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FUNCTIONAL RENORMALIZATION-GROUP APPROACHES,ONE-PARTICLE (IR)REDUCIBLE WITH RESPECT TO LOCALGREEN's FUNCTIONS, WITH DYNAMICAL MEAN-FIELD THEORYAS A STARTING POINTA. A. Katanin *M. N. Miheev Institute of Metal Physis of Ural Branh of Russian Aademy of Sienes620990, Ekaterinburg, RussiaUral Federal University620002, Ekaterinburg, RussiaReeived November 5, 2014We onsider formulations of the funtional renormalization-group (fRG) �ow for orrelated eletroni systemswith the dynamial mean-�eld theory as a starting point. We lassify the orresponding renormalization-groupshemes into those negleting one-partile irreduible six-point verties (with respet to the loal Green's fun-tions) and negleting one-partile reduible six-point verties. The former lass is represented by the reentlyintrodued DMF2RG approah [31℄, but also by the sale-dependent generalization of the one-partile irreduiblerepresentation (with respet to loal Green's funtions, 1PI�LGF) of the generating funtional [20℄. The seondlass is represented by the fRG �ow within the dual fermion approah [16; 32℄. We ompare formulations ofthe fRG approah in eah of these ases and suggest their further appliation to study 2D systems within theHubbard model.DOI: 10.7868/S00444510150601911. INTRODUCTIONStrongly orrelated eletron systems demonstrate avariety of interesting phenomena, suh as magnetism,(unonventional) superondutivity, �olossal� magne-toresistane, and quantum ritial behavior. The dy-namial mean-�eld theory (DMFT) [1, 2℄, whih be-omes exat in the limit of high spatial dimensions(d ! 1), has allowed ahieving substantial progressin desribing strong eletroni orrelations. In parti-ular, it allowed desribing the Mott�Hubbard metal�insulator transition [3℄ aurately, with an importantloal part of eletroni orrelations taken into aount.In real physial systems, whih are one-, two-, orthree-dimensional, the nonloal orrelations negletedin DMFT are important, however. Cluster extensionsof DMFT [4�8℄ an treat only short-range orrelationsdue to numerial limitations of the luster size [9℄.In spite of this, diagrammati extensions of DMFT*E-mail: katanin�mail.ru

have been developed. These are the dynamial ver-tex approximation (D�A) [10�15℄, the dual fermion(DF) approah [16�19℄, and the one-partile irreduibleapproah with respet to the loal Green's funtions(1PI�LGF) [20℄. The D�A approximation starts fromloal two-partile irreduible verties and sums ladderor parquet diagrams for the verties, onsidering thee�et of the nonloality of the Green's funtions. TheDF approah on the other hand splits the degrees offreedom into loal ones, treated within DMFT, andthe non-loal (dual), onsidered perturbatively, with apossibility of summation of in�nite series of diagramsfor dual fermions [19; 21℄. The 1PI version of the dualfermion approah (the 1PI�LGF approah) performsthe same splitting of the loal and nonloal degreesof freedom for 1PI (Legendre-transformed) generatingfuntionals. This approah therefore aounts for thee�et of one-partile reduible six-point and higher-order reduible verties, whih was argued to be po-tentially important in Ref. [22℄.The above approahes typially treat nonloal �u-tuations within the ladder approximation. A more1254



ÆÝÒÔ, òîì 147, âûï. 6, 2015 Funtional renormalization-group approahes : : :powerful method, the parquet approah, an bringsubstantial improvement over the ladder approxima-tion [21; 23℄, but is often not feasible numerially fororrelated eletroni systems. At the same time, thereently developed funtional renormalization group(fRG) approahes [24�29℄ allow performing approxi-mate summation of the parquet set of the diagramsat a lower omputational ost if the six-point (i. e.,three-partile) interation verties remain su�ientlysmall during the �ow. In partiular, for the standardfRG applied to the Hubbard model, the initial one-par-tile irreduible six-point verties are zero, whih fa-vors the use of the one-partile irreduible approah,where the orresponding six-point vertex an be ex-peted to remain small during the �ow. Using DMFTas the initial theory for the �ow aounts exatly forthe loal subset of diagrams, but (in priniple) yieldsnonzero n-point verties of arbitrarily high orders n, sothat the formulation and justi�ation of the fRG ap-proah requires more e�ort. In general, in this ase,one has to hoose between negleting the six-pointone-partile irreduible or reduible verties, depend-ing on the model under onsideration. In partiular,in the half-�lled spinless Falikov�Kimaball model, theone-partile-reduible six-point loal vertex vanishes inthe in�nite-dimensional limit [30℄, while for the Hub-bard model, at least in the weak-to-intermediate ou-pling limit, negleting six-point one-partile irreduibleloal verties seems more preferable.In this paper, we onentrate on the renormali-zation-group approahes that use DMFT as a star-ting point and neglet either one-partile irreduibleor one-partile reduible three-partile verties (withrespet to the loal Green's funtion). Reently, anapproah of the former type, onsidering the fun-tional renormalization-group �ow from in�nite to �-nite dimensions (the DMF2RG approah) was intro-dued [31℄. This �ow starts from an in�nite-dimen-sional model, whih is solved by DMFT, and onsid-ers the �ow to a �nite number of dimensions, e. g., inthe approximation of negleting the loal six-point ver-ties. Beause of the use of the 1PI approah, the latterapproximation implies the neglet of six-point vertiesthat are one-partile irreduible with respet to the lo-al Green's funtions. For a more general view on thepossible variety of di�erent renormalization-group ap-proahes starting from DMFT, it is useful to formulatethe fRG approah for the other two mentioned shemes,the 1PI�LGF and DF theories, and ompare them withthe DMF2RG approah. This study is performed in thepresent paper (see also Ref. [32℄).

2. THE MODEL AND DYNAMICALMEAN-FIELD THEORYWe onsider the general one-band model of fermionsinterating via a loal interation Hint[bi� ;byi� ℄,H =Xk;� "k;�byk;�bk;� +Xi;� Hint[bi� ;byi� ℄; (1)where bi� and byi� are the fermioni operators, bk;� andbyk;� are the orresponding Fourier-transformed objets,and � ="; # orresponds to a spin index. The model isharaterized by the generating funtionalZ[�; �y℄ = Z d[; y℄ exp��S[; y℄ + �y+ y�	 ; (2)S[; y℄ = Z d� 8<:Xi;� yi�(�) ��� i�(�)+H [; y℄9=; ; (3)where i� , yi� , �i� , �yi� are the Grassman �elds, the�elds �i� and �yi� orrespond to soure terms, and � 22 [0; � = 1=T ℄ is the imaginary time.The DMFT [1, 2℄ for model (1) an be introduedvia the e�eive interationVDMFT [�; �y℄ = � lnZ d[; y℄�� exp8<:�Xi;� Z d�Hint[i� ; yi� ℄ ++ Xk;� ��1(i�n)�yk;�+�yk;�)(k;�+�k;��9=; ; (4)assuming loality of the �Weiss �eld� funtion �(�) andits Fourier transform �(i�n), whih have to be deter-mined self-onsistently from the onditionGlo(i�n) � 1��1(i�n)��lo(i�n) =Xk G(k; i�n); (5)where G(k; i�n) � Gk = �G�10k � �lo(i�n)��1 ; (6)G�10k = i�n � "k is the lattie noninterating Green'sfuntion (we use the 4-vetor notation k = (k; i�n)),and �lo(i�n) is the self-energy of impurity problem (4),whih is in pratie obtained within one of the impuritysolvers: exat diagonalization, quantum Monte Carlo,et.1255



A. A. Katanin ÆÝÒÔ, òîì 147, âûï. 6, 2015These solvers provide information not only on theeletroni self-energy but also on the orresponding ver-tex funtions [10; 33℄. This is re�eted in the followingexpansion of the e�etive interation:VDMFT [�; �y℄ = bVDMFT [b�k� ; b�yk� ℄ ++Xk;� �yk;� �lo(i�n)1� �(i�n)�lo(i�n)�k;� ; (7)where b�k;� = �k�1� �lo(i�n)G0k :The funtional bVDMFT [�; �y℄ generates onneted ver-ties (whih are in general one-partile reduible), am-putated by the loal Green's funtion Glo(i�n), suhthat its expansion in the �elds has the formbVDMFT [�y; �℄ = 12�lo Æ (�yk1;��k3;�)(�yk2 ;�0�k4;�0) ++ 16�(6)lo Æ (�yk1��k2� )(�yk3�0�k4�0 )�� (�yk5�00�k6�00) + : : : ; (8)where �lo and �(6)lo are the onneted four- and six-point verties amputated with the loal Green's fun-tions Glo, e. g.,���0lo (i�1 : : : i�3) = (1 + Æ��0 )�1Y4i=1G�1lo(i�i)�� hG(4)lo;��0 (i�1 : : : i�3) �� Glo(i�1)Glo(i�2)(Æ�1�3 � Æ��0Æ�2�3)i ; (9)and Æ stands for summation over momentum, fre-queny, and spin indies satisfying the onservationlaws, and G(4)lo is the two-partile loal Green's fun-tion, whih an be obtained by solving the impurityproblem. For the four-point vertex �lo, the require-ment of onnetivity and amputation with the full loalGreen's funtions implies the one-partile irreduibility.However, the higher-order verties, e. g., �(6)lo remainone-partile reduible with respet to the loal Green'sfuntions. To obtain one-partile irreduible verties,the Legendre transformation of Eq. (4) has to be per-formed.3. THE ONE-PARTICLE IRREDUCIBLEAPPROACHES WITH RESPECT TO LOCALGREEN's FUNCTIONS3.1. The �ow from in�nite to �nite dimensionwithin the DMF2RG approahReently, the �ow from the in�nite to a �nite num-ber of dimensions was introdued in Ref. [31℄. This �ow

involves evolution of the generating funtional with theationS� =Xk� yk�G�10k;�k� +Xi;� Z d�Hint[i� ; yi� ℄ (10)with the uto� dependene of the bare Green's funtionG0k;� = [f(k;�)G�10;k+(1�f(k;�))��1(i�n)℄�1 (11)ontaining some funtion f(k;�) suh that f(k; 1) = 0and f(k; 0) = 1, allowing to interpolate between theDMFT ation for � = 0 and lattie ation (3) for � = 1;spei� hoies of this funtion are disussed in Se. 4(f(k;�) = 1 � � was used in Ref. [31℄). The 1PI ap-proah applied to model (10) yields the equations forthe self-energy �� and interation vertex V�:d��d� = V� Æ S�; (12)dV�d� = V� Æ (G� Æ S� + S� ÆG�) Æ V�; (13)where Gk;� = G0k;�1� �k;�G0k;� ; (14)Sk;� = dGk;�d� �����=onst = �(G�1k �G�1lo) �f��G2k;�: (15)This approah uses initial one-partile-irreduible ver-ties and self-energy as the initial ondition for the �ow:V�=1 = �"#lo, ��=1 = �lo, whih are in pratie ob-tained from the solution of the impurity problem (4).At the same time, Eqs. (12) and (13) neglet the loal1PI six-point vertex at the initial stage of the �ow.3.2. General formulation of the 1PI�LGFapproahAnother way of the treatment of nonloal orrela-tions, based on DMPT as a starting point, is the split-ting of loal and nonloal orrelations in the generatingfuntional for the lattie theory. For the one-partile-ir-reduible version, this was done within the 1PI�LGFapproah onsidered in Ref. [20℄. This approah repre-sents the partition funtion as a funtional of the loalGreen's funtion Glo and the orresponding nonloalpart eGk = Gk � Glo. Contrary to the dual fermionapproah, onsidered in the next setion, this repre-sentation ontains two fermioni �elds, one of whihdesribes propagation of nonloal degrees of freedom1256



ÆÝÒÔ, òîì 147, âûï. 6, 2015 Funtional renormalization-group approahes : : :(similarly to the DF approah) and the other providesthe one-partile irreduibility of the resulting fun-tional.To formulate the renormalization-group treatmentwithin this approah, we trivially generalize the rep-resentation for the partition funtion obtained inRef. [20℄, to introdue a �-dependene of the lattieGreen's funtion Gk by the replaement Gk ! Gk;�,where Gk;� is de�ned byGk;� = �f(k;�)G�1k +(1�f(k;�))G�1lo(i�n)��1 ; (16)whih is similar to Eq. (11). The other hoie, whih weonsider below, is to ombine the two Green's funtions(and not their inverse) into a sum,Gk;� = f(k;�)Gk + [1� f(k;�)℄Glo(i�n) (17)suh thateGk ! eGk;� := Gk;� �Glo(i�n) == f(k;�)[Gk �Glo(i�n)℄: (18)The resulting �-dependent partition funtion in bothases is given by [20℄Z�[�y; �℄ = Z D[�y; �℄D[ y;  ℄�� exp8<:Xk;� �yk� ( k� + �k�) + � yk� + �yk�� �k�++ 1�Xk;� G�1k;� ��yk��k� +  yk��k� + �yk� k��++ �G�1k;� �G�1lo;�� yk� k� � 1�3 ��Xkk0qX��0 e���0!lo;��0 h� yk��k+q;����yk0+q;�0�k0�0� ++ ��yk��k+q;����yk0+q;�0 k0�0�++ 12 ��yk��k+q;����yk0+q;�0�k0�0��9=; J [�y; �℄; (19)where J [�y; �℄ is the Jaobian, de�ned in terms of loaldegrees of freedom in Ref. [20℄, ande���0!lo;��0 = �1� Æ��02 ����0!lo;��0 :Equation (19) ontains integration over two fermioni�elds � and  ; the latter appears after the fermioniHubbard�Stratanovih transformation of the Legendretransform of the ation and provides the one-partile

irreduibility of the resulting approah with respet tothe loal Green's funtions. The diagrammati mean-ing of Eq. (19), as well as the summation of the ladderdiagrams for the vertex and their e�et on the self-energy, was disussed in detail in Ref. [20℄; here, weonsider the renormalization-group approah to thisrepresentation.The bare propagator of representation (19), whihfully inludes the e�et of the loal self-energy, an beonveniently written in the spinor representation [20℄�k� =  �k� k� ! (20)and is given byGk;� = � 1� hh�kj�ykii0 ==  G�1k;� G�1k;�G�1k;� G�1k;� �G�1lo;� !�1 ==  eGk;� Glo;�Glo;� �Glo;� ! : (21)The orresponding equations for the vertex V��Æ� (k1,k2; k3, k4) (where k1; k2 and k3; k4 are the momentaand frequenies of the inoming and outgoing eletrons,ki = (ki; i�(i)n ), and �; �; ; Æ = 1; 2 respetively orre-spond to � and  �elds) and the nonloal part of theself-energy e���� (k; i�n) arede��d� = V� Æ S�; (22)dV�d� = V� Æ (G � Æ S�+ S� Æ G � ) Æ V�; (23)where G k;� = [G�1k;� � e�k;�℄�1 (24)is the dressed spinor Green's funtion. For the hoieof the propagators in (16), we obtainSk;� = �(G�1k �G�1lo)�f(k;�)�� [G�1k;� � e�k;�℄�1 �� 1 11 1 ! [G�1k;� � e�k;�℄�1; (25)while for propagator (17), we �ndSk;� = �(Gk �Glo)G�2k;� �f(k;�)�� [G�1k;� � e�k;�℄�1 �� 1 11 1 ! [G�1k;� � e�k;�℄�1: (26)12 ÆÝÒÔ, âûï. 6 1257



A. A. Katanin ÆÝÒÔ, òîì 147, âûï. 6, 2015We note that the nonloal (physial) Green's fun-tion an be diretly obtained from Eq. (24) by sum-ming all the omponents of the matrix Green's fun-tion (G�1k;�� e�k;�)�1; the orresponding �physial� self-energy is then extrated in the standard way from thephysial Green's funtion and the �owing bare Green'sfuntion (G�1k;� +�lo)�1.For � � �0 (where �0 is the upper sale of the prob-lem), we have eG� = 0, and hene only the G12, G21,and G22 elements of the Green's funtion are nonzero,whih orresponds to a purely loal theory. It an beshown that the ontribution of these Green's funtionsare exatly ompensated by the �ounterterms� thatarise from the Jaobian of the transformation. The ini-tial onditions for the vertex and the self-energy areV1111� (k1; k2; k3; k4) = V1211� (k1; k2; k3; k4) == V2111� (k1; k2; k3; k4) = V1121� (k1; k2; k3; k4) == V1112� (k1; k2; k3; k4) == �"#lo; (27)e���(k) = 0: (28)3.3. Comparison with the DMF2RG approahTo ompare the fRG �ow within the 1PI�LGF andDMF2RG approahes, we onsider the hoie of prop-agators (16) and (25). We assume in what follows thatthe self-energy orretion has the struture�k;� = �(1)k;� 1 11 1 !+�(2)k;� 1 11 0 ! ; (29)whih was obtained in the ladder approximation inRef. [20℄ and is justi�ed self-onsistently below. Withthis assumption, the Green's funtion G k;� an be rep-resented in the formG k;� = Gk;� 1 00 0 !+ Glo;�1�Glo;��(2)k;� �� �1 11 �1 ! ; (30)where Gk;� is given by Eq. (14) with �k;� = �(1)k;� ++�(2)k;�. For the single-sale propagator, we obtainSk;� =  Sk;� 00 0 ! ; (31)where Sk;� is idential to the single-sale propaga-tor (15) onsidered in Ref. [31℄.

Considering the�11k;� = �k;� � �(1)k;� +�(2)k;�omponent of the self-energy and the V1111� (k1, k2; k3,k4) omponent of the vertex, the �rst term in Eq. (30)yields the equations of the DMF2RG approah, whilethe seond term yields zero under the assumption thatthe vertex keeps its struture (27). But we have to ver-ify that Eqs. (27), (30), and (31) are preserved by theonsidering approah. We �rst onsider the self-energy.Assuming ansatz (27) for the verties and using the re-sult in (31) for the single-sale propagator, we �nd that�11k;� = �12k;� = �21k;�:This implies Eq. (30). We next verify the ful�llment ofvertex ansatz (27). Starting with (30) and (31), we �ndthat the �rst term in Eq. (30) provides the ful�llmentof the �rst three lines in (27). For the verties V1211� ,V2111� , V1121� , and V1112� , the seond term involves ver-ties with two indies �2�, like V1212� , whih turn out toanel eah other. Therefore, we �nd that the repre-sentations given by the �rst three lines of Eq. (27) andEqs. (30) and (31) preserve their form under the �ow,and the onsidered approah appears to be equivalentto the DMF2RG approah.4. THE DUAL FERMION APPROACHThe renormalization of the dual fermion approahof Refs. [16�19℄ was formulated and related to therenormalization of the original lattie theory (2), (3)in Ref. [32℄. Here we onsider the funtional form ofthis approah, expressed in terms of the e�etive inter-ations. The DF approah an be onveniently formu-lated by splitting the e�etive interation of the lattietheory (see, e. g., Ref. [24℄),V [�; �y℄ := � lnZ d[; y℄�� exp8<:Xk;� G�10k �yk� + �yk�)(k� + �k�� ��Xi;� Z d�Hint[i� ; yi� ℄9=; == � lnZ[G�10k �k� ; G�10k �yk� ℄� �yk�G�10k �k� ; (32)without performing its Legendre transformation. Theexpansion of V [�; �y℄ in soure �elds generates on-neted (in general, one-partile reduible) Green's fun-1258



ÆÝÒÔ, òîì 147, âûï. 6, 2015 Funtional renormalization-group approahes : : :tions, amputated by the noninterating Green's fun-tions G0k of the lattie theory. Applying the ovari-ation splitting formula to Eq. (32) yields the relationbetween the lattie and dual e�etive interations [22℄V [�; �y℄ = bV [b�; b�y℄ ++Xk;� �yk;� �lo(i�n)1� �lo(i�n)G0k �k;� ; (33)where the e�etive interation for the dual theory isde�ned by bV [b�; b�y℄ = � lnZ D[e;ey℄�� exp8<:Xk;� eG�1k �eyk;� � b�yk;�� (ek;� � b�k;�) �� bVDMFT [ey;e℄9=; ; b�k� = �k�1� �lo(i�n)G0k : (34)
As in the preeding setion, we set eGk = Gk �Glo.To introdue a �-dependene of the e�etive in-teration, similarly to the preeding setion, we againreplae Gk ! Gk;� (see, e. g., Eq. (16) or Eqs. (17)and (18)). To generalize relation (33) to arbitrary �,we also adjust the lattie bare Green's funtion aor-ding to G0k ! G0k;� := [G�1k;� +�lo(i�n)℄�1:Equation (33) then beomesV�[�; �y℄ = bV�[b��; b�y�℄ ++Xk;� b�yk;�;� �lo(i�n)1 + Gk;��lo(i�n) b�yk;�;� ;b�k;�;� = �k� [1 + �lo(i�n)Gk;�℄: (35)This allows us to perform a onsistent renormalizationof the lattie and dual theory, in partiular, keepingthe relation between the dual �d(k;�) and lattie �k;�self-energies [16; 22℄ unhanged (f. Ref. [32℄):�k;� = �d(k;�)1 +Glo(i�n)�d(k;�) + �lo(i�n): (36)The renormalization of the dual fermion e�etiveinteration bV�[b�; b�y℄ an be performed in the standardway. The Polhinskii equation for bV� is��bV�[b�; b�y℄ = ���� eGk;� bV� +�12�� eGk;� bV(1)� bV(2)� :We note that the �-derivative here does not at on thesoure �elds b� and b�y, whose �-dependent values are

substituted in the resulting e�etive interation. This�-dependene determines the �ow of the lattie e�e-tive interation (35) in aordane with��V�[�; �y℄ = ��bV�[b��; b�y�℄ +(� ÆbV�Æb�� + ÆbV�Æb�y� �y)��(�lo��Gk;�)+Xk;� �yk;��2lo(i�n)(��Gk;�)�k;� : (37)AssumingV�[�; �y℄ =XV n;��y1 : : : �yn=2�n=2+1 : : : �n;bV�[b�; b�y℄ =X vn;�b�y1 : : : b�yn=2b�n=2+1 : : : b�n; (38)we hene obtain the standard relation between the lat-tie and dual self-energies, Eq. (36), and the higher-or-der vertiesV n;� = vn;� nYi=1 [1 + �lo(i�i)Gki;�℄ ; n > 2: (39)The last relation aounts for the e�et of the missingloal self-energy insertions in the e�etive interationbVDMFT [ey;e℄, whih determines bV�[b�; b�y℄ aording toEq. (34).The Legendre transformation of bV� an also be per-formed in the standard way. The resulting 1PI fRGequations (irreduible with respet to eGk) for the fullyamputated vertex (f. Ref. [32℄)v� = v�Y4i=1 eGki;� eG�1ki;�; v� � v4;�;are given by d�dd� = v� Æ S�; (40)dv�d� = v� Æ ( eG� Æ S� + S� Æ eG�) Æ v�; (41)where eGk;� = eGk;�1� �d(k;�)eGk;� ; (42)v� = v� 4Yi=1(1� �d(ki;�)eGki;�); (43)andSk;� = d eGk;�d� ������d=onst == �(G�1k �G�1lo)G2k;� �f(k;�)�� �� 1[1� �d(k;�)eGk;�℄2 (44)1259 12*



A. A. Katanin ÆÝÒÔ, òîì 147, âûï. 6, 2015for the hoie in (16) andSk;� = d eGk;�d� ������d=onst = �(Gk �Glo)�f(k;�)�� �� 1[1� �d(k;�)eGk;�℄2for the hoie in (17). The initial ondition is �d = 0,V� = �lo. As disussed above, Eqs. (40) and (41) ne-glet the loal six-point vertex, whih is one-partilereduible with respet to the loal Green's funtion.To ompare Eqs. (40) and (41) with those of theDMF2RG approah, we again onsider the uto� de-pendene in (16). The verties vn;� with n > 2 anbe related to the orresponding verties Vn;� of theDMF2RG approah by amputating V n;� by the re-spetive full Green's funtions and using relations (39)and (43):Vn;� = V n;�Yni=1G0ki;�G�1ki;� == vn;� nYi=1([1 + �lo(i�i)Gki;�℄ 1� �ki;�G0ki;�1� �d(ki;�)eGki;�) :It an be veri�ed that this fator exatly anelsthe di�erene between the single-sale propagatorand Green's funtions in the dual fermion approah(Eqs. (42) and (44)) and the DMF2RG approah(Eqs. (14) and (15)), see Ref. [32℄. However, the or-responding equations di�er beause of the �-derivativeof the orresponding fators [32℄.5. CUTOFF SCHEMES ANDSELF-CONSISTENCYHere, we ompare di�erent uto� shemes and an-alyze their appliability to the renormalization-grouptreatment disussed in the preeding Setions.We start with the simple momentum uto�f(k;�) = �(j"kj � �): (45)Combined with Eq. (17), the hoie (45) has a simplephysial meaning: we put the Green's funtion equal tothe loal Green's funtion inside the shell j"kj < � andequal to the nonloal funtion outside this shell. Thisuto�, however, does not preserve the important prop-erty of vanishing of the average of eG� over momentumspae under the �ow:Xk eG�(k; i�n) == Xk:j"kj>�[G(k; i�n)�Glo(i�n)℄ 6= 0; � > 0; (46)

and, therefore, is not physial.A possible physial hoies are the �interation �ow�uto� f(k;�) = 1� � (47)and the frequeny uto� used by Husemann and Salm-hofer [34℄, f(k;�) = �2n�2n +�2=(1� �)2 ; (48)whih allow �owing from the theory not interatingnonloally (� = 1) to the fully interating theory(� = 0). These two uto�s preserve the loal partof the Green's funtion if deomposition (17) is used.The possible di�ulty of using these two uto�s is thelarge omputational e�ort: beause one annot projetmomenta to the Fermi surfae, one has to deal withmany �pathes� in the whole Brillouin zone.Finally, we omment on the e�et of self-onsisten-y. In the dual fermion approah, two ingridients ofa self-onsistent proedure were used. The �rst is toobtain the self-onsistent self-energy using the diagramseries in the auxiliary spae. This self-onsisteny isfully implemented in the disussed approahes by �ow-ing the self-energy. At the same time, the seond step(the so-alled external self-onsisteny) requires adjust-ing the initial loal problem aording to the loal partof the obtained self-energy. A similar proedure anbe applied to the approahes onsidered in this paper.This type of self-onsisteny is expeted to be impor-tant at relatively strong ouplings, where it inreasesthe resulting self-energy, making it more �insulating�(see, e. g., Ref. [20℄).6. CONCLUSIONWe have onsidered the appliation of the funtionalrenormalization-group approah to strongly orrelatedeletroni systems within the one-partile irreduibleapproahes with respet to the loal Green's funtionsand the dual fermion approah. Both these approahesallow onsistent renormalization; the dual fermion ap-proah is expeted to be appliable if the one-partile-reduible verties (with respet to the loal Green'sfuntions) of sixth and higher orders are small, whilethe 1PI approahes with respet to loal Green's fun-tions assume the smallness of one-partile-irreduibleverties.Further numerial investigations of the validity ofthese assumptions, as well as omparison of the resultsof the our approahes to the �ow from in�nite to �nitedimensions [31℄ remain to be performed.1260
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