ИДЕАЛЬНАЯ ГИДРОДИНАМИКА СНАРУЖИ И ВНУТРИ ЧЕРНОЙ ДЫРЫ: ГАМИЛЬТОНОВО ОПИСАНИЕ В КООРДИНАТАХ ПЕНЛЕВЕ-ГУЛЛСТРАНДА

В. П. Рубан*

Институт теоретической физики им. Л. Д. Ландау Российской академии наук 142432, Черноголовка, Московская обл., Россия

Поступила в редакцию 14 февраля 2014 г.

Показано, что при использовании координат Пенлеве – Гуллстранда в их декартовом варианте гамильтониан релятивистской идеальной гидродинамики в окрестности невращающейся черной дыры отличается всего одним простым слагаемым от соответствующего гамильтониана в плоском пространстве-времени. При этом единым образом описывается также и внутренняя область черной дыры, поскольку в координатах Пенлеве – Гуллстранда отсутствует сингулярность на горизонте событий. Представлено точное решение, описывающее стационарную аккрецию предельно жесткой материи ($\varepsilon \propto n^2$) на движущуюся черную дыру вплоть до центральной сингулярности. В приближении локальной индукции выведено уравнение движения тонкой вихревой нити на фоне такого аккреционного потока. В явном виде вычислен гамильтониан для жидкости с ультрарелятивистским уравнением состояния $\varepsilon \propto n^{4/3}$ и решена задача о центрально-симметричном стационарном течении такой материи.

DOI: 10.7868/S0044451014070116

1. ВВЕДЕНИЕ

Общерелятивистская гидродинамика является важной составной частью современной астрофизики (см., например, работы [1, 2] и ссылки в них). В ряде астрофизических задач можно пренебречь тепловым излучением и диссипативными эффектами. В таких случаях хорошим приближением служит модель идеальной жидкости. Как известно, уравнения движения жидкости в искривленном пространстве-времени можно выводить с помощью простых физических соображений о структуре тензора энергии-импульса [3]. Такой подход особенно удобен для численного моделирования (см., например, работы [2, 4-8] и ссылки в них). Но уравнения идеальной релятивистской гидродинамики допускают также различные вариационные формулировки, что имеет большое значение для аналитических исследований (см. работы [9–13] и ссылки в них).

В большинстве вариационных формулировок применяется метод лагранжиана с кинематическими связями. В этой связи уместно сделать два замечания. Во-первых, введение вспомогательных полей — множителей Лагранжа — увеличивает число неизвестных функций сверх минимально необходимого, а это нежелательно по многим причинам. Во-вторых, далеко не все координатные системы в пространстве-времени одинаково удобны для исследования динамики жидкости. Второе замечание особенно актуально в тех случаях, когда, несмотря на движение материи, гравитационное поле с хорошей точностью остается постоянным (например, можно иметь в виду динамику жидкости вблизи достаточно массивной черной дыры, как в данной работе, либо медленные течения на фоне пространственно-неоднородного статического распределения вещества, как в работах [14, 15]). Чем более простой вид имеет заданная метрика $ds^2 = g_{ik}(t, \mathbf{r}) dx^i dx^k$, тем компактнее уравнения движения жидкости и тем больше имеется шансов продвинуться в понимании физики явлений. Важно также, чтобы компоненты метрического тензора не имели нефизических особенностей, устранимых путем замены координат [16].

Из приведенных выше замечаний следует, что при решении задач общерелятивистской гидродинамики имеет смысл подбирать наиболее удобные ко-

^{*}E-mail: ruban@itp.ac.ru

ординатные системы и ограничиваться минимально необходимым числом неизвестных функций. Целью данной работы является продемонстрировать преимущества так называемых координат Пенлеве-Гуллстранда [17, 18] при описании аккреционных течений идеальной жидкости снаружи и внутри невращающейся черной дыры. Эти координаты и их обобщения с успехом применялись для решения ряда физических задач [19-22], но, насколько известно автору, до сих пор не использовались при исследованиях трехмерных течений жидкости с произвольным уравнением состояния. Здесь будет показано, что уравнения релятивистской гидродинамики в координатах Пенлеве-Гуллстранда оказываются лишь ненамного сложнее по сравнению с плоским пространством-временем. Более точно, гамильтониан гидродинамической системы отличается всего одним простым слагаемым от соответствующего гамильтониана в пространстве Минковского. Напомним, что широко известная метрика Шварцшильда [23], описывающая черную дыру массы М, путем замены временной координаты

$$t_{S} = t - 2\sqrt{2Mr} - 2M \ln \frac{1 - \sqrt{2M/r}}{1 + \sqrt{2M/r}}$$
(1)

(см., например, работу [19]) приводится к метрике Пенлеве-Гуллстранда

$$ds^{2} = dt^{2} - \left(dr + \sqrt{\frac{2M}{r}} dt\right)^{2} - -r^{2}(d\theta^{2} + \sin^{2}\theta \, d\phi^{2}). \quad (2)$$

Здесь используются геометрические единицы измерения физических величин, в которых скорость света c = 1 и постоянная Ньютона G = 1. Весьма существенно, что сингулярность на горизонте событий $r_g = 2M$ теперь отсутствует, и это свойство координат Пенлеве-Гуллстранда позволяет рассматривать все пространство единым образом, в отличие от координат Шварцшильда. Если вместо «сферических» пространственных координат (r, θ, ϕ) ввести стандартным образом «декартовы» координаты $\mathbf{r} = (x, y, z)$, то данная стационарная метрика перепишется в особенно компактном виде:

$$ds^{2} = dt^{2} - (d\mathbf{r} - \mathbf{U}dt)^{2}, \quad \mathbf{U}(\mathbf{r}) = -\frac{\mathbf{r}}{r}\sqrt{\frac{2M}{r}}, \quad (3)$$

причем скалярный квадрат здесь понимается в простейшем смысле — как сумма квадратов трех компонент. Как мы увидим далее, еще одним немаловажным преимуществом метрики (3) является постоянство ее детерминанта $g = \det ||g_{ik}|| = -1$.

97

2. ОБЩАЯ СТРУКТУРА УРАВНЕНИЙ

Можно избежать избыточного описания системы с привлечением множителей Лагранжа, если при рассмотрении жидкой среды воспользоваться концепцией обобщенного уравнения Эйлера [14, 24], применимого к широкому классу моделей, релятивистских в том числе. В этом подходе незамагниченные изэнтропические течения описываются двумя полями — полем относительной («координатной») плотности $\rho(t, \mathbf{r})$ и полем трехмерной скорости $\mathbf{v}(t, \mathbf{r})$. Хотя координаты (t, \mathbf{r}) в общем случае — произвольные криволинейные, динамика «плотности» $\rho(t, \mathbf{r})$ подчиняется уравнению непрерывности в его стандартном «декартовом» виде,

$$\rho_t + \nabla \cdot (\rho \mathbf{v}) = 0. \tag{4}$$

Происхождение этого уравнения — чисто кинематическое. В общей теории относительности ему соответствует условие равенства нулю дивергенции 4-вектора тока $n^i = n dx^i/ds$ [3, 23], где скаляр nесть плотность числа сохраняющихся частиц в собственной системе отсчета, т. е.

$$n_{;i}^{i} \equiv \frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{i}} \left(\sqrt{-g} n \frac{dx^{i}}{ds} \right) = 0.$$
 (5)

Из сравнения уравнений (4) и (5) находится соотношение, связывающее поле n с динамическими переменными ρ и **v**:

$$n = \frac{\rho}{\sqrt{-g}} \sqrt{g_{00} + 2g_{0\alpha}v^{\alpha} + g_{\alpha\beta}v^{\alpha}v^{\beta}}, \qquad (6)$$

где α и β — трехмерные тензорные индексы.

Нам будет удобно вместо поля скорости иметь дело с полем «плотности тока» $\mathbf{j} \equiv \rho \mathbf{v}$, так что уравнение непрерывности теперь есть

$$\rho_t + \nabla \cdot \mathbf{j} = 0, \tag{7}$$

а соотношение (6) переписывается в виде

$$n = \sqrt{g_{00}\rho^2 + 2g_{0\alpha}\rho j^\alpha + g_{\alpha\beta}j^\alpha j^\beta} / \sqrt{-g}.$$
 (8)

Помимо кинематического уравнения (7) имеется второе — динамическое — уравнение движения, которое зависит от рассматриваемой модели. Оно задается некоторым лагранжианом $\mathcal{L}\{\rho, \mathbf{j}\}$ и имеет следующую структуру (обобщенное уравнение Эйлера; см. подробности в работах [14, 24], где оно было представлено в терминах ρ и **v**):

$$\frac{\partial}{\partial t} \left(\frac{\delta \mathcal{L}}{\delta \mathbf{j}} \right) = \left[\frac{\mathbf{j}}{\rho} \times \operatorname{rot} \left(\frac{\delta \mathcal{L}}{\delta \mathbf{j}} \right) \right] + \nabla \left(\frac{\delta \mathcal{L}}{\delta \rho} \right), \quad (9)$$

причем трехмерные векторные операторы действуют здесь так, как если бы координаты были прямоугольными декартовыми. Уравнение (9) есть не что иное, как выраженное через ρ и **j** вариационное уравнение Эйлера – Лагранжа

$$\frac{\delta \mathcal{L}}{\delta \mathbf{x}(\mathbf{a})} - \frac{d}{dt} \frac{\delta \mathcal{L}}{\delta \dot{\mathbf{x}}(\mathbf{a})} = 0 \tag{10}$$

для отображения $\mathbf{r} = \mathbf{x}(t, \mathbf{a})$, описывающего траекторию каждого элемента жидкой среды, помеченного маркером $\mathbf{a} = (a_1, a_2, a_3)$. Вектор

$$\mathbf{p} = \frac{\delta \mathcal{L}}{\delta \mathbf{j}} = \frac{\delta \mathcal{L}}{\delta \dot{\mathbf{x}}(\mathbf{a})} \tag{11}$$

представляет собой канонический импульс жидкого элемента. Важно еще отметить, что поле обобщенной (трехмерной) завихренности Ω = rot **p** оказывается «вмороженным» в жидкость, поскольку подчиняется уравнению

$$\mathbf{\Omega}_t = \operatorname{rot}[\mathbf{v} \times \mathbf{\Omega}], \tag{12}$$

которое следует из (9). В частности, существует класс потенциальных течений, для которых $\mathbf{p} = \nabla \varphi$.

Как мы увидим далее, после разрешения относительно временной производной \mathbf{j}_t уравнение (9) приобретает достаточно громоздкий вид даже в плоском пространстве-времени. Кроме того, переменная \mathbf{j} не дает преимуществ при описании потенциальных течений. Поэтому имеет смысл рассмотреть также и другие эквивалентные системы уравнений, выбрав в качестве основных динамических переменных не (ρ, \mathbf{j}) , а (ρ, \mathbf{p}) либо (n, \mathbf{p}) .

С методической точки зрения, наиболее предпочтительна пара (ρ , **p**), поскольку в этом случае система уравнений (7) и (9) приобретает неканоническую гамильтонову структуру [24]:

$$\rho_t = -\nabla \cdot \left(\frac{\delta \mathcal{H}}{\delta \mathbf{p}}\right),\tag{13}$$

$$\mathbf{p}_t = \left[\frac{1}{\rho} \left(\frac{\delta \mathcal{H}}{\delta \mathbf{p}}\right) \times \operatorname{rot} \mathbf{p}\right] - \nabla \frac{\delta \mathcal{H}}{\delta \rho}.$$
 (14)

Гамильтониан $\mathcal{H}\{\rho, \mathbf{p}\}$ получается применением к лагранжиану преобразования Лежандра по векторной переменной **j**:

$$\mathcal{H}\{\rho, \mathbf{p}\} = \int (\mathbf{j} \cdot \mathbf{p}) \, d\mathbf{r} - \mathcal{L}, \qquad (15)$$

причем вместо **j** здесь должно быть подставлено решение уравнения $\mathbf{p} = \delta \mathcal{L}\{\rho, \mathbf{j}\}/\delta \mathbf{j}$. Заметим попутно, что потенциальные течения описываются всего одной парой неизвестных функций ρ и φ , которые оказываются канонически сопряженными. Более общий класс течений может быть описан двумя парами канонически сопряженных величин, (ρ , φ) и (λ , μ), если сделать подстановку Клебша,

$$\mathbf{p} = \nabla \varphi + \frac{\lambda}{\rho} \nabla \mu. \tag{16}$$

К сожалению, разрешить в замкнутом виде соотношение (11) относительно **j** удается далеко не для всех уравнений состояния вещества, как мы увидим далее. По этой причине будут представлены также уравнения движения в переменных (n, \mathbf{p}) , по-видимому, не обладающие простой гамильтоновой структурой, но сами по себе достаточно элегантные.

3. УРАВНЕНИЯ ГИДРОДИНАМИКИ В МЕТРИКЕ (3)

Лагранжиан релятивистской гидродинамики определяется уравнением состояния жидкости $\varepsilon(n)$, связывающим n с плотностью ε энергии-массы, измеренной в собственной системе отсчета. Вид лагранжиана $\mathcal{L}\{\rho, \mathbf{j}\}$ таков:

$$\mathcal{L} = -\int \sqrt{-g} \times \\ \times \varepsilon \left(\sqrt{g_{00} \rho^2 + 2g_{0\alpha} \rho j^{\alpha} + g_{\alpha\beta} j^{\alpha} j^{\beta}} / \sqrt{-g} \right) d\mathbf{r}.$$
(17)

Здесь вместо *n* в уравнение состояния подставлено выражение (8). Функционал действия $I = \int \mathcal{L} dt$ является релятивистским инвариантом, как и должно быть. Именно такой лагранжиан согласуется с известным тензором энергии-импульса идеальной жидкости [3, 23]. Физически осмысленные функции $\varepsilon(n)$ должны удовлетворять определенным требованиям, которые мы здесь не обсуждаем. Из нескольких предложенных ранее вариационных формулировок [9–11], использующих различные наборы динамических переменных, лагранжиан (17) ближе всего к формулировке Рэя [11]. В плоском пространстве-времени при малых скоростях движения интеграл (17) сводится к привычной разнице кинетической и потенциальной энергий (с учетом энергии покоя).

Теперь мы воспользуемся метрикой (3), которая позволяет записать лагранжиан в замечательно компактном виде:

$$\mathcal{L} = -\int \varepsilon \left(\sqrt{\rho^2 - (\mathbf{j} - \mathbf{U}\rho)^2} \right) \, d\mathbf{r}.$$
 (18)

Только присутствие центрально-симметричного поля $\mathbf{U}(\mathbf{r})$ отличает этот лагранжиан от лагранжиана в плоском пространстве-времени. Соответствующие вариационные производные есть

$$\frac{\delta \mathcal{L}}{\delta \mathbf{j}} = \mathbf{J} f(n), \tag{19}$$

$$\frac{\delta \mathcal{L}}{\delta \rho} = -(\rho + \mathbf{U} \cdot \mathbf{J})f(n), \qquad (20)$$

где для краткости обозначено

$$\mathbf{J} = \mathbf{j} - \mathbf{U}\rho, \quad n = \sqrt{\rho^2 - \mathbf{J}^2}, \quad f(n) = \varepsilon'(n)/n.$$
(21)

Уравнение (9) с учетом уравнения непрерывности представляется в виде

$$\mathbf{J}_t f(n) - \mathbf{J}[\rho(\nabla \cdot \mathbf{j}) + \mathbf{J} \cdot \mathbf{J}_t] f'(n) / n = \mathbf{R} f(n), \quad (22)$$

где $\mathbf{R}f(n)$ — правая часть:

$$\mathbf{R}f = [(\mathbf{j}/\rho) \times \operatorname{rot}(\mathbf{J}f)] - \nabla[(\rho + \mathbf{U} \cdot \mathbf{J}) f].$$
(23)

Из уравнения (22) следует соотношение

$$\mathbf{J} \cdot \mathbf{J}_t = \frac{\mathbf{R} \cdot \mathbf{J} f(n) + \mathbf{J}^2 \rho(\nabla \cdot \mathbf{j}) f'(n)/n}{f(n) - \mathbf{J}^2 f'(n)/n}, \qquad (24)$$

которое позволяет разрешить уравнение (22) относительно временной производной $\mathbf{J}_t = \mathbf{j}_t + \mathbf{U}(\nabla \cdot \mathbf{j})$ и тем самым представить динамическое уравнение движения в полностью эволюционной форме:

$$\mathbf{j}_{t} = -\mathbf{U}(\nabla \cdot \mathbf{j}) + \mathbf{R} + \mathbf{J} \left[\frac{\rho(\nabla \cdot \mathbf{j}) + \mathbf{R} \cdot \mathbf{J}}{f(n) - \mathbf{J}^{2} f'(n)/n} \right] \frac{f'(n)}{n}.$$
 (25)

Важно заметить, что для физически приемлемых уравнений имеем f(n) > 0, f'(n) < 0, и поэтому знаменатель в этом уравнении никогда в нуль не обращается.

Нельзя сказать, что правая часть уравнения (25) проста, но ее громоздкость не связана с кривизной пространства-времени, а присуща релятивистской гидродинамике как таковой. Несколько более изящным оказывается описание в терминах полей n и **р**, хотя уравнение непрерывности здесь выглядит сложнее:

$$\frac{\partial}{\partial t} \left(\frac{n}{w} \sqrt{w^2 + \mathbf{p}^2} \right) + \nabla \cdot \left(\frac{n}{w} \left(\mathbf{p} + \mathbf{U} \sqrt{w^2 + \mathbf{p}^2} \right) \right) = 0, \quad (26)$$

где $w = \varepsilon'(n)$ — релятивистская энтальпия. Динамическое уравнение имеет при этом следующий вид:

$$\mathbf{p}_{t} = \left[\left(\mathbf{U} + \frac{\mathbf{p}}{\sqrt{w^{2} + \mathbf{p}^{2}}} \right) \times \operatorname{rot} \mathbf{p} \right] - \nabla \left(\sqrt{w^{2} + \mathbf{p}^{2}} + \mathbf{U} \cdot \mathbf{p} \right). \quad (27)$$

Уравнения (26) и (27) легко выводятся с использованием формул (19), (20) и (21). Очевидно, что с помощью (27) можно выразить в (26) временную производную n_t через n, \mathbf{p} и их градиенты, и тем самым представить всю систему в эволюционной форме. Может оказаться более удобным считать энтальнию w основной динамической переменной, полагая, что n = n(w) = P'(w), где P(w) — давление как функция энтальпии (при фиксированной энтропии). Заметим еще, что в системе (26), (27) очень легко перейти к рассмотрению потенциальных течений — достаточно положить $\mathbf{p} = \nabla \varphi$ и снять операцию градиента с уравнения (27). Действуя указанным образом, получим

$$w = \sqrt{(\varphi_t + \mathbf{U} \cdot \nabla \varphi)^2 - (\nabla \varphi)^2}.$$
 (28)

Интересно, что при этом уравнение непрерывности из кинематического превращается в динамическое:

$$-\frac{\partial}{\partial t}\left[(\varphi_t + \mathbf{U} \cdot \nabla \varphi)P'(w)/w\right] + \nabla \cdot \left\{ \left[\nabla \varphi - \mathbf{U}(\varphi_t + \mathbf{U} \cdot \nabla \varphi)\right] \frac{P'(w)}{w} \right\} = 0.$$
(29)

Вариационная структура этого уравнения очевидна. Функционал действия для него имеет вид

$$I\{\varphi\} = \int P\left(\sqrt{(\varphi_t + \mathbf{U} \cdot \nabla \varphi)^2 - (\nabla \varphi)^2}\right) \, d\mathbf{r} \, dt. \quad (30)$$

Это выражение является частным случаем вариационной формулировки Шутца [10], которая (в изэнтропическом случае) получилась бы при замене $\varphi_t \rightarrow \varphi_t + \tilde{\lambda}\mu_t, \nabla \varphi \rightarrow \nabla \varphi + \tilde{\lambda}\nabla \mu$ в интеграле (30). Гамильтонов формализм для такого действия был развит в работе [25]. Но, как известно, подстановкой $\mathbf{p} = \nabla \varphi + \tilde{\lambda} \nabla \mu$ можно описать не произвольные течения, а только такие, у которых топология завихренности тривиальна, поскольку в этом случае $\Omega = [\nabla \tilde{\lambda} \times \nabla \mu]$ и вихревые линии в каждый момент времени представляют собой пересечения поверхностей $\tilde{\lambda} = \text{const}, \ \mu = \text{const}$. Вопрос о гамильтоновой структуре непосредственно уравнений (26) и (27) при произвольной топологии вихревых линий автору пока не ясен.

4. СВОЙСТВА ГАМИЛЬТОНИАНА

Вернемся к задаче гамильтонова описания течений в переменных (ρ, \mathbf{p}) . Если удается аналитически разрешить относительно J скалярное уравнение

$$|\mathbf{p}| = Jf\left(\sqrt{\rho^2 - J^2}\right),\tag{31}$$

 7^{*}

то можно явно вычислить гамильтониан. В нашем случае имеем

$$\mathcal{H}\{\rho, \mathbf{p}\} = \int (\mathbf{j} \cdot \mathbf{p}) \, d\mathbf{r} - \mathcal{L} = \int \rho(\mathbf{U} \cdot \mathbf{p}) \, d\mathbf{r} + \int \left[\frac{J^2}{\sqrt{\rho^2 - J^2}} \varepsilon' \left(\sqrt{\rho^2 - J^2} \right) + \varepsilon \left(\sqrt{\rho^2 - J^2} \right) \right] d\mathbf{r}, \quad (32)$$

причем в последнем интеграле всюду вместо J должно быть подставлено решение уравнения (31). Весьма примечательно, что указанный интеграл представляет собой преобразование Лежандра лагранжиана гидродинамики в пространстве Минковского. Таким образом, мы получили достаточно интересный результат — при использовании метрики (3) гамильтониан жидкости в присутствии невращающейся черной дыры получается добавлением члена $\int \rho(\mathbf{U} \cdot \mathbf{p}) d\mathbf{r}$ к гамильтониану этой же жидкости в плоском пространстве-времени:

$$\mathcal{H}\{\rho, \mathbf{p}\} = \int [\rho(\mathbf{U} \cdot \mathbf{p}) + H(\rho, |\mathbf{p}|)] \, d\mathbf{r}.$$
(33)

Гамильтониан, в отличие от лагранжиана, не является релятивистским инвариантом, и структурная простота выражения (33) обусловлена удачным выбором системы координат. Уравнения движения принимают вид

$$\rho_t = -\nabla \cdot \left(\rho \mathbf{U} + H_{\mathbf{p}}\right),\tag{34}$$

$$\mathbf{p}_t = \left[(\mathbf{U} + H_{\mathbf{p}}/\rho) \times \operatorname{rot} \mathbf{p} \right] - \nabla (H_{\rho} + \mathbf{U} \cdot \mathbf{p}), \quad (35)$$

где $H_{\mathbf{p}} = (\mathbf{p}/|\mathbf{p}|)H_{|\mathbf{p}|}$ (нижние индексы обозначают частные производные).

Понятно, что функция $H(\rho, |\mathbf{p}|)$ не может быть произвольной именно по причине ее происхождения от представителя специфического семейства лагранжианов, зависящих только от комбинации $\sqrt{\rho^2 - J^2}$. Нетрудно показать, что любой гамильтониан жидкости в пространстве Минковского обязан удовлетворять простому дифференциальному уравнению в частных производных первого порядка:

$$H_{\rho}H_{|\mathbf{p}|} = \rho|\mathbf{p}|. \tag{36}$$

Действительно, применением преобразования Лежандра к гамильтониану мы получаем лагранжиан, т. е.

$$|\mathbf{p}|H_{|\mathbf{p}|} - H = -\varepsilon \left(\sqrt{\rho^2 - H_{|\mathbf{p}|}^2}\right). \tag{37}$$

Далее рассматриваем две частные производные первого порядка от этого уравнения и с их помощью исключаем ε' . После упрощения и отделения множителя $H_{|\mathbf{p}||\mathbf{p}|}$ получается уравнение (36). Так называемый полный интеграл его есть

$$H = \frac{C_1 \rho^2}{2} + \frac{\mathbf{p}^2}{2C_1} + C_2.$$
(38)

Решение, которое соответствует некоторому физически приемлемому уравнению состояния, получается согласно общим правилам путем исключения C_1 из системы алгебраических уравнений

$$H = \frac{C_1 \rho^2}{2} + \frac{\mathbf{p}^2}{2C_1} + F(C_1), \qquad (39)$$

$$\frac{\rho^2}{2} - \frac{\mathbf{p}^2}{2C_1^2} + F'(C_1) = 0 \tag{40}$$

с подходящей функцией $F(C_1)$ [26]. Как и при непосредственном вычислении гамильтониана через преобразование Лежандра, проблема сводится к решению алгебраического уравнения. Ниже будут рассмотрены два конкретных примера уравнений состояния, когда гамильтониан находится явно.

5. ПРЕДЕЛЬНО ЖЕСТКАЯ МАТЕРИЯ

В ряде работ рассматривалось предельно жесткое уравнение состояния $\varepsilon = n^2/2$ (см., например, [27–29] и ссылки в них). В этом случае w = n, гамильтониан $H = (\rho^2 + \mathbf{p}^2)/2$. Что существенно, уравнение (29) для потенциальных течений оказывается строго линейным и совпадает с уравнением для безмассового скалярного поля. В частности, в этой модели не могут возникать ударные волны. Можно без особого труда найти решения уравнения (29), описывающие стационарную аккрецию при наличии на бесконечности однородного потока материи:

$$\varphi_a = \rho_\infty \left[-t + 2\sqrt{2Mr} - 4M \ln \left(1 + \sqrt{2M/r} \right) \right] + (1 - M/r)(\mathbf{r} \cdot \mathbf{p}_\infty), \quad (41)$$

где $\rho_{\infty} = \sqrt{w_{\infty}^2 + \mathbf{p}_{\infty}^2}$. Заметим, что данное выражение не имеет особенности на гравитационном радиусе $r_g = 2M$, в отличие от этого же самого решения, но вычисленного в координатах Шварцшильда [27]. Сингулярность сокращается именно благодаря замене временной координаты (1).

Завихренные течения предельно жесткой материи описываются системой, которая уже не является линейной:

$$\rho_t = -\nabla \cdot \left(\rho \mathbf{U} + \mathbf{p}\right),\tag{42}$$

$$\mathbf{p}_t = [(\mathbf{U} + \mathbf{p}/\rho) \times \operatorname{rot} \mathbf{p}] - \nabla(\rho + \mathbf{U} \cdot \mathbf{p}).$$
(43)

Если мы интересуемся динамикой относительно слабых вихревых возмущений на фоне аккреционного потока, описываемого потенциалом (41), то уравнение для завихренности в пренебрежении возмущениями плотности может быть представлено в следующем виде:

$$\mathbf{\Omega}_t = \operatorname{rot}\left[\left(\mathbf{U} + \frac{\nabla\varphi_a + \operatorname{rot}^{-1}\mathbf{\Omega}}{(\rho_{\infty} - \mathbf{U} \cdot \nabla\varphi_a)}\right) \times \mathbf{\Omega}\right], \quad (44)$$

где градиент стационарного потенциала дается следующей формулой (для простоты, мы отнормировали масштаб длины на гравитационный радиус r_q):

$$\nabla \varphi_a = \rho_\infty \frac{\mathbf{r}}{\sqrt{r^3}} \left(1 + \frac{1}{r + \sqrt{r}} \right) + \mathbf{p}_\infty \left(1 - \frac{1}{2r} \right) + \frac{\mathbf{r}}{2r^3} (\mathbf{r} \cdot \mathbf{p}_\infty). \quad (45)$$

В рамках уравнения (44) можно исследовать движение вмороженных вихревых структур по аналогии с тем, как это делалось в работах [14, 24]. Обозначим для краткости

$$\bar{\rho}(\mathbf{r}) = \rho_{\infty} - \mathbf{U} \cdot \nabla \varphi_a =$$

$$= \rho_{\infty} \left[1 + \frac{1}{r} \left(1 + \frac{1}{r + \sqrt{r}} \right) \right] + \frac{(\mathbf{r} \cdot \mathbf{p}_{\infty})}{\sqrt{r^3}}, \quad (46)$$

$$\mathbf{S}(\mathbf{r}) = \bar{\rho}\mathbf{U} + \nabla\varphi_a =$$
$$= -\rho_{\infty}\frac{\mathbf{r}}{r^3} + \mathbf{p}_{\infty}\left(1 - \frac{1}{2r}\right) - \frac{\mathbf{r}}{2r^3}(\mathbf{r} \cdot \mathbf{p}_{\infty}). \quad (47)$$

Легко заметить, что поток $\mathbf{S}(\mathbf{r})$ — соленоидальный, что естественно в силу уравнений (42) и (43). Существует его векторный потенциал, который представим в виде

$$\Psi = \mathbf{e}_{\phi} F(m, z),$$

где $m = (x^2 + y^2)/2$, \mathbf{e}_{ϕ} — единичный вектор в азимутальном направлении, причем ось *z* направлена вдоль \mathbf{p}_{∞} . Явное выражение дано ниже:

$$\Psi = \frac{\rho_{\infty} \mathbf{e}_{\phi} z}{\sqrt{2m}\sqrt{2m+z^2}} + |\mathbf{p}_{\infty}| \mathbf{e}_{\phi} \left(\frac{1}{2} - \frac{1}{2\sqrt{2m+z^2}}\right) \sqrt{2m}.$$
 (48)

Рассмотрим для примера тонкую замкнутую вихревую нить с циркуляцией Г. Тогда из уравнения (44) следует, что в так называемом приближении локальной индукции (см., например, работы [14, 24] и ссылки в них) динамика формы нити $\mathbf{R}(\xi, t)$ описывается следующим уравнением:

$$[\mathbf{R}_{\xi} \times \mathbf{R}_{t}]\bar{\rho}(\mathbf{R}) = [\mathbf{R}_{\xi} \times \mathbf{S}(\mathbf{R})] - \Lambda \partial_{\xi}(\mathbf{R}_{\xi}/|\mathbf{R}_{\xi}|).$$
(49)

Здесь ξ — произвольный продольный параметр, $\Lambda = (\Gamma/4\pi) \ln(L/d)$ — константа локальной индукции, L — характерный размер вихревой нити, d — ее малая толщина. Это уравнение подчиняется вариационному принципу с лагранжианом вида [14, 24]

$$\mathcal{L}_{\Gamma} = \Gamma \oint \left(\left[\mathbf{R}_{\xi} \times \mathbf{R}_{t} \right] \cdot \mathbf{D}(\mathbf{R}) \right) d\xi - \mathcal{H}_{\Gamma} \{ \mathbf{R} \}, \quad (50)$$

где векторная функция $\mathbf{D}(\mathbf{r})$ удовлетворяет условию

$$\nabla \cdot \mathbf{D}(\mathbf{r}) = \bar{\rho}(\mathbf{r}). \tag{51}$$

Гамильтониан локальной индукции $\mathcal{H}_{\Gamma}\{\mathbf{R}\}$ в нашем случае имеет вид

$$\mathcal{H}_{\Gamma}\{\mathbf{R}\}/\Gamma = \oint \mathbf{\Psi}(\mathbf{R}) \cdot \mathbf{R}_{\xi} \, d\xi + \Lambda \oint |\mathbf{R}_{\xi}| d\xi. \quad (52)$$

В простейшей конфигурации нить представляет собой соосное вихревое кольцо с радиусом $\sqrt{2m(t)}$ и положением центра z(t). Фазовые траектории вихря в плоскости (z,m) задаются линиями уровня его гамильтониана

$$H_{\Lambda} = \frac{\rho_{\infty} z}{\sqrt{2m + z^2}} + |\mathbf{p}_{\infty}| \left(m - \frac{m}{\sqrt{2m + z^2}}\right) + \Lambda \sqrt{2m}, \quad (53)$$

который легко вычисляется с помощью формул (48) и (52). Уравнения движения при этом имеют почти канонический вид:

$$\dot{z}\bar{\rho}(m,z) = \frac{\partial H_{\Lambda}}{\partial m}, \quad -\dot{m}\bar{\rho}(m,z) = \frac{\partial H_{\Lambda}}{\partial z}.$$
(54)

Заметим еще, что в зависимости от направления завихренности параметр Λ может быть как положительным, так и отрицательным. Требование слабости вихря выражается условием $|\Lambda|/\rho_{\infty} \lesssim 1$.

Аналогичным образом можно исследовать систему нескольких соосных вихревых колец в аккреционном потоке $\mathbf{S}(\mathbf{r})$ с профилем плотности $\bar{\rho}(\mathbf{r})$. В гамильтониане тогда необходимо учесть взаимодействие между кольцами. Соответствующие слагаемые выражаются известным образом через эллиптические интегралы точно так, как и в обычной несжимаемой гидродинамике (см. работы [30, 31] и ссылки в них). Мы здесь не будем останавливаться на этом вопросе. Итак, модель предельно жесткой материи — наиболее простая в релятивистской гидродинамике. Но, к сожалению, ультражесткое уравнение состояния нарушает принцип неотрицательности следа тензора энергии-импульса жидкой среды [23]. Более адекватным при рассмотрении течений вблизи черной дыры и особенно внутри нее представляется ультрарелятивистское уравнение состояния $\varepsilon \propto n^{4/3}$, к рассмотрению которого мы сейчас перейдем.

6. УЛЬТРАРЕЛЯТИВИСТСКАЯ МАТЕРИЯ

Покажем, что гамильтониан может быть вычислен в замкнутом виде при $\varepsilon = (3/4)n^{4/3}$ (множитель не принципиален, он введен для удобства). Действительно, мы тогда имеем соотношение $|\mathbf{p}| = J(\rho^2 - J^2)^{-1/3}$, которое сводится к кубическому уравнению

$$|\mathbf{p}|^3(\rho^2 - J^2) = J^3.$$
 (55)

Решая это уравнение, получим, что $\mathbf{J}=H_{\mathbf{p}},$ где

$$H_{\mathbf{p}} = \frac{\mathbf{p}\rho^{2/3}}{\left(\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{|\mathbf{p}|^6}{27\rho^2}}\right)^{1/3} + \left(\frac{1}{2} - \sqrt{\frac{1}{4} - \frac{|\mathbf{p}|^6}{27\rho^2}}\right)^{1/3}},\tag{56}$$

причем в случае мнимых значений квадратного корня при вычислении комплексных кубических корней должны браться решения с минимальным значением аргумента. Сумма двух выражений в знаменателе всегда остается чисто действительной. Функция $H(\rho, |\mathbf{p}|)$ дается следующим выражением:

$$H = \frac{|\mathbf{p}|^2 \rho^{2/3}}{\left(\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{|\mathbf{p}|^6}{27\rho^2}}\right)^{1/3} + \left(\frac{1}{2} - \sqrt{\frac{1}{4} - \frac{|\mathbf{p}|^6}{27\rho^2}}\right)^{1/3}} + \frac{(3/4)\rho^{4/3}}{\left[\left(\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{|\mathbf{p}|^6}{27\rho^2}}\right)^{1/3} + \left(\frac{1}{2} - \sqrt{\frac{1}{4} - \frac{|\mathbf{p}|^6}{27\rho^2}}\right)^{1/3}\right]^2}.$$
 (57)

Для вычисления частной производной H_{ρ} можно воспользоваться уравнением (36), которое с учетом (56) дает

$$H_{\rho} = \rho^{1/3} \left[\left(\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{|\mathbf{p}|^{6}}{27\rho^{2}}} \right)^{1/3} + \left(\frac{1}{2} - \sqrt{\frac{1}{4} - \frac{|\mathbf{p}|^{6}}{27\rho^{2}}} \right)^{1/3} \right].$$
 (58)

Выражения (56) и (58) хотя и не очень просты, но все же вполне обозримы. Они могут быть подставлены в уравнения (34) и (35).

Поскольку под горизонтом событий материя не может покоиться, основным гидродинамическим режимом вблизи черной дыры при любом уравнении состояния является аккреция жидкости и ее последующее падение на центральную сингулярность. Аккреция исследовалась во множестве работ (см., например, [16, 32–35] и ссылки в них). Наиболее простой ее вид для невращающейся черной дыры — центрально-симметричные стационарные течения. В координатах Пенлеве – Гуллстранда они описываются системой двух алгебраических уравнений, которые следуют из (26) и (27) (мы здесь отнормировали масштаб длины на гравитационный радиус r_g , а энтальпию — на ее значение на бесконечности):

$$\frac{n(w)}{w}\left(p - \sqrt{\frac{(w^2 + p^2)}{r}}\right) = -\frac{A}{r^2},$$
 (59)

$$\sqrt{w^2 + p^2} - p/\sqrt{r} = 1, \tag{60}$$

где *p* — радиальная компонента канонического импульса (не путать с давлением *P*!), *A* — положительная константа, выбор которой не произволен, а определяется физической приемлемостью решений (кривая должна проходить через так называемую критическую точку [32–35]). Выразив w с помощью второго уравнения и подставив в первое, получим соотношение вида $r^2S(p,r) = -A$, которое в неявном виде определяет зависимость p(r). Для предельно жесткой материи решение содержится в (45), а в случае ультрарелятивистской жидкости, когда $n(w) = w^3$, система сводится к кубическому уравнению для p:

$$r^{2}\left[\left(1+\frac{p}{\sqrt{r}}\right)^{2}-p^{2}\right]\left[p\left(1-\frac{1}{r}\right)-\frac{1}{\sqrt{r}}\right] = -A.$$
 (61)

Критическая (седловая) точка находится из условий равенства нулю частных производных левой части уравнения (61) по переменным r и p. Ее численные параметры таковы:

$$A = \sqrt{27/4} \approx 2.5981, \quad p_{cr} = \sqrt{6} - \sqrt{3} \approx 0.71744,$$

 $r_{cr} = 3/2.$

Аналитическая формула для решения p(r) имеет вид

$$p(r) = \frac{\sqrt{r}}{r-1} + \frac{r}{\sqrt{3}(1-r)} \times \left[\left(\frac{27(1-r)}{4r^3} + \sqrt{\frac{27^2(1-r)^2}{16r^6} - 1} \right)^{1/3} + \left(\frac{27(1-r)}{4r^3} - \sqrt{\frac{27^2(1-r)^2}{16r^6} - 1} \right)^{1/3} \right], \quad (62)$$

причем в случае мнимых квадратных корней выбирается та из трех ветвей решения, которая обеспечивает гладкую зависимость p(r) на всем интервале r > 0. При указанном значении A линии уровня левой части уравнения (61) в плоскости (r, p) представляют собой три кривые, две из которых пересекаются в критической точке. Одна из пересекающихся кривых продолжается гладким образом под горизонт событий r = 1 (именно она и является физическим решением, причем $p(1) = (\sqrt{27/4} - 1)/2 \approx 0.8)$, тогда как две другие кривые уходят на бесконечность при $r \rightarrow 1$. Что интересно, при $r \rightarrow 0$ физическое решение p(r) не расходится, а стремится к конечному значению $p(0) = (27/4)^{1/6} \approx 1.38$.

Стационарный профиль плотности $\bar{\rho}(r)$ теперь выражается формулой

$$\bar{\rho}(r) = \left[\left(1 + \frac{p(r)}{\sqrt{r}} \right)^2 - p^2(r) \right] \left(1 + \frac{p(r)}{\sqrt{r}} \right), \quad (63)$$

куда следует подставить зависимость (62). Относительно слабые вихревые возмущения, практически оставляющие неизменным профиль плотности $\bar{\rho}$, описываются следующей системой уравнений:

$$\mathbf{\Omega}_t = \operatorname{rot}\left[\left(-A\frac{\mathbf{r}}{r^3} + H_{\mathbf{pp}}(\mathbf{r})\tilde{\mathbf{p}}\right) \times \frac{\mathbf{\Omega}}{\bar{\rho}(\mathbf{r})}\right], \qquad (64)$$

$$\nabla \cdot (H_{\mathbf{pp}}\tilde{\mathbf{p}}) = 0, \tag{65}$$

$$\operatorname{rot} \tilde{\mathbf{p}} = \mathbf{\Omega},\tag{66}$$

где $H_{\mathbf{pp}}(\mathbf{r})$ — матрица вторых производных гамильтониана (57) по компонентам вектора \mathbf{p} , вычисленная на стационарном решении. В будущем необходимо более подробное исследование системы (64)–(66), включая вывод уравнения движения для тонкой вихревой нити.

7. ЗАКЛЮЧЕНИЕ

Таким образом, в этой работе показано, что использование координат Пенлеве-Гуллстранда действительно позволяет проследить за судьбой падающей материи под горизонтом событий черной дыры. Для простейшего уравнения состояния — предельно жесткой материи — удалось получить принципиально новые результаты относительно вихревых течений. По всей видимости, предельно жесткая материя допускает аналогичное рассмотрение и в случае вращающейся черной дыры, хотя соответствующая метрика Керра значительно сложнее и ее пространственная часть не может быть сведена к плоскому виду. Что касается более реалистических уравнений состояния, в частности ультрарелятивистской жидкости, то там исследование динамики вихревых структур требует достаточно серьезных вычислительных усилий, хотя в принципиальном отношении путь открыт.

ЛИТЕРАТУРА

- N. Andersson and G. L. Comer, Living Rev. Relativity 10, 1 (2007).
- 2. J. A. Font, Living Rev. Relativity 11, 7 (2008).
- **3**. Л. Д. Ландау, Е. М. Лифшиц, *Гидродинамика*, Наука, Москва (1986).

- M. D. Duez, P. Marronetti, S. L. Shapiro, and T. W. Baumgarte, Phys. Rev. D 67, 024004 (2003).
- L. Baiotti, I. Hawke, P. J. Montero et al., Phys. Rev. D 71, 024035 (2005).
- H. Dimmelmeier, J. Novak, J. A. Font et al., Phys. Rev. D 71, 064023 (2005).
- M. D. Duez, Y. T. Liu, S. L. Shapiro, and B. C. Stephens, Phys. Rev. D 72, 024028 (2005).
- Z. B. Etienne, J. A. Faber, Y. T. Liu et al., Phys. Rev. D 77, 084002 (2008).
- 9. A. H. Taub, Phys. Rev. 94, 1468 (1954).
- 10. B. F. Schutz, Jr., Phys. Rev. D 2, 2762 (1970).
- 11. J. R. Ray, J. Math. Phys. 13, 1451 (1972).
- 12. J. D. Brown, Class. Quantum Grav. 10, 1579 (1993).
- G. L. Comer and D. Langlois, Class. Quantum Grav. 11, 709 (1994).
- 14. V. P. Ruban, Phys. Rev. D 62, 127504 (2000).
- **15**. В. П. Рубан, Письма в ЖЭТФ **99**, 141 (2014).
- 16. P. Papadopoulos and J. A. Font, Phys. Rev. D 58, 024005 (1998).
- 17. P. Painlevé, C. R. Acad. Sci. Paris 173, 677 (1921).
- 18. A. Gullstrand, Arkiv. Mat. Astron. Fys. 16, 1 (1922).
- 19. M. K. Parikh and F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000).
- **20**. С. Е. Volovik, Письма в ЖЭТФ **73**, 721 (2001).

- 21. J. Ziprick and G. Kunstatter, Phys. Rev. D 79, 101503(R) (2009).
- 22. Y. Kanai, M. Siino, and A. Hosoya, Progr. Theor. Phys. 125, 1053 (2011).
- **23**. Л. Д. Ландау, Е. М. Лифшиц, *Теория поля*, Физматлит, Москва (2006).
- 24. V. P. Ruban, Phys. Rev. E 64, 036305 (2001).
- 25. J. Demaret and V. Moncrief, Phys. Rev. D 21, 2785 (1980).
- 26. В. Ф. Зайцев, А. Д. Полянин, Справочник по дифференциальным уравнениям с частными производными первого порядка, Физматлит, Москва (2003).
- 27. L. I. Petrich, S. L. Shapiro, and S. A. Teukolsky, Phys. Rev. Lett. 60, 1781 (1988).
- 28. S. L. Shapiro, Phys. Rev. D 39, 2839 (1989).
- 29. E. Babichev, S. Chernov, V. Dokuchaev, and Yu. Eroshenko, Phys. Rev. D 78, 104027 (2008).
- B. N. Shashikanth and J. E. Marsden, Fluid Dyn. Res. 33, 333 (2003).
- 31. Е. Ю. Банникова, В. М. Конторович, С. А. Пославский, ЖЭТФ 144, 438 (2013).
- **32**. F. C. Michel, Astrophys. Space Sci. **15**, 153 (1972).
- **33**. В. С. Бескин, В. И. Парьев, УФН **163**, 95 (1993).
- 34. В. С. Бескин, Ю. Н. Пидопрыгора, ЖЭТФ 107, 1025 (1995).
- 35. Е. О. Бабичев, В. И. Докучаев, Ю. Н. Ерошенко, ЖЭТФ 127, 597 (2005).