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ATTRACTIVE HUBBARD MODEL WITH DISORDERAND THE GENERALIZED ANDERSON THEOREME. Z. Ku
hinskii a*, N. A. Kuleeva a **, M. V. Sadovskii a;b ***aInstitute for Ele
trophysi
s, Russian A
ademy of S
ien
es, Ural Bran
h620016, Ekaterinburg, RussiabInstitute for Metal Physi
s, Russian A
ademy of S
ien
es, Ural Bran
h620290, Ekaterinburg, RussiaRe
eived November 6, 2014Using the generalized DMFT+� approa
h, we study the in�uen
e of disorder on single-parti
le properties ofthe normal phase and the super
ondu
ting transition temperature in the attra
tive Hubbard model. A widerange of attra
tive potentials U is studied, from the weak 
oupling region, where both the instability of thenormal phase and super
ondu
tivity are well des
ribed by the BCS model, to the strong-
oupling region, wherethe super
ondu
ting transition is due to Bose�Einstein 
ondensation (BEC) of 
ompa
t Cooper pairs, formedat temperatures mu
h higher than the super
ondu
ting transition temperature. We study two typi
al models ofthe 
ondu
tion band with semi-ellipti
 and �at densities of states, respe
tively appropriate for three-dimensionaland two-dimensional systems. For the semi-ellipti
 density of states, the disorder in�uen
e on all single-parti
leproperties (e. g., density of states) is universal for an arbitrary strength of ele
troni
 
orrelations and disorderand is due to only the general disorder widening of the 
ondu
tion band. In the 
ase of a �at density of states,universality is absent in the general 
ase, but still the disorder in�uen
e is mainly due to band widening, andthe universal behavior is restored for large enough disorder. Using the 
ombination of DMFT+� and Nozieres�S
hmitt-Rink approximations, we study the disorder in�uen
e on the super
ondu
ting transition temperatureT
 for a range of 
hara
teristi
 values of U and disorder, in
luding the BCS�BEC 
rossover region and thelimit of strong-
oupling. Disorder 
an either suppress T
 (in the weak-
oupling region) or signi�
antly in
reaseT
 (in the strong-
oupling region). However, in all 
ases, the generalized Anderson theorem is valid and all
hanges of the super
ondu
ting 
riti
al temperature are essentially due to only the general disorder widening ofthe 
ondu
tion band.DOI: 10.7868/S00444510150601661. INTRODUCTIONThe problem of strong-
oupling super
ondu
tivityhas been studied for a long time, starting with the pio-neering papers by Eagles and Leggett [1, 2℄. Signi�
antprogress here was a
hieved by Nozieres and S
hmitt-Rink [3℄, who suggested an e�e
tive method to studythe transition temperature 
rossover from weak-
oup-ling BCS-like behavior to the Bose�Einstein 
ondensa-tion (BEC) s
enario in the strong-
oupling region. Re-
ent progress in experimental studies of quantum gasesin magneti
 and opti
al dipole traps, as well as in op-ti
al latti
es, with 
ontrollable parameters, su
h as the*E-mail: ku
hinsk�iep.uran.ru**E-mail: strigina�iep.uran.ru***E-mail: sadovski�iep.uran.ru

density and intera
tion strength (see reviews [4, 5℄),has in
reased the interest in super
ondu
tivity (super-�uidity of fermions) with strong pairing intera
tion, in-
luding the region of the BCS�BEC 
rossover. One ofthe simplest models allowing the study of the BCS�BEC 
rossover is the Hubbard model with an attra
-tive on-site intera
tion. The most su

essive approa
hto the solution of the Hubbard model, both in the 
aseof repulsive intera
tion and for the studies of BCS�BEC 
rossover in the 
ase of attra
tion, is the dynam-i
al mean �eld theory (DMFT) [6�8℄. The attra
tiveHubbard model was studied within the DMFT in anumber of re
ent papers [9�13℄. However, up to nowthere have been only a few studies of the disorder in-�uen
e on the properties of normal and super
ondu
t-ing phases in this model, espe
ially in the region ofthe BCS�BEC 
rossover. Disorder e�e
ts in this re-1220
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tive Hubbard model : : :gion were analyzed qualitatively in Ref. [14℄, where itwas argued that the Anderson theorem remains validin the BCS�BEC 
rossover region in the 
ase of s-wavepairing. A diagrammati
 approa
h to (weak) disordere�e
ts on the super
ondu
ting transition temperatureand the properties of the normal phase in the 
rossoverregion was developed re
ently in Ref. [15℄.In re
ent years, we have developed a generalizedDMFT+� approa
h to the Hubbard model [16�19℄,whi
h is very 
onvenient for the studies of di�erentexternal intera
tions with respe
t to those taken intoa

ount in the DMFT, su
h as pseudogap �u
tua-tions [16�19℄, disorder [20, 21℄, ele
tron�phonon inter-a
tion [22℄, et
. This approa
h is also well suited tothe analysis of two-parti
le properties, su
h as opti
al(dynami
) 
ondu
tivity [20, 23℄. In Ref. [13℄, we usedthis approximation to 
al
ulate single-parti
le proper-ties of the normal phase and opti
al 
ondu
tivity inthe attra
tive Hubbard model. In a re
ent paper [24℄,the DMFT+� approa
h was used by us to study thedisorder in�uen
e on the super
ondu
ting transitiontemperature, whi
h was 
al
ulated in the Nozieres�S
hmitt-Rink approximation. In that paper, for thesemi-ellipti
 density of states of the �bare� 
ondu
tionband, whi
h is adequate for three-dimensional systems,we numeri
ally demonstrated the validity of the gener-alized Anderson theorem a

ording to whi
h all 
hangesin the 
riti
al temperature are 
ontrolled only by thegeneral widening of the 
ondu
tion band by disorder.In this paper, we present an analyti
 proof of su
huniversal in�uen
e of disorder (in the DMFT+� ap-proximation) on single-parti
le 
hara
teristi
s and thesuper
ondu
ting transition temperature for the semi-ellipti
 density of states and also investigate disordere�e
ts in the 
ase of the �bare� band with a �at densityof states, qualitatively appropriate for two-dimensionalsystems. We show that for the �at band model, theuniversal dependen
e of single-parti
le properties andthe super
ondu
ting transition temperature is also re-alized for the 
ase of su�
iently strong disorder.2. DISORDERED HUBBARD MODEL WITHINTHE DMFT+� APPROACHWe 
onsider the disordered nonmagneti
 Hubbardmodel with attra
tive intera
tion with the HamiltonianH = �tXhiji� ayi�aj� +Xi� �ini� � UXi ni"ni#; (1)where t > 0 is the transfer integral between nearestneighbors on the latti
e, U represents Hubbard-like on

site attra
tion, ai�(ayi�) is the annihilation (
reation)operator of an ele
tron with spin �, ni� = ayi�ai� is theparti
le number operator on a latti
e site i, while lo
alon-site energies �i are assumed to be random variables(independent on the latti
e sites). For the standard�impurity� diagram te
hnique to be valid, we take theGaussian distribution of energy levels �i:P(�i) = 1p2�� exp�� �2i2�2� : (2)The parameter � is a measure of the disorder strength,while the Gaussian random �eld of random on-site en-ergy levels, whi
h are independent on di�erent sites(�white noise� 
orrelation) indu
es �impurity� s
atte-ring, whi
h is analyzed using the standard formalismof averaged Green's fun
tions [25℄.The generalized DMFT+� approa
h [16�19℄extends the standard dynami
al mean �eld theory(DMFT) [6�8℄ taking into a

ount an additional�external� self-energy part �p(") (in the general
ase, momentum dependent), whi
h is due to someadditional intera
tion outside the DMFT, and givesan e�e
tive method to 
al
ulate both single-parti
leand two-parti
le properties [20, 23℄. The su

ess ofthis generalized approa
h is based on the 
hoi
e of thesingle-parti
le Green's fun
tion in the formG(";p) = 1"+ �� "(p)� �(")� �p(") ; (3)where "(p) is the �bare� ele
tron dispersion, while the
omplete self-energy is assumed to be an additive sumof the lo
al DMFT self-energy and some �external�self-energy �p("), due to the negle
t of the interfer-en
e of Hubbard and �external� intera
tions. This al-lows the 
onservation of the standard form of self-
on-sistent equations of the standard DMFT [6�8℄. At thesame time, at ea
h step of DMFT iterations, we 
onsis-tently re
al
ulate the �external� self-energy �p(") usingan appropriate approximate s
heme, 
orresponding tothe form of the additional intera
tion, while the lo
alGreen's fun
tion is also �dressed� by �p(") at ea
h stepof the standard DMFT pro
edure.For the �external� self-energy entering theDMFT+� 
y
le for the problem of random s
at-tering by disorder, we use the simplest self-
onsistentBorn approximation, negle
ting diagrams with 
rossing�impurity� lines, whi
h gives�p(")! ~�(") = �2Xp G(";p); (4)whereG(";p) is the single-ele
tron Green's fun
tion (3)and � is the amplitude of site disorder.1221
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hinskii, N. A. Kuleeva, M. V. Sadovskii ÆÝÒÔ, òîì 147, âûï. 6, 2015To solve the e�e
tive single-Anderson-impurityproblem of DMFT, we use the numeri
al renormaliza-tion group approa
h (NRG) [26℄.In what follows, we 
onsider two models of the�bare� 
ondu
tion band. The �rst is the band witha semi-ellipti
 density of states (per unit 
ell and singlespin proje
tion)N0(") = 2�D2pD2 � "2; (5)where D is the band half-width. This model is ap-propriate for a three-dimensional system. The se
ondmodel is the one with the �at density of states, appro-priate for the two-dimensional 
ase:N0(") =8><>: 12D j"j � D;0 j"j > D: (6)In prin
iple, for two-dimensional systems, we shouldtake the presen
e of the weak (logarithmi
) Van Hovesingularity in the density of states into a

ount. How-ever, this singularity is already e�e
tively suppressedby rather small disorder, and hen
e the simple modelin Eq. (6) is quite su�
ient for our aims.All 
al
ulations in this paper are done for a quarter-�lled band (the number of ele
trons per latti
e site isn = 0:5).The super
ondu
ting transition temperature in theattra
tive model was analyzed in a number of papers[9, 10, 12℄, both from the 
ondition of instability of thenormal phase [9℄ (divergen
e of the Cooper sus
epti-bility) and from the 
ondition of the super
ondu
tingorder parameter going to zero [10, 12℄. In re
ent paper[13℄, we determined the 
riti
al temperature from the
ondition of instability of the normal phase, re�e
ted inthe instability of the DMFT iteration pro
edure. Theresults obtained in this way in fa
t 
oin
ide with thosein Refs. [9, 10, 12℄. Also, to 
al
ulate T
 in Ref. [13℄, weused the approa
h due to Nozieres and S
hmitt-Rink[3℄, whi
h allows the 
orre
t (though approximate) de-s
ription of T
 in the BCS�BEC 
rossover region. In alater paper [24℄, we used the 
ombination of Nozieresand S
hmitt-Rink and DMFT+� approximations fordetailed numeri
al studies of the disorder dependen
eof T
 and the number of lo
al pairs in the model withthe semi-ellipti
 density of states.

3. DISORDER INFLUENCE ONSINGLE-PARTICLE PROPERTIES FOR THESEMI-ELLIPTIC DENSITY OF STATESIn this se
tion, we analyti
ally demonstrate that inthe DMFT+� approximation, the disorder in�uen
eon single-parti
le properties of the disordered Hubbardmodel (both attra
tive or repulsive) with a semi-ellipti
�bare� 
ondu
tion band is 
ompletely des
ribed by ef-fe
ts of general band widening by disorder s
attering.In the system of self-
onsistent DMFT+� equations[17, 19, 20℄, information on the �bare� band and disor-der s
attering enter only at the stage of 
al
ulations ofthe lo
al Green's fun
tionGii =Xp G(";p); (7)where the full Green's fun
tion G(";p) is determinedby Eq. (3), while the self-energy due to disorder, inthe self-
onsistent Born approximation, is de�ned byEq. (4). Then the lo
al Green's fun
tion takes the formGii = DZ�D d"0 N0("0)"+ �� "0 � �(")��2Gii == DZ�D d"0 N0("0)Et � "0 ; (8)where we introdu
e the notation Et = "+ � � �(") �� �2Gii. In the 
ase of semi-ellipti
 density ofstates (5), this integral is easily 
al
ulated in analyti
form, and hen
e the lo
al Green's fun
tion is writtenas Gii = 2Et �pE2t �D2D2 : (9)It 
an be easily seen that Eq. (9) represents one of theroots of the quadrati
 equationG�1ii = Et � D24 Gii; (10)
orresponding to the 
orre
t limit of Gii ! E�1t for anin�nitely narrow band (D ! 0). ThenG�1ii = "+ �� �(")��2Gii � D24 Gii == "+ �� �(")� D2eff4 Gii; (11)where we introdu
e Deff as the e�e
tive half-width ofthe band (in the absen
e of ele
troni
 
orrelations, i. e.,for U = 0) widened by disorder s
attering:Deff = Dr1 + 4�2D2 : (12)1222
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tive Hubbard model : : :Equation (10) was obtained from (8), and hen
e 
om-paring (11) and (10), we obtain:Gii = DeffZ�Deff d"0 ~N0("0)"+ �� "0 � �(") ; (13)where ~N0(") = 2�D2effqD2eff � "2 (14)represents the density of states in the absen
e of theintera
tion U �dressed� by disorder. This density ofstates remains semi-ellipti
 in the presen
e of disorder,and therefore all e�e
ts of disorder s
attering on single-parti
le properties of the disordered Hubbard model inthe DMFT+� approximation redu
e to only disorderwidening of the 
ondu
tion band, i. e., to the repla
e-ment D ! Deff .4. DISORDER INFLUENCE ON THESUPERCONDUCTING TRANSITIONTEMPERATUREThe super
ondu
ting transition temperature T
 isnot a single-parti
le 
hara
teristi
 of the system. TheCooper instability determining T
 is related to the di-vergen
e of a two-parti
le loop in the Cooper 
hannel.In the weak-
oupling limit, when super
ondu
tivity isdue to the appearan
e of Cooper pairs at T
, disor-der only slightly in�uen
es super
ondu
tivity with thes-wave pairing [27, 28℄. The so-
alled Anderson theo-rem is valid and 
hanges of T
 are 
onne
ted only withthe relatively small 
hanges of the density of states bydisorder. The standard derivation of the Anderson the-orem [27, 28℄ uses the formalism of exa
t eigenstates ofan ele
tron in the random �eld of impurities. Here,we present another derivation of the Anderson theo-rem, using the exa
t Ward identity, whi
h allows us toderive the equation for T
, whi
h is then used to 
al
u-late T
 in the Nozieres�S
hmitt-Rink approximation ina disordered system.In general, the Nozieres�S
hmitt-Rink approa
h [3℄assumes that 
orre
tions due to strong pairing attra
-tion signi�
antly 
hange the 
hemi
al potential of thesystem, while possible 
orre
tions due to this inter-a
tion to the Cooper instability 
ondition 
an be ne-gle
ted, and we 
an therefore always use the weak-
oupling (ladder) approximation. In that approxima-tion, the Cooper instability 
ondition in the disorderedHubbard model takes the form1 = U�0(q = 0; !m = 0); (15)

where�0(q = 0; !m = 0) = TXn Xpp0 �pp0("n) (16)represents the two-parti
le loop (sus
eptibility) in theCooper 
hannel �dressed� only by disorder s
attering,and �pp0("n) is the averaged two-parti
le Green's fun
-tion in the Cooper 
hannel (!m = 2�mT and "n == �T (2n + 1) are the usual boson and fermion Mat-subara frequen
ies).To obtain Ppp0 �pp0("n), we use the exa
t Wardidentity, derived by us in Ref. [23℄:G("n;p)�G(�"n;�p) = �Xp0 �pp0("n)�� (G�10 ("n;p0)�G�10 (�"n;�p0)): (17)Here, G("n;p) is the impurity-averaged single-parti
leGreen's fun
tion (not 
ontaining Hubbard inter-a
tion 
orre
tions!). Using the obvious symmetry"(p) = "(�p) and G("n;�p) = G("n;p), we obtainfrom the Ward identity (17) thatXpp0 �pp0("n) = �PpG("n;p)�PpG(�"n;p)2i"n ; (18)and hen
e for Cooper sus
eptibility (16) we have�0(q = 0; !m = 0) == �TXn PpG("n;p)�PpG(�"n;p)2i"n == �TXn PpG("n;p)i"n : (19)Performing the standard summation over Matsubarafrequen
ies [25℄, we obtain�0(q = 0; !m = 0) = � 14�i 1Z�1 d"�� PpGR(";p)�PpGA(";p)" th "2T == 1Z�1 d" ~N(")2" th "2T ; (20)where ~N(") is the density of states (U = 0) �dressed�by disorder s
attering. In Eq. (20), the energy " is ref-eren
ed to the 
hemi
al potential, and if we referen
e itto the 
enter of the 
ondu
tion band, we have to repla
e"! "� �, su
h that Cooper instability 
ondition (15)leads to the following equation for T
:1223
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Fig. 1. Dependen
e of the density of states on disorderin the model with a semi-ellipti
 band, jU j=2D = 0:8,I=2D = 0:051 = U2 1Z�1 d" ~N0(") th(("� �)=2T
)"� � ; (21)where ~N0(") is again the density of states (
al
ulatedat U = 0) �dressed� by disorder s
attering. At thesame time, the 
hemi
al potential of the system at dif-ferent values of U and � should be determined fromDMFT+� 
al
ulations, i. e., from the standard equa-tion for the number of ele
trons (band �lling) deter-mined by the Green's fun
tion in Eq. (3), whi
h allowsus to �nd T
 for the wide range of model parameters,in
luding the BCS-BEC 
rossover and strong-
ouplingregions, as well as for di�erent levels of disorder. Thisre�e
ts the physi
al meaning of the Nozieres�S
hmitt-Rink approximation: in the weak-
oupling region, thetransition temperature is 
ontrolled by Cooper instabil-ity equation (21), while in the limit of strong-
oupling,it is determined as the BEC temperature 
ontrolledby the 
hemi
al potential. Thus, the joint solution ofEq. (21) and the equation for the 
hemi
al potentialguarantees the 
orre
t interpolation for T
 through theBCS�BEC 
rossover region. This approa
h gives theresults for the 
riti
al temperature that are quantita-tively 
lose to the exa
t results obtained by dire
t nu-meri
al DMFT 
al
ulations [13℄, but demands mu
hless numeri
al e�ort.We stress that we have used the exa
t Ward iden-tity, whi
h also allows using Eq. (21) in the region ofstrong disorder, when the e�e
ts of Anderson lo
al-ization may be
ome relevant. Equation (21) demon-strates that the 
riti
al temperature depends on disor-

der only through the disorder dependen
e of the den-sity of states ~N("), whi
h is the main statement of theAnderson theorem. In the framework of the Nozieres�S
hmitt-Rink approa
h, Eq. (21) is also preserved inthe strong-
oupling region, when the 
riti
al tempera-ture is determined by the BEC 
ondition for 
ompa
tCooper pairs. In this 
ase, the 
hemi
al potential �entering Eq. (21) may signi�
antly depend on disorder.However, in the DMFT+� approximation, this depen-den
e of the 
hemi
al potential (as well as of any othersingle-parti
le 
hara
teristi
) in the model with a semi-ellipti
 density of states is only due to disorder wideningof the 
ondu
tion band. Thus, in both the BCS�BEC
rossover and strong-
oupling regions, the generalizedAnderson theorem a
tually remains valid. A

ordingly,in the model of a semi-ellipti
 band, Eq. (21) leadsto a universal dependen
e of T
 on disorder, due tothe 
hange D ! Deff . Su
h universality is fully 
on-�rmed by numeri
al 
al
ulations of T
 in this model,performed in Ref. [24℄ (
f. also the results presentedbelow). 5. MAIN RESULTSWe now dis
uss the main results of our numeri
al
al
ulations, expli
itly demonstrating the universal be-havior of single-parti
le properties and the super
on-du
ting transition temperature with disorder. We seebelow that all disorder e�e
ts are e�e
tively 
ontrolled,in fa
t, only by the growth of the half-width of 
ondu
-tion band, whi
h for a semi-ellipti
 density of states isgiven by Eq. (12). In the 
ase of the band with a �atdensity of states, the growth of disorder 
hanges theshape of the density of states, making it semi-ellipti
in the limit of su�
iently strong disorder, while thee�e
tive half-width of the band is given by (
f. Ap-pendix A)DeffD =r1 + �2D2 ++ 12 �2D2 ln p1 +�2=D2 + 1p1 +�2=D2 � 1! : (22)As an example of the most important single-parti
leproperty, we take the density of states. In Fig. 1, weshow the evolution of the density of states with disor-der in the model of a semi-ellipti
 band [13℄. We 
ansee that the growth of disorder smears the density ofstates and widens the band. This smearing somehowmasks the pe
uliarities of the density of states due to
orrelation e�e
ts. In parti
ular, both the quasipar-ti
le peak and the lower and upper Hubbard bands,1224
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ε/2Deff ε/2DeffFig. 2. Universal dependen
e of the density of states on disorder: (a) the model of a semi-ellipti
 �bare� density of states;(b ) the model of a �at �bare� density of statesobserved in Fig. 1 in the absen
e of disorder, are 
om-pletely destroyed in the limit of strong enough disor-der. However, we 
an easily 
onvin
e ourselves thatthis evolution is only due to the general widening ofthe band due to disorder (
f. Eqs. (12) and (22)), be-
ause all the data for the density of states belong to thesame universal 
urve replotted in appropriate new vari-ables, with all energies (and temperature) normalizedby the e�e
tive bandwidth by repla
ing D ! Deff , asshown in Fig. 2a, in 
omplete agreement with the gen-eral results obtained above. For the 
ondu
tion bandwith a �at density of states, there is no 
omplete uni-versality, as 
an be seen from Fig. 2b for low enoughvalues of disorder. However, for large enough disorder,the dashed 
urve shown in Fig. 2b pra
ti
ally 
oin
ideswith the universal 
urve for the density of states shownin Fig. 2a. This re�e
ts the simple fa
t that at largedisorder, the �at density of states e�e
tively transformsinto a semi-ellipti
 one (
f. Appendix A).Going now to the analysis of the super
ondu
tingtransition temperature, in Fig. 3 we present the de-penden
e of T
 (normalized by the 
riti
al temperaturein the absen
e of disorder, T
0 = T
(� = 0)) on dis-order for di�erent values of the pairing intera
tion Ufor both models of the initial �bare� density of states,semi-ellipti
 (Fig. 3a) and �at (Fig. 3b ). Qualitatively,the evolution of T
 with disorder is the same for bothmodels. We 
an see that in the weak-
oupling limit

(U=2D � 1), disorder slightly suppresses T
 (
urves1 ). At intermediate 
ouplings (U=2D � 1), weak dis-order in
reases T
, while the further in
rease in disor-der suppresses the 
riti
al temperature (
urves 3 ). Inthe strong-
oupling region (U=2D � 1), the growthof disorder leads to a signi�
ant in
rease in the 
rit-i
al temperature (
urves 5 ). However, we 
an easilysee that su
h a 
ompli
ated dependen
e of T
 on dis-order is 
ompletely determined by the disorder widen-ing of the �bare� (U = 0) 
ondu
tion band, demon-strating the validity of the generalized Anderson the-orem for all values of U . In Fig. 4, the 
urve witho
tagons shows the dependen
e of the 
riti
al temper-ature T
=2D on the 
oupling strength U=2D in the ab-sen
e of disorder (� = 0) for both models of �bare� 
on-du
tion bands, semi-ellipti
 (Fig. 4a) and �at (Fig. 4b ).We 
an see that in both models, in the weak-
ouplingregion, the super
ondu
ting transition temperature iswell des
ribed by the BCS model (in Fig. 4a), thedashed 
urve represents the result of the BCS model,with T
 de�ned by Eq. (21), with the 
hemi
al poten-tial independent of U and determined by the quarter-�lling of the �bare� band), while in the strong-
ouplingregion, the 
riti
al temperature is determined by theBEC 
ondition for Cooper pairs and de
reases as t2=Uas U in
reases (inversely proportional to the e�e
tivemass of the pair), passing through the maximum atU=2Deff � 1. The other symbols in Fig. 4a show10 ÆÝÒÔ, âûï. 6 1225



E. Z. Ku
hinskii, N. A. Kuleeva, M. V. Sadovskii ÆÝÒÔ, òîì 147, âûï. 6, 2015

0

0.5

1.0

1.5

2.0

2.5

3.0

0

0.5

1.0

1.5

2.0

2.5

3.0

1

5

4

3

2

1

5

4

3

2

|U |/2D = 0.6

0.8

1.0

1.4

1.6

a b

1

2

3

4

5 1.6

1.4

1.0

0.8

|U |/2D = 0.6

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5
∆/2D

Tc/Tc0Tc/Tc0

0.1 0.2 0.3 0.4 0.5
∆/2DFig. 3. Dependen
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Fig. 4. Universal dependen
e of the super
ondu
ting 
riti
al temperature on the Hubbard attra
tion U for di�erent disorderlevels: (a) semi-ellipti
 band; the dashed 
urve represents the BCS dependen
e in the absen
e of disorder; (b ) �at band;the dashed line represents a similar dependen
e for the semi-ellipti
 band for � = 0the results for T
 obtained by a 
ombination of theDMFT+� and Nozieres�S
hmitt-Rink approximationsfor a semi-ellipti
 �bare� band. We 
an see that alldata (expressed in normalized units of U=2Deff andT
=2Deff ) ideally �t the universal 
urve obtained inthe absen
e of disorder. For a �at �bare� band, re-sults of our 
al
ulations are shown in Fig. 4b and wedo not observe the 
omplete universality: data points,

orresponding to di�erent degrees of disorder, somehowdeviate from the 
urve obtained in the absen
e of dis-order. However, with the in
rease in disorder, the formof the band be
omes 
lose to semi-ellipti
 and our datapoints move towards the universal 
urve obtained forthe semi-ellipti
 
ase and shown by the dashed 
urve inFig. 4b, thus 
on�rming the validity of the generalizedAnderson theorem.1226
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tive Hubbard model : : :6. CONCLUSIONIn this paper, in the framework of the DMFT+�generalization of dynami
al mean �eld theory, we havestudied the disorder in�uen
e on single-parti
le proper-ties (e. g., the density of states) and the super
ondu
t-ing transition temperature in the attra
tive Hubbardmodel. Cal
ulations were done for a wide range of at-tra
tive intera
tions U , from the weak-
oupling regionU=2Deff � 1, where both instability of the normalphase and super
ondu
tivity are well des
ribed by theBCS model, to the strong-
oupling limit U=2Deff � 1,where the super
ondu
ting transition is determined byBose�Einstein 
ondensation of 
ompa
t Cooper pairsforming at temperatures mu
h higher than the super-
ondu
ting transition temperature. We have shown an-alyti
ally that for the 
ondu
tion band with a semi-ellipti
 density of states, whi
h is a good approxima-tion in the three-dimensional 
ase, disorder in�uen
esall single-parti
le properties in a universal way: all
hanges of these properties are only due to the disorderwidening of the band. In the model of the 
ondu
tionband with a �at density of states, whi
h is appropriatefor two-dimensional systems, there is no universality inthe region of weak disorder. However, the main e�e
tsare again due to the general widening of the band and
omplete universality is restored for high enough dis-order, when the density of states e�e
tively be
omessemi-ellipti
.To study the super
ondu
ting transition tempera-ture, we have used the 
ombination of the DMFT+�approa
h and the Nozieres�S
hmitt-Rink approxima-tion. For both models of the 
ondu
tion band, disorder-ing the density of states may either suppress the 
riti-
al temperature T
 (in the region of weak 
oupling) orsigni�
antly in
rease it (in the strong-
oupling region).However, in all these 
ases, we have a
tually provedthe validity of the generalized Anderson theorem, andhen
e all 
hanges of the transition temperature are infa
t 
ontrolled only by the e�e
ts of general disorderwidening of the 
ondu
tion band. In the 
ase of theinitial semi-ellipti
 band, the disorder in�uen
e on T
is 
ompletely universal, while in the 
ase of the initial�at band, su
h universality is absent at weak disorder,but is 
ompletely restored for high enough disorder lev-els.Finally, we present some additional 
ommentson the methods and approximations used. Both theDMFT+� and Nozieres�S
hmitt-Rink approa
hesrepresent 
etrain approximate interpolation s
hemes,stri
tly valid only in the 
orresponding limit 
ases(e. g., small disorder or small (large) U). However,

both s
hemes demonstrate their e�e
tiveness also inthe 
ase of intermediate values of U and intermediate(or even strong) disorder. A
tually, the e�e
tiveness ofthe Nozieres�S
hmitt-Rink approximation (negle
tingU 
orre
tions in the Cooper 
hannel) was veri�ed by
omparison with the dire
t DMFT 
al
ulations [13℄.The use of DMFT+� to analyze the disorder ef-fe
ts in the repulsive Hubbard model was shown toprodu
e reasonable results for the phase diagram,
ompared to exa
t numeri
al simulations of disorderin DMFT, in
luding the region of large disorder(the Anderson lo
alized phase) [19�21℄. However,the role of the approximations made in DMFT+�,su
h as the negle
t of the interferen
e of disorder s
at-tering and 
orrelation e�e
ts, deserves further studies.This paper is supported by the RSF grantNo. 14-12-00502. APPENDIX AFor the band with a �at density of states (at U = 0and � = 0), disorder leads both to widening of theband and to a 
hange of the form of the density ofstates. Taking the density of states in the form givenby Esq. (6), we 
al
ulate the lo
al Green's fun
tion asGii = 12D DZ�D d"0 1"� "0 ��2Gii == 12D ln�"��2Gii +D"��2Gii �D� ; (A.1)where the energy " is referen
ed to the middle ofthe �bare� band. We introdu
e the auxiliary notationGii = R� iI . At the band edges, I ! 0, and thereforeexpanding the r.h.s. of Eq. (A.1) up to linear terms inI , we obtainR� iI � 12D ln�"��2R+D"��2R�D��� iI �2("��2R)2 �D2 : (A.2)Equating the real parts in (A.2), we obtainR = 12D ln�"��2R+D"��2R�D� :Similarly, equating the imaginary parts at the bandedges, we obtain "��2R = �pD2 +�2, and substi-tuting this expression into the logarithm in the pre
ed-ing expression, we �nd R and the band edge positionsat1227 10*
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hinskii, N. A. Kuleeva, M. V. Sadovskii ÆÝÒÔ, òîì 147, âûï. 6, 2015" = � pD2 +�2 ++ �22D ln pD2 +�2 +DpD2 +�2 �D!! : (A.3)Thus, the half-width of the band Deff widened by dis-order in this model is determined by Eq. (22) usedabove.We note that although the Born approximation fordisorder s
attering that we use is formally valid onlyfor small disorder � � D, the e�e
ts of Anderson lo-
alization at large disorder � � D do not qualitatively
hange the density of states [27℄, and hen
e the Bornapproximation gives qualitatively 
orre
t results alsoin the region of large disorder. A
tually, this approx-imation negle
ts only the appearan
e of exponentiallysmall �tails� in the density of states, outside the �mean�eld� band edges [27℄ and gives more or less 
orre
tresults inside su
h a band.At large enough disorder, almost any �bare� bandwidth 2D and an arbitrary density of states N0(") a
-quires a semi-ellipti
 density of states. In the limit ofvery large disorder �� D, almost in the whole band,widened by disorder, we have j"��2Rj � D and in theexpression for the lo
al Green's fun
tion we 
an negle
tthe "0-dependen
e in the denominator of the integrand:R� iI = Gii = 1Z�1 d"0 N0("0)"� "0 ��2Gii �� 1"��2R+ i�2I : (A.4)Then we immediately obtain"��2R = "2 ; I = 12�2p4�2 � "2 (A.5)when
e the density of states �dressed� by disorderN(") = � 1� ImGii = I� = 2�(2�)2p(2�)2�"2 (A.6)be
omes semi-ellipti
, Eq. (5), with the half-widthDeff = 2�. Thus, at strong enough disorder, any�bare� band be
omes semi-ellipti
, restoring the uni-versal dependen
e of single-parti
le properties on dis-order dis
ussed above. In this sense, the model of the�bare� band with a semi-ellipti
 density of states is mostappropriate for the studies of the e�e
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