, we find

p(oze ) +5(v (qsi@ﬁ)f

—%EZ on 9D(t).

It follows from these expressions that it is convenient
to introduce a pair of auxiliary potentials,

VF) = ¢+ o202 /p.

Then the initial equations (1)—(5) take the symmetric
form

V2 E =0 in D), (6)

) L (gy®) 2 50 e
¥ + (w ) =3, on oD, (7
VF) = FEx\/202/p, || = . (8)

Equipotentiality condition (3) is then rewritten as
w(+) — w(*) (9)

This form of the equations of motion turns out to be
very convenient for the analysis of the bubble dynam-
ics.

on 90D(t).

3. REDUCED EQUATIONS OF MOTION

An important feature of the system of equa-
tions (6)—(9) is that they are compatible with the con-
ditions

P =+Exﬂ/% or ) = —Eag‘/%.
p p

This proves the possibility of realizing the special
regime of fluid motion for which the potentials are re-
lated by the linear expressions

¢ = Et+\/eoe/p (¢ + Ex) .

As follows from them, there exists a moving coordi-
nate system in which the liquid moves along the electric
field lines. Relations (10) allow eliminating one of the
potentials from the initial equations of motion, which
significantly simplifies their form.

For convenience, we switch to dimensionless vari-
ables,

(10)

¢ = oER, t—t\/pR?>/e0cE?, r —rR,
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where R is the characteristic size of the bubble. The
reduced equations of motion, written in terms of the
electric field potential, have the form

V2o =0 in D(t), (11)
or+ 0.+ (V)2 =0 on 9D(t), (12)
=0 on AD(t), (13)
o= —x, |r| = . (14)

These two systems differ only by the time direction
(they are related by the replacement ¢ — —t). With-
out loss of generality, we can consider only the system
with the upper signs in Eq. (12).

Thus, analyzing the initial equations (1)—(5), we
have shown that a special flow regime can be real-
ized for which the velocity and electric field potentials
are linearly related functions. This regime is described
by the much simpler system (11)—(14). We empha-
size that this result was obtained in the general three-
dimensional case.

Below, we analyze system (11)—(14) in the particu-
lar case of two dimensions, where ¢ = p(z,y,t) (i.e.,
there is no dependence on the third spatial variable).
This means that we consider the evolution of a two-di-
mensional bubble, for example, as in Refs. [10, 11]. It is
clear that such a consideration is more of an academic
rather than practical interest. However, in this case, it
is possible to find exact solutions of the equations of
motion using the conformal mapping technique; these
solutions give us an insight into the behavior of a bub-
ble in the considered special flow regime. Probably, the
basic regularities of the bubble behavior are common
for two- and three-dimensional cases.

We now proceed with the two-dimensional case. We
introduce the complex variable z = x 4 7y and assume
that the surface 9D(t) is defined parametrically, x =
= X(I,t) and y = Y (I,t), or in the complex form z =
= Z(l,t), where Z = X +iY and [ is some parameter,
to be specified later. The complex electric potential
W = ¢ — it is an analytic function of the complex
variable z outside the bubble, i.e., W = W (z). Here,
the function v is a harmonic conjugate of the electric
field potential ¢ (the condition ¢ = const defines the
electric field lines). The complex potential satisfies the
condition W — —z at infinity. On the bubble surface,
the following relations hold:

(Vip)? = [W. [

Pt = _Re(WzZt)a Pz = Re(Wz)a
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As a consequence, condition (12), which defines the
motion of the boundary, can be rewritten as

Re[(Z;—1)/W.] =1 on 8D(t). (15)

We perform a time-dependent conformal mapping
of the region D(t) onto the region outside the unit circle
in the parametric ¢-plane. Then the bubble boundary
maps onto the circle || = 1. In terms of new variables,
the complex electric potential is given by the expression

W(Et) = -AB)(E -7, (16)

where A(t) is a function of time. The inverse mapping
z(&,t) is unknown and has to be found. The function
z(&,t) is analytic for |£] > 1; it satisfies the condition
z — A(t)¢ at infinity. The equation describing the time
evolution of the mapping function z(&,t) can be ob-
tained from (15). It has the form
Re [(Z — )7/ We] =1, [¢]=1.

Substituting expression (16) for W here and using the
parameterization ¢ = e for the circle |¢| = 1, where [
is a real parameter varying in the range 0 <[ < 27, we

finally obtain the equation of the LGE type (see, e.g.,
Ref. [21]):

Im [(Z; — 1)Z; | = 2A(t) cosl. (17)

We demonstrate that for the considered flow regime,
the bubble area (the area of its cross section by the
plane zy) does not change with time. Indeed, accord-
ing to the Green’s formula, the area of the region Dy(#)
is given by the contour integral

2m
1 —
S = / dxdy = —3 Im/ZZldl. (18)

Dy (t) 0

Differentiating this expression with respect to time, we
obtain

27 27
Sy = —Im/ZtZdl = /(Yl —2Xcosl)dl =0,
0 0

where the integrand has been transformed with the help
of (17). Then the area S and therefore the bubble vol-
ume are constant. Otherwise, we would have to take
the change of the gas pressure inside the bubble into ac-
count. We recall that in the initial problem statement,
the difference between pressures inside the bubble and
in the liquid at infinity was assumed to be constant.

12 ZKBT®, Brim. 1

4. EXACT SOLUTIONS

A remarkable feature of Eq. (17) is that it admits
reduction to a system of a finite number of ordinary
differential equations (ODEs). The substitution of the
form

N
Z(1t) = At)e" +t+ Y an(t)e™™  (19)

n=0

yields N + 2 ODEs for the amplitudes A(¢) and a,(t)
(n = 0,1,...,N). The nonlinear interaction of har-
monics does not lead to the appearance of new har-
monics. We note that expression (19) corresponds to
the mapping function

N
HE) =ADE+E+ D an(t)eT™,

n=0

which is analytic for || > 1 and satisfies the required
condition z — A at infinity.

As can be seen from the structure of Eq. (17), the
system of ODEs for the harmonic amplitudes corre-
sponding to ansatz (19) is linear in derivatives and,
consequently, it can always be resolved with respect to
them. This enables its efficient numerical solution. In
some special cases, the system can be solved analyti-
cally.

The case N = 1 is trivial: the bubble surface is
always elliptical. The simplest case, where the bub-
ble geometry already differs from elliptical and, conse-
quently, the dynamics of its surface is nontrivial, cor-
responds to N = 2. With further increase in the num-
ber of harmonics, the surface dynamics becomes more
complicated; however, the main regularities of bubble
evolution already appear at N = 2.

So, we construct the simplest solutions of (17) cor-
responding to ansatz (19) with N = 2. We seek the
function Z in the form

Z(1,t) = Mt)el +a(t)+t+B8(t)e T4~ (t)e 2, (20)

where A(t), a(t), B(t), and 7(t) are real amplitudes.
Separating the real and imaginary parts in (20), we ob-
tain the following parametric expressions for the bubble
profile:

z=X(,t) = at) +t+ [\t) + B(t)] cosl +
+(t)cos2l, (21)

y=Y(,t) =[\t) — B(t)]sinl —y(t)sin2l.  (22)
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Substituting (20) in (17) and collecting the terms
corresponding to the same harmonics, we arrive at the
system of four first-order ODEs

=AM + BBt + 297 =0, (23)
ﬂ’)/t — )\ozt + Bat + Q’Yﬂt = 2A, (24)
BAL + 2voq — APy = 0, (25)
=My +27A = 0. (26)
Integrating (26) yields
Y=k, (27)

where k is a constant. We can see that system (23)-
(26) admits two types of solutions. The first family of
solutions corresponds to the case k = 0:

)\:A07 62607 7:07
2o (28)
oa=— t+ ap,
Ao — Bo 0

where \g, 8o, and ag are constants. This quasistation-
ary solution can be thought of as the unperturbed so-
lution. According to (21) and (22), the bubble surface
is an ellipse

R R

(Ao + fo)? (Mo — o)

The “elliptic” bubble moves with a constant transla-
tional velocity v = —(Xo + fo)/(Xo — fBo) along the
axis. In the special case where Sy = 0 (and hence v =
= —1), the bubble boundary is a circle of radius \.

The second family of solutions corresponds to k # 0.
Taking Eq. (27) into account, we use (23) and (25) to
obtain

1/2

B==£ (N =2\ —5) /7, (29)

a=—+a. (30)
Thus, the amplitudes «, 3, and v can be expressed in
terms of \. Finally, solving Eq. (24), we find the im-
plicit dependence of the amplitude A on time #:

4k2N\? -1
2kA

s+ 262\
4k N2

1/2

(A2 — 2K\ — 5)

=2(t—t1). (31)
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Thus, in addition to the trivial solution (28), for
which the second harmonic amplitude ~ is identically
zero, system of four ODEs (23)—(26) admits nontriv-
ial (perturbed) solution (27), (29)—(31), for which the
amplitude ~ differs from zero, and the bubble is not
elliptical. This solution contains four constants (inte-
grals of motion): k, s, ay and ¢;. The constant ay
specifies the position of the bubble on the x axis; ¢;
is the initial time moment. To clarify the meaning of
the constant s, we calculate the bubble area using for-
mula (18). Substituting (20) in (18), we obtain

S =n(\? - % —29?) = 7s,

and hence s is proportional to the area S. Finally, the
constant k characterizes the contribution of the second
harmonic to the bubble evolution; in fact, it defines how
much the bubble shape deviates from an ellipse (i.e.,
from the unperturbed state) at the initial moment of
time.

Solution (27), (29)—(31) describes the evolution of
the bubble boundary up to the formation of a singular-
ity at some finite time ¢t = t.. Figure 1 shows the bubble
profile (21) and (22) at successive instants of time. Tt is
seen that the bubble whose initial shape is close to the
unit circle is deformed asymmetrically, resulting in the
formation of a cusp at one end of the bubble. A typical
dependence of the amplitude \ on time is presented in
Fig. 2. The cusp develops as the marked point ¢t = ¢,
is approached in the counterclockwise direction. We
can see from the figure that all solutions of the second
family exist only for a finite time interval.

Note that the cusp in curve 5 of Fig. 1 assumes an
infinite number of harmonics in the variables {z,y}. In
the conformal variables {Re ¢, Im ¢}, as demonstrated,
it is sufficient to take a finite number of harmonics for
the description of the singularity formation.

5. CONCLUSION

The original (three-dimensional) problem of bubble
dynamics under the influence of electrostatic forces can
be reduced to the analysis of much simpler equations
describing the special flow regime where the velocity
and electric field potentials are linearly related. In the
case of two spatial dimensions, by using the confor-
mal mapping technique, these equations can be reduced
to the equation of LGE type, for which it is possible
to construct a set of exact particular solutions. The
simplest (quasistationary) solution (28) describes the
motion of an elliptical bubble with constant velocity.
Small perturbations of the initially elliptical boundary
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Fig.1. Evolution of the bubble boundary correspond-

ing to exact solutions (27), (29)-(31), where s = 1,

k= -0.02, t; = —11, @y = 0, and the upper sign “+"

is taken. The boundary shape is shown for the succes-

sive instants t = 0, ¢ = 0.5, t = 0.9, ¢t = 1.2, and
t=1t.~1.341

30

20

10

-25 =20 -15 -10

Fig.2. Time dependence of the second harmonic am-

plitude A for s = 1, £k = —0.02, and t; = —11 de-

scribed by Eq. (31). The instant of cusp formation

corresponds to the marked point ¢t = t, ~ 1.341; the

motion to this point occurs in the counterclockwise di-
rection

increase with time, as is shown in Fig. 1. We can see
that the cusp appears in a finite time at one end of the
bubble (the solutions obtained do not have mirror sym-
metry about the vertical axis). The curvature of the
boundary, its velocity, and the electric field strength
become infinite at the singular point. It is clear that
capillary forces, which are not taken into account in
our study, can significantly change the dynamics of the
system. But, we believe that the main result in this pa-
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per, namely, the demonstration of integrability of the
corresponding free surface problem (even in the simpli-
fied version treated here), can be regarded as significant
progress in theoretical studies of electrohydrodynamic
phenomena.

As a rule, when analyzing the behavior of drops or
bubbles in a uniform external electric field, researchers
limit themselves to the case where the boundary pos-
sesses the fore-aft symmetry, which is determined by
the symmetry of equilibrium configurations (see, for ex-
ample, Refs. [8, 11]). In the present work, it has been
shown that the fore-aft symmetry of the bubble can
break, which leads to the formation of a cusp only at
one side of the bubble. This result should be taken into
account when studying the bubble dynamics, in partic-
ular with regard to the problem of electrical breakdown
of dielectric liquids in the presence of gas bubbles.

We note that some results in this paper can be
generalized to the case where a drop of incompressible
dielectric liquid is considered instead of a bubble.
Using the approach proposed in Refs. [18, 22], one can
find that in the particular case where the ratio of the
permittivities of the fluids is equal to the inverse ratio
of their densities, the special regime of fluid motion
can be realized for which the velocity and electric
potentials are linearly dependent functions both inside
and outside the drop.
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