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We consider formulations of the functional renormalization-group (fRG) flow for correlated electronic systems
with the dynamical mean-field theory as a starting point. We classify the corresponding renormalization-group
schemes into those neglecting one-particle irreducible six-point vertices (with respect to the local Green's func-
tions) and neglecting one-particle reducible six-point vertices. The former class is represented by the recently
introduced DMF?RG approach [31], but also by the scale-dependent generalization of the one-particle irreducible
representation (with respect to local Green's functions, 1PI-LGF) of the generating functional [20]. The second
class is represented by the fRG flow within the dual fermion approach [16,32]. We compare formulations of
the fRG approach in each of these cases and suggest their further application to study 2D systems within the

Hubbard model.
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1. INTRODUCTION

Strongly correlated electron systems demonstrate a
variety of interesting phenomena, such as magnetism,
(unconventional) superconductivity, “colossal” magne-
toresistance, and quantum critical behavior. The dy-
namical mean-field theory (DMFT) [1, 2], which be-
comes exact in the limit of high spatial dimensions
(d = o0), has allowed achieving substantial progress
in describing strong electronic correlations. In partic-
ular, it allowed describing the Mott—Hubbard metal—
insulator transition [3] accurately, with an important
local part of electronic correlations taken into account.

In real physical systems, which are one-, two-, or
three-dimensional, the nonlocal correlations neglected
in DMFT are important, however. Cluster extensions
of DMFT [4-8] can treat only short-range correlations
due to numerical limitations of the cluster size [9].
In spite of this, diagrammatic extensions of DMFT

*E-mail: katanin@mail.ru

have been developed. These are the dynamical ver-
tex approximation (DI'A) [10-15], the dual fermion
(DF) approach [16-19], and the one-particle irreducible
approach with respect to the local Green’s functions
(IPI-LGF) [20]. The DT'A approximation starts from
local two-particle irreducible vertices and sums ladder
or parquet diagrams for the vertices, considering the
effect of the nonlocality of the Green’s functions. The
DF approach on the other hand splits the degrees of
freedom into local ones, treated within DMFT, and
the non-local (dual), considered perturbatively, with a
possibility of summation of infinite series of diagrams
for dual fermions [19,21]. The 1PI version of the dual
fermion approach (the 1PI-LGF approach) performs
the same splitting of the local and nonlocal degrees
of freedom for 1PI (Legendre-transformed) generating
functionals. This approach therefore accounts for the
effect of one-particle reducible six-point and higher-
order reducible vertices, which was argued to be po-
tentially important in Ref. [22].

The above approaches typically treat nonlocal fluc-
tuations within the ladder approximation. A more
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powerful method, the parquet approach, can bring
substantial improvement over the ladder approxima-
tion [21,23], but is often not feasible numerically for
correlated electronic systems. At the same time, the
recently developed functional renormalization group
(fRG) approaches [24-29] allow performing approxi-
mate summation of the parquet set of the diagrams
at a lower computational cost if the six-point (i.e.,
three-particle) interaction vertices remain sufficiently
small during the flow. In particular, for the standard
fRG applied to the Hubbard model, the initial one-par-
ticle irreducible six-point vertices are zero, which fa-
vors the use of the one-particle irreducible approach,
where the corresponding six-point vertex can be ex-
pected to remain small during the flow. Using DMFT
as the initial theory for the flow accounts exactly for
the local subset of diagrams, but (in principle) yields
nonzero n-point vertices of arbitrarily high orders n, so
that the formulation and justification of the fRG ap-
proach requires more effort. In general, in this case,
one has to choose between neglecting the six-point
one-particle irreducible or reducible vertices, depend-
ing on the model under consideration. In particular,
in the half-filled spinless Falikov—Kimaball model, the
one-particle-reducible six-point local vertex vanishes in
the infinite-dimensional limit [30], while for the Hub-
bard model, at least in the weak-to-intermediate cou-
pling limit, neglecting six-point one-particle irreducible
local vertices seems more preferable.

In this paper, we concentrate on the renormali-
zation-group approaches that use DMFT as a star-
ting point and neglect either one-particle irreducible
or one-particle reducible three-particle vertices (with
respect to the local Green’s function). Recently, an
approach of the former type, considering the func-
tional renormalization-group flow from infinite to fi-
nite dimensions (the DMF?RG approach) was intro-
duced [31]. This flow starts from an infinite-dimen-
sional model, which is solved by DMFT, and consid-
ers the flow to a finite number of dimensions, e.g., in
the approximation of neglecting the local six-point ver-
tices. Because of the use of the 1PI approach, the latter
approximation implies the neglect of six-point vertices
that are one-particle irreducible with respect to the lo-
cal Green’s functions. For a more general view on the
possible variety of different renormalization-group ap-
proaches starting from DMFT, it is useful to formulate
the fRG approach for the other two mentioned schemes,
the 1PI-LGF and DF theories, and compare them with
the DMF2RG approach. This study is performed in the
present paper (see also Ref. [32]).

2. THE MODEL AND DYNAMICAL
MEAN-FIELD THEORY

We consider the general one-band model of fermions

interacting via a local interaction H;,t[Cis, cw],

H= Z 5k,o'‘/3\1;7,7‘/31(,0' + Z Hipy [Eio'v EIU’]? (]-)
k,o i,0
where ¢, and | are the fermionic operators, ¢, and
EL , are the corresponding Fourier-transformed objects,
and o =1, ] corresponds to a spin index. The model is
characterized by the generating functional

ZIn.n'] = / dle, c'lexp {=Sle, ] +nfe + e} |

cw T)+H]Je, cf]

S[C,CT]:/dT ch , (3)

where ¢;,, c;rg, Nio 1720 are the Grassman fields, the
fields n;, and n;fa correspond to source terms, and 7 €
€ (0,8 = 1/T] is the imaginary time.

The DMFT [1, 2] for model (1) can be introduced
via the effecive interaction

ln/d[c c

—Z/dTHmt[cw,cL] +

i,0

Vpomrrn, 77

X exp

+Z< (ivn) (Cka+77ka)(ck,a+77k,a) . (9

assuming locality of the “Weiss field” function {(7) and
its Fourier transform ((iv,), which have to be deter-
mined self-consistently from the condition

L Zg (k,ivy,), (5)

Cil (“/n) Z:loc “/n

G[oc (“/n) =

where

Gk, ivn) = G = [Go — Sioeivn)] ™, (6)
Gy = ivy — ek is the lattice noninteracting Green’s
function (we use the 4-vector notation k = (k,iv,)),
and X, (ivy,) is the self-energy of impurity problem (4),
which is in practice obtained within one of the impurity
solvers: exact diagonalization, quantum Monte Carlo,
etc.
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These solvers provide information not only on the
electronic self-energy but also on the corresponding ver-
tex functions [10, 33]. This is reflected in the following
expansion of the effective interaction:

Vourrnn'] = 9DMFT[7/7\k07 77;20] +
Yloc (“/n)
o (7
+ Z Mo 1~ zz/n)Eloc(iVn)nk’ @
where
Nko

o = SRR
7 1- Eloc(“/n)c;[)lc

The functional Vp rr[n,1m'] generates connected ver-
tices (which are in general one-particle reducible), am-
putated by the local Green’s function Gj,.(ivy,), such
that its expansion in the fields has the form

- 1
Vourr[n'.n] = 5Tioc © (1}, o ka.0) (0, or1lks.ot) +

+lre,

G loc (77;21,771620)(77;230—/ 77k4a’) X

X (g lhoa) + -, (8)
where T'j,. and I‘l(og are the connected four- and six-
point, vertices amputated with the local Green’s func-

tions G, €. 8-,

T9% (ivy . ..ivs) = (1 + 6yor)

-1
H Gloc iv;)

(4) :
X | Gloegor (iV1 - -

- Gloc(iyl)Gloc(iVZ)((sylyg - 600’ 61/21/3)] 9 (9)

and o stands for summation over momentum, fre-

il/g) —

quency, and spin indices satisfying the conservation
laws, and Glsg is the two-particle local Green’s func-
tion, which can be obtained by solving the impurity
problem. For the four-point vertex I'j,., the require-
ment of connectivity and amputation with the full local
Green’s functions implies the one-particle irreducibility.
However, the higher-order vertices, e.g., Flgc remain
one-particle reducible with respect to the local Green’s
functions. To obtain one-particle irreducible vertices,
the Legendre transformation of Eq. (4) has to be per-
formed.

3. THE ONE-PARTICLE IRREDUCIBLE
APPROACHES WITH RESPECT TO LOCAL
GREEN’s FUNCTIONS

3.1. The flow from infinite to finite dimension

within the DMF?RG approach

Recently, the flow from the infinite to a finite num-
ber of dimensions was introduced in Ref. [31]. This flow

involves evolution of the generating functional with the
action

SA = ZCLUG&;AC]CU + Z / dTHint [Ci0'7 CIU—] (10)

ko i,0

with the cutoff dependence of the bare Green’s function

Goka = [f(k, A)Gop+(1=f(k, A))CT (ivn)] ™1 (11)

containing some function f(k,A) such that f(k,1) =0
and f(k,0) = 1, allowing to interpolate between the
DMFT action for A = 0 and lattice action (3) for A = 1;
specific choices of this function are discussed in Sec. 4
(f(k,A) =1 — A was used in Ref. [31]). The 1PI ap-
proach applied to model (10) yields the equations for
the self-energy ¥ and interaction vertex Vj:

dx
—dAA = VA © SA7 (12)
d
d‘j{\ =Vao(GproSy+SroGp)oVh, (13)
where
Gok,A
Gy = — 0% 14
AT YeaGora’ (14
o de,A -1 6f
Sk’A - dA Y =const (gk lOC) 8AG (15)

This approach uses initial one-particle-irreducible ver-
tices and self-energy as the initial condition for the flow:
Vaz1 = I‘loc, YA=1 = Yjoe, Which are in practice ob-
tained from the solution of the impurity problem (4).
At the same time, Egs. (12) and (13) neglect the local
1PT six-point vertex at the initial stage of the flow.

3.2. General formulation of the 1PI-LGF
approach

Another way of the treatment of nonlocal correla-
tions, based on DMPT as a starting point, is the split-
ting of local and nonlocal correlations in the generating
functional for the lattice theory. For the one-particle-ir-
reducible version, this was done within the 1PI-LGF
approach considered in Ref. [20]. This approach repre-
sents the partition function as a functional of the local
Green’s function Gy, and the corresponding nonlocal
part g~k = Gr — Gioe. Contrary to the dual fermion
approach, considered in the next section, this repre-
sentation contains two fermionic fields, one of which
describes propagation of nonlocal degrees of freedom
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(similarly to the DF approach) and the other provides
the one-particle irreducibility of the resulting func-
tional.

To formulate the renormalization-group treatment
within this approach, we trivially generalize the rep-
resentation for the partition function obtained in
Ref. [20], to introduce a A-dependence of the lattice
Green’s function G, by the replacement G, — Gja,
where Gy, A is defined by

Gra = [F(k, A)GF +(1—f(k, NGl (iva)] . (16)

which is similar to Eq. (11). The other choice, which we
consider below, is to combine the two Green’s functions
(and not their inverse) into a sum,

gk:7A = f(kv A)gk + [1 - f(kvA)]Gloc(iVn) (17)

such that

gk — gk,A = gk,A - Gloc(iyn) =
= f(k, M)[Gk — Gioc(ivn)]. (18)

The resulting A-dependent partition function in both
cases is given by [20]

Zalnton] = / DI&", DT, 1] x

x exp & Sk, Wi + 0ro) + (0], + 0L, ) ot

k,o

+ % Z gk_,/l\ <¢L(r¢k‘7 + ¢]tg¢k0' + ¢La—wka) +
k,o

+ (gk_ll\ - Gl_t)(1:7u) w;tgwka - % x

X Z Zf;/oyc:ﬁo" |:(¢]1g;g—¢k+q,o') (¢L,+q7a,¢k,0,) +

kk'q oo’

+ <¢Lg¢k+q,0) <¢L’+q7gr¢k’a’) +
+ % (¢La¢k+q’0) (¢L’+q7g’¢k’0”)] J[¢T,¢], (19)

where J[#!, ¢] is the Jacobian, defined in terms of local
degrees of freedom in Ref. [20], and

v 60'0" vv'w
Floc,o’o” =|1- 9 I-‘loc,aa’ .

Equation (19) contains integration over two fermionic
fields ¢ and v; the latter appears after the fermionic
Hubbard-Stratanovich transformation of the Legendre
transform of the action and provides the one-particle

12 JKBT®, Brim. 6

irreducibility of the resulting approach with respect to
the local Green’s functions. The diagrammatic mean-
ing of Eq. (19), as well as the summation of the ladder
diagrams for the vertex and their effect on the self-
energy, was discussed in detail in Ref. [20]; here, we
consider the renormalization-group approach to this
representation.

The bare propagator of representation (19), which
fully includes the effect of the local self-energy, can be
conveniently written in the spinor representation [20]

I (20)
wka
and is given by
1 t
G = _B<<q)k|q)k>>0 =
-1
_( 9ea Gea _
Gin Gir ~ Gioew

_ gk,A Gloc,u ) (21)

GlOC,V _Gloc,y

The corresponding equations for the vertex Vxﬁ 7 (ky,
ka; ks, ki) (where ki, ko and ks, ks are the momenta
and frequencies of the incoming and outgoing electrons,
ki = (ki,iur(f)), and «, 3,7, = 1,2 respectively corre-
spond to ¢ and 1 fields) and the nonlocal part of the
self-energy ©47 (k, iv,,) are

dSA

i = VA 0 Sj, (22)
dVv
d—/(\:VAO(GA OSA+SAOGA)OVA7 (23)
where
Gra =[G — Seal (24)

is the dressed spinor Green’s function. For the choice
of the propagators in (16), we obtain

of(k,A _ S -
Ska=—(0;" - G,;i)%[e‘rk,k = D]
11 ~
X ( ) [Gih —Seal™, (25)
11 :
while for propagator (17), we find
5 Of(k, A _ S -
Ska = (G — Gloc)gk,i%[Gk,k =l %
11 -~
X ( . > [Gh —Zkal™ (26)
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We note that the nonlocal (physical) Green’s func-
tion can be directly obtained from Eq. (24) by sum-
ming all the components of the matrix Green’s func-
tion (GI;}\ —f)k,,\)’l; the corresponding “physical” self-
energy is then extracted in the standard way from the
physical Green’s function and the flowing bare Green’s
function (G, \ + Sioe) L.

For A > /7\0 (where Ay is the upper scale of the prob-
lem), we have G, = 0, and hence only the G!2, G2!,
and G?2 elements of the Green’s function are nonzero,
which corresponds to a purely local theory. It can be
shown that the contribution of these Green’s functions
are exactly compensated by the “counterterms” that
arise from the Jacobian of the transformation. The ini-
tial conditions for the vertex and the self-energy are

VAN (K, ks ks, kg) = VA2 (Ky, kos ke, kg) =

_ Viln(khkz; kg, ky) = V}\ml(khk% ks, ky) =
— VY (ks g ) =

— FN

loc?

(27)
2 (k) = 0. (28)

3.3. Comparison with the DMF?RG approach

To compare the fRG flow within the 1PI-LGF and
DMF2RG approaches, we consider the choice of prop-
agators (16) and (25). We assume in what follows that
the self-energy correction has the structure

11 11
zk,A:z;{)A<1 1>+z§j)A<1 0), (29)

which was obtained in the ladder approximation in
Ref. [20] and is justified self-consistently below. With
this assumption, the Green’s function Gy A can be rep-
resented in the form
—_— X
2
1- GlOC,l/E](i;)\

10
Gia =G +
weon(10)
-1 1
. (30
(L)

where Gi A is given by Eq. (14) with Ty A = Egg\ +

GlOC,V

+ 2223\ For the single-scale propagator, we obtain

S 0
Sk,A = ( ]B’A 0 > 3 (31)

where Sj a is identical to the single-scale propaga-
tor (15) considered in Ref. [31].

Considering the
Thiy = Sea =T+ 500

component of the self-energy and the V"' (ky, ko; k3,
k4) component of the vertex, the first term in Eq. (30)
yields the equations of the DMF2RG approach, while
the second term yields zero under the assumption that
the vertex keeps its structure (27). But we have to ver-
ify that Eqgs. (27), (30), and (31) are preserved by the
considering approach. We first consider the self-energy.
Assuming ansatz (27) for the vertices and using the re-
sult in (31) for the single-scale propagator, we find that

11 _ 12 _ 21
DD WD e

This implies Eq. (30). We next verify the fulfillment of
vertex ansatz (27). Starting with (30) and (31), we find
that the first term in Eq. (30) provides the fulfillment
of the first three lines in (27). For the vertices V!
VI V2 and V2, the second term involves ver-
tices with two indices “2”, like V{22, which turn out to
cancel each other. Therefore, we find that the repre-
sentations given by the first three lines of Eq. (27) and
Eqs. (30) and (31) preserve their form under the flow,
and the considered approach appears to be equivalent
to the DMF2RG approach.

4. THE DUAL FERMION APPROACH

The renormalization of the dual fermion approach
of Refs. [16-19] was formulated and related to the
renormalization of the original lattice theory (2), (3)
in Ref. [32]. Here we consider the functional form of
this approach, expressed in terms of the effective inter-
actions. The DF approach can be conveniently formu-
lated by splitting the effective interaction of the lattice
theory (see, e.g., Ref. [24]),

Vn,n'] = —ln/d[c, '] x

X exp Z Gor (CLU +nl) (ko + nka) -
k,o

- Z/dTHint[ciﬂach] =

=—In Z[Go_klrlka'a G(Tklnltxr] - n;to.Gaklnkaa (32)
without performing its Legendre transformation. The

expansion of V[n,n'] in source fields generates con-
nected (in general, one-particle reducible) Green’s func-
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tions, amputated by the noninteracting Green’s func-
tions Go of the lattice theory. Applying the covari-
ation splitting formula to Eq. (32) yields the relation
between the lattice and dual effective interactions [22]

Vin,nt] = Vig, it +

+k§;nk01_§“§ H;G Mheor (33)

where the effective interaction for the dual theory is
defined by
—In / D[z e x
X exp Z gk (Ck pu 7/7\]1’0-) (ac,a' - ﬁk,a’) - (34)

3 ~ Nko
) “’r’ , — d )
DMFT[C E] ke 1- Eloc(“jn)c;’ok

As in the preceding section, we set QNk =G — Gioe-

To introduce a A-dependence of the effective in-
teraction, similarly to the preceding section, we again
replace G, — Gpa (see, e.g., Eq. (16) or Eqgs. (17)
and (18)). To generalize relation (33) to arbitrary A,
we also adjust the lattice bare Green’s function accor-
ding to

GOk — GOk,A = [gk—j\ + Eloc(il/n)]il-
Equation (33) then becomes
Valn,n'] = Valin, n}] +

Eloc(il/n) ~f
+ Z k Ao 1+ gk Azloc(“/n) T’kJ\,o” (35)

nk,A,o' - nko'[]- + Eloc(i’/n)glc,A]-

This allows us to perform a consistent renormalization
of the lattice and dual theory, in particular, keeping
the relation between the dual X4(k, A) and lattice £y a
self-energies [16, 22] unchanged (cf. Ref. [32]):

D _ Ed(kv A)
B T T ¥ Groe(ivm) Za(k, A)

+ Zioc(ivy). (36)

The renormalization of the dual fermion effective
interaction V,[7, '] can be performed in the standard
way. The Polchinskii equation for Vy is

S e~ 3 1)53(2
VAL = —Ap,, Ir+ AR RIS
We note that the A-derivative here does not act on the

source fields 7 and 7f, whose A-dependent values are

substituted in the resulting effective interaction. This
A-dependence determines the flow of the lattice effec-
tive interaction (35) in accordance with

5V %
nValn,n'] = daValiin, k] + { 6772 + WAnT}

X (DtocOAGEA)+ Dk 5 Ehoc(iVn) (02 Tk A Mko - (37)
k,o

Assuming
Valn,n'1=> Vaan] ...

VAL, 1] =Y On a0 i1 - Ty

;
Nyoln/241 - - - Nin
2 @)

we hence obtain the standard relation between the lat-
tice and dual self-energies, Eq. (36), and the higher-or-
der vertices

n
VmA =Un,A H 1+ Eloc(il’i)gki7l\] )

i=1

n>2 (39

The last relation accounts for the effect of the missing
local self-energy insertions in the effective interaction
QDMFT[E*,E], which determines ]7/\ [7,7] according to
Eq. (34).

The Legendre transformation of lA}A can also be per-
formed in the standard way. The resulting 1PI fRG
equations (irreducible with respect to G r) for the fully
amputated vertex (cf. Ref. [32])

4~
_ 1 _
VA =Tp Hi—l Ok AG Ay UA =TUga,

are given by

dx
d—Ad = UA © SA, (40)
dUA =~ ~
H:UAO(GAOSA+SAOGA)OUA7 (41)
where
~k7A _ gk,A _ 7 (42)
1—%4(k,A)Gg A
4
va =7 [J(1 = Salki, A)Gi, ), (43)
i=1
and
_ dék,A .
Sk = Tx
Y g=const
of(k,A)
_(gk - lz)u',‘)glil7A A x
1

X —
[1—Xa(k,A)Gral?
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for the choice in (16) and

dék,A
dA

of(k,A) "
oA
1
X —
[1—Xq(k,A)GrAl?
for the choice in (17). The initial condition is £4 = 0,
VA = Dioe. As discussed above, Eqgs. (40) and (41) ne-
glect the local six-point vertex, which is one-particle
reducible with respect to the local Green’s function.
To compare Eqs. (40) and (41) with those of the
DMF2RG approach, we again consider the cutoff de-
pendence in (16). The vertices v, o with n > 2 can
be related to the corresponding vertices Vj, o of the
DMF2RG approach by amputating Vn,,\ by the re-
spective full Green’s functions and using relations (39)
and (43):

SkA = —(Gr — Gioc)

Y g=const

Vi =V H GOki,AG,:A =
1-— Eki,AGOki,A }

1— Sa(ki, A)Gri o

It can be verified that this factor exactly cancels
the difference between the single-scale propagator
and Green’s functions in the dual fermion approach
(Eqs. (42) and (44)) and the DMF?RG approach
(Egs. (14) and (15)), see Ref. [32]. However, the cor-
responding equations differ because of the A-derivative
of the corresponding factors [32].

= Un,A H { ]- + Z:loc “/z)gk A]

5. CUTOFF SCHEMES AND
SELF-CONSISTENCY

Here, we compare different cutoff schemes and an-
alyze their applicability to the renormalization-group
treatment discussed in the preceding Sections.

We start with the simple momentum cutoff

f(k,A) = 0(|ex| = A). (45)

Combined with Eq. (17), the choice (45) has a simple
physical meaning: we put the Green’s function equal to
the local Green’s function inside the shell |ex| < A and
equal to the nonlocal function outside this shell. This
cutoff, however, does not preserve the important prop-
erty of vanishing of the average of GA over momentum
space under the flow:

¥ Gk

= Z [G(k,ivn) = Gioc(ivn)] #0, A >0, (46)

k:lEk‘>A

Livy,) =

and, therefore, is not physical.
A possible physical choices are the “interaction flow”
cutoff

FE,A)=1—A (47)

and the frequency cutoff used by Husemann and Salm-
hofer [34],

1/2

_ n

TN = /iy (48)
which allow flowing from the theory not interacting
nonlocally (A = 1) to the fully interacting theory
(A = 0). These two cutoffs preserve the local part
of the Green’s function if decomposition (17) is used.
The possible difficulty of using these two cutoffs is the
large computational effort: because one cannot project
momenta to the Fermi surface, one has to deal with

many “patches” in the whole Brillouin zone.

Finally, we comment on the effect of self-consisten-
cy. In the dual fermion approach, two ingridients of
a self-consistent procedure were used. The first is to
obtain the self-consistent self-energy using the diagram
series in the auxiliary space. This self-consistency is
fully implemented in the discussed approaches by flow-
ing the self-energy. At the same time, the second step
(the so-called external self-consistency) requires adjust-
ing the initial local problem according to the local part
of the obtained self-energy. A similar procedure can
be applied to the approaches considered in this paper.
This type of self-consistency is expected to be impor-
tant at relatively strong couplings, where it increases
the resulting self-energy, making it more “insulating”
(see, e.g., Ref. [20]).

6. CONCLUSION

We have considered the application of the functional
renormalization-group approach to strongly correlated
electronic systems within the one-particle irreducible
approaches with respect to the local Green’s functions
and the dual fermion approach. Both these approaches
allow consistent renormalization; the dual fermion ap-
proach is expected to be applicable if the one-particle-
reducible vertices (with respect to the local Green’s
functions) of sixth and higher orders are small, while
the 1PI approaches with respect to local Green’s func-
tions assume the smallness of one-particle-irreducible
vertices.

Further numerical investigations of the validity of
these assumptions, as well as comparison of the results
of the our approaches to the flow from infinite to finite
dimensions [31] remain to be performed.
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