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OBSERVATIONAL LIMITS ON GAUSS�BONNETAND RANDALL�SUNDRUM GRAVITIESS. O. Alexeyev a*, K. A. Rannu a, P. I. Dyadina b, B. N. Latosh ;d, S. G. Turyshev eaSternberg Astronomial Institute, Lomonosov Mosow State University119991, Mosow, RussiabPhysis Department, Lomonosov Mosow State University119991, Mosow, RussiaFaulty of Natural and Engineering Siene, Dubna International University141980, Dubna, Mosow Region, RussiadPhysis Department, Institute for Natural Sienes, Ural Federal University620002, Yekaterinburg, RussiaeJet Propulsion Laboratory, California Institute of TehnologyPasadena, CA 91109-0899, USAReeived Deember 22, 2014We disuss the possibilities of experimental searh for the new physis predited by the Gauss�Bonnet and theRandall�Sundrum theories of gravity. The e�etive four-dimensional spherially symmetrial solutions of thesetheories are analyzed. We onsider these solutions in the weak-�eld limit and in the proess of the primordialblak hole evaporation. We show that the preditions of the disussed models are the same as of generalrelativity. Hene, urrent experiments are not appliable for suh searh, and therefore di�erent methods ofobservation and higher auray are required.DOI: 10.7868/S00444510150600511. INTRODUCTIONA set of multidimensional gravity models beginningfrom the Kaluza�Klein one [1℄ result from the attemptsto onstrut a uni�ed �eld theory. Beause we live in aspae-time with four nonompat dimensions, any mul-tidimensional theory needs an appropriate e�etive fo-ur-dimensional limit onsistent with the preditions ofgeneral relativity (GR) and the results of observationsand experiments.String theory [2℄ along with loop quantum gravity[3℄ is urrently a promising andidate for a quantumtheory of gravity. Lovelok gravity [4℄ appeared to bea ghost-free four-dimensional low-energy e�etive limitof string theory [5, 6℄:L = p�g �R+ �2S2 + �3S3 + : : : � ; (1)where Sn is the Euler harateristi of the nth order.*E-mail: salexeyev�gmail.om

The leading and the most studied among them is theseond-order urvature orretion given by the Gauss�Bonnet termS2 = SGB = RijklRijkl � 4RijRij +R2:The e�etive four-dimensional limit of string theoryalso inludes a salar �eld, the projetion of the g10 10omponent of the ten-dimensional string metri to thefour-dimensional manifold. The Gauss�Bonnet termoupled to the salar (dilatoni) �eld [7�11℄ desribesthe in�uene of ompat extra dimensions on the fo-ur-dimensional spae-time. Therefore, the Gauss�Bon-net theory with the dilaton salar �eld serves as ane�etive four-dimensional limit of string theory.Unlike string theory, the Randall�Sundrum modelallows the only extra dimension to be large and evenin�nite [12, 13℄. This model onsiders four-dimensionalbranes with tension embedded into a �ve-dimensionalspae-time (bulk) that is assumed to have an AdS5geometry. All matter and the three fundamental in-terations are loalized on this brane, but gravity is1120



ÆÝÒÔ, òîì 147, âûï. 6, 2015 Observational limits on Gauss�Bonnet : : :allowed to propagate into the bulk along the extranonompat dimension. Thus, the Randall�Sundrummodel ontains the desription of the four-dimensionalspae-time from the very beginning and therefore doesnot need any speial theory serving as its e�etivefour-dimensional limit. The Randall�Sundrum I (RSI)model inludes two branes with di�erent properties,helping to solve the hierarhy problem [12℄. Movingthe seond brane to the in�nity led to the Randall�Sundrum II (RSII) model with one brane [13℄. In thispaper, we deal with RSII only.The blak-hole solution is a basi one for any theoryof gravity. First of all, it desribes a ompat objetinto whih a very massive star ollapses at the end ofits life yle. It also features the spae-time urvatureprodued by the presene of matter and spei� forthe onsidered gravity model. Any extended theory ofgravity should be onsistent with the preditions of GRand the observational results, and therefore the exis-tene of blak holes and their properties are importantindiators of the theory's viability.The Gauss�Bonnet solution has been studied ex-pliitly in reent years [7; 9�11℄. On the other hand,there are several di�erent solutions for the Randall�Sundrum model [14�18℄. It was argued that stati blakholes annot exist in RSII with a radius muh greaterthan the AdS length ` [19�21℄ and that even very smallRSII stati blak holes do not exist [22, 23℄. Therefore,RSII solutions for large blak holes, whih have beenfound independently by Figueras and Wiseman [24, 25℄and Abdolrahimi, Cattoën, Page, and Yaghoobpour-Tari (ACPY) [26℄ are an important improvement of theRandall�Sundrum model, interesting for further on-sideration. Abdolrahimi, Cattoën et al. [26℄ omparethe obtained blak-hole solution to the one in [25℄ andshow that these solutions agree losely. In this paper,we use the ACPY solution [26℄ beause it ontains theneessary details. The Figueras�Wiseman solution [24℄is onsidered separately.The outline of this paper is as follows. In Se. 2, wedisuss the weak-�eld and slow-motion approximationof the Gauss�Bonnet and Randall�Sundrum theories.Setion 3 is devoted to the analysis of thermodynami-al properties of these models and their in�uene on theprimordial blak hole mass spetra. In Se. 4, we dis-uss the results obtained, o�er onlusions, and outlinethe next steps.2. WEAK-FIELD LIMITAs a weak-�eld limit, we onsider the dynamialonditions in the solar system, i. e., the post-Newtonian

approximation. The metri tensor g�� an be repre-sented as a perturbation h�� around the Minkowskispae-time ��� [27℄:g�� = ��� + h�� : (2)In this paper, we onsider only spherially symmet-ri solutions, and therefore the stati gravity �eld at adistane r from its soure. In the �rst post-Newtonian(PPN) order, the orretion to the gravitational �eldh�� an be expressed by a series in the negative powersof the radial oordinate r up to the next-order terms:h00 � O(r�3); h0j � O(r�4); hij � O(r�2): (3)We use geometri units ~ =  = G = 1, with non-di-mensional masses expressed in units of the Plank mass.The PPN limit is well tested by experiments[27, 28℄. The better the experimental auray beomes[28℄, the more opportunities to test small gravitationale�ets predited by urrently viable theories should ap-pear. We use expansion (3) to ompare the magnitudesof the predited e�ets in order to see if spei� e�etsof the onsidered solutions an be tested. Beause thePPN approximation requires the weak-�eld limit, weapply our results to the Solar system, where the PPNparameters are measured with high preision [29℄. Ourresults are inappliable to the strong-�eld limit.2.1. Gauss�Bonnet gravityWe begin with exploring the weak-�eld limit of theGauss�Bonnet theory (here and hereafter, when sol-ving the equations, we use the dimensionless Plankianunits, and only at the step of numerial estimation dowe jump to the usual ones)S = 116� Z d4xp�g h�R+ 2������++ �e�2�SGB + : : : i; (4)where � is the potential of the dilatoni �eld, SGB isthe Gauss�Bonnet term, and � is the string ouplingonstant. We onstrut a post-Newtonian parameteri-zation of the stati asymptotially �at spherially sym-metri Gauss�Bonnet solutionds2 = �dt2 � �2� dr2 � r2�d�2 + sin2 �d'2�; (5)� = 1� 2Mr +O �r�2� ; � = 1 +O �r�2� ;� = �1 + Dr +O �r�2� ; (6)1121



S. O. Alexeyev, K. A. Rannu, P. I. Dyadina et al. ÆÝÒÔ, òîì 147, âûï. 6, 2015where t, r, �, ' are the usual spherial oordinates andthe funtions � and � depend on the radial oordi-nate r only, M is the Arnowitt�Deser�Misner (ADM)mass, D is dilatoni harge, i. e., the e�etive hargeof the salar �eld soure, and �1 is the asymptotivalue of the dilatoni potential [7, 8℄. As argued in [10℄,D / 1=M .We substitute metri (5) with expansions (6) inthe �eld equations written in the omputationally mostonvenient form [30℄:G�� = 8� �Tm�� + T��� + TGB�� � ; (7)where Tm�� is the matter stress�energy tensor, and T���and TGB�� re�et the presene of the salar �eld and theGauss�Bonnet term:T��� = 18� �������� 12g����� ���� ;TGB�� = 18� h(r�r� � g���)(e�2�R) ++ 2��Æ��Æ�� + g��r�r��r�r(�Æ��)�(e�2� R��)�� 2r�r�(e�2� R����)i:Using the standard omputational tehniques [27℄, theleading order for the nontrivial orretion to the Gauss�Bonnet metri tensor an be found asÆhGB00 = 8 DMr4 +O(r�5): (8)Comparing this result with (3), we see that theorretion term (8) lies beyond the PPN order, whihshould be proportional to 1=r2. Hene, the parametersof the Gauss�Bonnet model annot be onstrained bythe Solar system tests. This result is onsistent withonlusions in [30℄, where the osmologial limit of thedisussed model was studied.2.2. Randall�Sundrum gravityThe blak hole solution of the Randall�Sundrummodel was onstruted in [24℄ using an assoiated�ve-dimensional anti-de Sitter spae (AdS5) andAdS5�CFT4 orrespondene [31℄. The Figueras�Wise-man solution desribes a stati blak hole with a radiusup to � 20` and reprodues four-dimensional GR onthe brane in the low-urvature and the low-energylimit. We intend to use the fat that the Shwarhildmetri an be used not only as a blak hole one butalso as a desription of a gravitational (stellar) systemfar from the entral body (for example, for Solarsystem, with all the limitations and orretions takeninto aount).

The �ve-dimensional metri an be written near theonformal boundary z = 0 asds2 = l2z2 �dz2 + ~g��(z; x) dx�dx�� ; (9)where z is a oordinate of the brane along the extra di-mension and ~g��(z; x) is the metri on the brane deter-mined by the Fe�erman�Graham expansion [31℄. Theorresponding e�etive four-dimensional �eld equa-tions [24℄ areG�� = 8�G4T brane�� + �2n16�G4hTCFT�� [g℄i++ a�� [g℄ + log � b�� [g℄o+O(�4 log �); (10)where G4 is the usual four-dimensional gravitationalonstant, T brane�� is the stress�energy tensor of matterloalized on the brane, the tensors hTCFT�� [g℄i, a�� [g℄,and b�� [g℄ result from the extra dimension and de-pend on the metri tensor omponents, and � is a smallperturbation parameter indiating the deviation of thebrane position from the equilibrium z = 0.The additional term in the post-Newtonian expan-sion of the Figueras�Wiseman solution alulated inthis paper is ÆhFW00 = 12127 �2`2 M2r2 : (11)The obtained value (11) lies within the PPN limit (3)and points at a potentially observable e�et. In theRandall�Sundrum model, gravity is allowed to propa-gate into the bulk along the extra dimension, and there-fore the e�et desribed by (11) most likely leads to anegative nonlinearity in gravitational superposition. Inother words, the resulting gravitational �eld produedby two or more massive objets an be less than thediret vetor sum of their ontributions. The parame-terized PPN parameter � is responsible for suh an ef-fet [27, 28℄. Therefore, result (11) should be expressedas � = 1� �2`2 121108 M2; (12)where M is the mass of the massive entral objet. Inthe onsidered ase, it equals the solar mass. It is alsoexpressed in Plank units of mass and is therefore di-mensionless.The onstraint on the PPN parameter � obtainedfrom the analysis of the lunar laser ranging data [32℄is j� � 1j � 1:1 � 10�4 [29℄. The admitted region of theAdS length is limited by the results of the Newton'slaw test ` < 10�5 m [33℄. Therefore, the upper limiton the value of � is1122



ÆÝÒÔ, òîì 147, âûï. 6, 2015 Observational limits on Gauss�Bonnet : : :� � 5:7 � 10�47 m� lPl: (13)Originally, the parameter � was assumed to be neg-ligibly small and the vanishing value found in (13) im-plies that in fat � = 0. Thus, the Figueras�Wisemanfour-dimensional blak hole solution is not only self-onsistent but also well onsistent with the solar sys-tem onstraints. Therefore, this solution is eventuallyindistinguishable form GR in the PPN limit.The other reent Randall�Sundrum solution ob-tained by Abdolrahimi, Cattoën, Page, and Yagho-obpour-Tari [26℄ is asymptotially onformal to theShwarzshild metri and inludes a negative �ve-di-mensional osmologial onstant �5:ds2 = �u(r)dt2+v(r)u(r) dr2+ �r2+F (r)��5 � d
2;u(r) = 1� 2M=r;v(r) = 1 + r � 2Mr � 3M=2 � F (r)��5r�0 ;F (r) = 1� 1:12412Mr + 1:956�2Mr �2 �� 9:961�2Mr �3 + : : :+ 2:900�2Mr �11 ; (14)
where 0 � d=dr. The funtion F (r) desribes the per-turbation aused by the bulk. The best �t for it wasobtained in [26℄.The �eld equations indued on the brane were de-rived in [34℄:G�� = ��4g��+ 8�M2Pl4 T��+ 8�M3Pl5 S���E�� ; (15)where �4 is the usual four-dimensional osmologialonstant, g�� is the metri on the brane, T�� is thestress�energy tensor of matter loalized on the brane,S�� is the loal quadrati stress�energy orretion, andE�� is the four-dimensional projetion of the �ve-di-mensional Weyl tensor; MPl4 is usual four-dimensionalPlank mass and MPl5 is the fundamental �ve-dimen-sional Plank mass.The indued metri on the brane is �at and thebulk is an anti-de-Sitter spae-time as in the originalRandall�Sundrum senario [13℄, whene E�� = 0 [16℄.Therefore, the orretion term due to the ontributionfrom ACPY topology (14) that follows from (15) hasthe form ÆhAP00 = `2M296 1r4 +O(r�5): (16)Aording to (3), the expansion term of the PPNorder should be proportional to r�2. The orretion

in (16) ontains the next perturbation order, whihlies beyond the PPN approximation, similarly to theGauss�Bonnet ase (8). Therefore, the obtained on-tribution (16) also annot be observed in the solarsystem experiments. This onlusion on the Randall�Sundrum model preditions on�rms the result for theFigueras�Wiseman solution and oinides with that inthe Gauss�Bonnet ase.3. THERMODYNAMICS AND PRIMORDIALBLACK HOLESIt is onjetured that density �utuations in theearly Universe ould have reated blak holes with ar-bitrarily small masses, even to the Plank sale [35℄.These blak holes are referred to as primordial blakholes (PBHs) [36℄ and an be used to onsider viabletheories in osmologial onditions.Hawking evaporation [37, 38℄ is one of the most sig-ni�ant properties of a blak hole and an be desribedby the mass-loss rate equation [39℄�dMdt = 1256 kB�3M2 ; (17)where M is the mass of the blak hole and kB is theStefan�Boltzmann onstant. Hawking evaporation is aquantum proess forbidden in lassial physis. An out-going radiation has to ross a potential barrier of theblak hole horizon [40℄, and hene the radiation sur-rounding the blak hole is in thermal equilibrium andan be desribed as the blak-body radiation. There-fore, blak hole evaporation obeys the law�dMdt = kBST 4; (18)where S is its surfae area. We use this formula to es-timate the lifetime of blak holes in the Gauss�Bonnetand Randall�Sundrum models.Aording to (17), the blak holes with stellarmasses evaporate very slowly and do not lose massthrough this proess notieably. On the other hand,PBHs with the initial masses smaller thanM0 � 5:0 � 1014 g (19)have already evaporated and an ontribute to the ex-tragalati bakground radiation [38℄. PBHs with theinitial mass greater than M0 in (19) should be evap-orating until now [41℄. Aording to some models ofblak hole evaporation [7, 8, 41℄, the last stages of thisproess an be aompanied by bursts of high-energypartiles [8℄, inluding gamma radiation with energy in1123



S. O. Alexeyev, K. A. Rannu, P. I. Dyadina et al. ÆÝÒÔ, òîì 147, âûï. 6, 2015the MeV�TeV range, ouring at the distanes aboutz � 9:4 [42℄. Suh events should be rather rare and,on the other hand, the set of simpler explanations formost of gamma-ray bursts (GRB) exists. Nevertheless,PBHs at the last stage of evaporation an serve as ad-ditional andidates for GRB progenitors, and thereforethe limit estimation for the blak hole evaporation ratean be obtained in suh a way.Di�erent theories of gravity predit di�erent blakhole evaporation rates and therefore di�erent initialmasses of the PBHs that fully evaporate for the Uni-verse lifetime. In this paper, we ompare the evapora-tion rates for the Gauss�Bonnet and RSII blak holesolutions. Aording to the GRB data and the pre-ision of the Fermi Large Area telesope (LAT), thelosest distane d at whih a telesope an detet theevaporation of primordial blak holes is [36℄d � 0:04�
sr��0:5� EGeV�0:7� TTeV�0:8 p; (20)where 
 is the angular resolution of the telesope, E isthe energy range of the telesope, and T is the temper-ature of the blak hole. The same proedure reversed,using a telesope to detet gamma-ray bursts, leads tothe observable di�erene of the PBH initial mass on its�nal evaporation stage, whih an deviate from the GRpreditions within the following limits:Minvestigated theoryMGR > 105: (21)We use this limit as the mass uto� threshold in ouralulations.Using the method in [43℄, it is possible to rewritethe expression for the Gauss�Bonnet blak hole tem-perature and then use (7). In the astrophysial ase,the dilatoni harge is D � 1=M [10℄. Therefore, theright-hand side of (18) an be expanded in a series as�dMdt � 1256 kB�3M2 + 1512 kB�3M6 +O �M�10� : (22)The initial mass of the PBH that fully evaporates dur-ing the lifetime of the Universe in this ase isMGB = 8 � 1014 g: (23)The di�erene between the obtained value and the sim-ilar GR quantity in (19) is smaller than the uto�threshold set by (21). Thus, the spei� features of theGauss�Bonnet evaporation rate are negligible at theurrent level of auray and the preditions of Gauss�Bonnet gravity for the Hawking evaporation are indis-tinguishable from those of GR.

One of the �rst and most studied blak hole so-lutions of the Randall�Sundrum model was found in[14, 16℄, where an exat loalized blak hole solutionwas obtained that remarkably had the mathematialform of the Reissner�Nordström solution, but withoutthe eletri harge [14℄:� gtt = grr = 1� 2Mr + qM2Pl5 1r2 : (24)The Reissner�Nordström-type orretion to theShwarzshild potential in (24) an be regarded as adimensionless �tidal harge� parameter q, arising fromthe projetion onto the brane of free gravitational�eld e�ets in the bulk transmitted via the bulk Weyltensor [14℄. The projeted Weyl tensor, transmittingthe tidal harge stresses from the bulk to the brane,is [14℄ E�� = � qM2Pl5 1r4 (u�u� � 2r�r� + h��) ;where h�� = g�� + u�u� projets orthogonally to the4-veloity �eld u�, and r� is a unit radial vetor.The mass loss rate obtained similarly to the Gauss�Bonnet ase is�dMdt = 1216 kB�3M2 +O �M�6� : (25)The leading term in (25) annot produe the needed�fth-order di�erene de�ned by threshold parame-ter (21). The initial mass of the Dadhih�Rezania blakhole that evaporates ompletely during the lifetime ofthe Universe proves this fat:MDR = 5:3 � 1014 g: (26)Beause the obtained di�erene is muh less than theuto� threshold in (21), the �tidal harge� in�uenevanishes and annot have experimentally veri�able on-sequenes.Blak hole evaporation for the ACPY solution dis-ussed in the preeding setion was also onsidered ina similar manner. The evaporation rate of this solutionhas ompletely the same form as the original Hawkingformula (17) up to M�10 terms, and hene the value ofthe initial mass is equal to that given by GR:MAP = 5:0 � 1014 g: (27)The results for the Figueras�Wiseman solution are thesame beause of the form of the solution (11).The obtained results (22), (23), (25)�(27) lead tothe onlusion that the preision of the urrently exist-ing GRB data is not su�ient to distinguish the GR,Gauss�Bonnet, and Randall�Sundrum gravity theoriesfrom eah other via the PBH onsideration.1124



ÆÝÒÔ, òîì 147, âûï. 6, 2015 Observational limits on Gauss�Bonnet : : :4. DISCUSSION AND CONCLUSIONSIn this paper, we disussed the possibilities to testthe theories extending GR in di�erent ways by theexample of the Gauss�Bonnet and Randall�Sundrummodels both in the weak �eld and in the osmologiallimits. For this, the post-Newtonian expansion and theblak hole evaporation in these theories were onsid-ered.The Gauss�Bonnet term oupled to the salar �elddoes not in�uene the post-Newtonian limit (8), andtherefore the nontrivial salar hair generated by it[7, 11℄ does not ontribute to the required order of thespherially symmetri solution expansion. This resultagrees with the previous onlusions in [30℄, where theosmologial solution of ation (4) was onsidered andthe in�uene of the Gauss�Bonnet term was shown tobe negligible at solar system sales. Combining thesetwo results, we an state that the leading term of Love-lok expansion (1) desribing a seond-order urvatureorretion does not provide any visible deviation fromGR preditions in the weak-�eld limit, and thereforesuh a theory of gravity fully agrees with GR.This onlusion is also valid for any model withhigher-order urvature orretions having a properNewtonian limit. Beause the Gauss�Bonnet term isthe leading urvature orretion of the Lovelok gravity,its ontribution to the post-Newtonian expansion of themetri is also the largest. Taking other Euler harater-istis (the next orders of urvature orretions) into a-ount annot hange the piture beause their in�ueneis even less and obviously lies far beyond the PPN limit.Thus, the onlusions for the Gauss�Bonnet model anbe generalized to the Lovelok gravity.The theories with urvature power series are notthe only method for geometrially extending GR. Inthe generi ase, the Lagrangian an ontain an arbi-trary funtion of the Rii salar R. Suh theories setup f(R)-gravity [44, 45℄, and the Lovelok gravity isits partiular ase. Many f(R)-gravity models, suh aslnR or 1=R [44, 46℄, were originally introdued as at-tempts to explain dark energy or dark matter. They donot have a proper PPN limit [44℄ and are inappliableto the solar system sale. Therefore, our onlusionsfor the Gauss�Bonnet theory in the weak-�eld limit areappliable for Lovelok gravity and f(R)-gravity of theLovelok type.The thermodynamial properties of the Gauss�Bon-net blak hole solution were onsidered in detail pre-viously [7; 8; 10℄, but only the blak holes of Planksales were investigated. For the blak holes with largermasses, the in�uene of the Gauss�Bonnet term and

the salar �eld beomes negligibly small, and thereforethe evaporation is preditably the same as in the GRase.Sine Randall and Sundrum proposed a the-ory of gravity with a nonompat extra dimension[12, 13℄, several blak hole solutions have been found[14; 17; 24�26℄. Analysis of the post-Newtonian expan-sion of the Figueras�Wiseman solution [24℄ reveals apossible e�et of negative nonlinearity of gravitationalsuperposition (12). It naturally results from the the-ory itself beause gravity is allowed to propagate to theextra dimension in the Randall�Sundrum model. How-ever, the breaking of gravitational superposition turnsout to depend on a negligibly small parameter, andhene the preditions of the Figueras�Wiseman solu-tion fully agree with GR and the present observations.This e�et may in�uene the strong-�eld regime (losebinary systems, blak holes) as a onsequene of urva-ture growth. Hene, the next step ould be the searhfor suh features of the Randall�Sundrum model in thestrong-�eld limit. Fortunately, this investigation is fea-sible beause large stable blak hole solutions for RSIIblak holes have been found [24, 26℄.The onsideration of the blak hole solution by Ab-dolrahimi, Page et al. [26℄ shows that the terms desrib-ing the bulk in�uene (16) greatly exeed the limits ofthe post-Newtonian approximation. As a result, bothlarge Randall�Sundrum blak holes solutions annot bedistinguished from the Shwarzshild metri at the so-lar system sales.We have also examined the evaporation rate for theRandall�Sundrum blak holes. The results for one ofthe �rst solutions obtained in [14℄ and the latest onein [26℄ are presented in Eqs. (22), (23), (25)�(27). Thedi�erene between the Dadhih�Rezania solution andGR is negligibly small and the Page solution oinideswith GR ompletely.As is easy to see, many extended gravity modelsannot be distinguished from GR and from eah otherboth at the solar system sales and by the blak holesthermodynami properties. Therefore, the oinideneof these extended theories with GR serves as a good ar-gument in favor of their validity. However, this does notmean that no di�erene an be found by other veri�a-tion methods. Besides the weak �eld and the osmolog-ial tests, a strong-�eld approximation is widely used.It has a veri�ation laboratory suh as lose binary sys-tems, primarily those ontaining pulsars as one or evenboth of their omponents. A great amount of data hasbeen obtained from these observations and it obviouslyshould be used for testing the extended gravity models,although this method has its own shortomings. If the1125
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