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Using the generalized DMFT+X approach, we study the influence of disorder on single-particle properties of
the normal phase and the superconducting transition temperature in the attractive Hubbard model. A wide
range of attractive potentials U is studied, from the weak coupling region, where both the instability of the
normal phase and superconductivity are well described by the BCS model, to the strong-coupling region, where
the superconducting transition is due to Bose—Einstein condensation (BEC) of compact Cooper pairs, formed
at temperatures much higher than the superconducting transition temperature. We study two typical models of
the conduction band with semi-elliptic and flat densities of states, respectively appropriate for three-dimensional
and two-dimensional systems. For the semi-elliptic density of states, the disorder influence on all single-particle
properties (e.g., density of states) is universal for an arbitrary strength of electronic correlations and disorder
and is due to only the general disorder widening of the conduction band. In the case of a flat density of states,
universality is absent in the general case, but still the disorder influence is mainly due to band widening, and
the universal behavior is restored for large enough disorder. Using the combination of DMFT+X and Nozieres—
Schmitt-Rink approximations, we study the disorder influence on the superconducting transition temperature
T, for a range of characteristic values of U and disorder, including the BCS-BEC crossover region and the
limit of strong-coupling. Disorder can either suppress 7. (in the weak-coupling region) or significantly increase
T. (in the strong-coupling region). However, in all cases, the generalized Anderson theorem is valid and all
changes of the superconducting critical temperature are essentially due to only the general disorder widening of
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the conduction band.
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1. INTRODUCTION

The problem of strong-coupling superconductivity
has been studied for a long time, starting with the pio-
neering papers by Eagles and Leggett [1, 2]. Significant
progress here was achieved by Nozieres and Schmitt-
Rink [3], who suggested an effective method to study
the transition temperature crossover from weak-coup-
ling BCS-like behavior to the Bose—Einstein condensa-
tion (BEC) scenario in the strong-coupling region. Re-
cent progress in experimental studies of quantum gases
in magnetic and optical dipole traps, as well as in op-
tical lattices, with controllable parameters, such as the
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density and interaction strength (see reviews [4, 5]),
has increased the interest in superconductivity (super-
fluidity of fermions) with strong pairing interaction, in-
cluding the region of the BCS-BEC crossover. One of
the simplest models allowing the study of the BCS—
BEC crossover is the Hubbard model with an attrac-
tive on-site interaction. The most successive approach
to the solution of the Hubbard model, both in the case
of repulsive interaction and for the studies of BCS—
BEC crossover in the case of attraction, is the dynam-
ical mean field theory (DMFT) [6-8]. The attractive
Hubbard model was studied within the DMFT in a
number of recent papers [9-13]. However, up to now
there have been only a few studies of the disorder in-
fluence on the properties of normal and superconduct-
ing phases in this model, especially in the region of
the BCS-BEC crossover. Disorder effects in this re-
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gion were analyzed qualitatively in Ref. [14], where it
was argued that the Anderson theorem remains valid
in the BCS-BEC crossover region in the case of s-wave
pairing. A diagrammatic approach to (weak) disorder
effects on the superconducting transition temperature
and the properties of the normal phase in the crossover
region was developed recently in Ref. [15].

In recent years, we have developed a generalized
DMFT+X approach to the Hubbard model [16-19],
which is very convenient for the studies of different
external interactions with respect to those taken into
account in the DMFT, such as pseudogap fluctua-
tions [16-19], disorder [20, 21], electron—phonon inter-
action [22], etc. This approach is also well suited to
the analysis of two-particle properties, such as optical
(dynamic) conductivity [20, 23]. In Ref. [13], we used
this approximation to calculate single-particle proper-
ties of the normal phase and optical conductivity in
the attractive Hubbard model. In a recent paper [24],
the DMFT-+X approach was used by us to study the
disorder influence on the superconducting transition
temperature, which was calculated in the Nozieres—
Schmitt-Rink approximation. In that paper, for the
semi-elliptic density of states of the “bare” conduction
band, which is adequate for three-dimensional systems,
we numerically demonstrated the validity of the gener-
alized Anderson theorem according to which all changes
in the critical temperature are controlled only by the
general widening of the conduction band by disorder.

In this paper, we present an analytic proof of such
universal influence of disorder (in the DMFT+X ap-
proximation) on single-particle characteristics and the
superconducting transition temperature for the semi-
elliptic density of states and also investigate disorder
effects in the case of the “bare” band with a flat density
of states, qualitatively appropriate for two-dimensional
systems. We show that for the flat band model, the
universal dependence of single-particle properties and
the superconducting transition temperature is also re-
alized for the case of sufficiently strong disorder.

2. DISORDERED HUBBARD MODEL WITHIN
THE DMFT-+3X APPROACH

We consider the disordered nonmagnetic Hubbard
model with attractive interaction with the Hamiltonian

H=—t Z a;rgajg + Zemw - UZniTnu, (1)
(ij)o io i

where t > 0 is the transfer integral between nearest
neighbors on the lattice, U represents Hubbard-like on

site attraction, aw(a;fg) is the annihilation (creation)
operator of an electron with spin o, n;, = a;rgaw is the
particle number operator on a lattice site ¢, while local
on-site energies ¢; are assumed to be random variables
(independent on the lattice sites). For the standard
“impurity” diagram technique to be valid, we take the
Gaussian distribution of energy levels ¢;:

1 €

Ple) = = e (—2 Ag) | 2)
The parameter A is a measure of the disorder strength,
while the Gaussian random field of random on-site en-
ergy levels, which are independent on different sites
(“white noise” correlation) induces “impurity” scatte-
ring, which is analyzed using the standard formalism
of averaged Green’s functions [25].

The generalized DMFT+XY approach [16-19]
extends the standard dynamical mean field theory
(DMFT) [6-8] taking into account an additional
“external” self-energy part Yp(e) (in the general
case, momentum dependent), which is due to some
additional interaction outside the DMFT, and gives
an effective method to calculate both single-particle
and two-particle properties [20, 23]. The success of
this generalized approach is based on the choice of the
single-particle Green’s function in the form

1
e+p—e(p) —E(e) — Sp(e)’

G(e,p) =

(3)

where (p) is the “bare” electron dispersion, while the
complete self-energy is assumed to be an additive sum
of the local DMFT self-energy and some “external”
self-energy X, (g), due to the neglect of the interfer-
ence of Hubbard and “external” interactions. This al-
lows the conservation of the standard form of self-con-
sistent equations of the standard DMFT [6-8]. At the
same time, at each step of DMFT iterations, we consis-
tently recalculate the “external” self-energy ¥, () using
an appropriate approximate scheme, corresponding to
the form of the additional interaction, while the local
Green’s function is also “dressed” by ¥p(¢) at each step
of the standard DMFT procedure.

For the ‘“external” self-energy entering the
DMFT+Y cycle for the problem of random scat-
tering by disorder, we use the simplest self-consistent
Born approximation, neglecting diagrams with crossing
“impurity” lines, which gives

Sp(e) = B(e) = A’ G(e,p), (4)

where G(e, p) is the single-electron Green’s function (3)
and A is the amplitude of site disorder.
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To solve the effective single-Anderson-impurity
problem of DMFT, we use the numerical renormaliza-
tion group approach (NRG) [26].

In what follows, we consider two models of the
“bare” conduction band. The first is the band with
a semi-elliptic density of states (per unit cell and single
spin projection)

2 Jpr_ e, (5)

No(e) = o)

where D is the band half-width. This model is ap-
propriate for a three-dimensional system. The second
model is the one with the flat density of states, appro-
priate for the two-dimensional case:

0 le| > D.

In principle, for two-dimensional systems, we should
take the presence of the weak (logarithmic) Van Hove
singularity in the density of states into account. How-
ever, this singularity is already effectively suppressed
by rather small disorder, and hence the simple model
in Eq. (6) is quite sufficient for our aims.

All calculations in this paper are done for a quarter-
filled band (the number of electrons per lattice site is
n =0.5).

The superconducting transition temperature in the
attractive model was analyzed in a number of papers
[9, 10, 12], both from the condition of instability of the
normal phase [9] (divergence of the Cooper suscepti-
bility) and from the condition of the superconducting
order parameter going to zero [10, 12]. In recent paper
[13], we determined the critical temperature from the
condition of instability of the normal phase, reflected in
the instability of the DMFT iteration procedure. The
results obtained in this way in fact coincide with those
in Refs. [9, 10, 12]. Also, to calculate T, in Ref. [13], we
used the approach due to Nozieres and Schmitt-Rink
[3], which allows the correct (though approximate) de-
scription of T, in the BCS-BEC crossover region. In a
later paper [24], we used the combination of Nozieres
and Schmitt-Rink and DMFT+¥Y approximations for
detailed numerical studies of the disorder dependence
of T, and the number of local pairs in the model with
the semi-elliptic density of states.

3. DISORDER INFLUENCE ON
SINGLE-PARTICLE PROPERTIES FOR THE
SEMI-ELLIPTIC DENSITY OF STATES

In this section, we analytically demonstrate that in
the DMFT-+Y approximation, the disorder influence
on single-particle properties of the disordered Hubbard
model (both attractive or repulsive) with a semi-elliptic
“bare” conduction band is completely described by ef-
fects of general band widening by disorder scattering.

In the system of self-consistent DMFT+X equations
[17, 19, 20], information on the “bare” band and disor-
der scattering enter only at the stage of calculations of
the local Green’s function

Gii =Y G(e,p), (7)

where the full Green’s function G(g,p) is determined
by Eq. (3), while the self-energy due to disorder, in
the self-consistent Born approximation, is defined by
Eq. (4). Then the local Green’s function takes the form

D
No(e')
Giu= [ d =
/ c e+p—c —X() - A2Gy
)

D N
= /dEIEtO(—EE)” (8)

—-D

where we introduce the notation Ey = ¢ + u — X(g) —
— A2G;;. In the case of semi-elliptic density of
states (5), this integral is easily calculated in analytic
form, and hence the local Green’s function is written

as
E, - \/E? - D?
Gy = QD—;. (9)
It can be easily seen that Eq. (9) represents one of the
roots of the quadratic equation
_ D?

Giil = Et - TGiiv (10)
corresponding to the correct limit of G;; — E; L for an
infinitely narrow band (D — 0). Then
D2

—Gy =

Gyl =c+pu—3(e) - A’Gy — 1

D2
=ec+pu—3() - foGm (11)

where we introduce D.z¢ as the effective half-width of
the band (in the absence of electronic correlations, i.e.,
for U = 0) widened by disorder scattering:

A2
Depr = Dy/1+ 4ﬁ (12)
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Equation (10) was obtained from (8), and hence com-

paring (11) and (10), we obtain:
o N
Gi= [ de s 13
(23 / 66+’u—6,_2(5)7 ( )
—Deys
where
No(e) = LQ D, —e? (14)
7rDeff

represents the density of states in the absence of the
interaction U “dressed” by disorder. This density of
states remains semi-elliptic in the presence of disorder,
and therefore all effects of disorder scattering on single-
particle properties of the disordered Hubbard model in
the DMFT+Y approximation reduce to only disorder
widening of the conduction band, i.e., to the replace-
ment D — Deygy.

4. DISORDER INFLUENCE ON THE
SUPERCONDUCTING TRANSITION
TEMPERATURE

The superconducting transition temperature 7, is
not a single-particle characteristic of the system. The
Cooper instability determining T is related to the di-
vergence of a two-particle loop in the Cooper channel.
In the weak-coupling limit, when superconductivity is
due to the appearance of Cooper pairs at T, disor-
der only slightly influences superconductivity with the
s-wave pairing [27, 28]. The so-called Anderson theo-
rem is valid and changes of T, are connected only with
the relatively small changes of the density of states by
disorder. The standard derivation of the Anderson the-
orem [27, 28] uses the formalism of exact eigenstates of
an electron in the random field of impurities. Here,
we present another derivation of the Anderson theo-
rem, using the exact Ward identity, which allows us to
derive the equation for T,, which is then used to calcu-
late T, in the Nozieres—Schmitt-Rink approximation in
a disordered system.

In general, the Nozieres—Schmitt-Rink approach [3]
assumes that corrections due to strong pairing attrac-
tion significantly change the chemical potential of the
system, while possible corrections due to this inter-
action to the Cooper instability condition can be ne-
glected, and we can therefore always use the weak-
coupling (ladder) approximation. In that approxima-
tion, the Cooper instability condition in the disordered
Hubbard model takes the form

1=Uxo(q =0,w, =0), (15)

= TZZ(I)PP' (en) (16)

n  pp’

represents the two-particle loop (susceptibility) in the
Cooper channel “dressed” only by disorder scattering,
and ®ppr (5,) is the averaged two-particle Green’s func-
tion in the Cooper channel (w,, = 27mT and &, =
= 7T (2n + 1) are the usual boson and fermion Mat-
subara frequencies).

To obtain ), ®ppr(cs), We use the exact Ward
identity, derived by us in Ref. [23]:

- Z Pppr(en) X
o

— Gy (—en, —p"))- (17)

Here, G(g,,p) is the impurity-averaged single-particle
Green’s function (not containing Hubbard inter-
action corrections!). Using the obvious symmetry

G(gnap) - G(—é‘n, _p) =

X (Gal(gna pl)

e(p) = e(—p) and G(e,, —p) = G(en,p), we obtain
from the Ward identity (17) that
Zp G(Enap)_ ZpG(_Enap)
gépp/ (En) = — ngn ) (]‘8)

and hence for Cooper susceptibility (16) we have

XU(q = Oawm = 0) =

Zp G(_Eru P)

_TZ Zp G(en,p) —

2ie,
__Tzz G nap . (19)

Performing the standard summation over Matsubara
frequencies [25], we obtain

Xo(qg = 0,wp, = ~ 1 /d&x
% Zp GR(Evp) - ZpGA(Evp) h—
2T
B 7 N(s) €
= [P ms e

where N(e) is the density of states (U = 0) “dressed”
by disorder scattering. In Eq. (20), the energy ¢ is ref-
erenced to the chemical potential, and if we reference it
to the center of the conduction band, we have to replace
€ — ¢ — u, such that Cooper instability condition (15)
leads to the following equation for T,:
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e/2D

Fig.1. Dependence of the density of states on disorder
in the model with a semi-elliptic band, |U|/2D = 0.8,
1/2D =0.05

_—/daN /2T , (21)

where Ny() is again the density of states (calculated
at U = 0) “dressed” by disorder scattering. At the
same time, the chemical potential of the system at dif-
ferent, values of U and A should be determined from
DMFT+YX calculations, i.e., from the standard equa-
tion for the number of electrons (band filling) deter-
mined by the Green’s function in Eq. (3), which allows
us to find 7, for the wide range of model parameters,
including the BCS-BEC crossover and strong-coupling
regions, as well as for different levels of disorder. This
reflects the physical meaning of the Nozieres—Schmitt-
Rink approximation: in the weak-coupling region, the
transition temperature is controlled by Cooper instabil-
ity equation (21), while in the limit of strong-coupling,
it is determined as the BEC temperature controlled
by the chemical potential. Thus, the joint solution of
Eq. (21) and the equation for the chemical potential
guarantees the correct interpolation for 7, through the
BCS-BEC crossover region. This approach gives the
results for the critical temperature that are quantita-
tively close to the exact results obtained by direct nu-
merical DMFT calculations [13], but demands much
less numerical effort.

We stress that we have used the exact Ward iden-
tity, which also allows using Eq. (21) in the region of
strong disorder, when the effects of Anderson local-
ization may become relevant. Equation (21) demon-
strates that the critical temperature depends on disor-

der only through the disorder dependence of the den-
sity of states N (¢), which is the main statement of the
Anderson theorem. In the framework of the Nozieres—
Schmitt-Rink approach, Eq. (21) is also preserved in
the strong-coupling region, when the critical tempera-
ture is determined by the BEC condition for compact
Cooper pairs. In this case, the chemical potential p
entering Eq. (21) may significantly depend on disorder.
However, in the DMFT+3 approximation, this depen-
dence of the chemical potential (as well as of any other
single-particle characteristic) in the model with a semi-
elliptic density of states is only due to disorder widening
of the conduction band. Thus, in both the BCS-BEC
crossover and strong-coupling regions, the generalized
Anderson theorem actually remains valid. Accordingly,
in the model of a semi-elliptic band, Eq. (21) leads
to a universal dependence of T, on disorder, due to
the change D — D.y¢r. Such universality is fully con-
firmed by numerical calculations of 7. in this model,
performed in Ref. [24] (cf. also the results presented
below).

5. MAIN RESULTS

We now discuss the main results of our numerical
calculations, explicitly demonstrating the universal be-
havior of single-particle properties and the supercon-
ducting transition temperature with disorder. We see
below that all disorder effects are effectively controlled,
in fact, only by the growth of the half-width of conduc-
tion band, which for a semi-elliptic density of states is
given by Eq. (12). In the case of the band with a flat
density of states, the growth of disorder changes the
shape of the density of states, making it semi-elliptic
in the limit of sufficiently strong disorder, while the
effective half-width of the band is given by (cf. Ap-
pendix A)

Zell 14+ =
D +D2+

1 A2 <«/1+A2/D2+1> 22

+__
V1+A2/D? —1

2 D2

Ag an example of the most important single-particle
property, we take the density of states. In Fig. 1, we
show the evolution of the density of states with disor-
der in the model of a semi-elliptic band [13]. We can
see that the growth of disorder smears the density of
states and widens the band. This smearing somehow
masks the peculiarities of the density of states due to
correlation effects. In particular, both the quasipar-
ticle peak and the lower and upper Hubbard bands,
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Fig.2. Universal dependence of the density of states on disorder: (a) the model of a semi-elliptic “bare” density of states;
(b) the model of a flat “bare” density of states

observed in Fig. 1 in the absence of disorder, are com-
pletely destroyed in the limit of strong enough disor-
der. However, we can easily convince ourselves that
this evolution is only due to the general widening of
the band due to disorder (cf. Egs. (12) and (22)), be-
cause all the data for the density of states belong to the
same universal curve replotted in appropriate new vari-
ables, with all energies (and temperature) normalized
by the effective bandwidth by replacing D — Dy, as
shown in Fig. 2a, in complete agreement with the gen-
eral results obtained above. For the conduction band
with a flat density of states, there is no complete uni-
versality, as can be seen from Fig. 2b for low enough
values of disorder. However, for large enough disorder,
the dashed curve shown in Fig. 2b practically coincides
with the universal curve for the density of states shown
in Fig. 2a. This reflects the simple fact that at large
disorder, the flat density of states effectively transforms
into a semi-elliptic one (cf. Appendix A).

Going now to the analysis of the superconducting
transition temperature, in Fig. 3 we present the de-
pendence of T, (normalized by the critical temperature
in the absence of disorder, T.o = T.(A = 0)) on dis-
order for different values of the pairing interaction U
for both models of the initial “bare” density of states,
semi-elliptic (Fig. 3a) and flat (Fig. 3b). Qualitatively,
the evolution of T, with disorder is the same for both
models. We can see that in the weak-coupling limit

10 ZKOT®, Brim. 6

(U/2D <« 1), disorder slightly suppresses T, (curves
1). At intermediate couplings (U/2D ~ 1), weak dis-
order increases T, while the further increase in disor-
der suppresses the critical temperature (curves 3). In
the strong-coupling region (U/2D > 1), the growth
of disorder leads to a significant increase in the crit-
ical temperature (curves 5). However, we can easily
see that such a complicated dependence of T, on dis-
order is completely determined by the disorder widen-
ing of the “bare” (U = 0) conduction band, demon-
strating the validity of the generalized Anderson the-
orem for all values of U. In Fig. 4, the curve with
octagons shows the dependence of the critical temper-
ature T./2D on the coupling strength U/2D in the ab-
sence of disorder (A = 0) for both models of “bare” con-
duction bands, semi-elliptic (Fig. 4a) and flat (Fig. 4b).
We can see that in both models, in the weak-coupling
region, the superconducting transition temperature is
well described by the BCS model (in Fig. 4a), the
dashed curve represents the result of the BCS model,
with T, defined by Eq. (21), with the chemical poten-
tial independent of U and determined by the quarter-
filling of the “bare” band), while in the strong-coupling
region, the critical temperature is determined by the
BEC condition for Cooper pairs and decreases as t2 /U
as U increases (inversely proportional to the effective
mass of the pair), passing through the maximum at
U/2D.ss ~ 1. The other symbols in Fig. 4a show
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Fig.3. Dependence of the superconducting transition temperature on disorder for different values of the Hubbard attraction
U: (a) semi-elliptic band; () flat band
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Fig.4. Universal dependence of the superconducting critical temperature on the Hubbard attraction U for different disorder
levels: (a) semi-elliptic band; the dashed curve represents the BCS dependence in the absence of disorder; (b) flat band;
the dashed line represents a similar dependence for the semi-elliptic band for A =0

the results for 7. obtained by a combination of the
DMFT+¥ and Nozieres—Schmitt-Rink approximations
for a semi-elliptic “bare” band. We can see that all
data (expressed in normalized units of U/2D.g and
T./2D.ys) ideally fit the universal curve obtained in
the absence of disorder. For a flat “bare” band, re-
sults of our calculations are shown in Fig. 4b and we
do not observe the complete universality: data points,

corresponding to different degrees of disorder, somehow
deviate from the curve obtained in the absence of dis-
order. However, with the increase in disorder, the form
of the band becomes close to semi-elliptic and our data
points move towards the universal curve obtained for
the semi-elliptic case and shown by the dashed curve in
Fig. 4b, thus confirming the validity of the generalized
Anderson theorem.
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6. CONCLUSION

In this paper, in the framework of the DMFT+X
generalization of dynamical mean field theory, we have
studied the disorder influence on single-particle proper-
ties (e.g., the density of states) and the superconduct-
ing transition temperature in the attractive Hubbard
model. Calculations were done for a wide range of at-
tractive interactions U, from the weak-coupling region
U/2D.ss < 1, where both instability of the normal
phase and superconductivity are well described by the
BCS model, to the strong-coupling limit U/2D. s > 1,
where the superconducting transition is determined by
Bose—Einstein condensation of compact Cooper pairs
forming at temperatures much higher than the super-
conducting transition temperature. We have shown an-
alytically that for the conduction band with a semi-
elliptic density of states, which is a good approxima-
tion in the three-dimensional case, disorder influences
all single-particle properties in a universal way: all
changes of these properties are only due to the disorder
widening of the band. In the model of the conduction
band with a flat density of states, which is appropriate
for two-dimensional systems, there is no universality in
the region of weak disorder. However, the main effects
are again due to the general widening of the band and
complete universality is restored for high enough dis-
order, when the density of states effectively becomes
semi-elliptic.

To study the superconducting transition tempera-
ture, we have used the combination of the DMFT+X
approach and the Nozieres—Schmitt-Rink approxima-
tion. For both models of the conduction band, disorder-
ing the density of states may either suppress the criti-
cal temperature T, (in the region of weak coupling) or
significantly increase it (in the strong-coupling region).
However, in all these cases, we have actually proved
the validity of the generalized Anderson theorem, and
hence all changes of the transition temperature are in
fact controlled only by the effects of general disorder
widening of the conduction band. In the case of the
initial semi-elliptic band, the disorder influence on T,
is completely universal, while in the case of the initial
flat band, such universality is absent at weak disorder,
but is completely restored for high enough disorder lev-
els.

Finally, we present some additional comments
on the methods and approximations used. Both the
DMFT+Y and Nozieres—Schmitt-Rink approaches
represent cetrain approximate interpolation schemes,
strictly valid only in the corresponding limit cases
(e.g., small disorder or small (large) U). However,

both schemes demonstrate their effectiveness also in
the case of intermediate values of U and intermediate
(or even strong) disorder. Actually, the effectiveness of
the Nozieres—Schmitt-Rink approximation (neglecting
U corrections in the Cooper channel) was verified by
comparison with the direct DMFT calculations [13].
The use of DMFT+X to analyze the disorder ef-
fects in the repulsive Hubbard model was shown to
produce reasonable results for the phase diagram,
compared to exact numerical simulations of disorder
in DMFT, including the region of large disorder
(the Anderson localized phase) [19-21]. However,
the role of the approximations made in DMFT+3Y,
such as the neglect of the interference of disorder scat-
tering and correlation effects, deserves further studies.
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APPENDIX A

For the band with a flat density of states (at U =0
and A = 0), disorder leads both to widening of the
band and to a change of the form of the density of
states. Taking the density of states in the form given
by Esq. (6), we calculate the local Green’s function as

1 7 1
L= I—:
G“ 2D /dES—S'—A2Gii
—D

1 e—NA2Gyu + D

=apn (m) » (AD)
where the energy e is referenced to the middle of
the “bare” band. We introduce the auxiliary notation
Gii = R—il. At the band edges, I — 0, and therefore
expanding the r.h.s. of Eq. (A.1) up to linear terms in
I, we obtain

. 1 e—A’R+D
R_ZINEIH<5—AZR—D> -
A2
_ir (A.2)

(c— A’R)2 — D2’
Equating the real parts in (A.2), we obtain

R 1 (e A’R+D
“ap " <m> '

Similarly, equating the imaginary parts at the band
edges, we obtain ¢ — A2R = ++/D? + A2, and substi-
tuting this expression into the logarithm in the preced-
ing expression, we find R and the band edge positions
at
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5:i< D2 + A2 +
N \/D2-|-A2-|-D A
* 35 s o)) Y

Thus, the half-width of the band D,y widened by dis-
order in this model is determined by Eq. (22) used
above.

We note that although the Born approximation for
disorder scattering that we use is formally valid only
for small disorder A < D, the effects of Anderson lo-
calization at large disorder A ~ D do not qualitatively
change the density of states [27], and hence the Born
approximation gives qualitatively correct results also
in the region of large disorder. Actually, this approx-
imation neglects only the appearance of exponentially
small “tails” in the density of states, outside the “mean
field” band edges [27] and gives more or less correct
results inside such a band.

At large enough disorder, almost any “bare” band
width 2D and an arbitrary density of states No(e) ac-
quires a semi-elliptic density of states. In the limit of
very large disorder A > D, almost in the whole band,
widened by disorder, we have | —A?R| > D and in the
expression for the local Green’s function we can neglect
the ¢’-dependence in the denominator of the integrand:

)
R—il =Gy = / dgs—s’—AZG’“ ~
1
N —antiay A
Then we immediately obtain
- A’R=S, =L iac (A.5)
2’ 2A2
whence the density of states “dressed” by disorder
1 I 2

becomes semi-elliptic, Eq. (5), with the half-width
D¢y = 2A. Thus, at strong enough disorder, any
“bare” band becomes semi-elliptic, restoring the uni-
versal dependence of single-particle properties on dis-
order discussed above. In this sense, the model of the
“bare” band with a semi-elliptic density of states is most
appropriate for the studies of the effects of strong dis-
order.
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