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OPEN STRING IN THE PRESENCE OF THE pp-WAVE, LINEARDILATON, AND KALB�RAMOND BACKGROUNDSM. Zoghi *, D. Kamani **Faulty of Physis, Amirkabir University of Tehnology (Tehran Polytehni) P. O. Box15875-4413, Tehran, IranReeived January 10, 2014We study open strings attahed to a Dp-brane in the presene of the pp-wave bakground along with a onstantantisymmetri B-�eld and the linear dilaton. The nonommutativity struture of this system is also investigated.DOI: 10.7868/S00444510140700981. INTRODUCTIONString theory in various bakgrounds has been pro-foundly studied. Some of these bakgrounds admit asolvable string theory. One of them is the pp-wavespaetime [1℄, whih is supported by a null, onstant5-form �ux and an be obtained from the AdS5 � S5metri by taking the Penrose limit. The pp-wave bak-ground is a maximal supersymmetri spae in whihlosed string theory is exatly solvable in the light-one gauge [2, 3℄. Another popular bakground is theonstant antisymmetri B-�eld, whih has been exten-sively studied in the literature. It leads to nontrivialphysis on the branes. The nonommutativity of theopen string end points, whih are attahed to a D-brane [4℄, is a onsequene of the mixed boundary on-dition in the B-�eld bakground. In addition, we havethe linear dilaton �eld as a bakground, whih is thesimplest bakground for nonritial string theory [5℄.Among the various onformal �eld theories (CFTs), thelinear dilaton CFT has some interesting appliations instring theory [6℄. For example, the D-brane nonom-mutativity is investigated in various bakground �eldssuh as the dilaton [7�10℄.In this artile, we onsider all the three open-string bakground �elds mentioned above and inves-tigate on the solvability of the theory. Besides, it hasbeen demonstrated that in the light-one formulationof strings in the pp-wave, the momentum spae alsobeomes nonommutative, whih leads to a fully non-*E-mail: zoghi�aut.a.ir**E-mail: kamani�aut.a.ir

ommutative phase spae. This fat also motivated usto extend the problem by adding the above bakground�elds and see whether any new kind of quantum geom-etry arises.2. OPEN STRING IN A SET OFBACKGROUND FIELDSThe pp-wave bakground onsists of a plane wavemetri, aompanied by a homogeneous R�R 5-form�uxds2 = �f2X iX i(dX+)2+2dX+dX�+dXIdXI ;I = 1; 2; : : : ; 8;F5 = fdX+ ^ �dX1 ^ dX2 ^ dX3 ^ dX4 ++ dX5 ^ dX6 ^ dX7 ^ dX8� : (1)We onsider an open string attahed to a Dp-brane inthe presene of the following bakground �elds: thepp-wave metri, a onstant Kalb�Ramond tensor �eldB�� , and the dilaton �eld �. In the light-one formal-ism, the oordinates are deomposed asfX+; X�g[fXI jI = 1; 2; : : : ; p� 1g[[fX iji = p+ 1; : : : ; 9g;where X� = (X0 � Xp)=p2 and X+ = x+ + �0p+� .The string sigma-model ation in the above bak-grounds is82



ÆÝÒÔ, òîì 146, âûï. 1 (7), 2014 Open string in the presene of the pp-wave : : :S = � 14��0 Z� d2� �� �gIJ �p�hhab�aXI�bXJ +m2XIXJ�++ �abBIJ�aXI�bXJ + �0p�h�R(2)�; (2)where � is the string worldsheet with the metri hab,and h = dethab. The salar urvature R(2) is on-struted from the metri hab. The spaetime metri isalso g�� , whih is given by Eq. (1). The mass param-eter m, i. e., the mass of the worldsheet �elds XI , isde�ned as m := �0p+f .In the onventional ase, the dilaton is usually ageneral arbitrary funtion of the spaetime oordinates,but onsidering only a linear dilaton gives rise to sim-pli�ed equations. We suppose that the dilaton �eldhas a linear form along the brane worldvolume, i. e.,� = a�X�, where the parameters fa�j� = 0; 1; : : : ; pgare onstant. Regarding the di�eomorphism invarianeof ation (1), we are able to hoose a onformally �atform for the worldsheet metri,hab(�; �) = e�(�;�)�ab:Beause the dilaton �eld removes the Weyl symmetry,we are not allowed to set �(�; �) equal to zero. We�nish our setup by setting a0 = ap = 0 to avoid thepresene of the oordinates X� in the ation.Equating the variation of the ation to zero givesthe equations of motion for the worldsheet �elds XIand � in the form(�2 �m2)XI + 12�0aI�2� = 0; (3)aI�2XI = 0; (4)where �2 = ��� 2 + ��2. In a nonritial string theory,i. e., for a2 = aIaI / d � 26 6= 0, these equations anbe written as(�2 �m2)XI +AIJXJ = 0; (5)�2� = 2m2aIXI�0a2 ; (6)where the matrix is de�ned byAIJ := m2aIaJ=a2. The�rst equation reveals that the worldsheet �elds XI ef-fetively feel the potentialV (X) = 12AIJXIXJ + V0;

where V0 is the potential at the origin of the oor-dinates. We observe that the presene of the lineardilaton and pp-wave bakground simultaneously is theorigin of this potential. However, the vanishing of thevariation of the ation also de�nes boundary onditionsfor the open string. For example, for the open stringend at � = 0, we obtain the equations(��XI �BIJ��XJ)j�=0 = 0; (7)(aI��XI)j�=0 = 0 (8)for XI and �.It is not very easy to solve Eq. (5) in the generalase. Therefore, we onsider the situation where theonly nonzero omponents of the vetor aI are a1 anda2, whih gives � = a1X1 + a2X2. We also apply theblok diagonal form of the B-�eldB = 0BBBB� 0 b 0 0�b 0 0 00 0 0 b00 0 �b0 0 1CCCCA ; (9)where the nonzero elements are B12 = b and B34 = b0.Now, rewriting Eq. (5), we obtain�1X1 + kX2 = 0;�2X2 + kX1 = 0; (10)where the operators �f1;2g and the onstant k are de-�ned by �f1;2g : = �2 �m2 a2f2;1ga2 ;k : = m2 a1a2a2 : (11)By ombining Eqs. (10), we obtain the equations�2�1X1 � k2X1 = 0; (12)X2 = �1k�1X1: (13)The general solution of partial di�erential equa-tion (12), whih has rank four, with boundaryondition (7) an be written asX1(�; �) = �x1 os!0�+2�0p1 sin!0�!0 � h(!0b�)�� 1!0 ��2�0p2 os!0� + x2!0 sin!0�� sh(!0b�) ++p2�0 Xn6=0 exp (�i!n�)���i�n1!n osn� + �n2n b sinn�� : (14)83 6*



M. Zoghi, D. Kamani ÆÝÒÔ, òîì 146, âûï. 1 (7), 2014Then Eq. (13) implies thatX2(�; �) = �a1a2X1(�; �): (15)Here, the frequenies are!0 = � mp1 + b2 ;!n = sign(n)pm2 + n2: (16)We note that we an write Eqs. (10) as�2�1X2 � k2X2 = 0;whih reveals that X2 has a solution similar to theone in Eq. (14), with the indies 1 and 2 interhanged.Comparing this solution for X2 and Eq. (14) leads tob = 0. In this ase, the mixed boundary onditions forX1 and X2 redue to the Neumann boundary ondi-tions. Thus, the mode expansion for X1 isX1(�; �) = x1 osm� + 2�0p1 sinm�m ++ ip2�0Xn6=0 exp (�i!n�) �n1!n osn�; (17)and again X2(�; �) = �(a1=a2)X1(�; �).Next with a di�erent approah, we demonstratethat our setup is onsistent only for b = 0. It is note-worthy that the dilaton term of the ation annot betreated just lassially, but it has a quantum worldsheetorretion that modi�es the energy�momentum tensor.String ation (2) with the linear dilaton � = a�X�de�nes a family of CFTs with the energy�momentumtensorT (z) = � 1�0 : g���X��X� : +a��2X�;~T (�z) = � 1�0 : g�� ��X� ��X� : +a� ��2X�: (18)Realling that X� is related to the other oordinatesexept X+ and using the pp-wave metri (1), we obtainT (z) = � 1�0 : �12�XK�XK ++ m28z2XKXK + �X i�Xi� : +aK�2XK ;~T (�z) = � 1�0 : �12 ��XK ��XK + m28�z2XKXK ++ ��X i ��Xi� : +aK ��2XK ; (19)
whereK 2 f1; 2; 3; 4g; i 2 f5; : : : ; p�1g[fp+1; : : : ; 9g:

We note that we have assumed the only nontrivial dila-ton oe�ients to be a1 and a2. Beause momentumdoes not �ow at the boundary, we must have T (z) == ~T (�z) (at the boundary, z = �z), hene we obtain theonditions ak�nlBkl = 0;akp0lBkl = 0;akx0lBkl = 0; k; l = 1; 2: (20)These equations imply that B12 = b = 0.3. QUANTIZATIONFor the string oordinates X3 and X4, we an writethe solutions asXI0(�; �) = XI00 (�; �) +XI01 (�; �);XI00 (�; �) = �xI0 os!0� + 2�0pI0 sin!0�!0 ��� h(!0b0�) + 1!0b0BI0J0 �� ��xJ0!0 sin!0�+2�0pJ0 os!0�� sh(!0b0�);XI01 (�; �) = p2�0Xn6=0 exp (�i!n�) �� i�I0n!n osn� + �J0nn BI0J0 sinn�! ;
(21)

where XI00 is the zero-mode part and XI01 is the os-illating part, and fI 0; J 0 = 3; 4g. We note that bothsigns of !0 determine only one solution for XI1 . A-ording to our setup, we see that only the oordinatesX3 and X4 ontain the B-�eld elements. Therefore,only the X3X4 plane is nonommutative, and we nowinvestigate it.The anonial momentum orresponding to theopen string oordinate XI is given byP I(�; �) = 12��0 ���XI �BIJ��XJ� : (22)For the diretions X3 and X4, the onjugate momentaalso split into two piees, the zero-mode part and theosillating part:84
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(23)

The symmetri matrix M is given byMI0J0 = (1 + b2)ÆI0J0 : (24)Again, both signs of !0 speify one value for eah ofthe momentum omponents P 3 and P 4.It is known that in a D-brane with the B-�eld bak-ground, the spatial oordinates of the brane do notommute. We now investigate this in our setup. Toquantize the open string theory, we use the sympletiform
 = �Z0 d� 4XI0=3 4XJ0=3 gI0J0dP I0 ^ dXJ0! : (25)This an be justi�ed by analyzing the onstraint stru-ture of the theory (see, e. g., Refs. [11; 12℄). WithEqs. (21) and (23), this di�erential form beomes
 = 4XI0=3 4XJ0=3� sh(2�!0)2�!0b MI0J0dpI0 ^ dxJ0 �� sh2(�!0b)2��0b2 (MB)I0J0dxI0 ^ dxJ0 �� 2�0 sh2(�!0b)�!02b2 (MB)I0J0dpI0 ^ dpJ0 ++ i 1Xn=1 M(n)I0J0!n d�I0n ^ d�J0�n�; (26)where the symmetri matries M(n)I0J0 are de�ned byM(n)I0J0 = �1 + !2nb2n2 � ÆI0J0 : (27)This sympleti form enables us to obtain the nontriv-ial ommutation relations[xI0 ; xJ0 ℄ = 2i��0(BM�1)I0J0 ;[xI0 ; pJ0 ℄ = iM I0J0 �!0b0th(�!0b0) ;[pI0 ; pJ0 ℄ = i�!022�0 (BM�1)I0J0 ;[�I0n ; �J0s ℄ = !nM I0J0(n) Æn+s;0; (28)

The matrix M I0J0(n) is inverse to M(n)I0J0 , and the ma-trix (BM�1) is antisymmetri. The matrix M I0J0(n) maybe interpreted as a mode-dependent open string metrifor the osillators.The above results allows alulating intrinsi om-mutation relations for the open string oordinates andtheir onjugate momenta:hXI0(�; �); XJ0(�0; �)i = 2�i�0(BM�1)I0J0 ; (29)hP I0(�; �); P J0 (�0; �)i = i m22��0BI0J0 ; (30)hXI0(�; �); P J0 (�0; �)i = iÆI0J0 Æ(� � �0); (31)where the �rst and the seond equations are establishedon the brane, i. e., at � = �0 = 0. The left-hand sides ofEqs. (29) and (30) de�ne the nonommutativity param-eters respetively assoiated with the spae and mo-mentum parts of the 4-dimensional phase spae. Equa-tions (28)�(31) larify the fat that the open string zeromodes as well as the string oordinates XI0 and themomenta P I0 feel a nonommutative phase spae.4. CONCLUSIONSWe have investigated the behavior of an open stringattahed to a Dp-brane in the presene of massless�elds: the Kalb�Ramond �eld and the linear dilatonin the pp-wave bakground. We hose a suitable on-�guration of the bakground �elds suh that they beappropriate for the light-one-gauge formalism. Thepresene of the linear dilaton e�etively deforms theequations of motion, the boundary onditions and, dueto the lak of the Weyl invariane, introdues a newworldsheet �eld � into the theory.Separation of the variables elaborates a di�erentialequation for the string oordinates. By solving thisequation and the boundary equations, we establishedthat the nonommutativity is extremely in�uened bythe dilaton �eld. If there is a magneti �eld along twospei� diretions of the brane, then the positions of thestring endpoints in that plane are expeted to be non-ommutative. However, it is possible to suppress thenonommutativity by turning on a linear dilaton �eldsuh that its vetor omponents fall into that plane,85
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