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EXACT SOLUTIONS FOR THE EVOLUTION OF A BUBBLE IN ANIDEAL LIQUID IN A UNIFORM EXTERNAL ELECTRIC FIELDN. M. Zubarev a;b *, O. V. Zubareva aaInstitute of Ele
trophysi
s, Russian A
ademy of S
ien
es, Ural Bran
h620016, Ekaterinburg, RussiabLebedev Physi
al Institute, Russian A
ademy of S
ien
es119991, Mos
ow, RussiaRe
eived May 23, 2014The dynami
s of a bubble in a diele
tri
 liquid under the in�uen
e of a uniform external ele
tri
 �eld are 
on-sidered. It is shown that in the situation where the boundary motion is determined only by ele
trostati
 for
es,the spe
ial regime of �uid motion 
an be realized for whi
h the velo
ity and ele
tri
 �eld potentials are linearlyrelated. In the two-dimensional 
ase, the 
orresponding equations are redu
ed to an equation similar in stru
tureto the well-known Lapla
ian growth equation, whi
h, in turn, 
an be redu
ed to a �nite number of ordinarydi�erential equations. This allows us to obtain exa
t solutions for asymmetri
 bubble deformations resulting inthe formation of a �nite-time singularity (
usp).DOI: 10.7868/S00444510150101621. INTRODUCTIONIt is known that a liquid drop suspended in anotherliquid deforms when an external ele
tri
 �eld is applied.In the 
ase of two perfe
t diele
tri
 �uids with no free
harges at the interfa
e, an initially spheri
al drop (ora gas bubble) is stret
hed by the ele
trostati
 for
esin the dire
tion of the ele
tri
 �eld [1�4℄. For leakydiele
tri
 �uids, the drop behavior be
omes more 
om-pli
ated; its deformation also depends on the ratio ofthe 
ondu
tivities of the �uids (see [5; 6℄ and the refe-ren
es therein).Considerable interest is fo
used on the behavior ofa 
ondu
ting drop surrounded by an insulating �uidin an ele
tri
 �eld [7�9℄). In this situation, the ele
-tri
 �eld also stret
hes the drop. If the drop movesthrough the ambient �uid, the dynami
 pressure of the�ow should be taken into a

ount. For irrotational �ow,in the absen
e of an ele
tri
 �eld, the drop is �attenedalong the dire
tion of its motion (see, e. g., Ref. [10℄).Considering a bubble instead of a drop 
orresponds topassing to the limit of zero density of the internal �uid.If the surfa
e of the bubble is assumed to be perfe
tly
ondu
ting, then the ele
tri
 �eld does not penetrate*E-mail: ni
k�iep.uran.ru

into the interior of the bubble as well as it does notpenetrate into the 
ondu
ting drop.The problem of bubble motion, as well as any otherproblem 
on
erning the dynami
s of a free surfa
e orinterfa
e, is extremely di�
ult to solve. Therefore, itis important to �nd ways to simplify the 
orrespond-ing equations of motion. One known approa
h is to
onsider the Stokes �ow of a vis
ous in
ompressible�uid, where the stream fun
tion satis�es the bihar-moni
 equation (see, e. g., Refs. [8, 9, 11℄). It is 
learthat the analysis essentially simpli�es for a two-dimen-sional bubble [12℄. The e�e
t of an ele
tri
 �eld onthe motion of a two-dimensional bubble or drop sur-rounded by a vis
ous �uid was studied numeri
ally inRefs. [13, 14℄. In the 
ase of two spatial dimensions, the
onformal mapping te
hnique 
an be e�e
tively usedfor studying the bubble behavior. It allows one to re-du
e the original moving boundary problem to a �xedboundary problem (see the papers by Crowdy [11℄ andby Tanveer and Vas
on
elos [15℄).In this paper, we show that if the boundary mo-tion is determined only by ele
trostati
 for
es (
apillaryfor
es being ignored), it is possible to use a 
ompletelydi�erent method to simplify the equations of motion,whi
h is appli
able to studying the potential �ow ofan in
ompressible, invis
id �uid. The method is basedon the 
onsideration of a spe
ial regime of liquid mo-174
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t solutions for the evolution : : :tion for whi
h the velo
ity and ele
tri
 �eld potentialsare linearly dependent fun
tions. Due to this depen-den
e, the number of equations required for des
rib-ing the motion of the bubble boundary 
an be redu
edby half. The redu
tion 
an be 
arried out in the gen-eral three-dimensional 
ase. In the parti
ular 
ase of atwo-dimensional bubble, where it is possible to use the
onformal mapping te
hnique, the problem redu
es toan equation similar to the Lapla
ian growth equation(LGE), whose time-dependent exa
t solutions 
an befound analyti
ally. Its simplest (quasistationary) solu-tion 
orresponds to an ellipti
al bubble moving witha 
onstant velo
ity along the dire
tion of the externalele
tri
 �eld. Other (nontrivial) solutions des
ribe thedevelopment of instability of the steady �ow. Initiallysmall deviations from the ellipti
al shape of the bubblegrow rapidly; the bubble boundary is deformed asym-metri
ally, resulting in the formation of a singularity (a
usp) in a �nite time.We note that a similar approa
h was previouslyused in the analysis of the ele
trohydrodynami
 insta-bility of a 
harged free surfa
e of liquid helium [16, 17℄and also of an interfa
e between two diele
tri
 �u-ids [18℄. A 
ondition for instability of the plane bound-ary of liquid helium (the threshold value of the surfa
e
harge density) was found in Ref. [19℄; it is a general-ization of the instability 
riterion for the surfa
e of a
ondu
ting liquid in an external ele
tri
 �eld [20℄. Afun
tional relation between the ele
tri
 and velo
ity po-tentials that underlies the analysis of boundary dynam-i
s in Refs. [16�18℄ arises in the situation where ele
-trostati
 for
es dominate over gravitational and 
apil-lary for
es, i. e., if the system is far above the stabilitythreshold [19℄.2. INITIAL EQUATIONSWe 
onsider the dynami
s of the free boundary of abubble in a perfe
t diele
tri
 (non
ondu
ting) �uid inthe presen
e of an external uniform ele
tri
 �eld. Weassume that the ele
tri
 �eld is dire
ted along the xaxis of the Cartesian 
oordinate system, and E is theexternal ele
tri
 �eld strength. Let D(t) be the regiono

upied by the �uid, Db(t) be the region 
orrespond-ing to the bubble, and �D(t) be the bubble boundary.We suppose that the surfa
e of the bubble is 
ondu
tiveand the 
harge relaxation time is small, and hen
e thesurfa
e 
an be 
onsidered equipotential in the 
hara
-teristi
 times of ele
trohydrodynami
 phenomena. Thissituation 
an 
orrespond to the bubble �lled with a dis-


harge plasma formed during ele
tri
al breakdown in aliquid diele
tri
.We assume that the �uid is invis
id and in
ompress-ible and that the �ow is irrotational (potential). Thevelo
ity and ele
tri
 �eld potentials, � and ', satisfythe Lapla
e equationsr2� = 0; r2' = 0 in D(t): (1)The velo
ity potential � obeys the dynami
 boundary
ondition (the nonstationary Bernoulli equation on afree surfa
e),��t + �2(r�)2 = �p� "0"2 (r')2 on �D(t): (2)Here, "0 is the va
uum permittivity, " is the diele
tri

onstant of the �uid, � is its density, and �p is the dif-feren
e between the �uid pressure at in�nity and thepressure in the bubble, �p = p1 � pb (the bubble isregarded as a 
onstant-pressure region). We supposethat �p does not vary with time and is de�ned by�p = "0"2 E2;whi
h 
orresponds to volume-preserving deformationsof the bubble. The last term in the right-hand sideof Eq. (2) is responsible for the ele
trostati
 pressureat the bubble boundary resulting from the intera
tionbetween free surfa
e 
harges and the external ele
tri
�eld. We note that the surfa
e tension e�e
ts are nottaken into a

ount in (2); this 
orresponds to the for-mal limit of a strong external ele
tri
 �eld.Without loss of generality, the ele
tri
 �eld poten-tial 
an be assumed to be zero at the bubble boundary:' = 0 on �D(t): (3)Formally, the equation'(x; y; z; t) = 0is the equation of a free surfa
e. Then the 
onditionthat the velo
ity of the bubble surfa
e 
oin
ides withthe normal velo
ity of the ambient liquid (the kinemati
boundary 
ondition) 
an be written as't +r' � r� = 0 on �D(t): (4)The system is 
losed by the 
onditions�! 0; '! �Ex; jrj ! 1; (5)stating that the liquid is at rest and the ele
tri
 �eld isuniform at an in�nite distan
e from the bubble.175
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 boundary 
ondition (4) byp�"0", then adding and subtra
ting dynami
 (2) andkinemati
 (4) boundary 
onditions, we �nd���� 'r"0"� �t + �2 �r��� 'r"0"� ��2 == "0"2 E2 on �D(t):It follows from these expressions that it is 
onvenientto introdu
e a pair of auxiliary potentials, (�) � �� 'p"0"=�:Then the initial equations (1)�(5) take the symmetri
form r2 (�) = 0 in D(t); (6) (�)t + 12 �r (�)�2 = "0"2� E2 on �D(t); (7) (�) ! �Exp"0"=�; jrj ! 1: (8)Equipotentiality 
ondition (3) is then rewritten as (+) =  (�) on �D(t): (9)This form of the equations of motion turns out to bevery 
onvenient for the analysis of the bubble dynam-i
s. 3. REDUCED EQUATIONS OF MOTIONAn important feature of the system of equa-tions (6)�(9) is that they are 
ompatible with the 
on-ditions (�) = +Exr"0"� or  (+) = �Exr"0"� :This proves the possibility of realizing the spe
ialregime of �uid motion for whi
h the potentials are re-lated by the linear expressions� = �p"0"=� ('+Ex) : (10)As follows from them, there exists a moving 
oordi-nate system in whi
h the liquid moves along the ele
tri
�eld lines. Relations (10) allow eliminating one of thepotentials from the initial equations of motion, whi
hsigni�
antly simpli�es their form.For 
onvenien
e, we swit
h to dimensionless vari-ables,'! 'ER; t! tp�R2="0"E2; r! rR;

where R is the 
hara
teristi
 size of the bubble. Theredu
ed equations of motion, written in terms of theele
tri
 �eld potential, have the formr2' = 0 in D(t); (11)'t � 'x � (r')2 = 0 on �D(t); (12)' = 0 on �D(t); (13)'! �x; jrj ! 1: (14)These two systems di�er only by the time dire
tion(they are related by the repla
ement t ! �t). With-out loss of generality, we 
an 
onsider only the systemwith the upper signs in Eq. (12).Thus, analyzing the initial equations (1)�(5), wehave shown that a spe
ial �ow regime 
an be real-ized for whi
h the velo
ity and ele
tri
 �eld potentialsare linearly related fun
tions. This regime is des
ribedby the mu
h simpler system (11)�(14). We empha-size that this result was obtained in the general three-dimensional 
ase.Below, we analyze system (11)�(14) in the parti
u-lar 
ase of two dimensions, where ' = '(x; y; t) (i. e.,there is no dependen
e on the third spatial variable).This means that we 
onsider the evolution of a two-di-mensional bubble, for example, as in Refs. [10; 11℄. It is
lear that su
h a 
onsideration is more of an a
ademi
rather than pra
ti
al interest. However, in this 
ase, itis possible to �nd exa
t solutions of the equations ofmotion using the 
onformal mapping te
hnique; thesesolutions give us an insight into the behavior of a bub-ble in the 
onsidered spe
ial �ow regime. Probably, thebasi
 regularities of the bubble behavior are 
ommonfor two- and three-dimensional 
ases.We now pro
eed with the two-dimensional 
ase. Weintrodu
e the 
omplex variable z = x+ iy and assumethat the surfa
e �D(t) is de�ned parametri
ally, x == X(l; t) and y = Y (l; t), or in the 
omplex form z == Z(l; t), where Z = X + iY and l is some parameter,to be spe
i�ed later. The 
omplex ele
tri
 potentialW � ' � i is an analyti
 fun
tion of the 
omplexvariable z outside the bubble, i. e., W = W (z). Here,the fun
tion  is a harmoni
 
onjugate of the ele
tri
�eld potential ' (the 
ondition  = 
onst de�nes theele
tri
 �eld lines). The 
omplex potential satis�es the
ondition W ! �z at in�nity. On the bubble surfa
e,the following relations hold:'t = �Re(WzZt); 'x = Re(Wz); (r')2 = jWzj2:176
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t solutions for the evolution : : :As a 
onsequen
e, 
ondition (12), whi
h de�nes themotion of the boundary, 
an be rewritten asRe �(Zt � 1)=Wz � = 1 on �D(t): (15)We perform a time-dependent 
onformal mappingof the regionD(t) onto the region outside the unit 
ir
lein the parametri
 �-plane. Then the bubble boundarymaps onto the 
ir
le j�j = 1. In terms of new variables,the 
omplex ele
tri
 potential is given by the expressionW (�; t) = ��(t)(� � ��1); (16)where �(t) is a fun
tion of time. The inverse mappingz(�; t) is unknown and has to be found. The fun
tionz(�; t) is analyti
 for j�j � 1; it satis�es the 
onditionz ! �(t)� at in�nity. The equation des
ribing the timeevolution of the mapping fun
tion z(�; t) 
an be ob-tained from (15). It has the formRe �(Zt � 1)z�=W� � = 1; j�j = 1:Substituting expression (16) for W here and using theparameterization � = eil for the 
ir
le j�j = 1, where lis a real parameter varying in the range 0 � l � 2�, we�nally obtain the equation of the LGE type (see, e. g.,Ref. [21℄): Im �(Zt � 1)Zl � = 2�(t) 
os l: (17)We demonstrate that for the 
onsidered �ow regime,the bubble area (the area of its 
ross se
tion by theplane xy) does not 
hange with time. Indeed, a

ord-ing to the Green's formula, the area of the region Db(t)is given by the 
ontour integralS = ZDb(t) dx dy = �12 Im 2�Z0 ZZl dl: (18)Di�erentiating this expression with respe
t to time, weobtainSt = � Im 2�Z0 ZtZl dl = 2�Z0 (Yl � 2� 
os l) dl = 0;where the integrand has been transformed with the helpof (17). Then the area S and therefore the bubble vol-ume are 
onstant. Otherwise, we would have to takethe 
hange of the gas pressure inside the bubble into a
-
ount. We re
all that in the initial problem statement,the di�eren
e between pressures inside the bubble andin the liquid at in�nity was assumed to be 
onstant.

4. EXACT SOLUTIONSA remarkable feature of Eq. (17) is that it admitsredu
tion to a system of a �nite number of ordinarydi�erential equations (ODEs). The substitution of theform Z(l; t) = �(t)eil + t+ NXn=0�n(t)e�inl (19)yields N + 2 ODEs for the amplitudes �(t) and �n(t)(n = 0; 1; : : : ; N). The nonlinear intera
tion of har-moni
s does not lead to the appearan
e of new har-moni
s. We note that expression (19) 
orresponds tothe mapping fun
tionz(�; t) = �(t)� + t+ NXn=0�n(t)��in;whi
h is analyti
 for j�j � 1 and satis�es the required
ondition z ! �� at in�nity.As 
an be seen from the stru
ture of Eq. (17), thesystem of ODEs for the harmoni
 amplitudes 
orre-sponding to ansatz (19) is linear in derivatives and,
onsequently, it 
an always be resolved with respe
t tothem. This enables its e�
ient numeri
al solution. Insome spe
ial 
ases, the system 
an be solved analyti-
ally.The 
ase N = 1 is trivial: the bubble surfa
e isalways ellipti
al. The simplest 
ase, where the bub-ble geometry already di�ers from ellipti
al and, 
onse-quently, the dynami
s of its surfa
e is nontrivial, 
or-responds to N = 2. With further in
rease in the num-ber of harmoni
s, the surfa
e dynami
s be
omes more
ompli
ated; however, the main regularities of bubbleevolution already appear at N = 2.So, we 
onstru
t the simplest solutions of (17) 
or-responding to ansatz (19) with N = 2. We seek thefun
tion Z in the formZ(l; t) = �(t)eil+�(t)+t+�(t)e�il+
(t)e�2il; (20)where �(t), �(t), �(t), and 
(t) are real amplitudes.Separating the real and imaginary parts in (20), we ob-tain the following parametri
 expressions for the bubblepro�le:x = X(l; t) = �(t) + t+ [�(t) + �(t)℄ 
os l ++ 
(t) 
os 2l; (21)y = Y (l; t) = [�(t) � �(t)℄ sin l � 
(t) sin 2l: (22)12 ÆÝÒÔ, âûï. 1 177
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olle
ting the terms
orresponding to the same harmoni
s, we arrive at thesystem of four �rst-order ODEs���t + ��t + 2

t = 0; (23)�
t � ��t + ��t + 2
�t = 2�; (24)��t + 2
�t � ��t = 0; (25)��
t + 2
�t = 0: (26)Integrating (26) yields
 = k�2; (27)where k is a 
onstant. We 
an see that system (23)�(26) admits two types of solutions. The �rst family ofsolutions 
orresponds to the 
ase k = 0:� = �0; � = �0; 
 = 0;� = � 2�0�0 � �0 t+ �0; (28)where �0, �0, and �0 are 
onstants. This quasistation-ary solution 
an be thought of as the unperturbed so-lution. A

ording to (21) and (22), the bubble surfa
eis an ellipse[x� �(t)� t℄2(�0 + �0)2 + y2(�0 � �0)2 = 1:The �ellipti
� bubble moves with a 
onstant transla-tional velo
ity v = �(�0 + �0)=(�0 � �0) along the xaxis. In the spe
ial 
ase where �0 = 0 (and hen
e v == �1), the bubble boundary is a 
ir
le of radius �0.The se
ond family of solutions 
orresponds to k 6= 0.Taking Eq. (27) into a

ount, we use (23) and (25) toobtain � = � ��2 � 2k2�4 � s�1=2 ; (29)� = �2k� + �1: (30)Thus, the amplitudes �, �, and 
 
an be expressed interms of �. Finally, solving Eq. (24), we �nd the im-pli
it dependen
e of the amplitude � on time t:� s+ 2k2�44k�2 � 4k2�2 � 12k� ��2 � 2k2�4 � s�1=2 == 2(t� t1): (31)

Thus, in addition to the trivial solution (28), forwhi
h the se
ond harmoni
 amplitude 
 is identi
allyzero, system of four ODEs (23)�(26) admits nontriv-ial (perturbed) solution (27), (29)�(31), for whi
h theamplitude 
 di�ers from zero, and the bubble is notellipti
al. This solution 
ontains four 
onstants (inte-grals of motion): k, s, �1 and t1. The 
onstant �1spe
i�es the position of the bubble on the x axis; t1is the initial time moment. To 
larify the meaning ofthe 
onstant s, we 
al
ulate the bubble area using for-mula (18). Substituting (20) in (18), we obtainS = �(�2 � �2 � 2
2) = �s;and hen
e s is proportional to the area S. Finally, the
onstant k 
hara
terizes the 
ontribution of the se
ondharmoni
 to the bubble evolution; in fa
t, it de�nes howmu
h the bubble shape deviates from an ellipse (i. e.,from the unperturbed state) at the initial moment oftime.Solution (27), (29)�(31) des
ribes the evolution ofthe bubble boundary up to the formation of a singular-ity at some �nite time t = t
. Figure 1 shows the bubblepro�le (21) and (22) at su

essive instants of time. It isseen that the bubble whose initial shape is 
lose to theunit 
ir
le is deformed asymmetri
ally, resulting in theformation of a 
usp at one end of the bubble. A typi
aldependen
e of the amplitude � on time is presented inFig. 2. The 
usp develops as the marked point t = t
is approa
hed in the 
ounter
lo
kwise dire
tion. We
an see from the �gure that all solutions of the se
ondfamily exist only for a �nite time interval.Note that the 
usp in 
urve 5 of Fig. 1 assumes anin�nite number of harmoni
s in the variables fx; yg. Inthe 
onformal variables fRe �; Im �g, as demonstrated,it is su�
ient to take a �nite number of harmoni
s forthe des
ription of the singularity formation.5. CONCLUSIONThe original (three-dimensional) problem of bubbledynami
s under the in�uen
e of ele
trostati
 for
es 
anbe redu
ed to the analysis of mu
h simpler equationsdes
ribing the spe
ial �ow regime where the velo
ityand ele
tri
 �eld potentials are linearly related. In the
ase of two spatial dimensions, by using the 
onfor-mal mapping te
hnique, these equations 
an be redu
edto the equation of LGE type, for whi
h it is possibleto 
onstru
t a set of exa
t parti
ular solutions. Thesimplest (quasistationary) solution (28) des
ribes themotion of an ellipti
al bubble with 
onstant velo
ity.Small perturbations of the initially ellipti
al boundary178
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Fig. 1. Evolution of the bubble boundary 
orrespond-ing to exa
t solutions (27), (29)�(31), where s = 1,k = �0:02, t1 = �11, �1 = 0, and the upper sign �+�is taken. The boundary shape is shown for the su

es-sive instants t = 0, t = 0:5, t = 0:9, t = 1:2, andt = t
 � 1:341
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t = tcFig. 2. Time dependen
e of the se
ond harmoni
 am-plitude � for s = 1, k = �0:02, and t1 = �11 de-s
ribed by Eq. (31). The instant of 
usp formation
orresponds to the marked point t = t
 � 1:341; themotion to this point o

urs in the 
ounter
lo
kwise di-re
tionin
rease with time, as is shown in Fig. 1. We 
an seethat the 
usp appears in a �nite time at one end of thebubble (the solutions obtained do not have mirror sym-metry about the verti
al axis). The 
urvature of theboundary, its velo
ity, and the ele
tri
 �eld strengthbe
ome in�nite at the singular point. It is 
lear that
apillary for
es, whi
h are not taken into a

ount inour study, 
an signi�
antly 
hange the dynami
s of thesystem. But, we believe that the main result in this pa-

per, namely, the demonstration of integrability of the
orresponding free surfa
e problem (even in the simpli-�ed version treated here), 
an be regarded as signi�
antprogress in theoreti
al studies of ele
trohydrodynami
phenomena.As a rule, when analyzing the behavior of drops orbubbles in a uniform external ele
tri
 �eld, resear
herslimit themselves to the 
ase where the boundary pos-sesses the fore-aft symmetry, whi
h is determined bythe symmetry of equilibrium 
on�gurations (see, for ex-ample, Refs. [8, 11℄). In the present work, it has beenshown that the fore-aft symmetry of the bubble 
anbreak, whi
h leads to the formation of a 
usp only atone side of the bubble. This result should be taken intoa

ount when studying the bubble dynami
s, in parti
-ular with regard to the problem of ele
tri
al breakdownof diele
tri
 liquids in the presen
e of gas bubbles.We note that some results in this paper 
an begeneralized to the 
ase where a drop of in
ompressiblediele
tri
 liquid is 
onsidered instead of a bubble.Using the approa
h proposed in Refs. [18, 22℄, one 
an�nd that in the parti
ular 
ase where the ratio of thepermittivities of the �uids is equal to the inverse ratioof their densities, the spe
ial regime of �uid motion
an be realized for whi
h the velo
ity and ele
tri
potentials are linearly dependent fun
tions both insideand outside the drop.This study was supported by the Ural Division ofthe Russian A
ademy of S
ien
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