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1. INTRODUCTION

String theory in various backgrounds has been pro-
foundly studied. Some of these backgrounds admit a
solvable string theory. One of them is the pp-wave
spacetime [1], which is supported by a null, constant
5-form flux and can be obtained from the AdSs x S°
metric by taking the Penrose limit. The pp-wave back-
ground is a maximal supersymmetric space in which
closed string theory is exactly solvable in the light-
cone gauge [2, 3]. Another popular background is the
constant antisymmetric B-field, which has been exten-
sively studied in the literature. It leads to nontrivial
physics on the branes. The noncommutativity of the
open string end points, which are attached to a D-
brane [4], is a consequence of the mixed boundary con-
dition in the B-field background. In addition, we have
the linear dilaton field as a background, which is the
simplest background for noncritical string theory [5].
Among the various conformal field theories (CFTs), the
linear dilaton CFT has some interesting applications in
string theory [6]. For example, the D-brane noncom-
mutativity is investigated in various background fields
such as the dilaton [7-10].

In this article, we consider all the three open-
string background fields mentioned above and inves-
tigate on the solvability of the theory. Besides, it has
been demonstrated that in the light-cone formulation
of strings in the pp-wave, the momentum space also
becomes noncommutative, which leads to a fully non-
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commutative phase space. This fact also motivated us
to extend the problem by adding the above background
fields and see whether any new kind of quantum geom-
etry arises.

2. OPEN STRING IN A SET OF
BACKGROUND FIELDS

The pp-wave background consists of a plane wave
metric, accompanied by a homogeneous R—R 5-form
flux

ds® = —f> X X (dX+)?+2dXTdX ~+dXTdX ',
I=1,2,...,8,
Fy = fdX " A (dX* AdX? NdXP AdX* +
+ dX® AdXO A dXT AN dXP) .

(1)

We consider an open string attached to a Dp-brane in
the presence of the following background fields: the
pp-wave metric, a constant KKalb—Ramond tensor field
By, and the dilaton field ®. In the light-cone formal-
ism, the coordinates are decomposed as

{(xt.xy xr=12,....p-13
U{Xi|z'=p+ 1,...,9},

where X+ = (X% 4+ X?)/y/2 and X+t = 2t 4+ o'ptr.
The string sigma-model action in the above back-
grounds is
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1 2
S:—4ﬂ_al/dcr><

=

X {gu (\/—hhabaaxfa,,XJ + m2X1XJ) +
+€®Br;0, X0, X7 + o'V —h <I>R<2)] . (2)

where ¥ is the string worldsheet with the metric hgp,
and h = det hyy. The scalar curvature R?) is con-
structed from the metric hy,. The spacetime metric is
also gv, which is given by Eq. (1). The mass param-
eter m, i.e., the mass of the worldsheet fields X7, is
defined as m := a/p* f.

In the conventional case, the dilaton is usually a
general arbitrary function of the spacetime coordinates,
but considering only a linear dilaton gives rise to sim-
plified equations. We suppose that the dilaton field
has a linear form along the brane worldvolume, i.e.,
® = a, X% where the parameters {ay|a =0,1,...,p}
are constant. Regarding the diffeomorphism invariance
of action (1), we are able to choose a conformally flat
form for the worldsheet metric,

hav(0,7) = "7 g

Because the dilaton field removes the Weyl symmetry,
we are not allowed to set p(o,7) equal to zero. We
finish our setup by setting agp = a, = 0 to avoid the
presence of the coordinates X+ in the action.

Equating the variation of the action to zero gives
the equations of motion for the worldsheet fields X7
and p in the form

1
(@ —mHXT + Ea'aIBZp =0, (3)
ard’XT =0, (4)
where 82 = —9,.” + 9,°. In a noncritical string theory,

i.e., for a®> = ara’ o< d — 26 # 0, these equations can
be written as

(0> —m*)XT+ APX7 =0, (5)
2m2a; X!
2
0°p= T (6)

where the matrix is defined by A;; := m2araz/a®. The
first equation reveals that the worldsheet fields X7 ef-
fectively feel the potential

1

V(X) = 5AUXIX" + Vo,

where Vj is the potential at the origin of the coor-
dinates. We observe that the presence of the linear
dilaton and pp-wave background simultaneously is the
origin of this potential. However, the vanishing of the
variation of the action also defines boundary conditions
for the open string. For example, for the open string
end at ¢ = 0, we obtain the equations

(0, XT = B19,X7)|5—0 = 0, (7)

(aIachI)|cr:0 =0 (8)

for X and p.

It is not very easy to solve Eq. (5) in the general
case. Therefore, we consider the situation where the
only nonzero components of the vector a; are a; and
as, which gives ® = a; X' + a»X2. We also apply the
block diagonal form of the B-field

0O b 0 O
-b 0 0 0
B - 9 (9)
0o 0 0
0 0 = 0

where the nonzero elements are B1s = b and B3y = b'.

Now, rewriting Eq. (5), we obtain

AL X+ kX2 =0,
) | (10)
Ao X?+ kX' =0,

where the operators Ay ») and the constant k are de-
fined by

Aquay i = 08 — m2 2
’ a (11)

L 5 A1 G2
k:=m pER
By combining Eqs. (10), we obtain the equations
AsAL X —E2X =0, (12)

X? = —%Alxl. (13)

The general solution of partial differential equa-
tion (12), which has rank four, with boundary
condition (7) can be written as

sin woT
X (o, 1) = (ar:l cos woT+2a'pt ———
Wo

) ch(wobo) —
- — (—2a'p2 coswoT + 22wy sin wm') sh(wobo) +

wWo
+ V2a! Z exp (—iwnT) X
n#0
1 2
X <iaL cosno + aibsinncr) . (14)
n

Wn

6*
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Then Eq. (13) implies that

X2(0,7) = —2LX" (0, 7). (15)
a2
Here, the frequencies are
m
wo = e,
V1+ b2 (16)

wp, = sign(n)v/m? + n2.

We note that we can write Eqgs. (10) as
AsA X2 —E2X2 =0,

which reveals that X2 has a solution similar to the
one in Eq. (14), with the indices 1 and 2 interchanged.
Comparing this solution for X? and Eq. (14) leads to
b = 0. In this case, the mixed boundary conditions for
X' and X2 reduce to the Neumann boundary condi-
tions. Thus, the mode expansion for X! is

sinmrt
11
p

X0, 1) = 2' cosmT + 2a

1
+iv2a! Z exp (—iwnt) 2 cosno,  (17)
Wn
n#0

and again X2(o,7) = —(a1/a2) X' (0, 7).

Next with a different approach, we demonstrate
that our setup is consistent only for b = 0. It is note-
worthy that the dilaton term of the action cannot be
treated just classically, but it has a quantum worldsheet
correction that modifies the energy—momentum tensor.
String action (2) with the linear dilaton ® = a,X*
defines a family of CFTs with the energy—momentum
tensor

1
T(z) = —— : gu0X"0X" : +a,0* X",

a
) 1 - . (18)
T(3) = —— : gudXPOXY : +a, 02 X",

a

Recalling that X ~ is related to the other coordinates
except X and using the pp-wave metric (1), we obtain

1 1 )
T(z)=——:|=-0X"oxk
(2) o <2 K+
m2 - . -
+ XM Xk +8X’8Xi> S a0 XK
82 (19)
- 1 1- = m?2 -
T(z) = ——:20X"oXr + — XK X
G == <2 Kbgmd KT

+ 5X’5Xi) : —l—a1(52XK,
where

K e€{1,2,3,4}, ie{5...,p—1}J{p+1....,9}.
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We note that we have assumed the only nontrivial dila-
ton coefficients to be a; and ay. Because momentum
does not flow at the boundary, we must have T'(z) =
= T(%) (at the boundary, z = Z), hence we obtain the
conditions

akanlBkl = 07
k, 1
a“po By = 0,

a*zo' By =0,

(20)

These equations imply that Bis = b

3. QUANTIZATION

For the string coordinates X? and X*, we can write
the solutions as

X" (o,7) = X{'(0,7) + X{ (0,7),

7 SinweT
— | x

x{'(o,7) = <x1’ coswoT + 2a'p
Wo

1
wo b’

x ch(wob'o) + —=Bh, x

X (—x"lwo sin w07'+2a'p‘ﬂ cos wor) Sh(woblg)7 (21)
X (o,7) = \/T«’Zexp (—iwnT) X
n#0
I’ J'
a « ’
X (z—” cosno + —= B, sin na) ,
n

Wn

where X' is the zero-mode part and X[ is the os-
cillating part, and {I',J" = 3,4}. We note that both
signs of wy determine only one solution for X', Ac-
cording to our setup, we see that only the coordinates
X? and X* contain the B-field elements. Therefore,
only the X?X* plane is noncommutative, and we now
investigate it.

The canonical momentum corresponding to the
open string coordinate X7 is given by

1
P(o,7) = 2ral

(0, x" - B"0,X7).  (22)

For the directions X3 and X*, the conjugate momenta
also split into two pieces, the zero-mode part and the
oscillating part:
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PI,(O', T) = POII (o,7) + Plﬂ (o,7),

’ ]_ ’ 1
PO (U,T):%{MJ/ (_ 7

x’ wosinwoyT +

b(BM)J, X

+ 2a/p”" cos wor) ch(wgb'o)

X <2a'p‘]’ sin woT + 27 Wo COS wor) sh(wob'a)] , (23)

Pl (o,7) = Zexp —iWw,T) X

20 w0

J' r . m®
X | ay Myp" cosno +1t
nw

n

a{ B§’, sin na) .
The symmetric matrix M is given by

My = (1+b2)51rjl. (24)

Again, both signs of wp specify one value for each of
the momentum components P? and P*.

It is known that in a D-brane with the B-field back-
ground, the spatial coordinates of the brane do not
commute. We now investigate this in our setup. To
quantize the open string theory, we use the symplectic

form
) -

This can be justified by analyzing the constraint struc-
ture of the theory (see, e.g., Refs. [11,12]). With
Eqs. (21) and (23), this differential form becomes

sh(27wo)
27wob

sh? (mwob)
C 2ma’h?
2a' sh? (mwob)
O Twoh?

+zz

where the symmetric matrices M, ;- are defined by

A 4 4

0= /dcr (Z > grpdP" AdX”

o I'=3J'=3

My g dpll A dl“]l -

(MB)]’J’ dxll A dx‘]’

(MB)ppdp" Adp” +

‘”)”'d ;’AdaJ’n>, (26)

272

b
3 )511J/.

This symplectic form enables us to obtain the nontriv-
ial commutation relations

[2!,27'] = 2ira/ (BM 1),

w
M(n)[’]’ = (1 + (27)

I g apIg 71'&)01)’

= I S ey (28)
’ 1 ‘7TQJO 1

! p” ) =i S (B

[afl”asj’] = wnM(Ir;SI’ 5n+s,07
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The matrix M(II‘)]I is inverse to M), and the ma-

trix (BM 1) is antisymmetric. The matrix M( ) " may
be interpreted as a mode-dependent open string metric
for the oscillators.

The above results allows calculating intrinsic com-
mutation relations for the open string coordinates and
their conjugate momenta:

{Xll(cr, 7, X7 (a',r)] = 2mia/(BM~Y)!' | (29)

[P (0.r), P (o', 7)] = 2B (30)
o,T), o,T —z2ﬂ_a, ,

[Xf’ (0,7), P” (o', T)] =is! 50—,  (31)

where the first and the second equations are established
on the brane, i.e., at ¢ = ¢/ = 0. The left-hand sides of
Eqs. (29) and (30) define the noncommutativity param-
eters respectively associated with the space and mo-
mentum parts of the 4-dimensional phase space. Equa-
tions (28)—-(31) clarify the fact that the open string zero
modes as well as the string coordinates X I and the
momenta P feel a noncommutative phase space.

4. CONCLUSIONS

We have investigated the behavior of an open string
attached to a Dp-brane in the presence of massless
fields: the Kalb—Ramond field and the linear dilaton
in the pp-wave background. We chose a suitable con-
figuration of the background fields such that they be
appropriate for the light-cone-gauge formalism. The
presence of the linear dilaton effectively deforms the
equations of motion, the boundary conditions and, due
to the lack of the Weyl invariance, introduces a new
worldsheet field p into the theory.

Separation of the variables elaborates a differential
equation for the string coordinates. By solving this
equation and the boundary equations, we established
that the noncommutativity is extremely influenced by
the dilaton field. If there is a magnetic field along two
specific directions of the brane, then the positions of the
string endpoints in that plane are expected to be non-
commutative. However, it is possible to suppress the
noncommutativity by turning on a linear dilaton field
such that its vector components fall into that plane,
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which quenches the magnetic field. In fact, by adding
the elements of the magnetic field, without altering the
dilaton vector, one can turn on the noncommutativity
in some other directions. The momentum components
of the open string in these directions also acquire a
noncommutative structure.

The equations in this paper also are valid for a gene-
ral block-diagonal magnetic field. It may be interesting
to extend the problem beyond this consideration with
more components, and find out whether new results
would follow.
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