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We discuss the possibilities of experimental search for the new physics predicted by the Gauss—Bonnet and the
Randall-Sundrum theories of gravity. The effective four-dimensional spherically symmetrical solutions of these
theories are analyzed. We consider these solutions in the weak-field limit and in the process of the primordial
black hole evaporation. We show that the predictions of the discussed models are the same as of general
relativity. Hence, current experiments are not applicable for such search, and therefore different methods of

observation and higher accuracy are required.
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1. INTRODUCTION

A set of multidimensional gravity models beginning
from the Kaluza—Klein one [1] result from the attempts
to construct a unified field theory. Because we live in a
space-time with four noncompact dimensions, any mul-
tidimensional theory needs an appropriate effective fo-
ur-dimensional limit consistent with the predictions of
general relativity (GR) and the results of observations
and experiments.

String theory [2] along with loop quantum gravity
[3] is currently a promising candidate for a quantum
theory of gravity. Lovelock gravity [4] appeared to be
a ghost-free four-dimensional low-energy effective limit
of string theory [5, 6]:

L=y=g(R+aS>+a3S*+...), (1)

where S™ is the Euler characteristic of the nth order.

*E-mail: salexeyev@gmail.com

The leading and the most studied among them is the
second-order curvature correction given by the Gauss—
Bonnet term

S? = Sap = Rijk[Rijkl — 4Rinij + R2.

The effective four-dimensional limit of string theory
also includes a scalar field, the projection of the g1¢ 10
component of the ten-dimensional string metric to the
four-dimensional manifold. The Gauss—Bonnet term
coupled to the scalar (dilatonic) field [7—11] describes
the influence of compact extra dimensions on the fo-
ur-dimensional space-time. Therefore, the Gauss—Bon-
net theory with the dilaton scalar field serves as an
effective four-dimensional limit of string theory.
Unlike string theory, the Randall-Sundrum model
allows the only extra dimension to be large and even
infinite [12, 13]. This model considers four-dimensional
branes with tension embedded into a five-dimensional
space-time (bulk) that is assumed to have an AdSs
geometry. All matter and the three fundamental in-
teractions are localized on this brane, but gravity is
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allowed to propagate into the bulk along the extra
noncompact dimension. Thus, the Randall-Sundrum
model contains the description of the four-dimensional
space-time from the very beginning and therefore does
not need any special theory serving as its effective
four-dimensional limit. The Randall-Sundrum I (RSI)
model includes two branes with different properties,
helping to solve the hierarchy problem [12]. Moving
the second brane to the infinity led to the Randall-
Sundrum IT (RSIT) model with one brane [13]. In this
paper, we deal with RSII only.

The black-hole solution is a basic one for any theory
of gravity. First of all, it describes a compact object
into which a very massive star collapses at the end of
its life cycle. It also features the space-time curvature
produced by the presence of matter and specific for
the considered gravity model. Any extended theory of
gravity should be consistent with the predictions of GR
and the observational results, and therefore the exis-
tence of black holes and their properties are important
indicators of the theory’s viability.

The Gauss—Bonnet solution has been studied ex-
plicitly in recent years [7,9-11]. On the other hand,
there are several different solutions for the Randall-
Sundrum model [14-18]. It was argued that static black
holes cannot exist in RSII with a radius much greater
than the AdS length ¢ [19-21] and that even very small
RSII static black holes do not exist [22, 23]. Therefore,
RSII solutions for large black holes, which have been
found independently by Figueras and Wiseman [24, 25|
and Abdolrahimi, Cattoén, Page, and Yaghoobpour-
Tari (ACPY) [26] are an important improvement of the
Randall-Sundrum model, interesting for further con-
sideration. Abdolrahimi, Cattoén et al. [26] compare
the obtained black-hole solution to the one in [25] and
show that these solutions agree closely. In this paper,
we use the ACPY solution [26] because it contains the
necessary details. The Figueras—Wiseman solution [24]
is considered separately.

The outline of this paper is as follows. In Sec. 2, we
discuss the weak-field and slow-motion approximation
of the Gauss—Bonnet and Randall-Sundrum theories.
Section 3 is devoted to the analysis of thermodynami-
cal properties of these models and their influence on the
primordial black hole mass spectra. In Sec. 4, we dis-
cuss the results obtained, offer conclusions, and outline
the next steps.

2. WEAK-FIELD LIMIT

As a weak-field limit, we consider the dynamical
conditions in the solar system, i. e., the post-Newtonian

approximation. The metric tensor g,, can be repre-
sented as a perturbation h,, around the Minkowski
space-time 1, [27]:

Guv = Nuv + huu~ (2)

In this paper, we consider only spherically symmet-
ric solutions, and therefore the static gravity field at a
distance r from its source. In the first post-Newtonian
(PPN) order, the correction to the gravitational field
hy,, can be expressed by a series in the negative powers
of the radial coordinate r up to the next-order terms:

hoo ~ O(r~?), hgj ~ o), hij ~O(r~2). (3)

We use geometric units & = ¢ = G = 1, with non-di-
mensional masses expressed in units of the Planck mass.
The PPN limit is well tested by experiments
[27, 28]. The better the experimental accuracy becomes
[28], the more opportunities to test small gravitational
effects predicted by currently viable theories should ap-
pear. We use expansion (3) to compare the magnitudes
of the predicted effects in order to see if specific effects
of the considered solutions can be tested. Because the
PPN approximation requires the weak-field limit, we
apply our results to the Solar system, where the PPN
parameters are measured with high precision [29]. Our
results are inapplicable to the strong-field limit.

2.1. Gauss—Bonnet gravity

We begin with exploring the weak-field limit of the
Gauss—Bonnet theory (here and hereafter, when sol-
ving the equations, we use the dimensionless Planckian
units, and only at the step of numerical estimation do
we jump to the usual ones)

5= L/d‘lx\/_—g [~ R+ 20,006 +
167
+ e 2Sap+ ... |, (4)

where ¢ is the potential of the dilatonic field, Sgp is
the Gauss-Bonnet term, and A\ is the string coupling
constant. We construct a post-Newtonian parameteri-
zation of the static asymptotically flat spherically sym-
metric Gauss—Bonnet solution

2 _ 2 00 o afm 3, o
ds® = Adt A dr® —r*(df” + sin” 0dp” ), (5)

A=1-2 06, s=140(?),
o ©)
¢:¢oo+?+0(7'_2)7

1121



S. 0. Alexeyev, K. A. Rannu, P. I. Dyadina et al.

MITD, Tom 147, BHm. 6, 2015

where t, r, 6, p are the usual spherical coordinates and
the functions A and ¢ depend on the radial coordi-
nate r only, M is the Arnowitt—Deser—Misner (ADM)
mass, D is dilatonic charge, i.e., the effective charge
of the scalar field source, and ¢, is the asymptotic
value of the dilatonic potential [7, 8]. As argued in [10],
D x1/M.

We substitute metric (5) with expansions (6) in
the field equations written in the computationally most
convenient form [30]:

G =8 (T + T3, + TSP (7)

where T)7) is the matter stress—energy tensor, and Tl‘fy
and TGP reflect the presence of the scalar field and the

Gauss—Bonnet term:

1

1
T, = 3 <3u¢3u¢ — 59u0"¢ 3p¢) ;

1 _
TGP = o RVMVV—WMVDX62¢R)+
+2(:|5;155 + g VPVT VPV (07 ) (672 Ryp) —
-2vpv0@f2¢zamygﬂ.

Using the standard computational techniques [27], the
leading order for the nontrivial correction to the Gauss—
Bonnet metric tensor can be found as

wﬁf:s€%5+oa%y (8)

Comparing this result with (3), we see that the
correction term (8) lies beyond the PPN order, which
should be proportional to 1/r>. Hence, the parameters
of the Gauss—Bonnet model cannot be constrained by
the Solar system tests. This result is consistent with
conclusions in [30], where the cosmological limit of the
discussed model was studied.

2.2. Randall-Sundrum gravity

The black hole solution of the Randall-Sundrum
model was constructed in [24] using an associated
five-dimensional anti-de Sitter space (AdSs) and
AdS;-CFT, correspondence [31]. The Figueras—Wise-
man solution describes a static black hole with a radius
up to ~ 20¢ and reproduces four-dimensional GR on
the brane in the low-curvature and the low-energy
limit. We intend to use the fact that the Schwarchild
metric can be used not only as a black hole one but
also as a description of a gravitational (stellar) system
far from the central body (for example, for Solar
system, with all the limitations and corrections taken
into account).

The five-dimensional metric can be written near the
conformal boundary z = 0 as

l2
ds? = = [dz® + Guv (2, 2) datda”], (9)

where z is a coordinate of the brane along the extra di-
mension and §,,(z, z) is the metric on the brane deter-
mined by the Fefferman-Graham expansion [31]. The
corresponding effective four-dimensional field equa-
tions [24] are

G = S7GATL + {167G (TS T [g]) +
+ aulg] +loge bulg] } + O(e'loge),  (10)

where (G4 is the usual four-dimensional gravitational
constant, T};;ane is the stress—energy tensor of matter
localized on the brane, the tensors (TS "[g]), auu[g],
and b,,[g] result from the extra dimension and de-
pend on the metric tensor components, and € is a small
perturbation parameter indicating the deviation of the
brane position from the equilibrium z = 0.

The additional term in the post-Newtonian expan-
sion of the Figueras—Wiseman solution calculated in
this paper is

121 €2 M?
W e
The obtained value (11) lies within the PPN limit (3)
and points at a potentially observable effect. In the
Randall-Sundrum model, gravity is allowed to propa-
gate into the bulk along the extra dimension, and there-
fore the effect described by (11) most likely leads to a
negative nonlinearity in gravitational superposition. In
other words, the resulting gravitational field produced
by two or more massive objects can be less than the
direct vector sum of their contributions. The parame-
terized PPN parameter /3 is responsible for such an ef-
fect [27, 28]. Therefore, result (11) should be expressed
as

ShEW = (11)

€121 _ ,
e
where M is the mass of the massive central object. In
the considered case, it equals the solar mass. It is also
expressed in Planck units of mass and is therefore di-
mensionless.

The constraint on the PPN parameter S obtained
from the analysis of the lunar laser ranging data [32]
is |3 — 1] < 1.1-10* [29]. The admitted region of the
AdS length is limited by the results of the Newton’s
law test ¢ < 107> m [33]. Therefore, the upper limit
on the value of € is

=1 (12)
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€<57-107" em < Ipy. (13)

Originally, the parameter € was assumed to be neg-
ligibly small and the vanishing value found in (13) im-
plies that in fact e = 0. Thus, the Figueras—Wiseman
four-dimensional black hole solution is not only self-
consistent but also well consistent with the solar sys-
tem constraints. Therefore, this solution is eventually
indistinguishable form GR in the PPN limit.

The other recent Randall-Sundrum solution ob-
tained by Abdolrahimi, Cattoén, Page, and Yagho-
obpour-Tari [26] is asymptotically conformal to the
Schwarzschild metric and includes a negative five-di-
mensional cosmological constant As:

e 20 g [ FO]
ds? = —u(r)dt u()d +{+A]d0
u(ry=1-2M/r,

B r—2M [F(r)]

o) =1+ T [—A5r] (14)

F(r) = 1—11241—M+1956(2M)
.

oM\? oM\ M
—9.961 <T> +...+2.900 (T) :

where " = d/dr. The function F(r) describes the per-
turbation caused by the bulk. The best fit for it was
obtained in [26].

The field equations induced on the brane were de-
rived in [34]:

8w 8
v — A v T v l/_g 12} ]-
Guv = 49p +M12314 1 +M133!5 Sy n (15)

where A4 is the usual four-dimensional cosmological
constant, g,, is the metric on the brane, T, is the
stress—energy tensor of matter localized on the brane,
Sy is the local quadratic stress—energy correction, and
Euv is the four-dimensional projection of the five-di-
mensional Weyl tensor; Mpyy is usual four-dimensional
Planck mass and Mp; is the fundamental five-dimen-
sional Planck mass.

The induced metric on the brane is flat and the
bulk is an anti-de-Sitter space-time as in the original
Randall-Sundrum scenario [13], whence &,, = 0 [16].
Therefore, the correction term due to the contribution
from ACPY topology (14) that follows from (15) has
the form

M1
96 rt

Shiyl = +0O(r ). (16)

According to (3), the expansion term of the PPN
order should be proportional to r—2. The correction

n (16) contains the next perturbation order, which
lies beyond the PPN approximation, similarly to the
Gauss—Bonnet case (8). Therefore, the obtained con-
tribution (16) also cannot be observed in the solar
system experiments. This conclusion on the Randall-
Sundrum model predictions confirms the result for the
Figueras—Wiseman solution and coincides with that in
the Gauss—Bonnet case.

3. THERMODYNAMICS AND PRIMORDIAL
BLACK HOLES

It is conjectured that density fluctuations in the
early Universe could have created black holes with ar-
bitrarily small masses, even to the Planck scale [35].
These black holes are referred to as primordial black
holes (PBHs) [36] and can be used to consider viable
theories in cosmological conditions.

Hawking evaporation [37, 38] is one of the most sig-
nificant properties of a black hole and can be described
by the mass-loss rate equation [39]

a1 ks
dt 256 m3M?2’

where M is the mass of the black hole and kp is the
Stefan—Boltzmann constant. Hawking evaporation is a
quantum process forbidden in classical physics. An out-
going radiation has to cross a potential barrier of the
black hole horizon [40], and hence the radiation sur-
rounding the black hole is in thermal equilibrium and
can be described as the black-body radiation. There-
fore, black hole evaporation obeys the law

(17)

- = kpST*, (18)
where S is its surface area. We use this formula to es-
timate the lifetime of black holes in the Gauss—Bonnet
and Randall-Sundrum models.

According to (17), the black holes with stellar
masses evaporate very slowly and do not lose mass
through this process noticeably. On the other hand,
PBHs with the initial masses smaller than

My ~50-10" g (19)

have already evaporated and can contribute to the ex-
tragalactic background radiation [38]. PBHs with the
initial mass greater than My in (19) should be evap-
orating until now [41]. According to some models of
black hole evaporation [7, 8, 41], the last stages of this
process can be accompanied by bursts of high-energy
particles [8], including gamma radiation with energy in
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the MeV-TeV range, occuring at the distances about
z < 9.4 [42]. Such events should be rather rare and,
on the other hand, the set of simpler explanations for
most of gamma-ray bursts (GRB) exists. Nevertheless,
PBHs at the last stage of evaporation can serve as ad-
ditional candidates for GRB progenitors, and therefore
the limit estimation for the black hole evaporation rate
can be obtained in such a way.

Different theories of gravity predict different black
hole evaporation rates and therefore different initial
masses of the PBHs that fully evaporate for the Uni-
verse lifetime. In this paper, we compare the evapora-
tion rates for the Gauss—-Bonnet and RSII black hole
solutions. According to the GRB data and the pre-
cision of the Fermi Large Area telescope (LAT), the
closest distance d at which a telescope can detect the
evaporation of primordial black holes is [36]

Q —0.5 E 0.7 T 0.8
d~0.04(§> <@> <ﬁ> pc,  (20)

where () is the angular resolution of the telescope, E is
the energy range of the telescope, and T is the temper-
ature of the black hole. The same procedure reversed,
using a telescope to detect gamma-ray bursts, leads to
the observable difference of the PBH initial mass on its
final evaporation stage, which can deviate from the GR
predictions within the following limits:

Minvestigated theory 5
> 107. 21
Von (21)

We use this limit as the mass cutoff threshold in our
calculations.

Using the method in [43], it is possible to rewrite
the expression for the Gauss—Bonnet black hole tem-
perature and then use (7). In the astrophysical case,
the dilatonic charge is D ~ 1/M [10]. Therefore, the
right-hand side of (18) can be expanded in a series as

dM - 1 kB 1 kB

—10
3 X35 o T e TO M) (22)

The initial mass of the PBH that fully evaporates dur-
ing the lifetime of the Universe in this case is

Mgp =810 g. (23)

The difference between the obtained value and the sim-
ilar GR quantity in (19) is smaller than the cutoff
threshold set by (21). Thus, the specific features of the
Gauss-Bonnet evaporation rate are negligible at the
current level of accuracy and the predictions of Gauss—
Bonnet gravity for the Hawking evaporation are indis-
tinguishable from those of GR.

One of the first and most studied black hole so-
lutions of the Randall-Sundrum model was found in
[14, 16], where an exact localized black hole solution
was obtained that remarkably had the mathematical
form of the Reissner—Nordstréom solution, but without
the electric charge [14]:

2M g 1
— G =g =1—-—+ . (24)
v ro Mgy r?

The Reissner—Nordstrom-type correction to the
Schwarzschild potential in (24) can be regarded as a
dimensionless “tidal charge” parameter ¢, arising from
the projection onto the brane of free gravitational
field effects in the bulk transmitted via the bulk Weyl
tensor [14]. The projected Weyl tensor, transmitting
the tidal charge stresses from the bulk to the brane,
is [14]

qg 1
Myt
where h,, = gu, + u,u, projects orthogonally to the
4-velocity field u#, and r, is a unit radial vector.

The mass loss rate obtained similarly to the Gauss—
Bonnet case is

dM 1 kg
Codt T 216 w3 M2

The leading term in (25) cannot produce the needed
fiftth-order difference defined by threshold parame-
ter (21). The initial mass of the Dadhich-Rezania black
hole that evaporates completely during the lifetime of
the Universe proves this fact:

Mpr =5.3-10" g. (26)

Euw = (U, — 2ry, 7y + hpw)

+0 (M%), (25)

Because the obtained difference is much less than the
cutoff threshold in (21), the “tidal charge” influence
vanishes and cannot have experimentally verifiable con-
sequences.

Black hole evaporation for the ACPY solution dis-
cussed in the preceding section was also considered in
a similar manner. The evaporation rate of this solution
has completely the same form as the original Hawking
formula (17) up to M~'° terms, and hence the value of
the initial mass is equal to that given by GR:

Map =5.0-10" g. (27)

The results for the Figueras-Wiseman solution are the
same because of the form of the solution (11).

The obtained results (22), (23), (25)—(27) lead to
the conclusion that the precision of the currently exist-
ing GRB data is not sufficient to distinguish the GR,
Gauss—Bonnet, and Randall-Sundrum gravity theories
from each other via the PBH consideration.
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4. DISCUSSION AND CONCLUSIONS

In this paper, we discussed the possibilities to test
the theories extending GR in different ways by the
example of the Gauss—Bonnet and Randall-Sundrum
models both in the weak field and in the cosmological
limits. For this, the post-Newtonian expansion and the
black hole evaporation in these theories were consid-
ered.

The Gauss—Bonnet term coupled to the scalar field
does not influence the post-Newtonian limit (8), and
therefore the nontrivial scalar hair generated by it
[7, 11] does not contribute to the required order of the
spherically symmetric solution expansion. This result
agrees with the previous conclusions in [30], where the
cosmological solution of action (4) was considered and
the influence of the Gauss—Bonnet term was shown to
be negligible at solar system scales. Combining these
two results, we can state that the leading term of Love-
lock expansion (1) describing a second-order curvature
correction does not provide any visible deviation from
GR. predictions in the weak-field limit, and therefore
such a theory of gravity fully agrees with GR.

This conclusion is also valid for any model with
higher-order curvature corrections having a proper
Newtonian limit. Because the Gauss—Bonnet term is
the leading curvature correction of the Lovelock gravity,
its contribution to the post-Newtonian expansion of the
metric is also the largest. Taking other Euler character-
istics (the next orders of curvature corrections) into ac-
count cannot change the picture because their influence
is even less and obviously lies far beyond the PPN limit.
Thus, the conclusions for the Gauss—Bonnet model can
be generalized to the Lovelock gravity.

The theories with curvature power series are not
the only method for geometrically extending GR. In
the generic case, the Lagrangian can contain an arbi-
trary function of the Ricci scalar R. Such theories set
up f(R)-gravity [44, 45], and the Lovelock gravity is
its particular case. Many f(R)-gravity models, such as
In R or 1/R [44, 46], were originally introduced as at-
tempts to explain dark energy or dark matter. They do
not have a proper PPN limit [44] and are inapplicable
to the solar system scale. Therefore, our conclusions
for the Gauss—Bonnet theory in the weak-field limit are
applicable for Lovelock gravity and f(R)-gravity of the
Lovelock type.

The thermodynamical properties of the Gauss—Bon-
net black hole solution were considered in detail pre-
viously [7,8,10], but only the black holes of Planck
scales were investigated. For the black holes with larger
masses, the influence of the Gauss—Bonnet term and

the scalar field becomes negligibly small, and therefore
the evaporation is predictably the same as in the GR
case.

Since Randall and Sundrum proposed a the-
ory of gravity with a noncompact extra dimension
[12, 13], several black hole solutions have been found
[14,17,24-26]. Analysis of the post-Newtonian expan-
sion of the Figueras—Wiseman solution [24] reveals a
possible effect of negative nonlinearity of gravitational
superposition (12). It naturally results from the the-
ory itself because gravity is allowed to propagate to the
extra dimension in the Randall-Sundrum model. How-
ever, the breaking of gravitational superposition turns
out to depend on a negligibly small parameter, and
hence the predictions of the Figueras—Wiseman solu-
tion fully agree with GR and the present observations.
This effect may influence the strong-field regime (close
binary systems, black holes) as a consequence of curva-
ture growth. Hence, the next step could be the search
for such features of the Randall-Sundrum model in the
strong-field limit. Fortunately, this investigation is fea-
sible because large stable black hole solutions for RSII
black holes have been found [24, 26].

The consideration of the black hole solution by Ab-
dolrahimi, Page et al. [26] shows that the terms describ-
ing the bulk influence (16) greatly exceed the limits of
the post-Newtonian approximation. As a result, both
large Randall-Sundrum black holes solutions cannot be
distinguished from the Schwarzschild metric at the so-
lar system scales.

We have also examined the evaporation rate for the
Randall-Sundrum black holes. The results for one of
the first solutions obtained in [14] and the latest one
in [26] are presented in Eqs. (22), (23), (25)—(27). The
difference between the Dadhich—Rezania solution and
GR is negligibly small and the Page solution coincides
with GR completely.

As is easy to see, many extended gravity models
cannot be distinguished from GR and from each other
both at the solar system scales and by the black holes
thermodynamic properties. Therefore, the coincidence
of these extended theories with GR serves as a good ar-
gument in favor of their validity. However, this does not
mean that no difference can be found by other verifica-
tion methods. Besides the weak field and the cosmolog-
ical tests, a strong-field approximation is widely used.
It has a verification laboratory such as close binary sys-
tems, primarily those containing pulsars as one or even
both of their components. A great amount of data has
been obtained from these observations and it obviously
should be used for testing the extended gravity models,
although this method has its own shortcomings. If the
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orders of the post-Newtonian corrections of extended
gravity models lie beyond the PPN order, it is natural
to suggest that the parameters of the models should
be limited via the second or the third post-Newtonian
orders. The corresponding 2PN and 3PN formalisms
do exist [47, 48]. These formalisms consider the gravi-
tational radiation and its subtle effects on pulsar tim-
ing and orbit parameters. However, many calculations
there are based on GR and are not suitable for com-
paring arbitrary extended theories of gravity as Will’s
formalism [27] is.

There are also other ways to test astrophysical
predictions of extended theories of gravity, such as
accretion onto massive objects and microlensing. Af-
ter computing the accretion rate for some solution,
the result can be compared with GR predictions and
some other extended gravity cases. The investigation
of the data of gravity lensing events is also a per-
spective method because these data become more and
more complete. Verifying extended gravity models via
studying binary systems and particularly the pulsar
data requires special methods and approaches. Their
construction is the subject of further considerations.
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